CMEMSTRY

 A EUROPEAN JOURNAL

 A EUROPEAN JOURNAL}

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2014

Coordination Chemistry of Cyclopropenylidene-Stabilized Phosphenium Cations: Synthesis and Reactivity of Pd and Pt Complexes

Ágnes Kozma, Tobias Deden, Javier Carreras, Christian Wille, Jekaterina Petuškova, Jörg Rust, and Manuel Alcarazo*[a]
chem_201303686_sm_miscellaneous_information.pdf

Table of Contents
Experimental Procedures S2
Characterization of new compounds S2
NMR spectra S13
X-ray structure analyses S45

Experimental procedures:

General: All reactions were carried out in flame-dried glassware under Ar. All solvents were purified by distillation over the appropiate drying agents and were transferred under Ar. IR: Nicolet FT-7199 spectrometer, wavenumbers in cm^{-1}. MS (EI): Finnigan MAT $8200(70 \mathrm{eV})$, ESIMS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). NMR: Spectra were recorded on a Bruker AV 600, AV 400 or DPX $300 ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (δ) are given in ppm relative to TMS, coupling constants (\mathcal{J}) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale. Column chromatography was performed on Merck 60 silica gel (40-63 $\mu \mathrm{m}$). Thin-layer chromatography (TLC) analysis was performed using Merck silica gel 60 F254 TLC plates, and visualized by UV.

All commercially available compounds (ABCR, Acros, Aldrich, Fischer) were used as received. Compounds 1a-f, 3a,b,e,f, ${ }^{1}$ 2,3-bis(diisopropylamino)-1-chlorocyclopropenium tetrafluoroborate $\mathbf{2}^{2}$, bis[3,5-bis(trifluoromethyl)phenyl]phosphine ${ }^{3}$, 6-bromo-3-hydroxy-2-methoxynebzaldehyde 13 ${ }^{4}$, 4-bromo-2,3-dimethoxy-1-benzyloxybenzene $18{ }^{5}$, 6-bromoveratraldehyde 20^{6} and monosaccharide 25^{7} were prepared according to literature procedures.

Compound 1g

A solution of bis[3,5-bis(trifluoromethyl)phenyl]phosphine ($1 \mathrm{~g}, 2.18 \mathrm{mmol}$) in dry THF (15 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$, then $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $1.6 \mathrm{~mL}, 2.18 \mathrm{mmol})$ was added and the
 resulting mixture was stirred for 2 hours at this temperature. After this chlorocyclopropenium salt $2(782 \mathrm{mg}, 2.18 \mathrm{mmol})$ was added and the mixture allowed to warm up slowly to rt and further stirred at $60^{\circ} \mathrm{C}$ for 2 days. After cooling to rt , the solvent was evaporated, the residue suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with saturated aq. NaBF_{4} solution ($3 \times 15 \mathrm{~mL}$). Once dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the organic phase was concentrated and the residue purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone: 9/1) affording the title compound as a pale yellow solid ($653 \mathrm{mg}, 38 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 3.48$ (sept, $J=6.8 \mathrm{~Hz}$, 2 H), 4.16 (sept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.93 (s, 2H), 7.95 (s, 2H), $8.02(2 \mathrm{H}) \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-26.9 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=-151.5,-151.5,-63.1 \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=20.8,20.8,21.2,52.8,54.6,99.4(\mathrm{~d}, \mathrm{~J}=61.4 \mathrm{~Hz}$), 122.7 (q, 273.3 Hz), 124.8-125.1 (m), $133.3(\mathrm{dq}, J=34.3,7.1 \mathrm{~Hz}), 133.6-134.1(\mathrm{~m}), 134.3(\mathrm{~d}, J=15.4 \mathrm{~Hz}), 140.0 \mathrm{ppm}$.

[^0]HRMS calcd. for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{~F}_{12} \mathrm{P}^{+}$: 693.226254; found 693.226826 .
IR $\tilde{v}=681,704,845,899,1057,1095,1122,1180,1278,1353,1459,1567,1867,2981 \mathrm{~cm}^{-1}$.

Compound 3d

Dry THF (2 mL) was added to a cooled (-20 $\left.{ }^{\circ} \mathrm{C}\right)$ solid mixture of $\left[\operatorname{RhCl}(\mathrm{CO})_{2}\right]_{2}(13 \mathrm{mg}$,
 0.031 mmol) and phosphenium salt 1d ($67 \mathrm{mg}, 0.12 \mathrm{mmol}$). The reaction mixture was allowed to warm to rt and then stirred for additional 30 minutes. After removal of the solvents in vacuo, the solid residue was washed with pentane ($2 \times 2 \mathrm{~mL}$) and dried, affording the desired product as a yellow solid ($76 \mathrm{mg}, 99 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 24 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 24 H), 2.45 (s, 12H), 3.47 (sept, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}$), 4.11 (sept, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}$), $7.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 8 \mathrm{H}$), 8.008.10 (m, 8H) ppm.
${ }^{31} \mathrm{P}$ NMR ($\left.121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=28.8(\mathrm{~d}, J=131.2 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=21.1,21.5,21.6,102.0(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 125.1(\mathrm{dd}, J=27.8,26.5 \mathrm{~Hz})$, $130.7(\mathrm{t}, J=6.4 \mathrm{~Hz}), 136.0(\mathrm{t}, J=7.9 \mathrm{~Hz}), 138.9(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 144.6(\mathrm{t}, J=1.3 \mathrm{~Hz}) \mathrm{ppm}$.
HRMS calcd. for $\mathrm{C}_{59} \mathrm{H}_{84} \mathrm{BCIF}_{4} \mathrm{~N}_{4} \mathrm{OP}_{2} \mathrm{Rh}^{+}$: 1151.488064; found 1151.491726.
IR $\tilde{v}=664,386,807,1031,1094,1149,1189,1357,1375,1455,1554,1866,1969,2969 \mathrm{~cm}^{-1}$.

Compound 3 g
To a solution of the phosphenium salt $1 \mathrm{~g}(70 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}),\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(8.7$
 $\mathrm{mg}, 0.022 \mathrm{mmol}$) was added and the reaction mixture was stirred for 2 hours at rt. After removal of the solvents in vacuo, the solid residue was washed with pentane ($2 \times 1 \mathrm{~mL}$) and dried, affording the desired product as a yellow solid ($36 \mathrm{mg}, 93 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 24 \mathrm{H}), 1.39(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 24H), 3.49 (sept, $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}$), 4.20 (sept, $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}$), 8.21 (s, 4H), 9.02
(t, $J=5.8 \mathrm{~Hz}, 8 \mathrm{H}) \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=25.0(\mathrm{~d}, J=136.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=-150.3,-150.2,-63.2 \mathrm{ppm}$.
The sample decomposes during the ${ }^{13} \mathrm{C}$ NMR measurement.
MS: $\left[\mathrm{C}_{63} \mathrm{H}_{68} \mathrm{BCIF}_{28} \mathrm{~N}_{4} \mathrm{OP}_{2} \mathrm{Rh}^{+}\right]^{+} 1639$.
IR $\tilde{v}=681,701,901,1051,1095,1121,1181,1278,1354,1457,1561,1863,1991,2981 \mathrm{~cm}^{-1}$.

