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Protein sequence comparison and fold recognition: progress and
good-practice benchmarking
Johannes Söding and Michael Remmert
Protein sequence comparison methods have grown

increasingly sensitive during the last decade and can often

identify distantly related proteins sharing a common ancestor

some 3 billion years ago. Although cellular function is not

conserved so long, molecular functions and structures of

protein domains often are. In combination with a domain-

centered approach to function and structure prediction,

modern remote homology detection methods have a great and

largely underexploited potential for elucidating protein

functions and evolution. Advances during the last few years

include nonlinear scoring functions combining various

sequence features, the use of sequence context information,

and powerful new software packages. Since progress depends

on realistically assessing new and existing methods and

published benchmarks are often hard to compare, we propose

10 rules of good-practice benchmarking.
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Introduction
Protein sequence search methods are among the most

widely used computational tools, with BLAST and PSI-

BLAST alone having been cited over 60 000 times [1,2].

These methods help to infer the functions and structures

of proteins from those of homologous (i.e., related)

proteins found in the sequence databases. A homologous

relationship is assumed if the sequence similarity is

sufficiently high to exclude a chance similarity. Below

about 40% sequence identity cellular function is usually

not conserved. However, proteins are composed of one or

several domains, the structural, functional, and evolution-

ary units of proteins. Their molecular functions (e.g.

ATP-driven motor activity or RNA binding) and struc-

tures are often conserved over billions of years, below the

limit of detectable sequence similarity [3,4]. This high
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degree of conservation makes the inference of structures

and functions of protein domains from homologous

domains potentially very powerful.

In combination with this domain-centered approach to

function and structure prediction, the growing sensitivity

of sequence comparison methods has considerably

expanded the scope of applications in recent years. First,

in homology modeling, still the only practical method for

routine protein structure prediction, the identification of

suited template proteins ( fold recognition) and the gener-

ation of optimal query-template alignments constitute

the major quality bottlenecks. Second, the functional

annotation of proteins based on their predicted domains

is having a profound impact. Numerous domain family

databases have been developed that contain multiple

sequence alignments (MSAs) for thousands of domain

families together with detailed annotations about their

functions, critical residues, structures, interactions, phy-

logenetic spread, etc.[5–7]. All major sequence databases

use these domain databases for annotation. Third, Build-

ing MSAs by iterative sequence searches has become one

of the most essential bioinformatic applications, since

multiple alignments are a key intermediate step for

almost all sequence-based predictions (e.g. secondary

structure, tertiary structure, membrane helices, functional

residues, and interaction motifs).

This review summarizes progress in sequence searching

and pairwise alignment during the last two to three years

(see [8,9] for earlier reviews). Since information is power,

the first four sections introduce the various sources of

information used to detect remote homologies. Promising

algorithmic and technical advances are described next,

and in the last two sections, we discuss rules for good

practice benchmarking that we hope can serve as a

guideline in the field.

Evolutionary information and sequence
profiles
The sensitivity and alignment quality depend crucially on

the amount of information which is used to compare

proteins. Today, the most sensitive methods for fold

recognition use sequence profiles to represent both the

query and the database proteins. Sequence profiles con-

tain position-specific substitution scores that are com-

puted from the frequencies of amino acids at each

position of a multiple alignment of related sequences.

Modern methods employ a standard two-step approach.

They build up a profile using an iterative profile-to-

sequence search method such as PSI-BLAST [2] and
www.sciencedirect.com
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then search with this query profile through a precom-

puted database of profiles using profile–profile compari-

son. In the two most recent CASP (Critical Assessment of

techniques for protein Structure Prediction) compe-

titions, all 20 top-ranked servers (out of �80) used such

an approach to identify and align suitable template

proteins [10] (for CASP9 results see http://predictioncen-

ter.org/casp9/groups_analysis.cgi?type=server). Further

improvements were realized during the last decade by

extending sequence profiles to profile hidden Markov
models (profile HMMs), which include position-specific

gap penalties derived from frequencies of insertions and

deletions [11��–14].

