Supporting Information

Armache et al. 10.1073/pnas.1010005107

Fig. S1. Comparison of pre- and postdeconvolution sharpened maps. (*A*) pre- and (*B*) postdeconvolution cryo-EM maps of the *Triticum aestivum* 80S ribosome, with small and large subunits in yellow and gray, respectively, and P-tRNA colored green. Examples of (*C* and *F*) pre- and (*D* and *G*) postdeconvolution maps (mesh), with overlays shown in *E* and *H*, respectively. R proteins are shown as yellow ribbons and rRNA nucleotides with white backbone and red bases.

Fig. 52. Difference maps generated between *Triticum aestivum* and *Saccharomyces cerevisiae* identify position of r-protein L28e. (*A*) *T. aestivum* 80S reconstruction with ES7^L (blue) and L28e (red) positions highlighted. (*B*) *S. cerevisiae* 80S reconstruction with ES7^L (blue) highlighted. (*C*) *S. cerevisiae* 80S reconstruction superimposed with the difference density (magenta) calculated between the (*A*) *T. aestivum* map and (*B*) the *S. cerevisiae* map. (*D*) Same as *C* but with the regions of the difference density corresponding to ES7^L in *T. aestivum* colored blue, leaving a large region of extra density (red) that was assigned as r-protein L28e.

Fig. S3. Ribosomal proteins that approach the peptidyltransferase center of the ribosome. (*A* and *B*) Comparison of the relative positions of the N terminus of bacterial r-protein L27 (blue) and eukaryotic L10e (magenta) with a tRNA in the P site (yellow). (*C* and *D*) Comparison of the relative positions of the N terminus of bacterial r-protein L27 (blue) (1) and eukaryotic L10e (magenta) with the CCA-ends of tRNA mimics in A- (green) and P site (yellow) (2). (*E*) R-proteins L2p (yellow), L3p (blue), L4p (orange), and L10e (aqua) come within approximately 24, 22, 18, and 16 Å of the site of peptide bond formation, based on ref. 3.

- 1 Voorhees RM, et al. (2009) Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Mol Biol 16:528-533.
- 2 Hansen JL, Schmeing TM, Moore PB, Steitz TA (2002) Structural insights into peptide bond formation. Proc Natl Acad Sci USA 99:11670–11675.
- 3 Nissen P, et al. (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920-930.

Fig. S4. Localization of ribosomal protein L29e. Reconstruction of (A) Saccharomyces cerevisiae WT 80S ribosome, compared to (B) reconstruction of S. cerevisiae 80S ribosomes isolated from a strain lacking the gene for L29e. In B, the rearranged position of the stalk base (SB) on the large subunit (gray) leads to a contact between the stalk (*) and the head of the small 40S subunit (yellow).

	Family name	S. cerevisiae name	Oryza sativa name
1	S2p	rpS0	Sa
2	S3p	rpS3	\$3
3	S3ae	rpS1	S3a
4	S4p	rpS9	S9
5	S4e	rpS4	S4
6	S5p	rpS2	S2
7	S6e	rpS6	S6
8	S7p	rpS5	\$5
9	S7e	rpS7	\$7
10	S8p	rpS22	S15a
11	S8e	rpS8	S8
12	S9p	rpS16	S16
13	S10p	rpS20	S20
14	S10e	rpS10	S10
15	S11p	rpS14	S14
16	S12p	rpS23	S23
17	S12e	rpS12	S12
18	S13p	rpS18	S18
19	S14p	rpS29	S29
20	S15p	rpS13	S13
21	S17p	rpS11	S11
22	S17e	rpS17	S17
23	S19p	rpS15	S15
24	S19e	rpS19	S19
25	S21e	rpS21	S21
26	S24e	rpS24	S24
27	S25e	rpS25	S25
28	S26e	rpS26	S26
29	S27e	rpS27	S27
30	S27ae	rpS31	S27a
31	S28e	rpS28	S28
32	S30e	rpS30	S30
33	RACK1	RACK1	RACK1

Table S1. Nomenclature for r proteins of the Saccharomyces cerevisiae and Triticum aestivum