Compound 4a
Dry THF (6 mL) was added to a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solid mixture of allyl palladium chloride dimer (24 mg , $\left.{ }_{i P r}-\mathrm{N}^{i \mathrm{Pr}} \mathrm{Ph}_{4}{ }^{\ominus} 0.06 \mathrm{mmol}\right)$ and compound 1a, (66 mg, 0.13 mmol) and the thus obtained solution was stirred at this temperature for 30 min . After warming to rt , the solvents were removed in vacuo, affording the desired product as a white solid ($89 \mathrm{mg}, 98 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.91-1.00(\mathrm{~m}, 12 \mathrm{H}), 1.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}), 3.05(\mathrm{~d}$,
$J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36($ sept, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.92(\mathrm{~m}, 1 \mathrm{H}), 4.0-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.94-5.06(\mathrm{~m}, 1 \mathrm{H}), 5.60-$ $5.80(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.67(\mathrm{~m}, 6 \mathrm{H}), 7.83-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.97-8.09(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=26.9 \mathrm{ppm}$.
${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.3,21.3,21.6,53.1,54.3,58.9,77.3,118.2(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 132.7(\mathrm{brs}), 135.4(\mathrm{~d}, J=15.9 \mathrm{~Hz}), 139.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}) \mathrm{ppm}$.
HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{2}$ CIPPd $^{+}$: 603.189045; found 603.189620.
IR $\tilde{v}=699,756,1036,1093,1150,1185,1361,1372,1435,1552,1864,2937,2977 \mathrm{~cm}^{-1}$.

Compound $\mathbf{4 f}$

Dry THF (4 mL) was added to a cooled $\left(-20^{\circ} \mathrm{C}\right.$) solid mixture of allyl palladium chloride dimer (18 mg , 0.05 mmol) and compound $\mathbf{1 f}$, ($52 \mathrm{mg}, 0.10 \mathrm{mmol}$) and the resulting solution was
 stirred at this temperature for 30 min . After warming to rt , the solvents were removed in vacuo, affording the desired product as a pale yellow solid (69 mg , 98\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=0.91-1.00(\mathrm{~m}, 12 \mathrm{H}), 1.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H})$, $3.07(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{sept}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.79-3.90(m, 1H), 4.05-4.20(m,3H), 4.91-5.02(m, $1 \mathrm{H}), 5.67-5.81(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.79-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.92-8.04(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR $\left(161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=25.5 \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=21.2,21.3,21.6,54.7$ (brs), 60.2, $81.5(\mathrm{~d}, J=32.3 \mathrm{~Hz}), 100.8(\mathrm{~d}, J=21.3$ Hz), 117.6 (ddd, $J=21.3,13.1,7.5 \mathrm{~Hz}), 119.0(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 124.2(\mathrm{dd}, J=48.7,22.8 \mathrm{~Hz}), 137.8$-138.3 (m), 138.9 (d, $J=7.7 \mathrm{~Hz}$), 165.9 (dd, $J=255.6,5.3 \mathrm{~Hz}$) ppm.

HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{CIF}_{2} \mathrm{PPd}^{+}$: 639.170431; found 639.170937.
IR $\tilde{v}=674,817,844,891,1008,1031,1044,1079,1148,1163,1230,1359,1496,1548,1586,1854$, $2987 \mathrm{~cm}^{-1}$.

Compound 5a

Dry THF (4 mL) was added to a cooled $\left(-20^{\circ} \mathrm{C}\right.$) solid mixture of allyl platinum chloride tetramer (35 mg , $0.03 \mathrm{mmol})$ and compound $\mathbf{1 a},(66 \mathrm{mg}, 0.13 \mathrm{mmol})$ and the resulting solution was
 stirred at this temperature for 30 min . After warming to rt , the solvents were removed in vacuo, and the desired product was obtained as a pale yellow solid (95 $\mathrm{mg}, 94 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H})$, 2.48 (dt, $J=25.8,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.77-3.88(\mathrm{~m}, 1 \mathrm{H})$, 4.05$4.20(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.98-5.24(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.66(\mathrm{~m}, 6 \mathrm{H}), 7.75-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.99(\mathrm{~m}$, 2H) ppm.
${ }^{31} \mathrm{P}$ NMR $\left(161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=31.8\left({ }^{1} \mathrm{~J}_{(\mathrm{Pt}-\mathrm{P})}=2188.0 \mathrm{~Hz}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=20.9,21.0,21.7,47.0\left({ }^{1} J_{(\mathrm{Pt}-\mathrm{C})}=108.7 \mathrm{~Hz}\right), 53.0,54.9,70.7(\mathrm{~d}, J=35.0$,
$\left.{ }^{1} J_{(\mathrm{Pt} \mathrm{C})}=34.5 \mathrm{~Hz}\right), 100.2(\mathrm{~d}, J=32.3 \mathrm{~Hz}), 109.9\left({ }^{1} J_{(\mathrm{Pt}-\mathrm{C})}=24.8 \mathrm{~Hz}\right), 127.7(\mathrm{~d}, J=16.7 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=$ $17.3 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 133.5(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 135.3$ (d, $J=14.9 \mathrm{~Hz}$), $135.5(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 139.1(\mathrm{~d}, J=8.1 \mathrm{~Hz}) \mathrm{ppm}$.

HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{C}_{11} \mathrm{~N}_{2} \mathrm{PPt}^{+}$: 692.248763; found 692.249285.

IR $\tilde{v}=698,754,894,998,1033,1048,1094,1149,1184,1203,1355,1376,1437,1454,1550,1866$, 2938, $2980 \mathrm{~cm}^{-1}$.

Compound 6d

$\mathrm{K}_{2} \mathrm{PtCl}_{4}$ ($43 \mathrm{mg}, 0.103 \mathrm{mmol}$) was added to a solution of salt $\mathbf{1 d}(51 \mathrm{mg}, 0.094 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$
 and the mixture was stirred at rt. After 1 day the solvents were evaporated and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 2 \mathrm{~mL})$. Removal of the solvents and recrystallization from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$ gave the desired product as an orange solid (62 mg , 88\%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}), 1.32(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 12 \mathrm{H}), 2.41$ (s, 6H), 3.53 (sept, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.04 (sept, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (dd, $J=7.9 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 4 \mathrm{H}$), 8.16 (dd, $J=12.4 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=3.0\left({ }^{1} J_{(\mathrm{Pt}-\mathrm{P})}=2000.8 \mathrm{~Hz}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=20.6,21.6(\mathrm{~d}, J=1.4), 21.7,52.2(\mathrm{brs}), 54.9(\mathrm{brs}), 101.9(\mathrm{~d}, J=42.0 \mathrm{~Hz})$, $122.7(\mathrm{~d}, J=69.2 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 136.3(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 138.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 143.8(\mathrm{~d}, J=$ 2.7 Hz).

HRMS calcd. for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{PPt}^{+}$: 714.210531; found 714.211157.
IR $\tilde{v}=665,678,711,814,896,1011,1030,1098,1149,1186,1316,1352,1375,1449,1497,1551$, 1597, 1865, 2934, $2978 \mathrm{~cm}^{-1}$.

