Supporting Information © Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014 Coordination Chemistry of Cyclopropenylidene-Stabilized Phosphenium Cations: Synthesis and Reactivity of Pd and Pt Complexes Ágnes Kozma, Tobias Deden, Javier Carreras, Christian Wille, Jekaterina Petuškova, Jörg Rust, and Manuel Alcarazo*[a] chem_201303686_sm_miscellaneous_information.pdf ### **Table of Contents** | Experimental Procedures | S2 | |-----------------------------------|------| | Characterization of new compounds | S2 | | NMR spectra | \$13 | | X-ray structure analyses | S4! | ### **Experimental procedures:** **General:** All reactions were carried out in flame-dried glassware under Ar. All solvents were purified by distillation over the appropriate drying agents and were transferred under Ar. IR: Nicolet FT-7199 spectrometer, wavenumbers in cm $^{-1}$. MS (EI): Finnigan MAT 8200 (70 eV), ESIMS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). NMR: Spectra were recorded on a Bruker AV 600, AV 400 or DPX 300; 1 H and 13 C chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale. Column chromatography was performed on Merck 60 silica gel (40-63 µm). Thin-layer chromatography (TLC) analysis was performed using Merck silica gel 60 F254 TLC plates, and visualized by UV. All commercially available compounds (ABCR, Acros, Aldrich, Fischer) were used as received. Compounds 1a-f, 3a,b,e,f, ¹ 2,3-bis(diisopropylamino)-1-chlorocyclopropenium tetrafluoroborate 2 ², bis[3,5-bis(trifluoromethyl)phenyl]phosphine³, 6-bromo-3-hydroxy-2-methoxynebzaldehyde 13⁴, 4-bromo-2,3-dimethoxy-1-benzyloxybenzene 18 ⁵, 6-bromoveratraldehyde 20 ⁶ and monosaccharide 25 ⁷ were prepared according to literature procedures. #### Compound 1g A solution of bis[3,5-bis(trifluoromethyl)phenyl]phosphine (1 g, 2.18 mmol) in dry THF (15 mL) was cooled $$F_3C$$ $iPr-N$ iPr iPr F_3C iPr F_3C iPr F_3C iPr i to -78 °C, then n-BuLi (1.6 M in hexane, 1.6 mL, 2.18 mmol) was added and the resulting mixture was stirred for 2 hours at this temperature. After this chlorocyclopropenium salt **2** (782 mg, 2.18 mmol) was added and the mixture allowed to warm up slowly to rt and further stirred at 60 °C for 2 days. After cooling to rt, the solvent was evaporated, the residue suspended in CH_2CI_2 (20 mL) and washed with saturated aq. $NaBF_4$ solution (3 x 15 mL). Once dried over Na_2SO_4 , the organic phase was concentrated and the residue purified by column chromatography (CH₂Cl₂/acetone: 9/1) affording the title compound as a pale yellow solid (653 mg, 38 %). ¹H NMR (400 MHz, CDCl₃) δ = 1.11 (d, J = 6.8 Hz, 12H), 1.41 (d, J = 6.8 Hz, 12H), 3.48 (sept, J = 6.8 Hz, 2H), 4.16 (sept, J = 6.8 Hz, 2H), 7.93 (s, 2H), 7.95 (s, 2H), 8.02 (2H) ppm. ³¹P NMR (162 MHz, CDCl₃) δ = -26.9 ppm. ¹⁹F NMR (282 MHz, CD₂Cl₂) δ = -151.5, -151.5, -63.1 ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 20.8, 20.8, 21.2, 52.8, 54.6, 99.4 (d, J = 61.4 Hz), 122.7 (q, 273.3 Hz), 124.8-125.1 (m), 133.3 (dq, J = 34.3, 7.1 Hz), 133.6-134.1 (m), 134.3 (d, J = 15.4 Hz), 140.0 ppm. ¹ J. Petuškova, H. Bruns, M. Alcarazo, *Angew. Chem. Int. Ed.* **2011**, *50*, 3799. ⁴ T. Nakanishi, M. Suzuki, *J. Nat. Prod.* **1998**, *61*, 1263. ⁶ S. Chandrasekhar, N. R. Reddy, Y. S. Rao, *Tetrahedron* **2006**, *6*2, 12098. ² R. Weiss, K. G. Wagner, C. Priesner, J. Macheleid, J. Am. Chem. Soc. 1985, **107**, 4491. ³ C. A. Busacca, J. C. Lorenz, P. Sabila, N. Haddad, C. H. Senanyake, Org. Synth. 2007, 84, 242. ⁵ a) H. Shigehisa, J. Takayama, T. Honda, *Tetrahedron Lett.* **2006**, *47*, 7301; b) F. Dietl, G. Gierer, A. Merz, *Synthesis*, **1985**, 626. ⁷ a) B. Dasari, S. Jogula, R. Borhade, S. Balasubramanian, G. Chandrasekhar, S. S. Kitambi, P. Arya, *Org. Lett.* **2013**, *15*, 432; b) R. R. Schmidt, M. Stumpp, *Liebigs Ann. Chem.* **1983**, 1249; c) R. R. Schmidt, J. Michel, M. Roos, *Liebigs Ann. Chem.* **1984**, 1343. HRMS calcd. for $C_{31}H_{34}N_2F_{12}P^+$: 693.226254; found 693.226826. IR $\tilde{v} = 681, 704, 845, 899, 1057, 1095, 1122, 1180, 1278, 1353, 1459, 1567, 1867, 2981 cm⁻¹.$ ### Compound 3d Dry THF (2 mL) was added to a cooled (-20 °C) solid mixture of [RhCl(CO)₂]₂ (13 mg, iPr R iPr iPr iPr R R N-iPr 2BF4 iPr 0.031 mmol) and phosphenium salt 1d (67 mg, 0.12 mmol). The reaction mixture was allowed to warm to rt and then stirred for additional 30 minutes. After removal of the solvents *in vacuo*, the solid residue was washed with pentane (2 x 2 mL) and dried, affording the desired product as a yellow solid (76 mg, 99%). R = p-(Me)C₆H₄ ¹H NMR (300 MHz, CD₂Cl₂) $\delta = 0.97$ (d, J = 6.8 Hz, 24H), 1.34 (d, J = 6.8 Hz, 24H), 2.45 (s, 12H), 3.47 (sept, J = 7.0 Hz, 4H), 4.11 (sept, J = 7.0 Hz, 4H), 7.43 (d, J = 7.9 Hz, 8H), 8.00-8.10 (m, 8H) ppm. ³¹P NMR (121 MHz, CD_2CI_2) $\delta = 28.8$ (d, J = 131.2 Hz) ppm. ¹³C NMR (75 MHz, CD_2CI_2) δ = 21.1, 21.5, 21.6, 102.0 (d, J = 12.6 Hz), 125.1 (dd, J = 27.8, 26.5 Hz), 130.7 (t, J = 6.4 Hz), 136.0 (t, J = 7.9 Hz), 138.9 (d, J = 3.3 Hz), 144.6 (t, J = 1.3 Hz) ppm. HRMS calcd. for C₅₉H₈₄BCIF₄N₄OP₂Rh⁺: 1151.488064; found 1151.491726. IR $\tilde{V} = 664, 386, 807, 1031, 1094, 1149, 1189, 1357, 1375, 1455, 1554, 1866, 1969, 2969 cm⁻¹.