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Abstract

Several mammalian proteins involved in chromatin and DNA modification contain CXXC zinc finger domains. We compared
the structure and function of the CXXC domains in the DNA methyltransferase Dnmt1 and the methylcytosine dioxygenase
Tet1. Sequence alignment showed that both CXXC domains have a very similar framework but differ in the central tip region.
Based on the known structure of a similar MLL1 domain we developed homology models and designed expression constructs
for the isolated CXXC domains of Dnmt1 and Tet1 accordingly. We show that the CXXC domain of Tet1 has no DNA binding
activity and is dispensable for catalytic activity in vivo. In contrast, the CXXC domain of Dnmt1 selectively binds DNA substrates
containing unmethylated CpG sites. Surprisingly, a Dnmt1 mutant construct lacking the CXXC domain formed covalent
complexes with cytosine bases both in vitro and in vivo and rescued DNA methylation patterns in dnmt12/2 embryonic stem
cells (ESCs) just as efficiently as wild type Dnmt1. Interestingly, neither wild type nor DCXXC Dnmt1 re-methylated imprinted
CpG sites of the H19a promoter in dnmt12/2 ESCs, arguing against a role of the CXXC domain in restraining Dnmt1
methyltransferase activity on unmethylated CpG sites.
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Introduction

In mammals DNA methylation is restricted to cytosine residues

and mainly involves CpG dinucleotides. CpG methylation is

widespread across mammalian genomes, including gene bodies

regardless of their transcriptional activity [1–4]. However, highly

CpG-rich regions (CpG islands) are refractory to methylation and

mostly coincide with promoters of constitutively active genes. The

methylation state of other regulatory sequences with moderate to

low CpG density, including promoters and enhancers, shows

developmental and/or tissue-specific variations and positively

correlates with a transcriptionally silent state [1,3–8]. Dense

methylation of repetitive sequences is also thought to maintain

these elements in a silent state and thus contribute to genome

stability [9–11]. In mammals cytosine methylation is catalyzed by

a family of DNA methyltransferases (Dnmts) [12]. Dnmt3a and

Dnmt3b establish methylation patterns during embryonic devel-

opment of somatic as well as germ cell lineages and, consistently,

show developmental stage and tissue specific expression patterns.

In contrast, Dnmt1 is ubiquitous and generally the most abundant

DNA methyltransferase in mammalian tissues, where it associates

with the replication machinery and restores symmetrical methyl-

ation at hemimethylated CpG sites generated by the semi-

conservative DNA replication process [13]. Thus, Dnmt1

maintains methylation patterns with high fidelity and is essential

for embryonic development and genome integrity [9,14,15].

Dnmt1 is a large enzyme with a complex domain structure that

likely evolved by fusion of at least three genes [16]. It comprises a

regulatory N-terminal region and a C-terminal catalytic domain

connected by a linker of seven glycine-lysine repeats (Figure 1A)[17].

The N-terminal part contains a PCNA binding domain (PBD), a

heterochromatin targeting sequence (TS), a CXXC-type zinc finger

domain and two Bromo-Adjacent Homology domains (BAH1 and

BAH2). The C-terminal domains of mammalian Dnmts contain all ten

catalytic motifs identified in bacterial DNA (cytosine-5) methyltrans-

ferases [12]. Thus, prokaryotic and mammalian cytosine methyltrans-

ferases are thought to adopt the same catalytic mechanism. However,

the C-terminal domain of Dnmt1 is the only DNA methyltransferase

domain in Dnmts that is not catalytically active when expressed

separately. Indeed, interaction with the N-terminal part is required for

allosteric activation of the enzyme [18]. Remarkably, the first 580

amino acids (aa) of human DNMT1 are dispensable for both

enzymatic activity and substrate recognition, whereas deletion of the

first 672 aa results in an inactive enzyme [19]. Interestingly, this

truncation eliminates part of the CXXC domain, suggesting an

involvement of this domain in allosteric activation. However, addition

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e16627



CXXC Domains of Dnmt1 and Tet1

PLoS ONE | www.plosone.org 2 February 2011 | Volume 6 | Issue 2 | e16627



of an N-terminal fragment containing the isolated CXXC domain to

the catalytic domain was not sufficient for catalytic activation [20].

CXXC-type zinc finger domains are found in several other

proteins with functions related to DNA or chromatin modification,

including the histone H3 lysine 4 (H3K4) methyltransferases mixed-

lineage leukaemia (MLL) proteins 1 and 4, the CpG-binding protein

(CGBP, also known as Cfp1 or CXXC1), the methyl-CpG binding

domain protein 1 (MBD1), the H3 lysine 36 (H3K36) demethylases

KDM2A and B (also known as JHD1A/FBXL11 and JHD1B/

FBXL10) and the MLL1 fusion partner TET1 (Figure 1A) [21–28].

The CXXC domains of some of these proteins were shown to

mediate specific binding to double stranded DNA templates

containing unmethylated CpG sites [21,22,29,30]. A region of

Dnmt1 which mainly includes the CXXC domain (aa 628–753) was

also shown to bind Zn ions and DNA [20,31,32]. However, available

data on the selectivity of this DNA binding activity are conflicting.

Whereas a fragment including aa 613–748 of mouse Dnmt1 was

shown to bind DNA with a slight preference for hemimethylated

CpG sites [20], aa 645–737 of human DNMT1 were shown to

selectively bind unmethylated DNA [32]. As these studies used

different constructs and species, the selectivity of DNA binding by

the CXXC domain of Dnmt1 with regard to CpG methylation state

and the role of the CXXC domain in allosteric activation and

substrate discrimination remain to be firmly established.