Compound $6 \mathbf{f}$
$\mathrm{K}_{2} \mathrm{PtCl}_{4}(128 \mathrm{mg}, 0.308 \mathrm{mmol})$ was added to a solution of salt $1 \mathrm{f}(150 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}$ (4
 mL) and the mixture was stirred at rt. After 1 day the solvents were evaporated and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 4 \mathrm{~mL})$. Removal of the solvents and recrystallization from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$ gave the desired product as a yellow solid (158 mg , 68\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{CN}\right) \delta=0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}), 3.56$ (sept, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.11 (sept, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (dt, $J=8.9,1.9 \mathrm{~Hz}, 4 \mathrm{H}$), 8.31-8.40 (m, 4H) ppm.
${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=-0.01\left({ }^{1} J_{(\mathrm{Pt}-\mathrm{P})}=2016.8 \mathrm{~Hz}\right) \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=-107.8 \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=20.7,21.7,52.3(\mathrm{brs}), 100.3(\mathrm{~d}, J=43.7 \mathrm{~Hz}), 116.6$ (dd, $J=21.6,13.3$ $\mathrm{Hz}), 121.8(\mathrm{dd}, J=69.8,3.4 \mathrm{~Hz}), 138.2(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 138.8(\mathrm{dd}, J=13.9,8.9 \mathrm{~Hz}), 165.7(\mathrm{dd}, J=255.7$, 2.8 Hz) ppm.

HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Cl}_{4} \mathrm{~F}_{2} \mathrm{~N}_{2}$ PPt: 792.097748; found 792.098455.
IR $\tilde{v}=685,714,815,894,1011,1031,1095,1160,1229,1260,1354,1375,1452,1495,1550,1588$, 1866, $2977 \mathrm{~cm}^{-1}$.

Compound 6g

$\mathrm{K}_{2} \mathrm{PtCl}_{4}(87 \mathrm{mg}, 0.21 \mathrm{mmol})$ was added to a solution of salt $1 \mathrm{~g}(150 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ and the mixture was stirred at rt. After 1 day the solvent was evaporated and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. Removal of the solvent in vacuo afforded the desired product as a yellow solid ($182 \mathrm{mg}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.39(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 3.61$ (sept, $J=6.8 \mathrm{~Hz}$, 2 H), 4.16 (sept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 8.16 (s, 2H), $8.70(\mathrm{~s}, 2 \mathrm{H}), 8.73(2 \mathrm{H}) \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=3.11\left({ }^{1} \mathrm{~J}_{(\mathrm{Pt}-\mathrm{P})}=2037.3 \mathrm{~Hz}\right) \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=-63.2 \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=20.7,21.7,55.5$ (brs), $95.8(\mathrm{~d}, J=47.5 \mathrm{~Hz}), 122.9(\mathrm{q}, 273.3 \mathrm{~Hz}), 127.1-$ $127.4(\mathrm{~m}), 128.7(\mathrm{~d}, J=65.1 \mathrm{~Hz}), 132.9(\mathrm{dq}, J=34.3,11.8 \mathrm{~Hz}), 135.7-136.1(\mathrm{~m}), 138.9(\mathrm{~d}, J=7.8 \mathrm{~Hz})$ ppm.
HRMS calcd. for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{Cl}_{4} \mathrm{~F}_{12} \mathrm{~N}_{2}$ PPt: 1028.066206; found 1028.067766.
IR $\tilde{v}=680,698,845,894,910,1031,1096,1120,1179,1276,1354,1455,1560,1865,2983 \mathrm{~cm}^{-1}$.

Compound 7a
A mixture of the compound 1a (77 mg, 0.15 mmol$)$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(70 \mathrm{mg}, 0.076 \mathrm{mmol})$ was evacuated for

10 minutes, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added under Ar and the suspension stirred at rt for 2 hours. After this time the solvent was removed in vacuo and the residue washed with $\mathrm{Et}_{2} \mathrm{O}(4 \times 2 \mathrm{~mL})$. Recrystallization of the crude product from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$ gave compound 7 a as a yellow solid ($44 \mathrm{mg}, 44 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=0.97$ (brs, 24H), 1.10 (brs, 24H), 2.04 (s, 6H),
3.71 (sept, $J=6.7 \mathrm{~Hz}, 8 \mathrm{H}$), 7.34-7.41 (m, 8H), 7.43-7.49 (m, 4H), 7.74-7.82 (m,

8H) ppm.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=-130.6 \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=2.8,21.7$ (brs), 50.2 (brs), 51.8 (brs), 117.1, 129.1-129.4 (m), 130.7, 133.1-133.6 (m), 134.6-134.9 (m), 137.6, 148.2 ppm.

MS: $\left[\mathrm{C}_{43} \mathrm{H}_{54} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2}\right]^{-}: 1075$.
IR $\tilde{v}=695,745,941,1030,1049,1134,1154,1185,1200,1327,1350,1372,1389,1403,1434,1452$, 1487, 1850, 2876, 2936, $2979 \mathrm{~cm}^{-1}$.

Compound 7b

A mixture of the compound 1b ($79 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(69 \mathrm{mg}, 0.075 \mathrm{mmol})$ was evacuated for
 10 minutes then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added under Ar and the suspension was stirred at rt for 2 hours. After removal of the solvents in vacuo, the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ ($4 \times 2 \mathrm{~mL}$) and recrystallized from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$ to give compound $\mathbf{7 b}$ as a yellow solid ($33 \mathrm{mg}, 38 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)=1.14-1.65(\mathrm{~m}, 70 \mathrm{H}), 1.71-2.10(\mathrm{~m}, 20 \mathrm{H}), 2.25(\mathrm{~s}$, 6 H), 2.28-2.38 (m, 2H) ppm.
${ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=-104.6 \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=22.1$ (brs), 22.4-22.8 (m), 26.5, 27.4-27.9 (m), 31.5, 33.6, 36.5, 51.0, 151.1 ppm.

MS: $\left[\mathrm{C}_{44} \mathrm{H}_{82} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{5} \mathrm{PPd}_{2}\right]^{+}: 1099$.
IR $\tilde{v}=729,849,890,1004,1030,1049,1107,1138,1155,1185,1209,1325,1348,1369,1450,1484$, 1843, 2855, 2930, $2973 \mathrm{~cm}^{-1}$.

Compound 8a

A mixture of the compound 1a (52 mg, 0.10 mmol$)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ was evacuated for 10 minutes. After this time, toluene (4 mL) was then added under Ar and the suspension was stirred at $100^{\circ} \mathrm{C}$ overnight. Then the solvents were removed in vacuo and the residue washed with $\mathrm{Et}_{2} \mathrm{O}(4 \times 2 \mathrm{~mL})$. Recrystallization of the crude product from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$, gave compound 8a as a yellow solid ($128 \mathrm{mg}, 73 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=0.38$ (brs, 12 H), 0.67 (brs, 12 H), $1.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 12 \mathrm{H}), 1.11(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 12 \mathrm{H}$), 3.20 (sept, $J=6.3 \mathrm{~Hz}, 4 \mathrm{H}$), 3.69 (sept, $J=6.3 \mathrm{~Hz}, 4 \mathrm{H}$), 6.55-6.73 (m, 12H), 7.02-7.60 (m, $38 \mathrm{H}) \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=-168.9\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{(\mathrm{P}-\mathrm{P} \text { trans })}=213.3,{ }^{2} J_{(\mathrm{P}-\mathrm{P} \text { cis })}=108.8 \mathrm{~Hz}\right), 14.2\left(\mathrm{dd},{ }^{2} J_{(\mathrm{P}-\mathrm{P} \text { trans })}=\right.$ $\left.213.3,{ }^{2} J_{(\text {P-P cis) }}=108.8 \mathrm{~Hz}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=22.0$, 22.4, 51.4 (brs), 128.7-129.3 (m), 129.6 (brs), 131.2, 131.5 (brs), 133.4-133.9 (m), 134.3 (brs), 147.8 ppm.