1D structural properties
In addition to sequence profiles, top-performing structure

prediction methods compare the predicted secondary

structure of the query protein with the actual secondary

structure of the template protein. Such 1D properties
defined for each position have a big advantage: their

similarity scores can be combined with the similarity

score between profile columns in the dynamic program-

ming algorithms that calculate the optimal alignment

[15]. Hence 1D similarity scores may improve both the

sensitivity of fold recognition and the alignment quality.

Although secondary structure has had the largest impact,

many other 1D scores have been proposed. To increase

information content over the three secondary structure

states, SAM-T2K and SP5 define finer alphabets of back-

bone structure [12,16,17]. Other scores that have become

widely used recently are predicted solvent accessibility,

predicted number of tertiary residue–residue contacts

(coordination number) [12, 18, 19, 20��, 21], and 1D

environmental fitness scores [22], which evaluate how

well the amino acid distribution at each query position

would fit into the structural environment at each template

position.

Patterns and sequence context
The 1D scores discussed above are limited to searching

for templates with known structure. If 1D predictions are

compared to 1D predictions, structures are not needed

and, surprisingly, this works almost as well [13,23]. But

how can comparing profile-based 1D predictions add

information to the profile–profile comparison? Profile

column scores ignore correlations between columns. In

contrast, 1D predictions are done on context windows.

Comparing 1D predictions therefore amounts to scoring

the similarity of local amino acid patterns which may

contain strong inter-column correlations.

A more direct method to include information from

sequence contexts was developed in our group. It gen-

erates sequence profiles from single sequences by pre-

dicting amino acid substitution probabilities given the

sequence context (13 positions) around each residue. We

could show that both sensitivity and alignment quality of
www.sciencedirect.com 
our context-specific version of BLAST were increased by

a large margin with negligible computational overhead

[24��]. The idea is quite general and can be applied to

sequence–profile and profile–profile alignment schemes,

models of molecular evolution, and alignment of oligo-

nucleotide sequences.

Taxonomy, function, and gene context
Other types of information have been explored. Matched

database sequences whose taxa are distant with respect to

the taxa in the query profile are more likely to be false

positives than sequences from closely related taxa [25].

Other studies use cataloged protein–protein interactions

[26,27], but the approach is only effective for proteins

with a sufficient number of known interactions. In bac-

teria conserved genomic context and sequence length can

help to improve sensitivity of marginally significant

matches [28]. This concept of conserved genomic context

could be transferred to protein domain context, which is

also conserved to some degree [29].

Comparing profile columns
What is the best way to score the similarity of profile

columns during profile–profile comparison? Several stu-

dies compared heuristic column scores and found little

variation in their performance (see e.g. [30]). However,

the sensitivity of profile–profile alignment methods can

be improved by rewarding the alignment of low-entropy

columns to each other [31–33]. This may indicate that the

way profile columns are compared may not be optimal, in

particular how pseudocounts are added [34]. Altschul et al.
propose a generalization of the log-odds score for pairwise

sequence comparison [35��] to the pairwise comparison of

MSA columns. They suggest to calculate the logarithm of

the probability that both alignment columns were gener-

ated by the same underlying ancestral distribution,

divided by the probabilities that the two alignment col-

umns were generated by their own independent ancestral

distributions. Instead of using a heuristic to add pseudo-

counts before the comparison, pseudocounts emerge

naturally from Dirichlet priors on the ancestral amino

acid distributions. It will be interesting to see more

thorough tests of the proposed scheme with state-of-

the-art profile–profile aligners.

Nonlinear scoring functions
Most methods for fold recognition calculate a total per-

residue score by adding the profile column score and

various structure-derived 1D scores independently of

each other, using constant weights. Batzoglou and

coworkers report substantial improvements in pairwise

sequence alignment quality by learning scores and gap

penalties for each combination of features, such as amino

acids, secondary structure, solvent accessibility, and

hydropathy index of sequence context. Their software

CONTRalign models the probability of an alignment

given the two sequences and their features as a pair
Current Opinion in Structural Biology 2011, 21:404–411
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conditional random field (CRF). They learn the model

parameters by maximizing the log likelihood of a set of

training alignments [36�]. Another study confirms the

advantage of making match scores and gap penalties

dependent on secondary structure and learning optimal

score function parameters [37]. MICalign extend this idea

to using sequence profiles for both sequences and adding

(predicted or actual) secondary structure and solvent

accessibility [38].

