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On evolution of solution times for the chemical master
equation of the enzymatic futile cycle
Abstract:We investigate three tensor product numerical data compression techniques in solutionof the chem-
ical master equation for the enzymatic futile cycle and compare them with the previously reported results,
obtained by the stochastic simulation algorithm. On this particular example from systems biology, we show
the history how the newly proposed tensor product methods reduced the computational complexity of the
futile cycle modelling from days on a HPC cluster to hours and even minutes on a workstation.
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1 Introduction
The chemical master equation (CME) is an important probabilistic model in systems biology [7, 8, 23]. When
cell processes are considered, typical numbers of molecules (copy numbers) of reacting substances (such as
RNAs, proteins, etc.) can be as few as tens. In such situations, stochastic �uctuations in the cell behaviour,
resulting from random occurrence of reactions, become signi�cant [2, 22]. The CME describes the joint prob-
ability density that each copy number takes a particular value at a particular moment of time.

Let d active substances in awell-mixedmediumbegiven.Wedenote their copynumbers as integer indices
i1, . . . , id, where each ik ≥ 0, k = 1, . . . , d. Generally, arbitrarily large values are possible, but very large
copy numbers have usually very small probability. This allows to truncate the index values to �nite ranges,
ik = 0, . . . , nk − 1 (see [16]).

We assume that substances react via M reactions. Each reaction is characterized by the stoichiometric
vector zm ∈ Zd, showing the di�erence between numbers of molecules produced and consumed by the reac-
tion, and the reaction rate functionwm(i1, . . . , id) ∈ R+, showing how fast the reaction goes in time, provided
that the copy numbers equal i1, . . . , id. For brevity, we will agglomerate several indices into a multiindex,
i = (i1, . . . , id). The joint probability distribution is denoted as ψ(i, t), and the chemical master equation is
written as the following linear ODE:

dψ(i, t)
dt =

M∑
m=1

wm(i − zm)ψ(i − zm , t) − wm(i)ψ(i, t). (1.1)

The di�culty of this problem is the curse of dimensionality: if all nk . n, the total amount of values
de�ning ψ scales as O(nd) and rapidly goes beyond any memory limits with growing number of substances
d. To estimate statistics (such as the average copy numbers 〈ik〉) without constructing the probability func-
tion explicitly, a Monte-Carlo-type Stochastic Simulation Algorithm (SSA) was proposed [7]. It tracks many
realizations of the system, and in each of them it draws the time step and the particular reaction, according
to random numbers, and conducts the chosen reaction. This process is repeated until the desired modelling
time is reached, and the desired quantity is averaged over realizations. According to the big numbers law, the
number of realizations required for the accuracy ε grows as ε−2, which can be less than nd, but still too large.
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An alternative way is to compress the probability function values in some low-parametric representation.
This work started from the sparse grids approach [9], followed by tensor product algorithms [1, 3, 10, 14]. This
paper is also devoted to the latter class.

Tensor product algorithms are based on separation of variables on the discrete level. One of the simplest,
but robust representations is the Matrix Product States [19, 21], also known as Tensor Train (TT) format [18],

ψ(i1, . . . , id) =
r1∑
α1=1

· · ·
rd−1∑
αd−1=1

ψ(1)
α1 (i1)ψ

(2)
α1 ,α2 (i2) · · ·ψ

(d−1)
αd−2 ,αd−1 (id−1)ψ

(d)
αd−1 (id). (1.2)

We see that each element of a multiindex array ψ is represented (or approximated) by a sum of products of
elements of two- and three-index arrays ψ(k), called TT factors. The auxiliary summation indices α1, . . . , αd−1
are called rank indices, and their ranges r1, . . . , rd−1 are called TT ranks. The TT ranks depend on particular
ψ and accuracy, if (1.2) is satis�ed approximately. If it is possible to limit rk . r, k = 1, . . . , d − 1, the TT
factors consume O(dnr2) memory, which can be much less than nd. Usually we refer to r as the maximal TT
rank.