Notably, not all CXXC domains show DNA binding activity, as

exemplified by the fact that only one out of three CXXC domains

in MBD1 binds DNA [29]. Interestingly, TET1 was recently

shown to be a 2 oxoglutarate- and Fe(II)-dependent dioxygenase

responsible for converting genomic 5-methylcytosine (mC) to 5-

hydroxymethylcytosine (hmC) [33,34]. However, it is not known

whether the CXXC domain of TET1 is involved in recognition of

methylated DNA substrates.

Here we report a functional study and characterization of the

DNA binding activity for the CXXC domains of mouse Dnmt1

and Tet1 proteins. We generated isolated CXXC domain and

deletion constructs based on structural homology models to

minimize structural alterations. We show that the CXXC domain

of Dnmt1 preferentially binds DNA substrates containing

unmethylated CpG sites, but does not contribute significantly to

the DNA binding properties of the full length enzyme and is

dispensable for its catalytic activity in vitro and in vivo. In addition,

we found that the CXXC domain of Tet1 does not bind DNA in

vitro and is also dispensable for catalytic activity of Tet1 in vivo.

Results

Sequence homology and structural modeling identify
distinct CXXC domain subtypes

Dnmt1 contains a zinc finger domain of the CXXC type, which

is present in several mammalian proteins including MLL1

(Figure 1A–C) and is highly conserved among Dnmt1 sequences

from various animal species (Figure S1 in File S1). The primary

structure of CXXC domains spans two clusters of 6 and 2 cysteine

residues separated by a stretch of variable sequence and length.

Sequence alignment and homology tree construction identified

three distinct groups of CXXC domains (Figure 1B and C). The

sequence between the two cysteine clusters in the CXXC domains

of Dnmt1, CGBP/Cfp1, Fbxl19, Mll1, Mll2 and Kdm2 proteins

and CXXC domain 3 of Mbd1 is highly conserved and contains a

KFGG motif. The two other homology groups, including the

CXXC domains 1 and 2 of Mbd1 on one side and those of Tet1,

Cxxc4/Idax, Cxxc5/RINF and Cxxc10 on the other side, lack the

KFGG motif and diverge from the first group and from each other

in the sequence between the cysteine clusters. We generated

structural homology models for the CXXC domains of mouse

Dnmt1 and Tet1 using the NMR structure of the MLL1 CXXC

domain as a template (Figure 1D and E)[35]. The CXXC domains

of these proteins adopt an extended crescent-like structure that

incorporates two Zn2+ ions each coordinated by four cysteine

residues. The peptide of the MLL1 CXXC domain predicted to

insert into the major groove of the DNA double helix (cyan in

Fig. 1E) is located on one face of the structure and is contiguous to

the KFGG motif [35]. The predicted structure of the Tet1 CXXC

domain lacks the short 310 helix (g1 in Figure 1E) formed by

residues PKF and partially overlapping the KFGG motif, but is

similar to the MLL1 CXXC domain in the region of the DNA-

contacting peptide. However, each of the two predicted b-strands

in Tet1 carries three positive charges, whereas there is only one or

no charged residue in the C-terminal strands of the CXXC

domains in MLL1 and Dnmt1. Depending on the orientation of

the positively charged side chains, it cannot be excluded that the

charge density prevents strand pairing in the Tet1 CXXC domain.

The Dnmt1 CXXC domain binds unmethylated DNA
To investigate the binding properties of the Dnmt1 CXXC

domain, we generated a GFP fusion construct including aa 652–699

(GFP-CXXCDnmt1). According to our homology model the ends of

this fragment form an antiparallel b-sheet that structurally delimits

the domain as in MLL1. We first compared the localization and

mobility of GFP-CXXCDnmt1 and GFP in mouse C2C12

myoblasts. While GFP was diffusely distributed in both nucleus

and cytoplasm, GFP-CXXCDnmt1 was exclusively nuclear with a

punctuated pattern throughout the nucleoplasm and was enriched

in nucleoli, a pattern independent of cell cycle stage (Figure 2A and

Figure S2 in File S1). Enrichment in the nucleus and nucleoli is

frequently observed with constructs containing stretches with high

density of basic residues. After photobleaching half of the nuclear

volume we observed a slower fluorescence recovery rate for GFP-

CXXCDnmt1 than for GFP (Figure 2B). To rule out a contribution of

nucleolar interactions to the slower kinetics of GFP-CXXCDnmt1,

Figure 1. Sequence and predicted structural homology of CXXC domains. (A) Schematic representation of the domain structure in Dnmt1 and
Tet1. The catalytic domain and the N-terminal region of Dnmt1 are connected by seven lysine-glycine repeats [(KG)7]. PBD: PCNA binding domain; TS:
targeting sequence; CXXC: CXXC-type zinc finger domain; BAH1 and 2: bromo-adjacent homology domain; NLS: nuclear localization signal; Cys-rich:
cysteine rich region. (B) Alignment of mammalian CXXC domains. Numbers on the right side indicate the position of the last amino acid in the
corresponding protein. The Mbd1a isoform contains three CXXC motifs (Mbd1_1-3). Absolutely conserved residues, including the eight cysteines
involved in zinc ion coordination are highlighted in red and the conserved KFGG motif is in red bold face. Positions with residues in red face share 70%
similarity as calculated with the Risler algorithm [66]. At the top residues of MLL1 involved in b sheets b1 and b2 (black arrows), a helices a1 and a2 and
strict a turns (TTT) are indicated. All sequences are from M. musculus. Accession numbers (for GenBank unless otherwise stated): Dnmt1, NP_034196;
Mll1, NP_001074518; Mll4, O08550 (SwissProt); CGBP, NP_083144; Kdm2a, NP_001001984; Kdm2b, NP_001003953; Fbxl19, NP_766336; Mbd1,
NP_038622; CXXC4/Idax, NP_001004367; CXXC5, NP_598448; CXXC10 (see Materials and Methods). (C) A homology tree was generated from the
alignment in (B). The three subgroups of CXXC domains identified are in different colors. Average distances between the sequences are indicated. (D–E)
Homology models of the mouse Dnmt1 (D; red) and Tet1 (E; blue) CXXC domains superimposed to the CXXC domain of MLL1 (green; [35]). MLL1
residues that were described to contact DNA according to chemical shift measurements [35] are cyan in (E), while cysteines involved in coordination of
the two zinc ions are yellow. Arrows point to the KFGG motif in MLL1 and Dnmt1. The locations of a helices and b sheets are indicated as in (B).
doi:10.1371/journal.pone.0016627.g001
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we separately bleached nucleoplasmic and nucleolar regions and