These methods have a fixed score for each combination of

features and they add these scores linearly, allowing them

to learn dependencies between features. In this linear

formulation, the CRF’s parameters can be efficiently opti-

mized by convex quadratic programming, avoiding the risk

of running into local optima. Peng and Xu observe that

exhaustively learning a score for all feature combinations

limits the number of features and discretization levels

while requiring huge numbers of parameters. They take

a conceptionally big step in formulating the score as a true

nonlinear function of the sequence features whose number

of parameters can be much lower than the number of all

feature combinations. The parameters are optimized using

the gradient boost algorithm [20��,39]. The success of their

method is confirmed in the recent CASP9 benchmark,

where their RAPTOR servers were ranked third to fifth

out of 78 participating servers.

Homologous overextension
Most high-scoring false positive matches in PSI-BLAST

are caused by corrupted alignments, which contain non-

homologous sequence stretches at the ends of correctly

aligned homologous regions. These stretches can recruit

many more unrelated segments in further search

iterations. Several solutions have been proposed. The

buildali.pl script in the HHsearch package [13] prunes

away the ends of sequences to be included in the

alignment if their score per column is below a specified

threshold. In [40], a statistical framework is developed

to calculate P-values for the alignment ends and to

remove overaligned ends. Another possibility is to com-

bine E-values from the last search iteration with those of

the second search iteration, which does not usually

suffer much from overextension [41]. Pearson and cow-

orkers show that by freezing the alignment of a

sequence that has already been found previously, the

specificity increases four-fold to eight-fold [42]. Finally,

the iterative search methods HHMER3 and HHblits

(see below) replace the Smith–Waterman algorithm by

the maximum accuracy algorithm [43,44], which is much

less prone to overextension.

Iterative profile HMM searches
A major practical and technical advance has been accom-

plished by speeding up the popular HMM-based search

method HMMER by a factor �100. The new version

HMMER3 is now the standard search tool for Pfam [5]. It
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is only three to four times slower than NCBI PSI-BLAST

while possessing much better sensitivity and alignment

quality [11��]. HMMER3 is fast enough for iterative

searches through a comprehensive sequence database.

The drastic speed improvement is mainly due to a fast

prefilter based on SIMD (single instruction multiple data)

technology. With SIMD instructions, the 128-bit arith-

metic–logic units that form a part of modern CPU cores

can compute 16 parallel operations on single-byte vari-

ables per clock cycle [45�,46]. Sensitivity was improved

further by using the Forward instead of the Viterbi

algorithm for scoring matches and replacing the time-

consuming sampling-based E-value calculation by a heur-

istic approximation [47]. A similar SIMD-based strategy

was pursued in our group to speed up searches with our

HHsearch software for pairwise comparison of profile

HMMs [13]. The new iterative version of HHsearch,

HHblits, runs faster than PSI-BLAST and achieves sen-

sitivities and alignment qualities much superior to

HMMER3 (Remmert et al., unpublished). An overview

of free software and web servers for sensitive sequence

searching is given in Table 1.

Protein similarity networks
When similarities between database members are known,

the homology of the query Q with a database protein T can

be supported by paths through the similarity network that

lead from node Q via intermediate nodes X and Y to node

T (Figure 1 top).

The empirical feature map uses the kernel function

k(X, Y) =
P

ZS(X, Z)S(Y, Z), where S(X, Y) is a matrix

of pairwise similarities. This kernel has been employed

by numerous machine learning approaches. They train a

support vector machine (SVM) for every fold in the

training set and predict the fold whose SVM yields the

highest score [48]. Two simple methods similar to the

empirical feature map have been proposed [49,50] which

calculate network-based similarities Snet(X, Y) using a

heuristic similarity measure between the empirical fea-

ture vectors S(X, � ) and S(Y, � ).