MS: $\left[\mathrm{C}_{90} \mathrm{H}_{106} \mathrm{BF}_{4} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{Pd}_{2}\right]^{+}: 1665$.
IR $\tilde{v}=693,739,895,999,1031,1049,1088,1151,1185,1318,1345,1372,1433,1451,1488,1841$, 2976, $3058 \mathrm{~cm}^{-1}$.

Compound 11

A hot solution $\left(80^{\circ} \mathrm{C}\right)$ of alkyne $16(40 \mathrm{mg}, 127 \mu \mathrm{~mol})$ in 2.5 mL dry dichloroethane was transferred to a Schlenk containing precatalyst 6 g ($6.3 \mathrm{mg}, 6 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and $\mathrm{Ag}\left[\mathrm{SbF}_{6}\right]$ ($2.2 \mathrm{mg}, 6 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$). After stirring for 10 minutes at this temperature, the mixture was filtered through silica, evaporated and the residue purified by flash chromatography (hexane:ethyl acetate $2: 1$). The sample thus obtained in 98% yield was 90 \% pure by NMR. The analytically pure sample, was obtained by preparative HPLC separation.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.98(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.24(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=56.0,60.3,61.3,62.1,105.5,116.4,119.5,119.5,124.3,124.9,126.5$, $127.5,128.9,141.0,143.2,145.6,152.0,152.1 \mathrm{ppm}$.

HRMS calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}$: 337.104643; found 337.104323.
IR $\tilde{v}=699,716,766,780,799,816,837,852,899,944,978,990,1043,1052,1105,1144,1193,1225$, $1268,1294,1322,1341,1353,1392,1433,1475,1574,1608,2838,2931,2960,3009,3451 \mathrm{~cm}^{-1}$.

Compound 12

$\mathrm{Pd} / \mathrm{C}(10 \%)$ ($46 \mathrm{mg}, 0.043 \mathrm{mmol}$) was added to a suspension of compound 26 (180 $\mathrm{mg}, 0.22 \mathrm{mmol}$) in methanol/ethyl acetate mixture ($2: 1,6 \mathrm{~mL}$) and the mixture was stirred under a hydrogen atmosphere at rt for 24 hours. The mixture was then filtered over silica, concentrated and purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ to afford compound 12 as a white solid ($77 \mathrm{mg}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=2.67-2.72(\mathrm{~m}, 4 \mathrm{H}, 10-\mathrm{H}, 11-\mathrm{H}), 3.39(\mathrm{dd}, J=9.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.44$ (ddd, $J=9.6,5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.47(\mathrm{dd}, J=9.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.51(\mathrm{dd}, J=9.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 3.69 (dd, $J=12.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}, 22-\mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}, 23-\mathrm{H}, 24-\mathrm{H}), 3.90(\mathrm{dd}, J=12.1,2.2$ $\mathrm{Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}, 21-\mathrm{H}), 4.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}, 13-\mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 7.95$ (s, 1H, 16-H) ppm.
${ }^{13} \mathrm{C}$ NMR (150 MHz, d${ }^{6}$-DMSO) $\delta=28.5$ (C11), 29.8 (C10), 55.4 (C24), 55.6 (C23), 60.3 (C22), 60.7 (C21), 60.8 (C6), 69.8 (C4), 73.4 (C2), 76.9 (C3), 77.2 (C5), 100.8 (C1), 111.1 (C16), 111.5 (C13), 111.5 (C8), 121.0 (C18), 124.3 (C17), 130.4 (C12), 133.4 (C9), 141.6 (C20), 146.8 (C15), 147.3 (C14), 149.4 (C7), 150.7 (C19) ppm.

HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{10} \mathrm{Na}$: 501.173119 ; found 501.172265 .
$\operatorname{IR} \tilde{v}=677,724,763,781,825,884,1002,1023,1046,1145,1185,1215,1242,1261,1290,1306,1345$, $1376,1398,1413,1453,1484,1512,1546,1568,1649,1864,2851,2907,2927,2975,3380 \mathrm{~cm}^{-1}$.

Compound 15

A suspension of compounds 13 ($1.40 \mathrm{~g}, 6.10 \mathrm{mmol}), 14(1.55 \mathrm{~g}, 7.30 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ ($68 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(80 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(10: 1,66 \mathrm{~mL})$ mixture was stirred at $60^{\circ} \mathrm{C}$ overnight. After removal of the solvents in vacuo, the residue was suspended in $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). Once dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the organic phase was concentrated and purified by column chromatography (hexane/ethyl acetate $10: 1$) to afford the title compound as a white solid ($1.30 \mathrm{~g}, 68 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.57(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 9,84(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=56.2,60.7,61.2,63.2,107.5,120.0,125.2,125.6,127.2,127.7,134.5$, 142.1, 146.6, 149.0, 151.3, 154.0, 191.4 ppm.

HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}$: 341.099561 ; found 341.099485.
IR $\tilde{v}=705, ~ 803, ~ 827,929,986,1002,1032,1088,1127,1163,1176,1213,1275,1403,1426,1442$, 1474, 1591, 1698, 2843, 2953, $3398 \mathrm{~cm}^{-1}$.

Compound 16

Aldehyde 15 ($1 \mathrm{~g}, 3.14 \mathrm{mmol}$), Ohira-Bestmann reagent ($907 \mathrm{mg}, 4.71 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(870 \mathrm{mg}, 6.29 \mathrm{mmol})$ were stirred in $\mathrm{MeOH}(45 \mathrm{~mL})$ at rt during 12 hours. After this time not consumed starting material could be observed by TLC, therefore more Ohira-Bestmann reagent ($907 \mathrm{mg}, 4.71 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(870 \mathrm{mg}, 6.29 \mathrm{mmol})$ were added and the mixture was stirred 12 extra hours. After this time the solvents were removed in vacuo, the residue was suspended in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with EtOAc
($3 \times 40 \mathrm{~mL}$). Once dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the organic phase was concentrated and purified by column chromatography (hexane/ethyl acetate 20:1) to afford a mixture of compounds 16 and 17 which was separated by HPLC $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 60: 40\right.$, flow rate $\left.50 \mathrm{~mL} / \mathrm{min}, \tau_{16}=1.43 \mathrm{~min}, \tau_{17}=1.76 \mathrm{~min}\right)(16: 510 \mathrm{mg}$, 52 \%; 17: $210 \mathrm{mg}, 23$ \%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.23(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 5.77(\mathrm{~s}$, $1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.6,1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=56.1,61.1,61.2,61.5,78.9,85.1,106.7,115.4,115.8,125.7,126.6,127.1$, 135.0, 142.2, 147.8, 148.7, 151.9, 153.4 ppm.