found that GFP-CXXCDnmt1 has even faster kinetics within the

nucleolus (Figure S3 in File S1). These results are consistent with a

binding activity of GFP-CXXCDnmt1 in the nucleus and very

transient, unspecific binding in the nucleolus. To investigate

whether the CXXC domain of Dnmt1 binds DNA and its possible

selectivity with respect to CpG methylation we used a recently

developed fluorescent DNA binding assay [36,37]. GFP-

CXXCDnmt1 was transiently expressed in HEK293T cells, im-

munopurified with the GFP-trap (Figure S4 in File S1) and

incubated with fluorescent DNA substrates containing either no

CpG site or one central un-, hemi- or fully methylated CpG site in

direct competition. As shown in Figure 2C, GFP-CXXCDnmt1

displayed a significant preference for the substrate containing one

unmethylated CpG site, which increased substantially with a five-

fold higher concentration of the DNA substrates (Figure S5 in File

S1). These results are consistent with the reported binding pre-

ference of the CXXC domains in human DNMT1 and other factors

belonging to the same CXXC homology group [21,22,29,32].

Notably, the CXXC domains 1 and 2 of Mbd1 lack the KFGG

motif and do not bind DNA, while mutation of this motif prevented

DNA binding by the CXXC domain of MLL1 [29,38]. Therefore,

we generated a GFP-CXXCDnmt1 construct where the KFGG motif

was mutated to AAGG (GFP-CXXCDnmt1KF/AA, Figure S4 in File

S1) to test the requirement of the KFGG motif for binding by the

CXXC domain of Dnmt1. The mutant domain showed signifi-

cantly decreased binding to all DNA substrates and complete loss of

preferential binding to the unmethylated substrate in vitro

(Figure 2B). In addition, GFP-CXXCDnmt1KF/AA showed faster

recovery after photobleaching (FRAP) in vivo compared to the

corresponding wild type construct (Figure 2C). These results further

support the importance of the KFGG motif for DNA binding by

CXXC domains.

The CXXC domain of Tet1 shows no specific DNA binding
activity and is dispensable for enzymatic activity in vivo

It was recently shown that Tet1 oxidizes genomic mC to hmC.

However, the mechanism by which Tet1 is targeted to genomic

mC is not known. Our model for the structure of the Tet1 CXXC

domain diverged from the structure of the MLL1 CXXC domain

with respect to the KFGG motif but not to the DNA-contacting

peptide, suggesting that the Tet1 CXXC domain may still bind

DNA. To test this we generated a GFP-tagged Tet1 CXXC

Figure 2. Properties of isolated Dnmt1 and Tet1 CXXC domains. (A–B) Subcellular localization (A) and binding kinetics (B) of GFP-CXXCDnmt1,
GFP-CXXCDnmt1KF/AA, GFP-CXXCTet1 and GFP in mouse C2C12 myoblasts. Localization and binding kinetics were independent from the cell cycle stage
(Figures S2 and S5 in File S1). Arrowheads in (A) point to nucleoli. Scale bar: 5 mm. Binding kinetics were analyzed by FRAP. (C) DNA binding specificity
of the Dnmt1 and Tet1 CXXC domains. GFP, GFP-CXXCDnmt1, GFP-CXXCDnmt1KF/AA and GFP-CXXCTet1 were pulled down from extracts of transiently
transfected HEK293T cells and incubated with fluorescent DNA substrates containing no CpG site or one central un-, hemi- or fully methylated CpG
site in direct competition (noCGB, UMB, HMB, FMB, respectively). Shown are the mean DNA/protein ratios and corresponding standard errors from 5
(GFP), 4 (GFP-CXXCDnmt1 and GFP-CXXCDnmt1KF/AA) and 2 (GFP-CXXCTet1) independent experiments. * P = 0.01; ** P = 0.007; ***P = 0.001.
doi:10.1371/journal.pone.0016627.g002
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construct (GFP-CXXCTet1) following the same criteria as for GFP-

CXXCDnmt1 and investigated its cellular localization, in vivo

binding kinetics and in vitro DNA binding activity. GFP-CXXCTet1

was prevalently nuclear with a homogeneous distribution includ-

ing nucleoli that was independent of cell cycle stage (Figure 2A and

Figure S6 in File S1). After photobleaching GFP-CXXCTet1

showed very fast recovery kinetics similar to GFP (Figure 2B) and

its DNA binding activity in vitro was also similar to the background

levels of the GFP control (Figure 2C). We conclude that the

isolated CXXC domain of Tet1 has no specific DNA binding

activity. Together with the observation that the CXXC domains 1

and 2 of Mbd1 also lack the KFGG motif and do not bind DNA

[29] and that mutation of this motif reduced DNA binding by the

CXXC domains of both Dnmt1 (Figure 2C) and MLL1 [38], this

result indicates that the KFGG motif is a major determinant for

DNA binding by CXXC domains.