	Family name	S. cerevisiae name	Oryza sativa name
	Family name	S. cerevisiae name	Triticum aestivum name
1	Ĺ1p	rpL1	L1
2	L2p	rpL2	L2
3	L3p	rpL3	L3
4	L4e/L4p	rpL4	L4
5	L5p	rpL11	L11
6	L6p	rpL9	L9
7	L6e	rpL6	L6
8	L7ae	rpL8	L7a
9	L10p	rpP0	PO
10	L10e	rpL10	L10
11	L11p	rpL12	L12
12	L12p	rpP1/rpP2	P1/P2
13	L13p	rpL16	L13a
14	L13e	rpL13	L13
15	L14p	rpL23	L23
16	L14e	rpL14	L14
17	L15p	rpL28	L27a
18	L15e	rpL15	L15
19	L18p	rpL5	L5
20	L18e	rpL18	L18
21	L18ae	rpL20	L18a
22	L19e	rpL19	L19
23	L21e	rpL21	L21
24	L22p	rpL17	L17
25	L22e	rpL22	L22
26	L23p	rpL25	L23a
27	L24p	rpL26	L26
28	L24e	rpL24	L24
29	L27e	rpL27	L27
30	L28e	—	L28
31	L29p	rpL35	L35
32	L29e	rpL29	L29
33	L30p	rpL7	L7
34	L30e	rpL30	L30
35	L31e	rpL31	L31
36	L32e	rpL32	L32
37	L34e	rpL34	L34
38	L35ae	rpL33	L35a
39	L36e	rpL36	L36
40	L37e	rpL37	L37
41	L37ae	rpL43	L37a
42	L38e	rpL38	L38
43	L39e	rpL39	L39
44	L40e	rpL40	L40
45	L41e	rpL41	L41
46	L44e	rpL42	L44

PNAS PNAS

Drotoin nomo	Protein	Oracion		Ci-oc oc	Modeled	Modeled	Percent	Tomoto	טו מעמ
	Internation	Ciganisin	2001	JIEC, 44	וכוופנוו, ממ	ומוואכי ממ		Icilipiaco	
Sa	S2p	Oryza sativa	Q8H3I3	305	260	1–260	85	Thermus thermophilus	2J00_B
S2	S5p	Oryza sativa	Q84M35	274	263	1–263	96	Escherichia coli	
2QAL_E	S3.	S3p	Triticum aestivum		Q8L804	227	208	12–219	92
Escherichia coli	2QAL_C								
S4*	S4e	Oryza sativa	P49398	265	200	43-242	75	Thermoplasma acidophilum	
3KBG_A	S 5	S7p	Oryza sativa		Q93VC6	200	191	10–200	96
Pyrococcus horikoshii	1IQV_A		•						
ST	S7e	Triticum aestivum	Q5I7K2	192	143	1-143	74	Polyalanine	I
S9	S4p	Oryza sativa	Q2R1J8	195	195	1–195	100	Thermus thermophilus	2J00_D
511	S17p	Oryza sativa	Q7XIK5	161	85	40-124	53	Thermus thermophilus	2J00 Q
S13	S15p	Oryza sativa	Q69UI2	151	121	31–151	80	Escherichia coli	I
2QAL O	S14	S11p	Oryza sativa		Q6H7T1	150	119	32–150	79
Thermus thermophilus	2J00_K		•						
S15	S19p	Oryza sativa	P31674	154	91	58-148	59	Escherichia coli	
2QAL_5	S16	59p	Oryza sativa		Q0IQF7	149	126	24–149	85
Thermus thermophilus	2J00_I								
S17	S17e	Oryza sativa	Q7XEQ3	141	141	1–141	100	Methanobacterium thermoautotrophicum	
1RQ6_A	S18	513p	Triticum aestivum		Q8L806	152	152	1–152	100
Escherichia coli	2QAL_M								
S19	S19e	Oryza sativa	P40978	146	146	1–146	100	Pyrococcus abyssi	
2V7F_A	S 20	510p	Oryza sativa	P35686	128	128	1-128	100	
Thermus thermophilus	2J00_J	·	,						
S21	S21e	Oryza sativa	P35687	82	82	1-82	100	de novo	I
S15a	S8p	Oryza sativa	Q84AP1	130	130	1-130	100	Escherichia coli	
2QAL_H	523	S12p	Oryza sativa		Q8L4F2	142	142	1–142	100%
Thermus thermophilus	2J00_L		·						
S24	S24e	Oryza sativa	Q6H541	138	98	5-102	71	Pyrococcus abyssi	
2V94_A	S25	S25e	Oryza sativa		Q53QG2	108	100	9–108	93
Pyrococcus horikoshii	1UB9_A								
S26	S26e	Oryza sativa	P49216	133	92	1-31; 73-133	69	Polyalanine	I
S27	S27e	Oryza sativa	Q6K5R5	86	50	33–82	58	Archeoglobus fulgidus	
1QXF_A	528	S28e	Triticum aestivum		Q7X9K4	65	58	1–58	89
Pyrococcus horikoshii	1NY4_A								
S29	S14p	Triticum aestivum	Q5I7K3	56	48	9–56	86	Thermus thermophilus	2J00_N
S30	530e	Oryza sativa	Q6K853	62	62	1–62	100	de novo	I
RACK1	RACK1	Triticum aestivum	Q8LNY6	380	380	1–380	100	Mus musculus	2PBI_B
Acc., accession; PDB, Prote *Bold rows indicate newly lo	iin Data Bank. ocalized r protei	ns in this study, compared to	the bacterial and archaeal	X-ray structu	ires.				