$ #### Compound 3g To a solution of the phosphenium salt 1g (70 mg, 0.09 mmol) in CH₂Cl₂ (1.5 mL), [RhCl(CO)₂]₂ (8.7 mg,0.022 mmol) was added and the reaction mixture was stirred for 2 hours at rt. After removal of the solvents *in vacuo*, the solid residue was washed with pentane (2 x 1 mL) and dried, affording the desired product as a yellow solid (36 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ = 1.06 (d, J = 6.9 Hz, 24H), 1.39 (d, J = 6.9 Hz, 24H), 3.49 (sept, J = 6.8 Hz, 4H), 4.20 (sept, J = 6.8 Hz, 4H), 8.21 (s, 4H), 9.02 (t, J = 5.8 Hz, 8H) ppm. ³¹P NMR (162 MHz, CD_2CI_2) $\delta = 25.0$ (d, J = 136.5 Hz) ppm. ¹⁹F NMR (282 MHz, CD₂Cl₂) δ = -150.3, -150.2, -63.2 ppm. The sample decomposes during the ¹³C NMR measurement. MS: $[C_{63}H_{68}BCIF_{28}N_4OP_2Rh]^+$: 1639. IR $\tilde{V} = 681, 701, 901, 1051, 1095, 1121, 1181, 1278, 1354, 1457, 1561, 1863, 1991, 2981 cm⁻¹.$ #### Compound 4a Dry THF (6 mL) was added to a cooled (-20 °C) solid mixture of allyl palladium chloride dimer (24 mg, 0.06 mmol) and compound **1a**, (66 mg, 0.13 mmol) and the thus obtained solution was stirred at this temperature for 30 min. After warming to rt, the solvents were removed *in vacuo*, affording the desired product as a white solid (89 mg, 98%). ¹H NMR (300 MHz, CDCl₃) δ = 0.91-1.00 (m, 12H),1.40 (d, J = 7.0 Hz, 12H), 3.05 (d, J = 12.3 Hz, 1H), 3.36 (sept, J = 7.0 Hz, 2H), 3.79-3.92 (m, 1H), 4.0-4.22 (m, 3H), 4.94-5.06 (m, 1H), 5.60-5.80 (m, 1H), 7.49-7.67 (m, 6H), 7.83-7.95 (m, 2H), 7.97-8.09 (m, 2H) ppm. ³¹P NMR (121 MHz, CDCl₃) δ = 26.9 ppm. ¹³CNMR (100 MHz, CDCl₃) δ = 21.3, 21.3, 21.6, 53.1, 54.3, 58.9, 77.3, 118.2 (d, J = 5.6 Hz), 129.9 (d, J = 8.5 Hz), 130.0 (d, J = 8.8 Hz), 132.7 (brs), 135.4 (d, J = 15.9 Hz), 139.2 (d, J = 8.0 Hz) ppm. HRMS calcd. for $C_{30}H_{43}N_2CIPPd^+$: 603.189045; found 603.189620. IR $\tilde{v} = 699, 756, 1036, 1093, 1150, 1185, 1361, 1372, 1435, 1552, 1864, 2937, 2977 cm⁻¹.$ ### Compound 4f Dry THF (4 mL) was added to a cooled (-20 °C) solid mixture of allyl palladium chloride dimer (18 mg, 0.05 mmol) and compound **1f**, (52 mg, 0.10 mmol) and the resulting solution was stirred at this temperature for 30 min. After warming to rt, the solvents were removed *in vacuo*, affording the desired product as a pale yellow solid (69 mg, 98%). ^{iPr-N}_{iPr Cl} ¹H NMR (400 MHz, CD_2Cl_2) $\delta = 0.91-1.00$ (m, 12H), 1.38 (d, J = 7.0 Hz, 12H), 3.07 (d, J = 12.0 Hz,1H), 3.41 (sept, J = 7.0 Hz, 2H), 3.79-3.90 (m, 1H), 4.05-4.20 (m, 3H), 4.91-5.02 (m, 1H), 5.67-5.81 (m, 1H), 7.24-7.37 (m, 4H), 7.79-7.90 (m, 2H), 7.92-8.04 (m, 2H) ppm. ³¹P NMR (161 MHz, CD₂Cl₂) δ = 25.5 ppm. ¹³C NMR (100 MHz, CD_2Cl_2) δ = 21.2, 21.3, 21.6, 54.7 (brs), 60.2, 81.5 (d, J = 32.3 Hz), 100.8 (d, J = 21.3 Hz), 117.6 (ddd, J = 21.3, 13.1, 7.5 Hz), 119.0 (d, J = 5.2 Hz), 124.2 (dd, J = 48.7, 22.8 Hz), 137.8-138.3 (m), 138.9 (d, J = 7.7 Hz), 165.9 (dd, J = 255.6, 5.3 Hz) ppm. HRMS *calcd*. for C₃₀H₄₁N₂CIF₂PPd⁺: 639.170431; *found* 639.170937. IR $\tilde{v} = 674$, 817, 844, 891, 1008, 1031, 1044, 1079, 1148, 1163, 1230, 1359, 1496, 1548, 1586, 1854, 2987 cm⁻¹. #### Compound 5a Dry THF (4 mL) was added to a cooled (-20 °C) solid mixture of allyl platinum chloride tetramer (35 mg, 0.03 mmol) and compound **1a**, (66 mg, 0.13 mmol) and the resulting solution was stirred at this temperature for 30 min. After warming to rt, the solvents were removed *in vacuo*, and the desired product was obtained as a pale yellow solid (95 mg, 94%). ¹H NMR (400 MHz, CD₂Cl₂) δ = 0.87 (d, J = 7.0 Hz, 6H), 0.90 (d, J = 7.0 Hz, 6H), 1.38 (d, J = 6.9 Hz, 12H), 2.48 (dt, J = 25.8, 11.4 Hz, 1H), 3.11-3.28 (m, 1H), 3.44 (sept, J = 6.9 Hz, 2H), 3.77-3.88 (m, 1H), 4.05-4.20 (m, 2H), 4.60-4.68 (m, 1H), 4.98-5.24 (m, 1H), 7.54-7.66 (m, 6 H), 7.75-7.84 (m, 2H), 7.91-7.99 (m, 2H) ppm. ³¹P NMR (161 MHz, CD_2Cl_2) $\delta = 31.8 (^1J_{(Pt-P)} = 2188.0 Hz) ppm.$ ¹³C NMR (100 MHz, CD₂Cl₂) δ = 20.9, 21.0, 21.7, 47.0 ($^{1}J_{(Pt-C)}$ = 108.7 Hz), 53.0, 54.9, 70.7 (d, J = 35.0, $^{1}J_{(Pt-C)}$ = 34.5 Hz), 100.2 (d, J = 32.3 Hz), 109.9 ($^{1}J_{(Pt-C)}$ = 24.8 Hz), 127.7 (d, J = 16.7 Hz), 128.3 (d, J = 17.3 Hz), 130.1 (d, J = 11.4 Hz), 130.1 (d, J = 11.9 Hz), 133.4 (d, J = 2.1 Hz), 133.5 (d, J = 2.1 Hz), 135.3 (d, J = 14.9 Hz), 135.5 (d, J = 15.0 Hz), 139.1 (d, J = 8.1 Hz) ppm. HRMS calcd. for C₃₀H₄₃C₁₁N₂PPt⁺: 692.248763; found 692.249285. IR $\tilde{V} = 698$, 754, 894, 998, 1033, 1048, 1094, 1149, 1184, 1203, 1355, 1376, 1437, 1454, 1550, 1866, 2938, 2980 cm⁻¹. #### Compound 6d K₂PtCl₄ (43 mg, 0.103 mmol) was added to a solution of salt **1d** (51 mg, 0.094 mmol) in dry CH₃CN (3 mL) and the mixture was stirred at rt. After 1 day the solvents were evaporated and the residue was extracted with CH_2CI_2 (5 x 2 mL). Removal of the solvents and recrystallization from CH_3CN/Et_2O gave the desired product as an orange solid (62 mg, 88%). $^{R = \rho - (Me)C_6H_4}$ ^{1}H NMR (400 MHz, CD_2CI_2) $\delta = 0.90$ (d, J = 6.6 Hz, 12H), 1.32 (d, J = 6.7 Hz, 12H), 2.41 (s, 6H), 3.53 (sept, J = 6.7 Hz, 2H), 4.04 (sept, J = 6.7 Hz, 2H), 7.35 (dd, J = 7.9 Hz, 2.3 Hz, 4H), 8.16 (dd, J = 12.4 Hz, 8.1 Hz, 4H) ppm. ³¹P NMR (162 MHz, CD₂Cl₂) $\delta = 3.0 (^{1}J_{\text{(Pt-P)}} = 2000.8 \text{ Hz}) \text{ ppm.