To assess whether the CXXC domain is required for catalytic

activity of Tet1 we generated a GFP-Tet1 fusion construct and a

corresponding mutant lacking the CXXC domain (GFP-

Tet1DCXXC). In C2C12 myoblasts GFP-Tet1 and GFP-

Tet1DCXXC showed punctuated nuclear patterns that did not

depend on the cell cycle stage (Figure 3A and data not shown).

The same constructs were transfected in HEK293T cells and

global levels of genomic hmC were measured using a recently

described hmC glucosylation assay [39]. Overexpression of GFP-

Tet1 and GFP-Tet1DCXXC determined a similar 5-fold increase of

genomic hmC levels relative to control samples overexpressing

GFP (Figure 3B), indicating that the CXXC domain is not

required for enzymatic activity of Tet1 in vivo.

Deletion of the CXXC domain does not affect the activity
of Dnmt1 in vitro

To explore the role of the CXXC domain in Dnmt1 function

we generated GFP-Dnmt1 fusion constructs where the CXXC

domain, as defined by our homology model, was deleted. We

reasoned that precise deletion of the entire structure delimited by

the antiparallel b-sheet (Figure 1D) would have the highest

chances to preserve native folding of the rest of the protein. We

introduced this deletion in GFP fusion constructs encoding either

the full length Dnmt1 or the isolated N-terminal region (GFP-

Dnmt1DCXXC and GFP-NTRDCXXC, respectively; Figure 4A and

Figure S4 in File S1). We then compared DNA binding properties,

catalytic activity and interaction between N-terminal region and

C-terminal catalytic domain of DCXXC and corresponding wild

type constructs. Competitive DNA binding assays with the same

set of substrates as used for the experiments with GFP-

CXXCDnmt1 and GFP-CXXCTet1 reported above (Figure 2C)

showed that both GFP-Dnmt1 and GFP-Dnmt1DCXXC bind DNA

independently of the presence and methylation state of a CpG site

(Figure 4B). As the isolated CXXC domain preferentially bound

the substrate containing an unmethylated CpG site, the result with

GFP-Dnmt1 and GFP-Dnmt1DCXXC indicates that the CXXC

domain contributes negligibly to the DNA binding specificity of

the full-length enzyme.

Several groups reported that interaction between the N-

terminal region and the C-terminal catalytic domain of Dnmt1

leads to allosteric activation of Dnmt1 [16,18–20,40]. To test

whether the CXXC domain is involved in this intramolecular

interaction, we co-expressed either GFP-tagged N-terminal region

(GFP-NTR) or GFP-NTRDCXXC constructs with a Cherry- and

His-tagged C-terminal domain (Ch-CTD-His) in HEK293T cells

and performed co-immunoprecipitation experiments. Ch-CTD-

His co-precipitated both GFP-NTR and GFP-NTRDCXXC,

indicating that the CXXC domain is dispensable for the

interaction between the N-terminal region and the C-terminal

domain of Dnmt1 (Figure 4C).

To investigate whether the CXXC domain is needed for

enzymatic activity or substrate recognition, we tested formation of

the covalent complex with cytosine and transfer of the methyl

group for GFP-Dnmt1 and GFP-Dnmt1DCXXC. We first employed

an assay to monitor covalent complex formation that exploits the

formation of an irreversible covalent bond between the enzyme

and the mechanism-based inhibitor 5-aza-2-deoxycytosine (5-aza-

dC). This results in permanent trapping of the enzyme by DNA

substrates containing 5-aza-dC, as opposed to the reversible

complex formed with substrates containing the natural substrate 2-

deoxycytosine (dC) [36]. GFP-Dnmt1 and GFP-Dnmt1DCXXC

were incubated with fluorescent DNA substrates containing either

dC (binding) or 5-aza-dC (trapping) at a single CpG site in direct

competition. DNA-protein complexes were then isolated by GFP

pulldown and molar DNA/protein ratios were calculated from

fluorescence measurements (Figure 4D). Covalent complex

Figure 3. Cellular localization and in vivo catalytic activity of GFP-Tet1 and GFP-Tet1DCXXC. (A) Live images of C2C12 myoblasts expressing
GFP-Tet1. Scale bar: 5 mm. (B) Genomic hmC content in HEK293T cells overexpressing GFP, GFP-Tet1 and GFP-Tet1DCXXC. Shown are mean values and
standard deviation of hmC percentage over total cytosine for three measurements from one transfection.
doi:10.1371/journal.pone.0016627.g003
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formation was then estimated by comparing trapping and binding

activities. GFP-Dnmt1 and GFP-Dnmt1DCXXC showed compara-

ble covalent complex formation rates (trapping/binding ratios),

which were about 15- and 12-fold higher for hemi- than un-

methylated substrates, respectively (Figure 4E). Together with the

data from binding experiments (Fig. 4B), this result indicates that

the preference of Dnmt1 for hemimethylated substrates is

determined at the covalent complex formation step rather than

upon DNA binding. Furthermore, the CXXC domain clearly does

not play a major role in determining either the efficiency or the

methylation state-specificity of covalent complex formation.