HRMS calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}$: 337.104644; found 337.104888.
IR $\tilde{v}=670,691,789,812,827,901,925,975,999,1010,1038,1091,1125,1230,1272,1290,1329$, $1411,1433,1462,1484,1576,1599,2827,2934,3279,3370 \mathrm{~cm}^{-1}$.

Compound 17

Obtained as a side product during the synthesis of compound 16.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.55(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 6.73$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=56.2,61.0,61.3,107.5,108.0,110.5,124.2,124.6,125.6$, 126.8, 128.6, 140.4, 142.6, 143.1, 144.7, 151.6, 153.1 ppm.

HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}$: 323.088998; found 323.088746.
IR $\tilde{v}=681,753,780,807,826,878,911,936,949,1006,1035,1044,1089,1114,1165,1178,1220$, 1231, 1264, 1293, 1333, 1411,1436, 1460, 1481, 1593, 2839, 2941, $3266 \mathrm{~cm}^{-1}$.

Compound 19

Bromide 18 ($1.312 \mathrm{~g}, 4.05 \mathrm{mmol})$ was solved in dry $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. Then n-BuLi (2.5
 M in hexane, $1.64 \mathrm{~mL}, 4.10 \mathrm{mmol}$) was added dropwise and the mixture stirred for 1.5 h at $-78^{\circ} \mathrm{C}$. Subsequently trimethyl borate ($1.37 \mathrm{~mL}, 12.15 \mathrm{mmol}$) was added and the resulting mixture allowed to warm to rt overnight. Then $2 \mathrm{~N} \mathrm{HCl}(24 \mathrm{~mL})$ were added and the mixture was stirred for additional 2 h . After separation, the aqueous layer was extracted with MTBE and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by column chromatography (hexane/ethyl acetate 3:2) to yield a white solid ($685 \mathrm{mg}, 59 \%$).
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta=3.82(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 1H) 7.30-7.56 (m, 6H) ppm.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=61.2,62.3,71.4,110.5,128.7,129.0,129.6,131.8,138.1,142.5,156.5$, 160.0 ppm.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=31 \mathrm{ppm}$.
HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{BNa}$: 311.106123; found 311.105932.
IR $\tilde{v}=665,694,742,750,774,791,803,836,879,907,926,994,1012,1031,1052,1082,1163,1178$, $1219,1276,1288,1341,1373,1397,1420,1435,1459,1498,1593,2870,2938,2994,3037,3334 \mathrm{~cm}^{-1}$.

Compound 21

Boronic acid 19 ($411 \mathrm{mg}, 1.43 \mathrm{mmol}$), bromide $20(318 \mathrm{mg}, 1.30 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(30 \mathrm{mg}, 26 \mu \mathrm{~mol})$ and
 $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($275 \mathrm{mg}, 2.60 \mathrm{mmol}$) were added to a microwave vessel and evacuated three times. Then a 1,4-dioxane/water mixture ($3: 2,3.3 \mathrm{~mL}$) was added and the vessel sealed quickly with a Teflon crim top. The suspension thus obtained was irradiated for 25 min at $120{ }^{\circ} \mathrm{C}$ and the resulting mixture extracted with ethyl acetate $/ \mathrm{H}_{2} \mathrm{O}$. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated obtaining a crude product that was purified by column
chromatography (hexane/ethyl acetate 2:1) to yield a light yellow oil ($531 \mathrm{mg}, 99 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=3.61(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 6 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 6.77-6.82(\mathrm{~m}, 2 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 9.71(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=56.2,56.3,61.0,61.3,71.1,108.4,109.4,113.3,124.7,125.9,127.3$, $127.4,128.2,128.8,136.9,136.9,142.8,148.7,151.7,153.3,153.4,191.4 \mathrm{ppm}$.
HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}$: 431.146510; found 431.146724.
IR $\tilde{v}=696,718,744,807,874,909,938,985,1013,1062,1081,1093,1143,1201,1215,1249,1288$, $1350,1413,1394,1461,1488,1514,1595,1676,2768,2846,2936 \mathrm{~cm}^{-1}$.

Compound 22

Aldehyde 21 ($717 \mathrm{mg}, 1.76 \mathrm{mmol}$), Ohira-Bestmann reagent ($506 \mathrm{mg}, 2.63 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(486 \mathrm{mg}, 3.52 \mathrm{mmol})$ were stirred in $\mathrm{MeOH}(27 \mathrm{~mL})$ at rt overnight. Then, the solvents were removed in vacuo and the residue partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and the crude product was purified by column chromatography (hexane/ethyl acetate $2: 1$) to yield a transparent oil ($594 \mathrm{mg}, 83 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=2.92(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 5.16(\mathrm{~s}$, $2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.52(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=56.1,56.1,61.2,61.3,71.0,78.3,83.5,108.8,113.5,113.7,115.3,125.7$, 127.4, 127.6, 128.0, 128.6, 134.9, 137.2, 142.7, 147.7, 149.3, 151.8, 152.6 ppm.

HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}$: 427.151594 ; found 427.151708.
IR $\tilde{v}=696,726,789,862,910,975,1014,1063,1093,1145,1211,1248,1291,1346,1385,1411,1461$, $1488,1516,1561,1599,2100,2843,2936,3278 \mathrm{~cm}^{-1}$.

Compound 23

A hot solution $\left(80^{\circ} \mathrm{C}\right)$ of alkyne $22(59 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry dichloroethane (3 mL) was transferred to a
 Schlenk containing precatalyst $6 \mathrm{~g}(7.3 \mathrm{mg}, 7 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ and $\mathrm{Ag}\left[\mathrm{SbF}_{6}\right](2.5 \mathrm{mg}, 7 \mu \mathrm{~mol}$, $5 \mathrm{~mol} \%)$. The mixture was stirred at this temperature overnight, then filtered through silica, evaporated and purified by column chromatography (hexane/ethyl acetate $2: 1$) to yield a light yellow solid ($52 \mathrm{mg}, 88 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.04(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 5.27(\mathrm{~s}$, 2H), 7.15 (s, 1H), $7.21(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.59(\mathrm{~m}, 7 \mathrm{H}), 9.10(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=55.9,56.0,60.7,61.5,70.8,107.2,107.8,108.2,119.0,124.5,124.9$, 126.2, 127.3, 127.5, 128.1, 128.8, 129.5, 137.0, 143.1, 148.3, 148.9, 151.1, 151.8 ppm.

HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}$: 427.151595; found 427.151595.
IR $\tilde{v}=701,712,755,777,800,833,847,861,882,918,945,974,992,1030,1050,1073,1117,1160$, $1206,1242,1266,1292,1353,1377,1401,1421,1431,1453,1464,1502,1519,1571,1598,1615,2831$, $2934 \mathrm{~cm}^{-1}$.