}$ ¹³C NMR (101 MHz, CD₂Cl₂) δ = 20.6, 21.6 (d, J = 1.4), 21.7, 52.2 (brs), 54.9 (brs), 101.9 (d, J = 42.0 Hz), 122.7 (d, J = 69.2 Hz), 129.9 (d, J = 12.3 Hz), 136.3 (d, J = 12.3 Hz), 138.2 (d, J = 8.0 Hz), 143.8 (d, J = 2.7 Hz). HRMS calcd. for C₂₉H₄₂N₂Cl₂PPt⁺: 714.210531; found 714.211157. IR $\tilde{\nu} = 665$, 678, 711, 814, 896, 1011, 1030, 1098, 1149, 1186, 1316, 1352, 1375, 1449, 1497, 1551, 1597, 1865, 2934, 2978 cm⁻¹. #### Compound 6f K₂PtCl₄ (128 mg, 0.308 mmol) was added to a solution of salt 1f (150 mg, 0.28 mmol) in dry CH₃CN (4 mL) and the mixture was stirred at rt. After 1 day the solvents were evaporated and the residue was extracted with CH₂Cl₂ (5 x 4 mL). Removal of the solvents and recrystallization from CH₃CN/Et₂O gave the desired product as a yellow solid (158 mg, 68%). ^{R = p-(F)C₆H₄ ¹H NMR (400 MHz, CD₃CN) δ = 0.91 (d, J = 6.8 Hz, 12H), 1.30 (d, J = 7.0 Hz, 12H), 3.56 (sept, J = 6.7 Hz, 2H), 4.11 (sept, J = 6.7 Hz, 2H), 7.34 (dt, J = 8.9, 1.9 Hz, 4H), 8.31-8.40 (m, 4H) ppm.} ³¹P NMR (162 MHz, CD₃CN) δ = -0.01 (¹ $J_{\text{(Pt-P)}}$ = 2016.8 Hz) ppm. ¹⁹F NMR (282 MHz, CD₃CN) δ = -107.8 ppm. ¹³C NMR (101 MHz, CD₂Cl₂) δ = 20.7, 21.7, 52.3 (brs), 100.3 (d, J = 43.7 Hz), 116.6 (dd, J = 21.6, 13.3 Hz), 121.8 (dd, J = 69.8, 3.4 Hz), 138.2 (d, J = 8.6 Hz), 138.8 (dd, J = 13.9, 8.9 Hz), 165.7 (dd, J = 255.7, 2.8 Hz) ppm. HRMS *calcd*. for C₂₇H₃₆Cl₄F₂N₂PPt⁻: 792.097748; *found* 792.098455. IR $\tilde{\nu} = 685$, 714, 815, 894, 1011, 1031, 1095, 1160, 1229, 1260, 1354, 1375, 1452, 1495, 1550, 1588, 1866, 2977 cm⁻¹. ### Compound 6g $R = 3.5 - di(CF_3)C_6H_3$ K_2PtCl_4 (87 mg, 0.21 mmol) was added to a solution of salt **1g** (150 mg, 0.19 mmol) in dry CH₃CN (4 mL) and the mixture was stirred at rt. After 1 day the solvent was evaporated and the residue extracted with CH₂Cl₂ (3 x 3 mL). Removal of the solvent *in vacuo* afforded the desired product as a yellow solid (182 mg, 95%). ¹H NMR (400 MHz, CD_2CI_2) δ = 0.98 (d, J = 6.8 Hz, 12H), 1.39 (d, J = 6.9 Hz, 12H), 3.61 (sept, J = 6.8 Hz, 2H), 4.16 (sept, J = 6.8 Hz, 2H), 8.70 (s, 2H), 8.73 (2H) ppm. ³¹P NMR (121 MHz, CD_2CI_2) $\delta = 3.11$ (${}^1J_{(Pt-P)} = 2037.3$ Hz) ppm. ¹⁹F NMR (282 MHz, CD_2CI_2) δ = -63.2 ppm. ¹³C NMR (101 MHz , CD₂Cl₂) δ = 20.7, 21.7, 55.5 (brs), 95.8 (d, J = 47.5 Hz), 122.9 (q, 273.3 Hz), 127.1-127.4 (m), 128.7 (d, J = 65.1 Hz), 132.9 (dq, J = 34.3, 11.8 Hz), 135.7-136.1 (m), 138.9 (d, J = 7.8 Hz) ppm. HRMS calcd. for C₃₁H₃₄Cl₄F₁₂N₂PPt: 1028.066206; found 1028.067766. IR $\tilde{V} = 680, 698, 845, 894, 910, 1031, 1096, 1120, 1179, 1276, 1354, 1455, 1560, 1865, 2983 cm⁻¹.$ ### Compound 7a A mixture of the compound 1a (77 mg, 0.15 mmol) and Pd₂(dba)₃ (70 mg, 0.076 mmol) was evacuated for 10 minutes, then CH_2Cl_2 (3 mL) was added under Ar and the suspension stirred at rt for 2 hours. After this time the solvent was removed *in vacuo* and the residue washed with Et_2O (4 x 2 mL). Recrystallization of the crude product from CH_3CN/Et_2O gave compound **7a** as a yellow solid (44 mg, 44%). ¹H NMR (400 MHz, CD_2Cl_2) $\delta = 0.97$ (brs, 24H), 1.10 (brs, 24H), 2.04 (s, 6H), 3.71 (sept, J = 6.7 Hz, 8H), 7.34-7.41 (m, 8H), 7.43-7.49 (m, 4H), 7.74-7.82 (m, 8H) ppm. ³¹P NMR (162 MHz, CD_2CI_2) δ = -130.6 ppm. ¹³C NMR (101 MHz, CD_2Cl_2) δ = 2.8, 21.7 (brs), 50.2 (brs), 51.8 (brs), 117.1, 129.1-129.4 (m), 130.7, 133.1-133.6 (m), 134.6-134.9 (m), 137.6, 148.2 ppm. MS: $[C_{43}H_{54}B_2F_8N_4P_2Pd_2]$: 1075. IR $\tilde{v} = 695$, 745, 941, 1030, 1049, 1134, 1154, 1185, 1200, 1327, 1350, 1372, 1389, 1403, 1434, 1452, 1487, 1850, 2876, 2936, 2979 cm⁻¹. ### Compound 7b A mixture of the compound 1b (79 mg, 0.15 mmol) and Pd₂(dba)₃ (69 mg, 0.075 mmol) was evacuated for 10 minutes then CH_2CI_2 (3 mL) was added under Ar and the suspension was stirred at rt for 2 hours. After removal of the solvents *in vacuo*, the residue was washed with Et_2O (4 x 2 mL) and recrystallized from CH_3CN/Et_2O to give compound **7b** as a yellow solid (33 mg, 38 %). ¹H NMR (400 MHz, CD_2CI_2) = 1.14-1.65 (m, 70H), 1.71-2.10 (m, 20H), 2.25 (s, 6H), 2.28-2.38 (m, 2H) ppm. ³¹P NMR (162 MHz, CD_2CI_2) $\delta = -104.6$ ppm. ^{13}C NMR (101 MHz, CD₂Cl₂) δ = 22.1 (brs), 22.4-22.8 (m), 26.5, 27.4-27.9 (m), 31.5, 33.6, 36.5, 51.0, 151.1 ppm. MS: $[C_{44}H_{82}B_2F_8N_5PPd_2]^+$: 1099. IR $\tilde{v} = 729$, 849, 890, 1004, 1030, 1049, 1107, 1138, 1155, 1185, 1209, 1325, 1348, 1369, 1450, 1484, 1843, 2855, 2930, 2973 cm⁻¹. ### Compound 8a A mixture of the compound 1a (52 mg, 0.10 mmol) and Pd(PPh₃)₄ (116 mg, 0.10 mmol) was evacuated for 10 minutes. After this time, toluene (4 mL) was then added under Ar and the suspension was stirred at 100 °C overnight. Then the solvents were removed *in vacuo* and the residue washed with Et₂O (4 x 2 mL). Recrystallization of the crude product from CH_2Cl_2/Et_2O , gave compound 8a as a yellow solid (128 mg, 73%). ¹H NMR (400 MHz, CD₂Cl₂) δ = 0.38 (brs, 12H), 0.67 (brs, 12H), 1.04 (d, J = 6.4 Hz, 12H), 1.11 (d, J = 6.0 Hz, 12H), 3.20 (sept, J = 6.3 Hz, 4H), 3.69 (sept, J = 6.3 Hz, 4H), 