Next, we tested whether deletion of the CXXC domain affects

the ability of Dnmt1 to transfer [3H]methyl groups from the donor

S-adenosylmethionine (SAM) to a poly(dI?dC)-poly(dI?dC) sub-

strate, a standard DNA methyltransferase activity assay. This

showed that in vitro GFP-Dnmt1 and GFP-Dnmt1DCXXC are equally

active methyltransferases (Figure S7 in File S1). This result is in

contrast with a previous report showing that deletion of aa 647–690

in human DNMT1 encompassing the CXXC domain resulted in a

drastic loss of catalytic activity [32]. However, according to our

homology model the deletion by Pradhan et al. would eliminate the

predicted N-terminal b-strand (b1 in Figure 1) preventing the

formation of the antiparallel b-sheet and potentially distort the

folding of the rest of the protein. This is in contrast with our GFP-

Dnmt1DCXXC mutant that was designed to retain the b-sheet

structure. To test whether this may account for the observed

discrepancy, we generated GFP fusion constructs of wild type

human DNMT1 and the same deletion as reported by Pradhan et al.

and tested covalent complex formation with 5-aza-dC containing

DNA substrates as described above. While the human wild type

construct showed the same preference for hemimethylated over

unmethylated trapping substrates as the mouse constructs, this

preference was clearly reduced for the human CXXC deletion

mutant (Figure S8 in File S1). This result is consistent with the loss of

enzymatic activity shown by Pradhan et al. for this mutant and

together with the retention of trapping and catalytic activity by the

different deletion in GFP-Dnmt1DCXXC suggests that disruption of

the antiparallel b-sheet delimiting the CXXC domain results in

further distortion and loss of activity of the enzyme.

In conclusion, we showed that, in vitro, deletion of the CXXC

domain does not affect the interaction between N-terminal region

and C-terminal domain, DNA binding, the preference for

hemimethylated substrates upon covalent complex formation

and the methyltransferase activity of Dnmt1. Together, these

data strongly argue against an involvement of the CXXC domain

in allosteric activation of Dnmt1.

Figure 4. DNA binding specificity, intramolecular interaction and trapping of wild-type Dnmt1 and CXXC deletion constructs in
vitro. (A) Schematic representation of Dnmt1 expression constructs. (B) DNA binding specificity of GFP-Dnmt1 and GFP-Dnmt1DCXXC were assayed as
described in Figure 2C. (C) Co-immunoprecipitation of the C-terminal domain of Dnmt1 (Ch-CTD-His) and the N-terminal region with and without
deletion of the CXXC domain (GFP-NTR and GFP-NTRDCXXC, respectively). GFP fusions were detected using an anti-GFP antibody, while the C-terminal
domain construct was detected using an anti-His antibody. GFP was used as negative control. I = input, B = bound. (D) Comparison of binding and
trapping activities for GFP-Dnmt1 and GFP-Dnmt1DCXXC to monitor irreversible covalent complex formation with hemimethylated substrates. (E)
Relative covalent complex formation rate of GFP-Dnmt1 and GFP-Dnmt1DCXXC on substrates containing one un- (UMT) or hemi-methylated CpG site
(HMT) in direct competition. The trapping ratio for GFP-Dnmt1 on unmethylated substrate was set to 1. In (D) and (E) the means and corresponding
standard deviations of triplicate samples from three independent experiments are shown. GFP was used as negative control.
doi:10.1371/journal.pone.0016627.g004
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Deletion of the CXXC domain does not affect Dnmt1
activity in vivo

We then undertook a functional characterization of the GFP-

Dnmt1DCXXC construct in vivo. We first compared localization and

binding kinetics of GFP-Dnmt1 or GFP-Dnmt1DCXXC in mouse

C2C12 myoblasts co-transfected with RFP-PCNA, which served

as S-phase marker [41]. GFP-Dnmt1DCXXC showed the same cell-

cycle dependent nuclear localization pattern as previously shown

for GFP-Dnmt1 and endogenous Dnmt1 (Figure 5A)[42,43].

Interaction with PCNA via the PBD directs Dnmt1 to replication

foci throughout S-phase. In addition, in late S-phase and G2

Dnmt1 is enriched at chromocenters, clusters of pericentric

heterochromatin (PH) that are observed as discrete domains

densely stained by DNA dyes in mouse interphase cells.

Association of Dnmt1 with PH at these stages is mediated by

the TS domain [42]. Thus, the CXXC domain clearly does not

contribute to the subnuclear localization of Dnmt1 at this level of

resolution.

We also compared the mobility of GFP-Dnmt1 and GFP-

Dnmt1DCXXC in living C2C12 myoblasts by FRAP analysis

(Figure 5B). These experiments revealed that the kinetics of

Dnmt1 is not significantly affected by deletion of the CXXC

domain in early-mid as well as late S-phase.

To test covalent complex formation in living cells, we used a

previously established trapping assay [44]. Mouse C2C12

myoblasts were co-transfected with RFP-PCNA and either GFP-

Dnmt1 or GFP-Dnmt1DCXXC and treated with 5-aza-dC.

Immobilization of the Dnmt1 constructs at the site of action was

then measured by FRAP analysis (Figure 5C). GFP-Dnmt1 and

GFP-Dnmt1DCXXC showed very similar trapping kinetics, the

immobile enzyme fraction reaching nearly 100% after 20 and 40

minutes in early-mid and late S-phase, respectively. This result

clearly shows that the CXXC domain is dispensable for covalent

complex formation also in vivo.

Finally, we compared the ability of GFP-Dnmt1 and GFP-

Dnmt1DCXXC to restore DNA methylation patterns in mouse

dnmt12/2 ESCs. Cells transiently expressing either GFP-Dnmt1 or

GFP-Dnmt1DCXXC were FACS sorted 48 h after transfection.