The TT format allows to compress a givenψ up to the tolerance ε, also ifψ is already given as a TT format,
but possibly with overestimated TT ranks. This happens if we sum two arrays in the TT format, or perform
the matrix multiplication. In the CME, we consider ψ(t) as a vector with elements ψ(i, t), and the right-hand
side of (1.1) can be written as a matrix-vector product Aψ(t), meaning

∑
j

A(i, j)ψ(j, t) =
n1−1∑
j1=0

· · ·
nd−1∑
jd=0

A(i1, . . . , id; j1, . . . , jd)ψ(j1, . . . , jd , t).

The matrix A can be also represented in the following TT format,

A(i, j) =
R1∑
β1=1

· · ·
Rd−1∑
βd−1=1

A(1)
β1 (i1, j1)A

(2)
β1 ,β2 (i2, j2) · · ·A

(d)
βd−1 (id , jd)

which is consistent with the Kronecker product⊗ if d = 2 and R1 = 1.
Implicit time schemes require us to solve large linear systems on ψ. A state of the art approach to this

problem is alternating tensor product algorithms [11, 21, 24]. Given the system Bψ = g, we subsequently �x
all TT factors of ψ and update only one or two. This renders Bψ = g an overdetermined system on elements
of the sought factors, which is resolved with the �xed factors. The Density Matrix Renormalization Group
(DMRG) methods from quantum physics [12, 24] and newly developed Alternating Minimal Energy (AMEn)
algorithm [6] are e�cient. The DMRG approach seeks two neighbouring TT factors in each step, for example,
k and k + 1, which allows to adapt the TT rank rk to the desired accuracy. While DMRG method was found
to be extremely e�ective for spin Schrödinger eigenvalue problem, it may return a wrong solution of linear
systems, especially with non-symmetric matrices. The AMEnmethod is usually faster andmore robust, since
it seeks only one TT factor in each step, but then performs an explicit augmentation of the computed factor by
the TT factor of the current residual. This allows to change TT ranks and facilitate convergence. Both DMRG
and AMEn algorithms were developed in Matlab in the framework of the TT-Toolbox [17].

We investigate both methods in solution of the chemical master equation for the enzymatic futile cy-
cle model, which we describe in Section 2. We also compare two di�erent implicit time schemes: an hp-
Discontinuous Galerkin discretization, employed in the previous work [14] and a simple Euler scheme with
many time steps aggregated into a single large linear system, as proposed in [4]. Details on these schemes are
given in Section 3. In Section 4 we present numerical experiments and demonstrate that the AMEn method,
applied to the Euler scheme, delivers solution of the same quality ten times faster than the previous hp-DG
scheme with the DMRG method, since the former allows much larger time steps. Finally, comparing our re-
sults with the previously reported SSA calculations, which required 1500 cores on a distributed HPC system,
we may conclude that the new tensor product methods reduce the time consumption of the CME modelling
from days to minutes, making it really practical.
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2 Model
We consider the enzymatic futile cycle model [20]. It contains 6 species: Ef+, Eb+ , X, X*, Eb− and Ef−, whose copy
numbers are denoted as i1, . . . , i6, respectively. The reaction network is as follows:

X + Ef+ � Eb+ , X* + Ef0 � Eb−
Eb+ → Ef+ + X*, Eb− → Ef− + X

(2.1)

with the stoichiometry vectors and the reactions rates:

w1(i) = 40 · i1i3, z1 =
[
−1 1 −1 0 0 0

]
w2(i) = 104 · i2, z2 =

[
1 −1 1 0 0 0

]
w3(i) = 104 · i2, z3 =

[
1 −1 0 1 0 0

]
w4(i) = 200 · i4i6, z4 =

[
0 0 0 −1 1 −1

]
w5(i) = 100 · i5, z5 =

[
0 0 0 1 −1 1

]
w6(i) = 5000 · i5, z6 =

[
0 0 1 0 −1 1

]
.

The index ranges of indices i are restricted as follows,

i1, i2, i5, i6 = 0, . . . , 3, i3, i4 = 0, . . . , 127 (2.2)

which corresponds to the total CME size 222.
The initial state of the CME is chosen as a direct product of unitary vectors,

ψ0 = δ3 ⊗ δ1 ⊗ δ31 ⊗ δ91 ⊗ δ1 ⊗ δ3 (2.3)

which means that the initial copy numbers equal 2, 0, 30, 90, 0, 2 with probability 1.
The CME is modelled for the time interval T = 1.