6.55-6.73 (m, 12H), 7.02-7.60 (m, 38H) ppm. ³¹P NMR (162 MHz, CD₂Cl₂) δ = -168.9 (dd, $^2J_{\text{(P-P trans)}}$ = 213.3, $^2J_{\text{(P-P cis)}}$ = 108.8 Hz), 14.2 (dd, $^2J_{\text{(P-P trans)}}$ = 213.3, $^2J_{\text{(P-P cis)}}$ = 108.8 Hz) ppm. ¹³C NMR (101 MHz, CD_2CI_2) δ = 22.0, 22.4, 51.4 (brs), 128.7-129.3 (m), 129.6 (brs), 131.2, 131.5 (brs), 133.4-133.9 (m), 134.3 (brs), 147.8 ppm. MS: $[C_{90}H_{106}BF_4N_4P_4Pd_2]^+$: 1665. IR $\tilde{v} = 693$, 739, 895, 999, 1031, 1049, 1088, 1151, 1185, 1318, 1345, 1372, 1433, 1451, 1488, 1841, 2976, 3058 cm⁻¹. ### Compound 11 A hot solution (80 °C) of alkyne **16** (40 mg, 127 μ mol) in 2.5 mL dry dichloroethane was transferred to a Schlenk containing precatalyst **6g** (6.3 mg, 6 μ mol, 5 mol%) and Ag[SbF₆] (2.2 mg, 6 μ mol, 5 mol%). After stirring for 10 minutes at this temperature, the mixture was filtered through silica, evaporated and the residue purified by flash chromatography (hexane:ethyl acetate 2:1). The sample thus obtained in 98% yield was 90 % pure by NMR. The analytically pure sample, was obtained by preparative HPLC separation. ¹H NMR (400 MHz, CDCl₃) δ = 3.98 (s, 3H), 4.01 (s, 3H), 4.01 (s, 3H), 4.03 (s, 3H), 5.75 (s, 1H), 7.09 (s, 1H), 7.31 (d, J = 9.3 Hz, 1H), 7.64 (d, J = 9.1 Hz, 1H), 7.88 (d, J = 9.4 Hz, 1H), 9.24 (d, J = 9.4 Hz, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 56.0, 60.3, 61.3, 62.1, 105.5, 116.4, 119.5, 119.5, 124.3, 124.9, 126.5, 127.5, 128.9, 141.0, 143.2, 145.6, 152.0, 152.1 ppm. HRMS calcd. for C₁₈H₁₈O₅Na: 337.104643; found 337.104323. IR $\tilde{\nu} = 699, 716, 766, 780, 799,816, 837, 852, 899, 944, 978, 990, 1043, 1052, 1105, 1144, 1193, 1225, 1268, 1294,1322, 1341, 1353, 1392, 1433, 1475, 1574, 1608, 2838, 2931, 2960, 3009, 3451 cm⁻¹.$ ### Compound 12 ÓМе Pd/C (10%) (46 mg, 0.043 mmol) was added to a suspension of compound **26** (180 mg, 0.22 mmol) in methanol/ethyl acetate mixture (2:1, 6 mL) and the mixture was stirred under a hydrogen atmosphere at rt for 24 hours. The mixture was then filtered over silica, concentrated and purified by column chromatography (CH₂Cl₂/MeOH 10:1) to afford compound **12** as a white solid (77 mg, 75%). ¹H NMR (600 MHz, CD₃OD) δ = 2.67-2.72 (m, 4H, 10-H, 11-H), 3.39 (dd, J = 9.6, 8.5 Hz, 1H, 4-H), 3.44 (ddd, J = 9.6, 5.8, 2.2 Hz, 1H, 5-H), 3.47 (dd, J = 9.5, 8.5 Hz, 1H, 3-H), 3.51 (dd, J = 9.2, 7.5 Hz, 1H, 2-H), 3.69 (dd, J = 12.1, 5.8 Hz, 1H, 6b-H), 3.73 (s, 3H, 22-H), 3.85 (s, 6H, 23-H, 24-H), 3.90 (dd, J = 12.1, 2.2 Hz, 1H, 6a-H), 3.92 (s, 3H, 21-H), 4.95 (d, J = 7.4 Hz, 1H, 1-H), 6.84 (s, 1H, 13-H), 6.90 (s, 1H, 8-H), 7.95 (s, 1H, 16-H) ppm. ¹³C NMR (150 MHz, d⁶-DMSO) δ = 28.5 (C11), 29.8 (C10), 55.4 (C24), 55.6 (C23), 60.3 (C22), 60.7 (C21), 60.8 (C6), 69.8 (C4), 73.4 (C2), 76.9 (C3), 77.2 (C5), 100.8 (C1), 111.1 (C16), 111.5 (C13), 111.5 (C8), 121.0 (C18), 124.3 (C17), 130.4 (C12), 133.4 (C9), 141.6 (C20), 146.8 (C15), 147.3 (C14), 149.4 (C7), 150.7 (C19) ppm. HRMS *calcd.* for C₂₄H₃₀O₁₀Na: 501.173119; *found* 501.172265. IR $\tilde{v} = 677, 724, 763, 781, 825, 884, 1002, 1023, 1046, 1145, 1185, 1215, 1242, 1261, 1290, 1306, 1345, 1376, 1398, 1413, 1453, 1484, 1512, 1546, 1568, 1649, 1864, 2851, 2907, 2927, 2975, 3380 cm⁻¹.$ ### Compound 15 A suspension of compounds **13** (1.40 g, 6.10 mmol), **14** (1.55 g, 7.30 mmol), $Pd(OAc)_2$ (68 mg, 0.30 mmol) and PPh_3 (80 mg, 0.30 mmol) in DMF/H_2O (10:1, 66 mL) mixture was stirred at 60 °C overnight. After removal of the solvents *in vacuo*, the residue was suspended in H_2O (40 mL) and extracted with EtOAc (3 x 50 mL). Once dried over Na_2SO_4 , the organic phase was concentrated and purified by column chromatography (hexane/ethyl acetate 10:1) to afford the title compound as a white solid (1.30 g, 68 %). ¹H NMR (400 MHz, CDCl₃) δ = 3.57 (s, 3H), 3.90 (s, 3H), 3.90 (s, 3H), 3.97 (s, 3H), 6.07 (s, 1H), 6.73 (d, J = 8.5 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H), 7.02 (d, J = 8.3 Hz, 1H), 7.21 (d, J = 8.3 Hz, 1H), 9,84 (s, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 56.2, 60.7, 61.2, 63.2, 107.5, 120.0, 125.2, 125.6, 127.2, 127.7, 134.5, 142.1, 146.6, 149.0, 151.3, 154.0, 191.4 ppm. HRMS calcd. for C₁₇H₁₈O₆Na: 341.099561; found 341.099485. IR $\tilde{v} = 705, 803, 827, 929, 986, 1002, 1032, 1088, 1127, 1163, 1176, 1213, 1275, 1403, 1426, 1442, 1474, 1591, 1698, 2843, 2953, 3398 cm⁻¹.$ #### Compound 16 Aldehyde **15** (1 g, 3.14 mmol), *Ohira-Bestmann* reagent (907 mg, 4.71 mmol) and K_2CO_3 (870 mg, 6.29 mmol) were stirred in MeOH (45 mL) at rt during 12 hours. After this time not consumed starting material could be observed by TLC, therefore more *Ohira-Bestmann* reagent (907 mg, 4.71 mmol) and K_2CO_3 (870 mg, 6.29 mmol) were added and the mixture was stirred 12 extra hours. After this time the solvents were removed *in vacuo*, the residue was suspended in H_2O (30 mL) and extracted with EtOAc (3 x 40 mL). Once dried over Na₂SO₄, the organic phase was concentrated and purified by column chromatography (hexane/ethyl acetate 20:1) to afford a mixture of compounds **16** and **17** which was separated by HPLC (MeOH/H₂O 60:40, flow rate 50 mL/min, τ_{16} = 1.43 min, τ_{17} = 1.76 min) (**16**: 510 mg, 52 %; **17**: 210 mg, 23 %). ¹H NMR (400 MHz, CDCl₃) δ = 3.23 (s, 1H), 3.68 (s, 3H), 3.90 (s, 3H), 3.91 (s, 3H), 4.06 (s, 3H), 5.77 (s, 1H), 6.69 (d, J = 8.6, 1H), 6.95 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 8.6 Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 56.1, 61.1, 61.2, 61.5, 78.9, 85.1, 106.7, 115.4, 115.8, 125.7, 126.6, 127.1, 135.0, 142.2, 147.8, 148.7, 151.9, 153.4 ppm. HRMS calcd. for $C_{18}H_{18}O_5Na$: 337.104644; found 337.104888. IR $\tilde{v} = 670, 691, 789, 812, 827, 901, 925, 975, 999, 1010, 1038, 1091, 1125, 1230, 1272, 1290, 1329, 1411, 1433, 1462, 1484, 1576, 1599, 2827, 2934, 3279, 3370 cm⁻¹.