Isolated genomic DNA was then bisulfite treated and fragments

corresponding to major satellite repeats, intracisternal type A

particle (IAP) interspersed repeats, skeletal a-actin and H19a

promoters were amplified and subjected to pyrosequencing

(Figure 6). As shown previously [43], under these conditions

GFP-Dnmt1 partially restored methylation of major satellite and

IAP repeats and the skeletal a-actin promoter, but not of the

imprinted H19a promoter, as establishment of the methylation

imprint requires passage through the germ line [45]. Methylation

patterns of all these sequences in cells expressing GFP-

Dnmt1DCXXC were very similar to those in GFP-Dnmt1

expressing cells, including the lack of (re-) methylation at the

H19a promoter. These results suggest that the CXXC domain is

not required for maintenance of DNA methylation patterns by

Dnmt1 and does not restrain the DNA methyltransferase activity

of Dnmt1 on unmethylated CpG sites. Thus, the CXXC domain

does not play a major role in subcellular localization, it does not

contribute to the global binding kinetics of Dnmt1 and, consistent

with the in vitro data reported above, is dispensable for maintaining

DNA methylation patterns in living cells.

Figure 5. Cell cycle dependant cellular localization, protein mobility and trapping of wild-type Dnmt1 and CXXC deletion
constructs in mouse C2C12 myoblasts. (A) Cell cycle dependent localization of GFP-Dnmt1 and GFP-Dnmt1DCXXC constructs. Scale bar: 5 mm. (B)
Analysis of binding kinetics of GFP-Dnmt1 and GFP-Dnmt1DCXXC in early and late S-phase cells by FRAP. The recovery curve for GFP is shown for
comparison. (C) In vivo trapping by FRAP analysis in cells treated with 5-aza-dC. The trapped enzyme fraction is plotted over time for early and late S-
phase cells. For each construct three to six cells in early-mid and late S phase were analysed per time point. Shown are mean values 6 SEM. In (A–C)
RFP-PCNA was cotransfected to identify cell cycle stages in living cells.
doi:10.1371/journal.pone.0016627.g005
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Discussion

We generated homology models based on the reported structure

of the MLL1 CXXC domain to design isolated CXXC domain

constructs and CXXC domain deletion mutants for Dnmt1 and

Tet1 with minimal probability of structural alteration. According

to these models CXXC domains are delimited by an antiparallel

b-sheet, a discrete structural element. Our data show that the

CXXC domain of mouse Dnmt1 preferentially binds DNA

substrates containing unmethylated CpG sites as previously shown

for CXXC domains of human DNMT1 and other mammalian

proteins. We note that sequences C-terminal to the corresponding

peptide in CGBP/Cfp1 were reported to be required for DNA

binding in vitro [22] and that only a significantly larger peptide

spanning the CXXC-3 domain of Mbd1a was tested for DNA

binding. However, sequences C-terminal to CXXC domains are

not conserved (Figure 1B) and our data show that they are not

required for DNA binding by the CXXC domain of Dnmt1.

Nevertheless, all the CXXC domains reported to selectively bind

unmethylated CpG sites cluster in a distinct homology group and

contain the KFGG motif. The latter was shown to be crucial for

DNA binding by the CXXC domain of MLL1 [38] and here we

extend this observation to the CXXC domain of Dnmt1.

Sequence alignment reveals two distinct CXXC domain homology

groups that lack the KFGG motif (Figure 1A). Consistent with a

role of this motif in DNA binding, members of these groups such

as CXXC-1/2 of Mbd1 [29] and the CXXC domain of Tet1 (this

study) show no DNA binding activity. While no specific function is

known for CXXC-1/2 of Mbd1, the CXXC domain of Tet1 is

closely related to those in CXXC4/Idax and CXXC5/RINF that

were shown to mediate protein-protein interactions [46–48]. This

suggests that the CXXC domain of Tet1, rather than mediating

DNA binding, may function as a protein-protein interaction

domain. However, our data do not rule out the possibility that the

DNA binding properties of the CXXC domain within the context

of full length Tet1 may be different from those of the isolated

domain. Nevertheless, we show that the CXXC domain is not

required for enzymatic activity of Tet1 in vivo.

Although we observed a clear DNA binding activity by the

isolated CXXC domain of Dnmt1, we found that, within the

context of the full length enzyme, this domain is dispensable for

overall DNA binding properties, preference for hemimethylated

substrates upon covalent complex formation, methyltransferase

activity and allosteric activation as well as for the ability to restore

methylation of representative sequences in dnmt1 null ESCs.

Consistent with our data, a recent report showed a preference of

the CXXC domain of human DNMT1 for substrates containing

unmethylated CpG sites [32]. However, the same report showed

that deletion of the CXXC domain from the human enzyme

results in a significant decrease in methyltransferase activity on

hemimethylated substrates in vitro and 25% lower methylation at

rDNA repeats upon overexpression in HEK293 cells, suggesting a

dominant negative effect of the deletion construct. These

discrepancies may be due to the fact that the fragment deleted

by Pradhan et al. includes the N-terminal strand of the predicted

antiparallel b-sheet, potentially leading to disruption of native

folding, to species-specific differences and/or to the analysis of

non-physiological expression levels in HEK293 cells. In our

trapping assay the same human deletion mutant showed reduced

covalent complex formation, consistent with loss of enzymatic

activity. The report from Pradhan et al. also showed that mutation

of cysteine 667 to glycine within the CXXC domain of human

Figure 6. The CXXC deletion construct of Dnmt1 restores methylation in dnmt1 null cells. Mouse dnmt12/2 ESCs transiently expressing
GFP-Dnmt1 or GFP-Dnmt1DCXXC were isolated by FACS-sorting 48 h after transfection and CpG methylation levels within the indicated sequences
were analyzed by bisulfite treatment, PCR amplification and direct pyrosequencing. Methylation levels of untransfected wild type and dnmt12/2 ESCs
are shown for comparison.
doi:10.1371/journal.pone.0016627.g006
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DNMT1 disrupts DNA binding and enzymatic activity. However,