Compound 24

Phenanthrene 23 ($120 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(10 \%)(64 \mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in $\mathrm{MeOH}(3 \mathrm{~mL})$
 under an atmosphere of 30 bar H_{2} for 2 days. After filtration through silica the crude was purified by column chromatography (hexane/ethyl acetate $2: 1$) to yield a light green solid ($78 \mathrm{mg}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=2.70(\mathrm{~s}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}$, 3H), $5.68-5.71(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=29.4,30.4,55.9,56.2,60.3,61.4,110.4,111.0,111.1$, 120.4, 125.2, 130.6, 135.1, 139.2, 147.3, 147.4, 147.8, 150.6 ppm.

HRMS calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}$: 339.120295; found 339.120600.
IR $\tilde{v}=682,736,782,828,146,875,889,951,963,976,1004,1021,1040,1067,1112,1174,1206$, $1223,1256,1278,1304,1324,1353,1399,1442,1464,1484,15131589,1611,2840,2931,3005,3238$, $3414 \mathrm{~cm}^{-1}$.

Compound 26

A solution of $24(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ and monosaccharide $25(216 \mathrm{mg}, 0.32 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ $\mathrm{BnO}_{\ldots}^{\mathrm{OBn}} \mathrm{OBn}^{\mathrm{OBn}}$ was treated with freshly activated $4 \AA$ molecular sieves and 0.5 mL of a 0.3 M solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$. After stirring for 2 h at this temperature, $\mathrm{NaHCO}_{3}(200 \mathrm{mg})$ was added and the mixture was stirred a few more minutes. After diluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and filtration, the organic layer was washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude was purified by column chromatography (hexane/ethyl acetate $3: 1$) to afford compound 26 as a white solid ($125 \mathrm{mg}, 93$ \%).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.49-2.79(\mathrm{~m}, 4 \mathrm{H}), 3.61-3.86(\mathrm{~m}, 9 \mathrm{H}), 3.86-4.00(\mathrm{~m}, 9 \mathrm{H}), 4.63-4.48(\mathrm{~m}$, $3 \mathrm{H}), 4.73-5.08(\mathrm{~m}, 5 \mathrm{H}), 5.14-5.29(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.43(\mathrm{~m}, 20 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=29.4,30.5,55.9,56.2,60.7,61.4,69.2,73.6,74.9,75.1,75.3,75.8,77.9$, 82.1, 84.8, 102.5, 111.0, 111.4, 112.5, 122.9, 125.04, 127.7, 127.7, 127.8, 127.9, 127.9, 127.9, 128.0, $128.0,128.0,128.1,128.4,128.4,128.4,128.5,128.5,130.9,134.5,138.2,138.2,138.5,138.7,132.7$, 147.3, 147.7, 149.5, 151.6 ppm.

HRMS calcd. for $\mathrm{C}_{52} \mathrm{H}_{54} \mathrm{O}_{10} \mathrm{Na}$: 861.360921; found 861.359548.
IR $\tilde{v}=696,735,784,829,853,872,910,1007,1028,1065,1188,1216,1245,1263,1307,1324,1342$, $1358,1413,1453,1488,1516,1608,1695,1729,2932,3031,3241,3368 \mathrm{~cm}^{-1}$.

NMR spectra

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ig}$

${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{1 g}$

${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{1 g}$

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{1 g}$

$\begin{array}{lllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) 3g

Vivivio

${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{3 g}$

${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) 3g

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{4 a}$

${ }^{31} \mathrm{P}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{4 a}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 f}$

ViVin

[^1]${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 f}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{5 a}$

${ }^{31} \mathrm{P}$ NMR $\left(161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{5 a}$

${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{5 a}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{6 d}$

Fヲ		¢		\ddagger	¢ٕ...
$V^{\infty \infty}$	$\sqrt[\text { rij }]{ }$	$\dot{\sim}$	$\underbrace{\text { m்m }}$	ヘ	-

${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{6 d}$

${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) 6d

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) 6 f

${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \mathbf{6 f}$

${ }^{19}$ F NMR (282 MHz, CD $\left.\mathrm{D}_{3} \mathrm{CN}\right) 6$ f

$$
\begin{array}{llllllllll}
\hline & \\
\hline
\end{array}
$$

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{6 f}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{6 g}$

${ }^{31} \mathrm{P}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{6 g}$

${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{6 g}$

$$
\begin{array}{llll|l|l|l|l|l|l}
\hline \\
\hline & \\
\hline
\end{array}
$$

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{6 g}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) 7a

${ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 7a

${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) 7a

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{7 b}$

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) 7b

${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) 7b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) 8a

(

${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{8 a}$

${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{8 a}$

$\begin{array}{llllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & p p m\end{array}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{LB}=0.8$) 11

${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{LB}=0.0\right) \mathbf{1 1}$

${ }^{13} \mathrm{C}$ NMR - DEPT ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 11

${ }^{13} \mathrm{C}$ NMR - GATED ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11$

${ }^{13} \mathrm{C}$ NMR $-\operatorname{COSY}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11$

${ }^{13} \mathrm{C}$ NMR - NOESY ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 11

${ }^{13} \mathrm{C}$ NMR - HSQC ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 11

${ }^{13} \mathrm{C}$ NMR - $\mathrm{HMQC}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11$

Carbon nr.	Synthetic sample	Natural sample*
1	105.5	105.3
2	152.0	148.0
3	143.2	143.1
4	152.1	151.9
4 a	119.5	119.4
4 b	124.9	124.8
5	124.3	124.2
6	116.4	116.2
7	145.6	145.5
8	141.0	140.8
8 a	126.5	126.4
9	119.5	119.3
10	127.5	127.3
10 a	128.9	128.4
$\mathrm{OMe}(2)$	56.0	55.9
$\mathrm{OMe}(4)$	60.3	60.2
$\mathrm{OMe}(3)$	61.4	61.2
$\mathrm{OMe}(1)$	62.1	61.9

* A. Kovács, P. Forgo, I. Zupkó, B. Réthy, G. Falkay, P. Szabó, J. Hohmann, Phytochemistry 2007, 68, 687.

${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 12$

${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 12(3.35-3.95 \mathrm{ppm})$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO) 12

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 15

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 16

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17$
- inncogonfinmm

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17$

${ }^{1} \mathrm{H}$ NMR（300 MHz，CD $\left.{ }_{3} \mathrm{CN}\right) 19$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 19$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 21

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 21

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 22

${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) 22$

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) 23$

${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) 23$

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) 24$

${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) 24$

X-ray Structures

Compound 1c

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $I>2 \sigma$ (I)
Completeness to $\theta=29.49^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[1>2 \sigma(I)]$
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{P}$
pale yellow
$620.58 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
0.71073 Å

Monoclinic
$\mathrm{P} 2_{1} / \mathrm{n}$, (no. 14)
$\begin{array}{ll}\mathrm{a}=10.6538(11) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=25.582(3) \AA & \beta=90.245(2)^{\circ} . \\ \mathrm{c}=12.4815(13) \AA & \gamma=90^{\circ} .\end{array}$
3401.7(6) \AA^{3}

4
$1.212 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.129 \mathrm{~mm}^{-1}$
1336 e
$0.06 \times 0.05 \times 0.02 \mathrm{~mm}^{3}$
1.59 to 29.49°.
$-14 \leq h \leq 14,-35 \leq k \leq 35,-17 \leq \mathrm{l} \leq 17$
88571
$9480\left[R_{\text {int }}=0.0390\right]$
8047
99.9 \%