$ ### Compound 17 MeO MeO Obtained as a side product during the synthesis of compound 16. ¹H NMR (400 MHz, CDCl₃) δ = 3.55 (s, 3H), 3.92 (s, 3H), 3.96 (s, 3H), 5.49 (s, 1H), 6.73 (d, J = 2.2 Hz, 1H), 6.76 (d, J = 8.6 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 7.05 (d, J = 8.6 Hz, 1H), 7.15 (d, J = 8.1 Hz, 1H), 7.60 (d, J = 2.1 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 56.2, 61.0, 61.3, 107.5, 108.0, 110.5, 124.2, 124.6, 125.6, 126.8, 128.6, 140.4, 142.6, 143.1, 144.7, 151.6, 153.1 ppm. HRMS calcd. for C₁₇H₁₆O₅Na: 323.088998; found 323.088746. IR $\tilde{\nu} = 681, 753, 780, 807, 826, 878, 911, 936, 949, 1006, 1035, 1044, 1089, 1114, 1165, 1178, 1220, 1231, 1264, 1293, 1333, 1411,1436, 1460, 1481, 1593, 2839, 2941, 3266 cm⁻¹.$ #### Compound 19 Bromide 18 (1.312 g, 4.05 mmol) was solved in dry Et₂O (40 mL) and cooled to -78 °C. Then n-BuLi (2.5 MeO B(OH)₂ M in hexane, 1.64 mL, 4.10 mmol) was added dropwise and the mixture stirred for 1.5 h at -78 °C. Subsequently trimethyl borate (1.37 mL, 12.15 mmol) was added and the resulting mixture allowed to warm to rt overnight. Then 2N HCl (24 mL) were added and the mixture was stirred for additional 2 h. After separation, the aqueous layer was extracted with MTBE and the combined organic layers were dried over Na_2SO_4 and evaporated. The crude product was purified by column chromatography (hexane/ethyl acetate 3:2) to yield a white solid (685 mg, 59 %). ¹H NMR (300 MHz, CD₃CN) δ = 3.82 (s, 3H), 3.95 (s, 3H), 5.14 (s, 2H), 6.30 (s, 2H), 6.86 (d, J = 8.4 Hz, 1H) 7.30-7.56 (m, 6H) ppm. ¹³C NMR (75 MHz, CD₃CN) δ = 61.2, 62.3, 71.4, 110.5, 128.7, 129.0, 129.6, 131.8, 138.1, 142.5, 156.5, 160.0 ppm. ¹¹B NMR (128 MHz, CD₃CN) δ = 31 ppm. HRMS calcd. for C₁₅H₁₇O₅BNa: 311.106123; found 311.105932. IR $\tilde{v} = 665, 694, 742, 750, 774, 791, 803, 836, 879, 907, 926, 994, 1012, 1031, 1052, 1082, 1163, 1178, 1219, 1276, 1288, 1341, 1373, 1397, 1420, 1435, 1459, 1498, 1593, 2870, 2938, 2994, 3037, 3334 cm⁻¹.$ ### Compound 21 Boronic acid 19 (411 mg, 1.43 mmol), bromide 20 (318 mg, 1.30 mmol), Pd(PPh₃)₄ (30 mg, 26 μmol) and Na_2CO_3 (275 mg, 2.60 mmol) were added to a microwave vessel and evacuated three times. Then a 1,4-dioxane/water mixture (3:2, 3.3 mL) was added and the vessel sealed quickly with a Teflon crim top. The suspension thus obtained was irradiated for 25 min at 120 °C and the resulting mixture extracted with ethyl acetate/ H_2O . The organic layer was dried with Na_2SO_4 and evaporated obtaining a crude product that was purified by column chromatography (hexane/ethyl acetate 2:1) to yield a light yellow oil (531 mg, 99 %). ¹H NMR (400 MHz, CDCl₃) δ = 3.61 (s, 3H), 3.95 (s, 6H), 3.97 (s, 3H), 5.18 (s, 2H), 6.77-6.82 (m, 2H), 6.91 (d, J = 8.5 Hz, 1H), 7.31-7.50 (m, 5H), 7.52 (s, 1H), 9.71 (s, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 56.2, 56.3, 61.0, 61.3, 71.1, 108.4, 109.4, 113.3, 124.7, 125.9, 127.3, 127.4, 128.2, 128.8, 136.9, 136.9, 142.8, 148.7, 151.7, 153.3, 153.4, 191.4 ppm. HRMS calcd. for C₂₄H₂₄O₆Na: 431.146510; found 431.146724. IR $\tilde{\nu} = 696$, 718, 744, 807, 874, 909, 938, 985, 1013, 1062, 1081, 1093, 1143, 1201, 1215, 1249, 1288, 1350, 1413, 1394, 1461, 1488, 1514, 1595, 1676, 2768, 2846, 2936 cm⁻¹. ### Compound 22 Aldehyde **21** (717 mg, 1.76 mmol), *Ohira-Bestmann* reagent (506 mg, 2.63 mmol) and K_2CO_3 (486 mg, 3.52 mmol) were stirred in MeOH (27 mL) at rt overnight. Then, the solvents were removed *in vacuo* and the residue partitioned between CH_2CI_2 and water. The combined organic layers were dried with Na_2SO_4 , evaporated and the crude product was purified by column chromatography (hexane/ethyl acetate 2:1) to yield a transparent oil (594 mg, 83 %). ¹H NMR (400 MHz, CDCl₃) δ = 2.92 (s, 1H), 3.71 (s, 3H), 3.88 (s, 3H), 3.91 (s, 3H), 3.95 (s, 3H), 5.16 (s, 2H), 6.77 (d, J = 8.6 Hz, 1H), 6.84 (s, 1H), 7.01 (d, J = 8.5 Hz, 1H), 7.07 (s, 1H), 7.30-7.52 (m, 5H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 56.1, 56.1, 61.2, 61.3, 71.0, 78.3, 83.5, 108.8, 113.5, 113.7, 115.3, 125.7, 127.4, 127.6, 128.0, 128.6, 134.9, 137.2, 142.7, 147.7, 149.3, 151.8, 152.6 ppm. HRMS calcd. for C₂₅H₂₄O₅Na: 427.151594; found 427.151708. IR $\tilde{v} = 696, 726, 789, 862, 910, 975, 1014, 1063, 1093, 1145, 1211, 1248, 1291, 1346, 1385, 1411, 1461, 1488, 1516, 1561, 1599, 2100, 2843, 2936, 3278 cm⁻¹.