These SVM-based approaches can only predict folds

they were trained with. Two recent algorithms, RANK-

PROP[51,52] and ProtEmbed [53�], are independent of

any fold definitions. They can make use of network

information to better rank database matches and can

therefore also be applied to regular sequences searches.

RANKPROP propagates in an iterative fashion virtual

activities from the query through the network of

database members. After convergence, the database

members are ranked by their activity. ProtEmbed

learns a large-scale embedding of the empirical feature

vectors obtained by HHsearch all-against-all compari-

son into a lower-dimensional ‘semantic space’ while

trying to conserve pairwise distances as well as possible

[53�].
www.sciencedirect.com
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Table 1

Tools and web servers for protein remote homology detection

Name Description Software/server Ref.

PSI-BLAST General-purpose, iterative profile-to-sequence

search; very fast

http://blast.ncbi.nlm.nih.gov/Blast.cgi

ftp://ftp.ncbi.nih.gov/blast/

[2]

SAM Iterative sequence search based on HMM-to-sequence

comparison for remote homology detection and protein

structure prediction

http://compbio.soe.ucsc.edu/sam.html

http://compbio.soe.ucsc.edu/

SAM_T08/T08-query.html

[12]

HMMER3 General-purpose iterative sequence search based on

HMM-to-sequence comparison; fast, better sensitivity

and alignment quality than PSI-BLAST

http://hmmer.janelia.org/

http://hmmer.janelia.org/search

[11��]

HHblits General-purpose iterative sequence search based on

HMM–HMM comparison; very fast, better sensitivity

and alignment quality than PSI-BLAST and HMMER3

ftp://toolkit.lmb.uni-muenchen.de/HHblits/

http://toolkit.lmb.uni-muenchen.de/hhblits

–

COMPASS Remote homology detection and fold recognition

based on profile–profile comparison

ftp://iole.swmed.edu/pub/compass/

http://prodata.swmed.edu/compass/

[62]

PROCAIN Remote homology detection and fold recognition

based on profile–profile comparison

http://prodata.swmed.edu/procain/download/

http://prodata.swmed.edu/procain/

[32]

COMA Remote homology detection and fold recognition

based on profile–profile comparison

http://www.ibt.lt/bioinformatics/coma/

http://bioinformatics.ibt.lt:8085/coma/

[63]

PRC Remote homology detection and fold recognition

based on HMM–HMM comparison

http://supfam.mrc-lmb.cam.ac.uk/PRC/

http://www.ibi.vu.nl/programs/prcwww/

[14]

HHsearch/HHpred Remote homology detection, fold recognition, and

structure prediction based on HMM–HMM

comparison

ftp://toolkit.lmb.uni-muenchen.de/HHsearch/

http://toolkit.lmb.uni-muenchen.de/hhpred

[13]
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Transitive paths of similarity may help to predict remote relationship

between proteins Q and T. When Q is similar to X and Y, and X, Y are

similar to T, this is taken as an indication that Q is homologous to T. This

assumption is not valid for multi-domain proteins: Q and T have no

domains in common although the transitive paths via X or Y have high

pairwise similarities due to shared domains.

www.sciencedirect.com 
All discussed network-based methods rely on the assump-

tion of transitivity (Figure 1). This limits their general

applicability since most proteins, particularly in eukar-

yotes, are composed of multiple structural domains. An

elegant approach for transitive homology search that

circumvents these problems was presented by Heger

et al. [54]. They associate the nodes in the similarity

network with the residues of all database proteins and

draw edges whose weights reflect how likely two residues

are to be aligned with each other.

Analysing alignment quality and detection
sensitivity
Published benchmarks on sequence comparison methods

differ much in their setup and often seem to come to

divergent conclusions. A standardization of the bench-

mark procedures and analyses would help to make bench-

marks more comparable and to facilitate progress in the

field. We need to be able to objectively assess, firstly, the

quality of the produced alignments and, secondly, the

sensitivity for detecting homologous protein pairs.