Empirical
1.00 and 0.91

Full-matrix least-squares on F^{2}
9480 / 0 / 396
1.060
$R_{1}=0.0453 \quad w R^{2}=0.1276$
$R_{1}=0.0546$
$w R^{2}=0.1381$
1.042 and $-0.532 \mathrm{e} \cdot \AA^{-3}$

Compound 1f

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $1>2 \sigma$ (I$)$
Completeness to $\theta=31.59^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [l>2 $\sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{BF}_{6} \mathrm{~N}_{2} \mathrm{P}$
colorless
$544.36 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$0.71073 \AA$
Monoclinic
P2 ${ }_{1} / \mathrm{n}$, (no. 14)
$a=9.9783(2) \AA \quad \alpha=90^{\circ}$.
$b=18.3382(6) \AA \quad \beta=100.866(2)^{\circ}$.
$\mathrm{c}=15.6515(4) \AA \quad \gamma=90^{\circ}$.
2812.63(13) \AA^{3}

4
$1.286 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.156 \mathrm{~mm}^{-1}$
1144 e
$0.10 \times 0.07 \times 0.05 \mathrm{~mm}^{3}$
3.04 to 31.59°.
$-14 \leq h \leq 14,-26 \leq k \leq 26,-23 \leq 1 \leq 23$
45554
$9392\left[R_{\text {int }}=0.0722\right]$
5892
99.6 \%

Empirical
0.99 and 0.74

Full-matrix least-squares on F^{2}
9392 / 0 / 342
1.010
$\mathrm{R}_{1}=0.0629$
$w R^{2}=0.1299$
$R_{1}=0.1161$
$w R^{2}=0.1532$

Compound $\mathbf{3 e}$

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $1>2 \sigma$ (I$)$
Completeness to $\theta=33.19^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[1>2 \sigma(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{59} \mathrm{H}_{84} \mathrm{~B}_{2} \mathrm{ClF}_{8} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Rh}$
yellow
$1303.22 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100.0 K
0.71073 Å

Monoclinic
$\mathrm{P} 2_{1} / \mathrm{n}$, (no. 14)
$a=15.9294(2) \AA \quad \alpha=90^{\circ}$.
$b=13.9444(2) \AA \quad \beta=117.81^{\circ}$.
$c=16.2976(2) \AA \quad \gamma=90^{\circ}$.
3201.96(7) \AA^{3}

2
$1.352 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.430 \mathrm{~mm}^{-1}$
1360 e
$0.27 \times 0.25 \times 0.14 \mathrm{~mm}^{3}$
2.95 to 33.19°.
$-24 \leq h \leq 24,-21 \leq k \leq 21,-25 \leq \mathrm{l} \leq 25$
76251
$12234\left[\mathrm{R}_{\text {int }}=0.0431\right]$
9762
99.7 \%

Semi-empirical from equivalents
0.75 and 0.65

Full-matrix least-squares on F^{2}
12234 / 0 / 386
1.025
$R_{1}=0.0575 \quad w R^{2}=0.1541$
$R_{1}=0.0728$
$w R^{2}=0.1653$
1.742 and $-1.167 \mathrm{e} \cdot \AA^{-3}$

Compound $\mathbf{4 f}$

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $1>2 \sigma$ (I$)$
Completeness to $\theta=33.19^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[1>2 \sigma(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{BClF}_{6} \mathrm{~N}_{2} \mathrm{PPd}$
yellow
$728.29 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
0.71073 Å

Orthorhombic
Pbca, (no. 61)
$a=15.8827(7) \AA \quad \alpha=90^{\circ}$.
$b=11.0550(5) \AA \quad \beta=90^{\circ}$.
$c=36.5987(16) \AA \quad \gamma=90^{\circ}$.
6426.1(5) \AA^{3}

8
$1.506 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.769 \mathrm{~mm}^{-1}$
2984 e
$0.30 \times 0.17 \times 0.12 \mathrm{~mm}^{3}$
3.16 to 33.19°.
$-24 \leq h \leq 24,-17 \leq k \leq 16,-56 \leq \mathrm{l} \leq 56$
80403
$12270\left[R_{\text {int }}=0.0797\right]$
6885
99.9 \%

Empirical
0.99 and 0.68

Full-matrix least-squares on F^{2}
12270 / 0 / 388
1.031
$R_{1}=0.0805 \quad w R^{2}=0.2271$
$R_{1}=0.1359$
$w R^{2}=0.2741$
0.0024(4)
2.663 and -2.813 e $\cdot \AA^{-3}$

Compound 6d

Empirical formula

Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)

Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $I>2 \sigma$ (I)
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[1>2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{PPt} \cdot \mathrm{CH}_{3} \mathrm{CN}$
yellow
$792.11 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
0.71073 Å

ORTHORHOMBIC
Pbca, (no. 61)
$\begin{array}{ll}\mathrm{a}=15.4474(15) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=17.4383(17) \AA & \beta=90^{\circ} . \\ \mathrm{c}=24.944(2) \AA & \gamma=90^{\circ} .\end{array}$
$6719.3(11) \AA^{3}$
8
$1.566 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$4.487 \mathrm{~mm}^{-1}$
3168 e
$0.30 \times 0.12 \times 0.11 \mathrm{~mm}^{3}$
1.63 to 33.76°.
$-24 \leq h \leq 24,-27 \leq \mathrm{k} \leq 27,-38 \leq \mathrm{l} \leq 38$
407730
$13448\left[R_{\text {int }}=0.0892\right]$
11540
100.0 \%

Gaussian
0.71 and 0.19

Full-matrix least-squares on F^{2}
13448 / 0 / 363
1.188
$R_{1}=0.0274 \quad w R^{2}=0.0617$
$R_{1}=0.0380$
$w R^{2}=0.0707$
2.573 and $-1.662 \mathrm{e} \cdot \AA^{-3}$

Compound 7b

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $1>2 \sigma$ (I)
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[1>2 \sigma(\mathrm{l})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{29} \mathrm{H}_{53} \mathrm{~B}_{4} \mathrm{~N}_{3} \mathrm{PPd}$
colourless
$667.92 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
0.71073 Å

TRICLINIC
P1, (no. 2)
$a=11.910(2) \AA \quad \alpha=99.923(4)^{\circ}$.
$b=12.072(2) \AA \quad \beta=105.144(5)^{\circ}$.
$\mathrm{c}=14.873(4) \AA \quad \gamma=109.581(3)^{\circ}$.
1863.6(7) \AA^{3}

2
$1.190 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.580 \mathrm{~mm}^{-1}$
700 e
$0.140 \times 0.120 \times 0.070 \mathrm{~mm}^{3}$
1.48 to 29.13°.
$-16 \leq h \leq 16,-16 \leq k \leq 16,-20 \leq I \leq 20$
41584
$10043\left[R_{\text {int }}=0.1654\right]$
7830
100.0 \%