$ #### Compound 23 A hot solution (80 °C) of alkyne **22** (59 mg, 0.15 mmol) in dry dichloroethane (3 mL) was transferred to a Schlenk containing precatalyst **6g** (7.3 mg, 7 µmol, 5 mol %) and Ag[SbF₆] (2.5 mg, 7 µmol, 5 mol %). The mixture was stirred at this temperature overnight, then filtered through silica, evaporated and purified by column chromatography (hexane/ethyl acetate 2:1) to yield a light yellow solid (52 mg, 88 %). MeO TH NMR (400 MHz, CDCl₃) δ = 4.04 (s, 3H), 4.06 (s, 3H), 4.07 (s, 3H), 4.10 (s, 3H), 5.27 (s, 2H), 7.15 (s, 1H), 7.21 (s, 1H), 7.32-7.59 (m, 7H), 9.10 (s, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 55.9, 56.0, 60.7, 61.5, 70.8, 107.2, 107.8, 108.2, 119.0, 124.5, 124.9, 126.2, 127.3, 127.5, 128.1, 128.8, 129.5, 137.0, 143.1, 148.3, 148.9, 151.1, 151.8 ppm. HRMS *calcd.* for C₂₅H₂₄O₅Na: 427.151595; *found* 427.151595. IR $\widetilde{v} = 701, 712, 755, 777, 800, 833, 847, 861, 882, 918, 945, 974, 992, 1030, 1050, 1073, 1117, 1160, 1206, 1242, 1266, 1292, 1353, 1377, 1401, 1421, 1431, 1453, 1464, 1502, 1519, 1571, 1598, 1615, 2831, 2934 cm⁻¹.$ ### Compound 24 Phenanthrene 23 (120 mg, 0.30 mmol) and Pd/C (10 %) (64 mg, 0.06 mmol) were stirred in MeOH (3 mL) OH MeO MeO under an atmosphere of 30 bar H_2 for 2 days. After filtration through silica the crude was purified by column chromatography (hexane/ethyl acetate 2:1) to yield a light green solid (78 mg, 82 %). ¹H NMR (400 MHz, CDCl₃) δ = 2.70 (s, 4H), 3.76 (s, 3H), 3.91 (s, 3H), 3.93 (s, 3H), 3.98 (s, 3H), 5.68 – 5.71 (m, 1H), 6.64 (s, 1H), 6.74 (s, 1H), 7.95 (s, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 29.4, 30.4, 55.9, 56.2, 60.3, 61.4, 110.4, 111.0, 111.1, 120.4, 125.2, 130.6, 135.1, 139.2, 147.3, 147.4, 147.8, 150.6 ppm. HRMS calcd. for $C_{18}H_{20}O_5Na$: 339.120295; found 339.120600. IR $\tilde{\nu} = 682$, 736, 782, 828, 146, 875, 889, 951, 963, 976, 1004, 1021, 1040, 1067, 1112, 1174, 1206, 1223, 1256, 1278, 1304, 1324, 1353, 1399, 1442, 1464, 1484, 1513 1589, 1611, 2840, 2931, 3005, 3238, 3414 cm⁻¹. ### Compound 26 A solution of 24 (50 mg, 0.16 mmol) and monosaccharide 25 (216 mg, 0.32 mmol) in dry CH₂Cl₂ (3 mL) was treated with freshly activated 4 Å molecular sieves and 0.5 mL of a 0.3 M solution of $BF_3 \cdot OEt_2$ in CH_2CI_2 at -20 °C. After stirring for 2 h at this temperature, $NaHCO_3$ (200 mg) was added and the mixture was stirred a few more minutes. After diluting with CH_2CI_2 (10 mL) and filtration, the organic layer was washed with water, dried with Na_2SO_4 and evaporated. The crude was purified by column chromatography (hexane/ethyl acetate 3:1) to afford compound **26** as a white solid (125 mg, 93 %). ¹H NMR (300 MHz, CDCl₃) δ = 2.49-2.79 (m, 4H), 3.61-3.86 (m, 9H), 3.86- 4.00 (m, 9H), 4.63-4.48 (m, 3H), 4.73-5.08 (m, 5H), 5.14-5.29 (m, 1H), 6.74 (s, 1H), 6.85 (s, 1H), 7.14-7.43 (m, 20H), 8.01 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ = 29.4, 30.5, 55.9, 56.2, 60.7, 61.4, 69.2, 73.6, 74.9, 75.1, 75.3, 75.8, 77.9, 82.1, 84.8, 102.5, 111.0, 111.4, 112.5, 122.9, 125.04, 127.7, 127.7, 127.8, 127.9, 127.9, 127.9, 128.0, 128.0, 128.0, 128.1, 128.4, 128.4, 128.4, 128.5, 128.5, 130.9, 134.5, 138.2, 138.2, 138.5, 138.7, 132.7, 147.3, 147.7, 149.5, 151.6 ppm. HRMS calcd. for C₅₂H₅₄O₁₀Na: 861.360921; found 861.359548. IR $\tilde{\nu} = 696, 735, 784, 829, 853, 872, 910, 1007, 1028, 1065, 1188, 1216, 1245, 1263, 1307, 1324, 1342, 1358, 1413, 1453, 1488, 1516, 1608, 1695, 1729, 2932, 3031, 3241, 3368 cm⁻¹.$ ### NMR spectra ¹H NMR (400 MHz, CDCl₃) **1g** 31 P NMR (162 MHz, CDCl₃) **1g** ¹⁹F NMR (282 MHz, CD₂Cl₂) **1g** ¹³C NMR (101 MHz, CDCl₃) **1g** ### ¹H NMR (400 MHz, CDCl₃) **3g** ³¹P NMR (162 MHz, CD₂Cl₂) **3g** ¹H NMR (300 MHz, CDCl₃) **4a** ## ³¹P NMR (121 MHz, CDCl₃) **4a** ¹H NMR (400 MHz, CD₂Cl₂) **4f** $^{13}\text{C NMR}$ (100 MHz, $\text{CD}_2\text{Cl}_2)$ 4f ### ¹H NMR (400 MHz, CD₂Cl₂) **5a** ³¹P NMR (161 MHz, CD₂Cl₂) **5a** ## ^{13}C NMR (100 MHz, $\text{CD}_2\text{Cl}_2)~\textbf{5a}$ ## ¹H NMR (400 MHz, CD₂Cl₂) **6d** ### ^{31}P NMR (162 MHz, CD_2CI_2) **6d** 13 C NMR (101 MHz, CD_2CI_2) **6d** ### ¹H NMR (400 MHz, CD₃CN) **6f** ³¹P NMR (162 MHz, CD₃CN) **6f** ## $^{19}\text{F NMR}$ (282 MHz, CD $_3$ CN) **6f** ¹³C NMR (101 MHz, CD₂Cl₂) **6f** ### ¹H NMR (400 MHz, CD₂Cl₂) **6g** 31 P NMR (121 MHz, CD_2CI_2) **6g** ## ¹⁹F NMR (282 MHz, CD₂Cl₂) **6g** ^{13}C NMR (101 MHz , $\text{CD}_2\text{Cl}_2)$ 6g ### ¹H NMR (400 MHz, CD₂Cl₂) **7a** 31 P NMR (162 MHz, CD $_2$ Cl $_2$) **7a** ## ¹³C NMR (101 MHz, CD₂Cl₂) **7a** ## ¹H NMR (400 MHz, CD₂Cl₂) **7b** ## $^{31}\text{P NMR}$ (162 MHz, $\text{CD}_2\text{Cl}_2)~\textbf{7b}$ ## ¹³C NMR (101 MHz, CD₂Cl₂) **7b** ### ¹H NMR (400 MHz, CD₂Cl₂) **8a** ³¹P NMR (162 MHz, CD₂Cl₂) **8a** ## ¹³C NMR (101 MHz, CD₂Cl₂) **8a** ### ¹H NMR (400 MHz, CDCl₃) **11** ### 13 C NMR (151 MHz, CDCl₃, LB = 0.8) **11** 13 C NMR (151 MHz, CDCl₃, LB = 0.0) **11** ## $^{13}\text{C NMR}$ - DEPT (151 MHz, CDCl₃) **11** ¹³C NMR – GATED (151 MHz, CDCl₃) **11** ## ¹³C NMR - NOESY (151 MHz, CDCl₃) **11** 13 C NMR - HSQC (151 MHz, CDCl $_3$) **11** 13 C NMR - HMQC (151 MHz, CDCl₃) **11** | Carbon nr. | Synthetic sample | Natural sample* | |------------|------------------|-----------------| | 1 | 105.5 | 105.3 | | 2 | 152.0 | 148.0 | | 3 | 143.2 | 143.1 | | 4 | 152.1 | 151.9 | | 4a | 119.5 | 119.4 | | 4b | 124.9 | 124.8 | | 5 | 124.3 | 124.2 | | 6 | 116.4 | 116.2 | | 7 | 145.6 | 145.5 | | 8 | 141.0 | 140.8 | | 8a | 126.5 | 126.4 | | 9 | 119.5 | 119.3 | | 10 | 127.5 | 127.3 | | 10a | 128.9 | 128.4 | | OMe(2) | 56.0 | 55.9 | | OMe(4) | 60.3 | 60.2 | | OMe(3) | 61.4 | 61.2 | | OMe(1) | 62.1 | 61.9 | * A. Kovács, P. Forgo, I. Zupkó, B. Réthy, G. Falkay, P. Szabó, J. Hohmann, *Phytochemistry* **2007**, *68*, 687. ¹H NMR (600 MHz, CD₃OD) **12** ¹H NMR (600 MHz, CD₃OD) **12** (3.35 – 3.95 ppm) ¹³C NMR (150 MHz, d⁶-DMSO) **12** #### X-ray Structures #### Compound 1c Empirical formula Color Formula weight Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size $\boldsymbol{\theta}$ range for data collection Index ranges Reflections collected Independent reflections Reflections with I>2 σ (I) Completeness to θ = 29.49° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2σ (I)] R indices (all data) Largest diff. peak and hole $\begin{array}{l} C_{35}\,H_{54}\,B\,F_4\,N_2\,P\\ \text{pale yellow} \end{array}$ 620.58 g · mol⁻¹ 100 K 0.71073 Å Monoclinic $P2_1/n$, (no. 14) a = 10.6538(11) Å b = 25.582(3) Åc = 12.4815(13) Å 3401.7(6) Å³ 4 1.212 Mg·m⁻³ 0.129 mm⁻¹ 1336 e 0.06 x 0.05 x 0.02 mm³ 1.59 to 29.49°. $-14 \le h \le 14$, $-35 \le k \le 35$, $-17 \le l \le 17$ $\alpha = 90^{\circ}$. $\gamma = 90^{\circ}$. β = 90.245(2)°. 88571 9480 [$R_{int} = 0.0390$] 8047 99.9 % Empirical 1.00 and 0.91 Full-matrix least-squares on F² 9480 / 0 / 396 1.060 $R_1 = 0.0453$ $WR^2 = 0.1276$ $R_1 = 0.0546$ $WR^2 = 0.1381$ 1.042 and -0.532 e $\cdot \text{ Å}^{-3}$ #### Compound 1f Empirical formula Color Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Density (calculated) Absorption coefficient F(000) Crystal size $\boldsymbol{\theta}$ range for data collection Index ranges Reflections collected Independent reflections Reflections with I>2 σ (I) Completeness to $\theta = 31.59^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2σ (I)] R indices (all data) Largest diff. peak and hole $C_{27} H_{36} B F_6 N_2 P$ colorless 544.36 g · mol⁻¹ 100 K 0.71073 Å Monoclinic P2₁/n, (no. 14) a = 9.9783(2) Å b = 18.3382(6) Å c = 15.6515(4) Å 2812.63(13) Å³ 1.286 Mg · m⁻³ 0.156 mm⁻¹ 1144 e $0.10 \times 0.07 \times 0.05 \text{ mm}^3$ 3.04 to 31.59°. $\text{-}14 \leq h \leq 14, \ \text{-}26 \leq k \leq 26, \ \text{-}23 \leq l \leq 23$ $\alpha = 90^{\circ}$. β = 100.866(2)°. $\gamma = 90^{\circ}$. 45554 9392 [R_{int} = 0.0722] 5892 99.6 % **Empirical** 0.99 and 0.74 Full-matrix least-squares on F² 9392 / 0 / 342 1.010 $wR^2 = 0.1299$ $R_1 = 0.0629$ $wR^2 = 0.1532$ $R_1 = 0.1161$ 0.596 and -0.452 e · Å-3 #### Compound 3e Empirical formula Color Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Density (calculated) Absorption coefficient F(000) Crystal size θ range for data collection Index ranges Reflections collected Independent reflections Reflections with I>2 σ (I) Completeness to $\theta = 33.19^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2σ (I)] R indices (all data) Largest diff. peak and hole $C_{59} H_{84} B_2 CI F_8 N_4 O_5 P_2 Rh$ yellow 1303.22 g · mol⁻¹ 100.0 K 0.71073 Å Monoclinic $P2_1/n$, (no. 14) a = 15.9294(2) Å $\alpha = 90^{\circ}$. b = 13.9444(2) Å c = 16.2976(2) Åβ= 117.81°. $\gamma = 90^{\circ}$. 3201.96(7) Å³ 1.352 Mg · m⁻³ 0.430 mm⁻¹ 1360 e 0.27 x 0.25 x 0.14 mm³ 2.95 to 33.19°. $-24 \le h \le 24, \ -21 \le k \le 21, \ -25 \le l \le 25$ 76251 12234 [$R_{int} = 0.0431$] 9762 99.7 % Semi-empirical from equivalents 0.75 and 0.65 Full-matrix least-squares on F² 12234 / 0 / 386 1.025 $wR^2 = 0.1541$ $R_1 = 0.0575$ $wR^2 = 0.1653$ $R_1 = 0.0728$ 1.742 and -1.167 e · Å -3 #### Compound 4f Empirical formula Color Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Density (calculated) Absorption coefficient F(000) Crystal size $\boldsymbol{\theta}$ range for data collection Index ranges Reflections collected Independent reflections Reflections with I>2 σ (I) Completeness to $\theta = 33.19^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2σ (I)] R indices (all data) Extinction coefficient Largest diff. peak and hole C₃₀ H₄₂ B CI F₆ N₂ P Pd yellow 728.29 g · mol⁻¹ 100 K 0.71073 Å Orthorhombic Pbca, (no. 61) a = 15.8827(7) Å $\alpha = 90^{\circ}$. b = 11.0550(5) Åβ= 90°. c = 36.5987(16) Å $\gamma = 90^{\circ}$. 6426.1(5) Å³ 1.506 Mg · m⁻³ 0.769 mm⁻¹ 2984 e $0.30 \times 0.17 \times 0.12 \text{ mm}^3$ 3.16 to 33.19°. $-24 \le h \le 24, -17 \le k \le 16, -56 \le l \le 56$ 80403 12270 [$R_{int} = 0.0797$] 6885 99.9 % Empirical 0.99 and 0.68 Full-matrix least-squares on F² 12270 / 0 / 388 1.031 $wR^2 = 0.2271$ $R_1 = 0.0805$ $wR^2 = 0.2741$ $R_1 = 0.1359$ 0.0024(4) 2.663 and -2.813 e \cdot Å $^{-3}$ # Compound 6d | $C_{29} H_{42} Cl_3 N_2 PPt \cdot CH_3 CN$ yellow | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 792.11 $g \cdot mol^{-1}$
100 K
0.71073 Å
ORTHORHOMBIC
Pbca, (no. 61)
a = 15.4474(15) Å
b = 17.4383(17) Å
c = 24.944(2) Å | $\alpha = 90^{\circ}.$ $\beta = 90^{\circ}.$ $\gamma = 90^{\circ}.$ | | 6719.3(11) Å ³
8 | | | 1.566 Mg · m ⁻³ | | | 4.487 mm ⁻¹
3168 e | | | 0.30 x 0.12 x 0.11 mm ³
1.63 to 33.76°.