Alignment quality is usually measured by comparing the

sequence-based alignments to a set of ‘gold standard’

alignments generated by structural alignment. But

because structural alignment is non-trivial and different

programs often produce quite different alignments, we

advocate the reference-free method [55], which assesses

the alignment quality by how well the aligned pairs are

structurally superposable. Alignment sensitivity is measured

as the weighted fraction of query residues that are super-

posable to the template. The complementary measure,

alignment precision, is the weighted fraction of aligned
Current Opinion in Structural Biology 2011, 21:404–411
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residue pairs that are superposable. Here, the residue

weights go from 1 for a perfect superposition to 0 for large

spatial divergence. The precise distance dependence

differs between programs [56,57].

To measure the sensitivity for detecting homologous

proteins, a ‘gold standard’ set of known homologous (true

positive, TP) and non-homologous (false positive, FP)

protein pairs is needed. Since structure is conserved better

than sequence, benchmark sets are usually drawn from a

database of domains of known structure. Although CATH

[58], Pfam [5], and COPS [59] are sometimes used, the

SCOP database [60] has emerged as de facto standard. In

SCOP, members of a superfamily are assumed to be

homologous. Pairs from the same fold but different super-

families are treated as ‘unknown’. Members of different

folds are non-homologous, except for Rossman-like folds

(c.2–c.5, c.27 and 28, c.30 and 31) and the four- to eight-

bladed b-propellers (b.66–b.70). Pairs from these groups of

folds should be treated as ‘unknown’. An alternative that

avoids a catalog of specific exceptions is the reference-free

scheme proposed by Qi [55]. There, the classification of a

pair as TP or FP depends on the structurally evaluated

quality of the method’s suggested alignment. The draw-

back is that the sensitivity cannot be evaluated indepen-

dently of alignments, and methods producing longer

alignments will be at an advantage.

A Receiver Operating Characteristic (ROC) plot

measures how well a method ranks all protein pairs with

respect to each other over all searches. It shows the number

of TP pairs (homologous pairs above score threshold) as a

function of the number of FP pairs (non-homologous pairs

above threshold) (Figure 2a). Various scaled and inverted

versions exist, such as sensitivity versus selectivity, or

recall versus precision.

A ROC5 plot assesses how well a method ranks the

matched proteins within each search. For each query protein

(or family), one calculates a ROC plot and computes the

ROC5 value, that is the area under the ROC curve up to the

fifth FP. The ROC5 plot shows the fraction of queries for

which the ROC5 value is above the threshold on the x-axis

(Figure 2d). A sensitive method will achieve high ROC5

values for a high fraction of queries.

The ROC5 analysis is complimentary to the ROC plot.

Whereas the ROC analysis is more relevant for automatic

methods that rely on the score for deciding whether to

accept a match as homologous or not, the ROC5 type of

analysis may be more relevant for a human user who is

willing to look through a certain number of matches to his

query protein (e.g. 5) to decide which of these to follow up.

Ten rules of good-practice benchmarking
Benchmarking the sensitivity of sequence search

methods in a way that results can be compared among
Current Opinion in Structural Biology 2011, 21:404–411 
studies is by no means straightforward. We describe here

what we consider as the ten rules of good-practice bench-

marking for these methods.

1. Ensure that training and test proteins are not too

similar. Machine learning methods typically train

thousands of free parameter and can learn fold

classifications of training proteins by heart. There-

fore, correct fold predictions for test proteins that are

very similar to training proteins can be trivial. As an

example, a maximum pairwise sequence identity of

25% between training and test sequences is not

sufficient, since at that similarity the profiles built

from these sequences can be very similar. When

using SCOP, training and test sets should rather be

split along superfamily boundaries.

2. Optimize parameters on the training set or an

independent validation set, not on the test set.

ROC plot analyses are particularly prone to over-

training parameters on the test set, since the ROC

plot depends on only a few tens or hundreds of high-

scoring false positives in the relevant FDR range.

3. Consult authors on good parameter settings for their

methods. An alternative is to optimize the most

important parameter(s) of all tested methods.

4. Choose a standard benchmark set to facilitate

comparison with other studies.