3 Numerical schemes
Wecompare three tensor product solution schemes. In all cases, we use implicit discretizations in time, posed
for several time layers simultaneously. That is, ifψ(t) denotes the vector of 222 distribution values at the given
t,wewill denotebyψ a stackofψ(t) for several time steps (or polynomial coe�cients). Thewhole time interval
[0, 1] is split into subintervals [tp−1, tp], p = 1, . . . , P, where t0 = 0, tP = 1, and intermediate steps will be
speci�ed below. Therefore, for each interval [tp−1, tp] we are to solve linear systems of the form

Bψ = g, B = I ⊗ G − A ⊗M, g = ψ(tp−1)⊗ s (3.1)

where A is the CME matrix, I is the corresponding identity matrix of size 222, G is the sti�ness matrix, M is
the mass matrix, and s is the right-hand side, related to time.

The �rst scheme is the hp-DG-QTT discretization [14, 15], combined with the DMRGmethod for the linear
system solution [5, procedure dmrg_solve3 in TT-Toolbox]. Matrices G, M and s correspond to the Legendre
basis of degree 3 and have the following forms:

G =


1 1 1 1
−1 1 1 1
1 −1 1 1
−1 1 −1 1

 , M = tp − tp−12


2 0 0 0
0 2/3 0 0
0 0 2/5 0
0 0 0 2/7

 , s =


1
−1
1
−1

 .
The time splitting is done as follows. We set h = 5 × 10−4, T1 = 0.3. Then on [0, h] we introduce 10

geometrically graded steps tp = (2p − 1) · 1023−1h, p = 0, . . . , 10. On (h, T1] we use equidistant mesh tp =
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h(p−9), p = 11, . . . , 9+T1/h. Finally, on (T1, T]we increase themeshgeometrically, tp = T1
(
1 − h/T1

)9+T1/h−p,
p = 10 + T1/h, . . . , P, which results in P = 1331 steps total with tP ≈ 1.0004.

Given the vector of coe�cients ψ of (3.1) in the Legendre basis, we may enumerate it as a matrix ψ(i, j),
where j = 1, . . . , 4 corresponds to the time variable, and then the last snapshot is recovered as ψ(i, tp) =∑4

j=1 ψ(i, j).
The secondapproach is the implicit Euler scheme, solvedby the sameDMRGalgorithm. In each time inter-

valwe introduce 2L snapshots, and thematrices in (3.1) are the following:G = tp − tp−1 ·2−L ·tridiag(−1, 1, 0) ∈
R2L×2L ,M is the identity matrix of size 2L, and s is the �rst unitary vector. The last snapshot ψ(tp) is recovered
trivially as the last 222 coe�cients in ψ.

Since the QTT format allows us to take large L, we also consider larger time intervals. On [0, 0.02] we
introduce tp = 10−3 p, p = 0, . . . , 20, then on (0.02, 0.05]we increase the step size, tp = 0.02+5×10−3(p−20)
for p = 21, . . . , 26, on (0.05, 0.1] we use tp = 0.05+10−2(p−26), p = 27, . . . , 31, and �nally, on (0.1, 1] the
time grid has the form tp = 0.1 + 0.1(p − 31), p = 32, . . . , 40. In all time intervals we choose L = 14, which
corresponds to the e�ective time steps ranging from 6×10−8 in the beginning of the process to 6×10−6 in the
last interval [0.1, 1], and gives su�cient discretization accuracy. The reason for this experiment is to show
that the DMRG can be applied for large time intervals.

The third approach uses the same Euler time discretization, but the AMEn algorithm [6, procedure
amen_solve2 in TT-Toolbox] is employed instead of the DMRG to solve (3.1).