-24 \leq h \leq 24, -27 \leq k \leq 27, -38 \leq l \leq 407730
13448 [R _{int} = 0.0892] | 38 | | 11540
100.0 %
Gaussian
0.71 and 0.19 | | | Full-matrix least-squares on F ² 13448 / 0 / 363 | | | 1.188 | _ | | $R_1 = 0.0274$ | $wR^2 = 0.0617$ | | R ₁ = 0.0380 | $wR^2 = 0.0707$ | | 2.573 and -1.662 e ⋅ Å ⁻³ | | | | yellow $ 792.11 \ g \cdot mol^{-1} $ $ 100 \ K $ $ 0.71073 \ \mathring{A} $ $ ORTHORHOMBIC $ $ Pbca, \ (no. \ 61) $ $ a = 15.4474(15) \ \mathring{A} $ $ b = 17.4383(17) \ \mathring{A} $ $ c = 24.944(2) \ \mathring{A} $ $ 6719.3(11) \ \mathring{A}^3 $ $ 8 $ $ 1.566 \ Mg \cdot m^{-3} $ $ 4.487 \ mm^{-1} $ $ 3168 \ e $ $ 0.30 \times 0.12 \times 0.11 \ mm^3 $ $ 1.63 \ to \ 33.76^\circ. $ $ -24 \le h \le 24, \ -27 \le k \le 27, \ -38 \le l \le 407730 $ $ 13448 \ [R_{int} = 0.0892] $ $ 11540 $ $ 100.0 \ \% $ $ Gaussian $ $ 0.71 \ and \ 0.19 $ $ Full-matrix \ least-squares \ on \ F^2 $ $ 13448 \ / \ 0 \ / \ 363 $ $ 1.188 $ $ R_1 = 0.0274 $ | # Compound **7b** | Empirical formula
Color | $C_{29}H_{53}BF_4N_3PPd$ colourless | | |---|--|---| | Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions | 667.92 g·mol ⁻¹ 100 K 0.71073 Å TRICLINIC P1, (no. 2) $a = 11.910(2) Å$ $b = 12.072(2) Å$ $c = 14.873(4) Å$ | $\alpha = 99.923(4)^{\circ}.$
$\beta = 105.144(5)^{\circ}.$
$\gamma = 109.581(3)^{\circ}$ | | Volume
Z | 1863.6(7) Å ³
2 | | | Density (calculated) | 1.190 Mg⋅m ⁻³ | | | Absorption coefficient F(000) | 0.580 mm ⁻¹
700 e | | | Crystal size 0 range for data collection Index ranges Reflections collected Independent reflections | 0.140 x 0.120 x 0.070 mm ³
1.48 to 29.13°.
-16 \leq h \leq 16, -16 \leq k \leq 16, -20 \leq 1 :
41584
10043 [R _{int} = 0.1654] | ≤ 20 | | Reflections with I>2 σ (I)
Completeness to θ = 27.50°
Absorption correction
Max. and min. transmission | 7830
100.0 %
Gaussian
0.96 and 0.92 | | | Refinement method Data / restraints / parameters | Full-matrix least-squares on F ² 10043 / 0 / 355 | | | Goodness-of-fit on F ² | 1.010 | | | Final R indices [I>2σ (I)] | $R_1 = 0.0735$ | $wR^2 = 0.1938$ | | R indices (all data) | $R_1 = 0.0891$ | $wR^2 = 0.2040$ | | Largest diff. peak and hole | 1.630 and -1.807 e · Å ⁻³ | | #### Compound 8a Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Density (calculated) Absorption coefficient F(000) Crystal size $\boldsymbol{\theta}$ range for data collection Index ranges Reflections collected Independent reflections Reflections with I>2 σ (I) Completeness to $\theta = 27.50^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2σ (I)] R indices (all data) Largest diff. peak and hole $2(C_{90}H_{106}N_4P_4Pd_2 \cdot BF_4) \cdot 3CH_2Cl_2$ orange 3589.35 g · mol⁻¹ 150 K 0.71073 Å TRICLINIC P1, (no. 2) a = 14.9923(14) Å b = 15.0686(12) Å $\alpha = 88.907(8)^{\circ}$. β = 85.865(10)°. c = 24.293(3) Å $\gamma = 84.908(6)^{\circ}$. 5451.7(9) Å³ 1.093 Mg · m $^{-3}$ 0.506 mm⁻¹ 1860 e 0.26 x 0.22 x 0.21 mm³ 2.73 to 27.50°. $-19 \le h \le 19, \ -19 \le k \le 19, \ -31 \le l \le 31$ 108051 25020 [R_{int} = 0.0321] 20928 99.9 % Gaussian 0.87 and 0.80 Full-matrix least-squares on \mbox{F}^2 25020 / 0 / 1011 1.088 $wR^2 = 0.1267$ $R_1 = 0.0431$ $R_1 = 0.0523$ $wR^2 = 0.1333$ 1.870 and -1.576 e · Å -3 #### Compound 11 Empirical formula Color Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size θ range for data collection Index ranges Reflections collected Independent reflections Reflections with I>2 σ (I) Completeness to $\theta = 27.50^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on ${\sf F}^2$ Final R indices [I>2σ (I)] R indices (all data) Largest diff. peak and hole C₁₈ H₁₈ O₅ yellow 314.32 g · mol⁻¹ 100 K 0.71073 Å ORTHORHOMBIC P2₁ 2₁ 2₁, (no. 19) a = 7.6876(5) Å b = 11.3305(7) Åc = 17.3270(8) Å 1509.26(15) Å³ 1.383 Mg · m⁻³ 0.101 mm⁻¹ 664 e $0.42 \times 0.37 \times 0.20 \text{ mm}^3$ 2.90 to 33.06°. $\text{-}11 \leq h \leq 11, \ \text{-}17 \\ \leq k \leq 17, \ \text{-}26 \leq l \leq 26$ 40870 $5698 [R_{int} = 0.0265]$ 5125 99.4 % Gaussian 0.98 and 0.97 Full-matrix least-squares on \mbox{F}^2 5698 / 0 / 213 1.211 $R_1 = 0.0375$ $wR^2 = 0.1009$ $R_1 = 0.0484$ $wR^2 = 0.1099$ $\alpha = 90^{\circ}$. β = 90°. $\dot{\gamma} = 90^{\circ}$. 0.4 and -0.3 e-Å⁻³ #### Compound 17 Empirical formula Color Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Density (calculated) Absorption coefficient F(000) Crystal size θ range for data collection Index ranges Reflections collected Independent reflections Reflections with I>2 σ (I) Completeness to $\theta = 27.50^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on ${\sf F}^2$ Final R indices [I>2σ (I)] R indices (all data) Largest diff. peak and hole C₁₇ H₁₆ O₅ colourless 300.30 g · mol⁻¹ 100 K 0.71073 Å MONOCLINIC $P2_1/c$, (no. 14) a = 11.1834(12) Å b = 12.5326(13) Åc = 10.6579(11) Å 1435.6(3) Å³ 1.389 Mg·m⁻³ 0.103 mm⁻¹ 632 e $0.24 \times 0.08 \times 0.07 \text{ mm}^3$ 2.50 to 35.46°. $-18 \le h \le 18, -20 \le k \le 20, -17 \le l \le 17$ 126675 6504 [R_{int} = 0.0511] 5349 99.9 % Gaussian 0.99 and 0.98 Full-matrix least-squares on F^2 6504 / 0 / 203 1.071 $R_1 = 0.0367$ 0.6 and -0.3 e-Å-3 $wR^2 = 0.0997$ $\alpha = 90^{\circ}$. β = 106.040(3)°. $\gamma = 90^{\circ}$. $R_1 = 0.0485$ $wR^2 = 0.1089$ 52 #### Compound 23 **Empirical formula** Color Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Density (calculated) Absorption coefficient F(000) Crystal size $\boldsymbol{\theta}$ range for data collection Index ranges Reflections collected Independent reflections Reflections with $I>2\sigma$ (I) Completeness to $\theta = 25.242^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on ${\sf F}^2$ Final R indices [I>2σ (I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole C₂₅ H₂₄ O₅ colorless 404.44 g · mol⁻¹ 100 K 0.71073 Å ORTHORHOMBIC Pna2₁, (no. 33) a = 17.595(3) Å $\alpha = 90^{\circ}$. b = 7.4401(11) Åβ= 90°. c = 15.723(2) Å $\gamma = 90^{\circ}$. 2058.3(5) Å³ 1.305 Mg · m⁻³ 0.090 mm⁻¹ 856 e $0.41 \times 0.10 \times 0.08 \text{ mm}^3$ 2.315 to 35.633°. $\text{-28} \leq h \leq 28, \ \text{-12} \leq k \leq 12, \ \text{-25} \leq l \leq 25$ 72147 9448 [R_{int} = 0.0589] 8085 99.9 % Gaussian 0.99 and 0.97 Full-matrix least-squares on F² 9448 / 1 / 275 1.057 $wR^2 = 0.1069$ $R_1 = 0.0429$ $wR^2 = 0.1190$ $R_1 = 0.0586$ 0.3(3) 0.413 and -0.273 e \cdot Å $^{-3}$