5. Choose a benchmark set of maximum possible size.

Differences on small test sets can be due to chance

rather than to significant differences. When training

and test data are scarce, 10-fold cross validation is

advisable.

6. Apply superfamily weights in ROC analyses. Because

the number of homologous pairs scales as the number

of members squared, large superfamilies would

otherwise dominate the ROC plot (Figure 2b), in

particular since the few highest scoring FPs strongly

influence the ROC plot. Changing the weighting

from family-based to superfamily-based decreased

the sensitivity gain of our method CS-BLAST [24��]
over BLAST from 140% to 40%.

7. Select the FP range in the ROC plot that corresponds

to relevant FDRs. The relevant FDR range is

roughly between 0.1% and 10%, since an FDR of

10% typically corresponds to a marginal FDR of

�50%. (The marginal FDR measures what fraction of

predictions with scores between a threshold S and

some S + DS are correct.).

8. Check that the tested methods use only information

that is actually available in a practical setting.

9. Check that the benchmark simulates the methods’

envisaged use. Example: suppose we want to test a

fold recognition method that uses similarities

between SCOP members (e.g. [49,50,48]). We should

only evaluate it on the top match per query, since that

match determines the superfamily or fold to predict.

Whether the 10th match, say, also has the correct fold
www.sciencedirect.com
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Figure 2
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Analysis of detection sensitivity. The test set consists of all SCOP domains (v. 1.75) with 20% maximum pairwise sequence identity. SIMPRO is a

network-based method, COMPASS (3.1) and HHsearch (1.6.0) are methods based on profile–profile and HMM–HMM comparison, respectively.

HHsearch_network is a trivial extension that ranks members from the superfamily of the best HHsearch hit on top. (a) A ROC plot shows the number of

true positive (TP) over false positive (FP) protein pairs detected above the score threshold. Superfamilies of size n contribute n2 TP pairs, therefore

large superfamilies dominate the performance. Dotted grey lines indicate false discovery rates of 0.1%, 1% and 10%. (b) Same as a, each pair is

weighted by 1 over the size of the query’s superfamily. (c) Same as b, only the best match per query is evaluated. (d) ROC5 plot: fraction of query

proteins whose ROC5 value is above the ROC5 threshold on the x-axis. This ROC5 analysis is much less prone to overfitting than the ROC analyses in

a–c. The analyses in a, b, and d are not suited to evaluate fold recognition methods that use network information, such as SIMPRO and

HHsearch_network (see point 9 in ‘Ten rules of good-practice benchmarking’ section). (SIMPRO was implemented according to the description in [50].

All data and scripts can be downloaded at ftp://toolkit.lmb.uni-muenchen.de/COSB-2011-Seq-comparison).
is irrelevant in practice. Figure 2b and c shows how

the performance of a network-based method (SIM-

PRO [50]) drops in comparison to non-network based

methods when evaluated only on best matches.

10. It should become good practice to offer for download

all the data and scripts that are necessary to reproduce

published benchmark results.

Conclusion
A great number of advances in sequence searching have

been made during the last decade, many in the context of
www.sciencedirect.com 
protein structure prediction. Yet most have not been

applied generally in sequence searching. It is time to

consolidate these ideas and turn them into practically

useful, fast, and user-friendly tools for general purpose

sequence searching that are much more powerful than the

tools of the last millennium that still dominate the field.

Protein structure prediction and domain annotation are

becoming mainstream applications, and the growing

importance of domain family databases such as Pfam,

InterPro, and CDD [5–7] for functional domain annota-

tion is accelerating this trend. We envisage that in the

future raw sequence databases will be superseded by
Current Opinion in Structural Biology 2011, 21:404–411
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highly structured domain family databases that cover the

entire sequence space. They will be searched with sen-

sitive methods that can combine information from diverse

sources. Such databases would represent the vast and fast

growing amount of information in a more economic and

efficient way than today’s databases of raw sequences

[61]. We believe that many of the ideas highlighted here

will be integrated into mainstream sequence search tools

that will better realize the great potential benefits of the

fast-growing sequence databases [61].
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