as this point mutation involves one of the zinc coordinating

residues it is not unlikely to alter peptide folding with negative

consequences potentially extending beyond the CXXC domain

and including reduced enzymatic activity. In this respect the

dominant negative effect observed upon overexpression of this

mutant may be explained by the prevalent occurrence of Dnmt1

as a dimer [49]. These observations, together with preserved

ability for covalent complex formation and catalytic activity of our

CXXC domain deletion, support the validity of our homology

model-driven approach for functional characterization of the

CXXC domain. In addition, our genetic complementation

approach constitutes a rather physiologic functional assay.

However, due to the transient approach and the analysis of

genomic methylation at only a few representative sequences, subtle

or highly sequence specific effects of deletion of the CXXC

domain cannot be excluded.

It was recently shown that binding of Cfp1/CGBP and

KDM2A to CpG islands through their CXXC domains leads to

local enrichment and depletion of H3K4 and H3K36 methylation,

respectively [26,30]. Analogously, Dnmt1 may bind CpG islands

through its CXXC domain. However, this interaction would not

lead to a straightforward functional interpretation as CpG islands

with high CpG density are generally refractive to DNA

methylation and a function of Dnmt1 as a de novo DNA

methyltransferase is not well established. It could be envisaged

that binding to unmethylated CpG sites/islands by the CXXC

domain may have a negative effect on the enzymatic activity of

Dnmt1 and restrain its function as a de novo DNA methyltrans-

ferase. However, we show that in dnmt1 null ESCs methylation of

the imprinted H19a promoter is not restored upon expression of

either wild type or DCXXC Dnmt1 constructs, arguing against a

negative regulatory function of the CXXC domain.

Notably, binding of unmethylated CpG sites by KFGG motif-

containing CXXC domains does not exclude a role in protein-

protein interaction as the CXXC domain of MLL1 was reported

to interact with both DNA and Polycomb Repressive Complex 1

components HPC2/CBX4 and BMI-1 [21,50]. Therefore, it is

possible that the CXXC domain of Dnmt1 has regulatory

functions in specific cell types or developmental stages that may

involve DNA binding and/or interaction with other proteins. The

generation of dedicated animal models may be instrumental for

testing these possibilities.

Materials and Methods

Bioinformatic methods
Alignments were performed using the ClustalW2 software [51].

The CXXC domain homology tree (Figure 1C) was generated

from the alignment in Figure 1B with Jalview 2.4 by unweighted

pair group method with arithmetic mean (UPGMA). The

neighbor-joining method gave the same result. Average distances

between the sequences were calculated using the BLOSSUM62

matrix. The human CXXC10 coding sequence [52] was

determined by assembling ESTs AI438961, BX114363,

BX492895, BU633058.1, AW207644.1 and the genomic sequence

AC073046.7. The putative translational start site is located

16308 bp upstream of the annotated transcriptional start site of

TET3. A partial coding sequence of murine Cxxc10 containing

the CXXC domain was identified by aligning the human

CXXC10 protein sequence to the ORFs present in

NT_039353.7 upstream of the tet3 gene from position 35663306

to 35808487). A very high match was found 13266 nt upstream of

tet3 at positions 35676374-35676572 of NT_039353.7. To build

homology models for the CXXC domains of Dnmt1 (aa 645–696)

and Tet1 (aa 561–614), we submitted the respective sequences to

the HHpred server [53]. The best template was the CXXC

domain of MLL1 (PDB-ID: 2J2S). The 49 residues of the CXXC

domain in Dnmt1 can be aligned to this domain with 45%

sequence identity and only a single amino acid gap after residue

661 (Figure 1B). 3D models were calculated with the homology

modeling software MODELLER [54] (version 9.5) using this

alignment. Distance restraints were given to MODELLER to

enforce a distance of 2.360.1 Å between the eight sulphurs in the

Zn-coordinating cysteines and the Zn2+ ions. TM-align [55] was

used to superpose the model structure with the template domain.

Images were generated using the PyMol Molecular Graphics

System (Version 1.3, Schrödinger, LLC). The quality of the

models and the underlying alignments were checked with DOPE

[56] and Verify3D [57] and results for both models were found to

be comparable to the MLL1 template structure (2J2S).

Expression constructs
Fusion constructs were generated using enhanced green

fluorescent protein, monomeric red fluorescent protein or

monomeric cherry and are here referred to as GFP, RFP and

Cherry fusions, respectively. Mammalian expression constructs for

GFP, mouse GFP-Dnmt1, GFP-NTR and human RFP-PCNA

were described previously [42,44,49,58]. The deletion construct

GFP-Dnmt1DCXXC was obtained by replacing the sequence

coding for aa 655–696 with three alanine codons in the GFP-

Dnmt1 construct as described [59]. The GFP-DNMT1DCXXC

construct was generated by subcloning the sequence coding for

human DNMT1DCXXC from the homonymous construct by

Pradhan et al. [32] in the pEGFP-C2 vector (Clonetech). To

generate GFP-Tet1 three partially overlapping fragments span-

ning the Tet1 coding sequence were amplified using E14 ESCs

cDNA as template. The fragments were then joined by overlap

extension PCR and inserted into the pCAG-GFP-IB vector [43].