In order to reconstruct the experiment from [14] exactly, we used the dmrg_solve3 routine rolled back to
the state of July 12, 2012. Somedetailswere taken from thepreprint version [13]. Among them there are the time
splitting and tuning parameters of the DMRG: the GMRES method in local DMRG steps was conducted with
the Krylov basis size 50 and 2 restarts, the random enrichment rank was set to 2, and the maximal number
of DMRG sweeps is 5. The same parameters are used in the Euler scheme. In the AMEn algorithm, the local
GMRES solver was also limited to 50 inner and 2 outer iterations, the number of sweeps was not limited, but
the enrichment rank, which is more important in the AMEn method, was set to 4. The amen_solve2 routine
is up to November 10, 2014. In all experiments, the solution from the previous time interval was passed as an
initial guess to the DMRG and AMEn methods, and the residual stopping threshold was set to ε = 10−6.

In the fourth experiment, we solve the CME with the full storage of the solution and sparse matrix, since
the size 222 �ts into the memory. However, the system (3.1) on many time snapshots would still be too large,
so we integrate the CME via the standard Crank-Nicolson scheme with the following time steps: 2 × 10−6 on
[0, 0.01], 2 × 10−5 on (0.01, 0.05], 2 × 10−4 on (0.05, 0.1], and 2 × 10−3 on (0.1, 1]. The linear system in the
implicit stage is solved by the BiCGStab method with the residual threshold 10−13.

4 Results
In Fig. 1 we show cumulative computational times, norms of the residual (see Fig. 1a) and maximal ranks in
the QTT representations of the solution (see Fig. 1b) versus the system time. Four methods ‘DMRG, hp-DG’,
‘DMRG, Euler’, ‘AMEn, Euler’, and ‘Full’ are according to the description above. The QTT format is applied for
lexicographic order of indices i1, . . . , i6 and their binary digits, which corresponds to the experiment (D) in
[14]. Correctness of the problem setting can be veri�ed by the initial residual, ‖Aψ0‖2/‖ψ0‖2 ≈ 5.27×104, the
decay of the residual with time, and the evolution of the TT ranks, which coincide with the previous results.

Experiments were conducted in a LinuxMatlab R2012a on a single core of Intel Xeon E5504 CPU at 2 GHz.
The total CPU time of the ‘DMRG, hp-DG’ approach is 2.61 × 104 seconds. Comparing this with 1.52 × 104 in
[14], we estimate the rescaling ratio 1.7146 due to di�erent CPUs and versions of Matlab and other libraries.
This ratio is used to normalize and compare CPU times in Table 1.

Focusing on experimentswith the Euler scheme,we observe that the DMRG is also applicable here, but in
the transient region it su�ers from large condition numbers of the local problems. This is re�ected by jumps
in the TT ranks (Fig. 1b), since inaccurate solution of local problems introduces some noise. Nevertheless,
larger time steps allow to decrease the total CPU time.
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(a) (b)

Figure 1. (a) cumulative CPU times (sec.) and residual ‖Aψ(t)‖/‖ψ(t)‖; (b) maximal TT ranks.

(a) (b)

Figure 2. (a) errors w.r.t. the reference solution; (b) probability de�ciency.

Table 1. CPU times, normalized to the results in [14].

SSA DMRG, hp-DG Full DMRG, Euler AMEn, Euler
2 × 108 1.52 × 104 7.05 × 103 4.97 × 103 9.23 × 102

More robust is the AMEn approach, which is more than 10 times faster than the hp-DG method. Smaller
andbetter conditioned local problemsallow theAMEnmethod to avoid the outlinedproblemofnoisy solution
and deliver a more accurate result.

Interestingly, the full scheme is not the slowest one here: sparse matrix operations are quite e�cient,
which makes them faster than the DMRG method, if the TT ranks are large.

Other indicators of the solution correctness are the di�erencew.r.t. the reference solution (Fig. 2a) and the
degeneracy of the probability normalization (Fig. 2b). The reference solution ψ* is computed by the ‘AMEn,
Euler’ approach with the residual tolerance 10−8. Wemay notice that �ne time intervals in the hp-DG scheme
yield pretty accurate results in terms of both indicators, but this is overweighted by a large cost. The AMEn,
Euler technique gives a comparable accuracy on average, while being signi�cantly faster.

The full scheme behaves similarly to the hp-DG test: it exhibits a larger error in the beginning of the
process due to large time steps, but converges to a more accurate solution in the end.
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