Gaussian
0.96 and 0.92

Full-matrix least-squares on F^{2}
10043 / 0 / 355
1.010
$R_{1}=0.0735 \quad w R^{2}=0.1938$
$R_{1}=0.0891$
$w R^{2}=0.2040$
1.630 and -1.807 e $\cdot \AA^{-3}$

Compound 8a

Empirical formula

Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)

Crystal size
θ range for data collection
Index ranges
Reflections collected Independent reflections
Reflections with $1>2 \sigma$ (I)
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$2\left(\mathrm{C}_{90} \mathrm{H}_{106} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{Pd}_{2} \cdot \mathrm{BF}_{4}^{-}\right) \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
orange
$3589.35 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
150 K
0.71073 Å

TRICLINIC
P1, (no. 2)
$a=14.9923(14) \AA \quad \alpha=88.907(8)^{\circ}$
$b=15.0686(12) \AA \quad \beta=85.865(10)^{\circ}$.
$\mathrm{c}=24.293(3) \AA \quad \gamma=84.908(6)^{\circ}$.
5451.7(9) \AA^{3}

1
$1.093 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.506 \mathrm{~mm}^{-1}$
1860 e
$0.26 \times 0.22 \times 0.21 \mathrm{~mm}^{3}$
2.73 to 27.50°.
$-19 \leq h \leq 19,-19 \leq k \leq 19,-31 \leq \mathrm{l} \leq 31$
108051
$25020\left[\mathrm{R}_{\text {int }}=0.0321\right]$
20928
99.9 \%

Gaussian
0.87 and 0.80

Full-matrix least-squares on F^{2}
25020 / 0 / 1011
1.088
$R_{1}=0.0431 \quad w R^{2}=0.1267$
$R_{1}=0.0523$
$w R^{2}=0.1333$
1.870 and -1.576 e $\cdot \AA^{-3}$

Compound 11

Empirical formula

Color

Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with I>2 2 (I)
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[1>2 \sigma(1)]$
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$
yellow
$314.32 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
0.71073 Å

ORTHORHOMBIC
$\mathrm{P}_{1} 2_{1} 2_{1}$, (no. 19)
$a=7.6876(5) \AA \quad \alpha=90^{\circ}$.
$b=11.3305(7) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=17.3270(8) \AA \quad \gamma=90^{\circ}$.
1509.26(15) \AA^{3}

4
$1.383 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.101 \mathrm{~mm}^{-1}$
664 e
$0.42 \times 0.37 \times 0.20 \mathrm{~mm}^{3}$
2.90 to 33.06°.
$-11 \leq h \leq 11,-17 \leq k \leq 17,-26 \leq 1 \leq 26$
40870
$5698\left[\mathrm{R}_{\text {int }}=0.0265\right]$
5125
99.4 \%

Gaussian
0.98 and 0.97

Full-matrix least-squares on F^{2}
5698/0/213
1.211
$\mathrm{R}_{1}=0.0375$
$w R^{2}=0.1009$
$R_{1}=0.0484$
$w R^{2}=0.1099$
0.4 and $-0.3 \mathrm{e} \cdot \AA^{-3}$

Compound 17

Empirical formula

Color

Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with I>2 0 (I)
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5}$
colourless
$300.30 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
0.71073 Å

MONOCLINIC
P2 ${ }_{1} / \mathrm{c}$, (no. 14)
$a=11.1834(12) \AA \quad \alpha=90^{\circ}$.
$b=12.5326(13) \AA \quad \beta=106.040(3)^{\circ}$.
$\mathrm{c}=10.6579(11) \AA \quad \gamma=90^{\circ}$.
$1435.6(3) \AA^{3}$
4
$1.389 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.103 \mathrm{~mm}^{-1}$
632 e
$0.24 \times 0.08 \times 0.07 \mathrm{~mm}^{3}$
2.50 to 35.46°.
$-18 \leq h \leq 18,-20 \leq \mathrm{k} \leq 20,-17 \leq \mathrm{l} \leq 17$
126675
$6504\left[\mathrm{R}_{\text {int }}=0.0511\right]$
5349
99.9 \%

Gaussian
0.99 and 0.98

Full-matrix least-squares on F^{2}
6504 / 0 / 203
1.071
$R_{1}=0.0367$
$w R^{2}=0.0997$
$R_{1}=0.0485$
$w R^{2}=0.1089$
0.6 and $-0.3 \mathrm{e} \cdot \AA^{-3}$

Compound 23

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $1>2 \sigma(\mathrm{I})$
Completeness to $\theta=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[1>2 \sigma(\mathrm{l})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{5}$
colorless
$404.44 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
0.71073 Å

ORTHORHOMBIC
Pna2 ${ }_{1}$, (no. 33)

$a=17.595(3) \AA$	$\alpha=90^{\circ}$.
$b=7.4401(11) \AA$	$\beta=90^{\circ}$.
$c=15.723(2) \AA$	$\gamma=90^{\circ}$.

$c=15.723(2) \AA \quad \gamma=90^{\circ}$
2058.3(5) \AA^{3}

4
$1.305 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.090 \mathrm{~mm}^{-1}$
856 e
$0.41 \times 0.10 \times 0.08 \mathrm{~mm}^{3}$
2.315 to 35.633°
$-28 \leq h \leq 28,-12 \leq \mathrm{k} \leq 12,-25 \leq \mathrm{l} \leq 25$
72147
$9448\left[\mathrm{R}_{\text {int }}=0.0589\right]$
8085
99.9 \%

Gaussian
0.99 and 0.97

Full-matrix least-squares on F^{2}
9448 / 1 / 275
1.057
$R_{1}=0.0429$
$w R^{2}=0.1069$
$R_{1}=0.0586$
$w R^{2}=0.1190$
0.3(3)
0.413 and -0.273 e $\cdot \AA^{-3}$

[^0]: ${ }^{1}$ J. Petuškova, H. Bruns, M. Alcarazo, Angew. Chem. Int. Ed. 2011, 50, 3799.
 ${ }^{2}$ R. Weiss, K. G. Wagner, C. Priesner, J. Macheleid, J. Am. Chem. Soc. 1985, 107, 4491.
 ${ }^{3}$ C. A. Busacca, J. C. Lorenz, P. Sabila, N. Haddad, C. H. Senanyake, Org. Synth. 2007, 84, 242.
 ${ }^{4}$ T. Nakanishi, M. Suzuki, J. Nat. Prod. 1998, 61, 1263.
 ${ }^{5}$ a) H. Shigehisa, J. Takayama, T. Honda, Tetrahedron Lett. 2006, 47, 7301; b) F. Dietl, G. Gierer, A. Merz, Synthesis, 1985, 626.
 ${ }_{7}^{6}$ S. Chandrasekhar, N. R. Reddy, Y. S. Rao, Tetrahedron 2006, 62, 12098.
 ${ }^{7}$ a) B. Dasari, S. Jogula, R. Borhade, S. Balasubramanian, G. Chandrasekhar, S. S. Kitambi, P. Arya, Org. Lett. 2013, 15, 432; b) R. R. Schmidt, M. Stumpp, Liebigs Ann. Chem. 1983, 1249; c) R. R. Schmidt, J. Michel, M. Roos, Liebigs Ann. Chem. 1984, 1343.

[^1]: ${ }^{31} \mathrm{P}$ NMR $\left(161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 f}$