To generate GFP-Tet1DCXXC aa 569-621 of murine Tet1 were

deleted from GFP-Tet1 using a type IIs restriction endonuclease

approach as described [60]. To generate GFP-CXXCDnmt1 and

GFP-CXXCTet1 sequences coding for the respective CXXC

domains (aa 643-700 for Dnmt1 and 561-614 for Tet1) were

amplified by PCR using the GFP-Dnmt1 expression construct and

cDNA from E14 ESCs as templates, respectively. PCR fragments

were then inserted into the pCAG-GFP-IB vector. GFP-

NTRDCXXC was obtained by replacing the BglII-XhoI fragment

of GFP-NTR with the same fragment of GFP-Dnmt1DCXXC. Ch-

CTD-His was generated by replacing the GFP coding sequence in

a GFP-CTD construct [49] with the Cherry coding sequence. All

constructs were confirmed by sequencing.

Cell culture, transfection and cell sorting
HEK293T cells [61] and mouse C2C12 myoblasts [62] were

cultured in DMEM supplemented with 50 mg/ml gentamicin and

10% and 20% fetal calf serum, respectively. For expression of

fusion proteins HEK293T cells were transfected with polyethy-

lenimine (Sigma). For live cell imaging, C2C12 cells were grown

to 40% confluence on Lab-Tek chambers (Nunc) or m-slides

(Ibidi) and transfected with TransFectin transfection reagent

(BioRad) according to the manufacturer’s instructions. Mouse

ESCs were cultured as described [63] and transfected with

FuGENE HD (Roche) according to the manufacturer’s instruc-

tions. ESCs were sorted with a FACS Aria II instrument (Becton

Dickinson). The dnmt12/2 J1 ESCs used in this study are

homozygous for the c allele [14].
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In vitro DNA binding and trapping assays
In vitro DNA binding and trapping assays were performed as

described previously [36,37] with the following modifications.

DNA substrates labeled with four different ATTO fluorophores

(Tables S1 and S2 in File S1) were used at a final concentration of

125 nM each in the pull-down assay with immobilized GFP

fusions. After removal of unbound substrate, the amounts of

protein and DNA were determined by fluorescence intensity

measurements with a Tecan Infinite M1000 plate reader using

calibration curves from purified GFP or DNA coupled ATTO

fluorophores, respectively. The following excitation/emission 6

detection bandwidth settings were used: 490/511610 nm for

GFP, 550/580615 nm for ATTO550, 600/630615 nm for

ATTO590, 650/670610 nm for ATTO647N and 700/

720610 nm for ATTO700. Cross detection of GFP and different

ATTO dyes was negligible with these settings. Binding and

trapping ratios were calculated dividing the concentration of

bound DNA substrate by the concentration of GFP fusion on

the beads.

In vivo mC hydroxylation assay
Genomic DNA was isolated from HEK293T cells 24 h after

transfection with the GFP-Tet1 and GFP-Tet1DCXXC constructs

and global hmC levels were measured using the in vitro

glucosylation assay as previously described [63], except that

100 nM b-glucosyltransferase and only UDP-[3H]glucose donor

(0.43 mM) were used.

Co-immunoprecipitation
Co-immunoprecipitation was performed as described previously

[49,64]. Shortly, HEK293T cells were transiently co-transfected

with expression plasmids for GFP fusions and the Ch-CTD-His

construct, harvested and lysed. GFP fusions were pulled down

using the GFP-Trap [65] (Chromotek) and subjected to western

blotting using anti-GFP (Roche or Chromotek) and anti-His

(Invitrogen) monoclonal antibodies.

Live cell microscopy, FRAP analysis and live cell trapping
assay

Live cell imaging and FRAP experiments were performed as

described previously [43]. For each construct 6-15 nuclei were

averaged and the mean values as well as the standard errors were

calculated. For presentation, we used linear contrast enhancement

on entire images. The DNA methyltransferase trapping assay was

described previously [44]. Briefly, transfected cells were incubated

with 30 mM 5-aza-dC (Sigma) for the indicated periods of time

before photobleaching experiments. FRAP analysis was performed

with a confocal laser scanning microscope (TCS SP5, Leica)

equipped with a 636/1.4 NA Plan-Apochromat oil immersion

objective. Microscope settings were as described except that a

smaller region of interest (3 mm63 mm) was selected for photo-

bleaching. Mean fluorescence intensities of the bleached region

were corrected for background and for total loss of nuclear

fluorescence over the time course, and normalized by the mean of

the last 10 prebleach values.

DNA Methylation Analysis
Genomic DNA was isolated with the QIAmp DNA Mini Kit

(Qiagen) and 1.5 mg were bisulfite converted using the EZ DNA

Methylation-Gold Kit (Zymo research) according to the manu-

facturer’s instructions. Primer sets and PCR conditions for IAP-

LTR, skeletal a-actin and H19 promoters were as described [43].

Primer sequences for major satellites were AAAATGAGAAA-

CATCCACTTG (forward primer) and CCATGATTTT-

CAGTTTTCTT (reverse primer). For amplification we used

Qiagen Hot Start Polymerase in 1x Qiagen Hot Start Polymerase

buffer supplemented with 0.2 mM dNTPs, 0.2 mM forward

primer, 0.2 mM reverse primer, 1.3 mM betaine (Sigma) and

60 mM tetramethylammonium-chloride (TMAC, Sigma). Pro-

moter regions and IAP-LTR were amplified with two subsequent

(nested) PCR reactions and major satellite repeats were amplified

with a single amplification reaction. Pyrosequencing reactions

were carried out by Varionostic GmbH (Ulm, Germany).

Pyrosequencing primers are listed in Table S3 in File S1.

Supporting Information

File S1 Tables S1–S3, Figures S1–S8 and Supplemental
methods.

(PDF)
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