Table S2. Summary of modeled wheat germ small subunit r proteins

PNAS PNAS

Armache et al. www.pnas.org/cgi/doi/10.1073/pnas.1010005107

6 of 11

Table S3. Summary of I	modeled wheat	germ large	subunit r	proteins
------------------------	---------------	------------	-----------	----------

Protein	Protein			Size,	Modeled	Modeled	Percent		
name	family	Organism	Acc. no.	aa	length	range	modeled, %	Template	PDB ID
L1	L1p	Triticum aestivum	O5I7L3	216	216	1–216	100	Thermus thermophilus	2HW8 A
L2	L2p	Orvza sativa	O2ONF3	261	255	1–255	98	Haloarcula marismortui	1V08 A
L3	L3p	Triticum aestivum	07X744	389	389	1-389	100	Haloarcula marismortui	1V08 B
L4	L4p/L4e	Oryza sativa	Q6ZLB8	405	372	1-269;303-	92	Haloarcula marismortui	1VQ8_C
	•	,				405			
L5	L18p	Oryza sativa	Q8L4L4	304	304	1–304	100	Haloarcula marismortui	1VQ8 N
L6*	L6e	Triticum aestivum	Q517L4	219	219	1–219	100	Sulfolobus solfataricus	2JOY A
L7	L30p	Triticum aestivum	Q5I7K6	244	244	1–244	100	Haloarcula marismortui	1VQ8_W
L7a	L7ae	Oryza sativa	P35685	258	201	58–258	78	Haloarcula marismortui	1VQ8_F
L9	L6p	Oryza sativa	P49210	190	190	1–190	100	Haloarcula marismortui	1VQ8_E
L10	L10e	Oryza sativa	Q0ITS8	224	192	33–224	86	Haloarcula marismortui	3CC2_H
L11	L5p	Triticum aestivum	Q5I7L2	180	170	1–170	94	H. marismortui/T.	1VQ8_D/2J01_G
								thermophilus	
L12	L11p	Oryza sativa	Q0JAI2	166	128	12–139	77	Haloarcula marismortui	2QA4_I
L13	L13e	Oryza sativa	Q7XJB4	208	182	13–194	88	Polyalanine	—
L14	L14e	Oryza sativa	Q7XJ52	134	134	1–134	100	Sulfolobus solfataricus	2JOY_A
L15	L15e	Oryza sativa	Q8H8S1	204	194	1–194	95	Haloarcula marismortui	3CC2_M
L13a	L13p	Triticum aestivum	Q5I7L1	206	206	1–206	100	Haloarcula marismortui	1VQ8_J
L17	L22p	Oryza sativa	Q6ZIA1	171	171	1–171	100	Haloarcula marismortui	1VQ8_R
L18	L18e	Triticum aestivum	Q5I7L0	188	163	1–163	87	Haloarcula marismortui	1VQ8_0
L18a	L18ae	Oryza sativa	Q7XY20	178	167	1–167	94	Methanobacterium	2JXT_A
								thermoautothropicum	
L19	L19e	Triticum aestivum	Q943F3	209	189	1–189	90	Haloarcula marismortui	1VQ8_P
L21	L21e	Triticum aestivum	Q7XYC9	164	164	1–164	100	Haloarcula marismortui	1VQ8_Q
L22	L22e	Oryza sativa	Q6YSX0	130	108	14–121	83	Artificial gene	2KL8_A
L23	L14p	Triticum aestivum	Q5I7K4	140	140	1–140	100	Haloarcula marismortui	1VQ8_K
L24	L24e	Oryza sativa	Q5N754	162	75	1–75	46	Haloarcula marismortui	1VQ8_U
L23a	L23p	Oryza sativa	Q0JBZ7	152	122	31–152	80	Haloarcula marismortui	1VQ8_S
L26	L24p	Oryza sativa	Q2QXN5	150	130	1–130	87	Haloarcula marismortui	1VQ8_T
L27a	L15p	Oryza sativa	Q6EUQ7	144	144	1–144	100	Haloarcula marismortui	1VQ8_L
L27	L27e	Oryza sativa	Q7XC31	136	99	1–99	73	Sulfolobus solfataricus	2JOY_A
L28	L28e	Oryza sativa	Q5TKP3	147	73	58–130	50	de novo	
L29	L29e	Oryza sativa	Q9FP55	60	23	38–60	38	Oryctolagus cuniculus	1UTG_A
L30	L30e	Triticum aestivum	Q517K9	112	112	1-112	100	Saccharomyces cerevisiae	1CN7_A
L31	L31e	Triticum aestivum	Q6ZGV5	123	120	1-120	98	Haloarcula marismortui	1VQ8_X
L32	L32e	Oryza sativa	Q3IVIST/	133	133	1-133	100	Haloarcula marismortui	1VQ8_Y
L34	L34e	Triticum aestivum	Q51/K8	119	119	1-119	100	Rhodobacter capsulatus	ZPPI_A
L35a	L35ae	Oryza sativa	Q61608	111	104	1-104	94	Pyrococcus furiosus	1SQR_A
L35	L29p	Triticum aestivum	Q8L805	124	124	1-124	100	Haloarcula marismortul	
L30	L36e	iriticum aestivum	Q517L5	112	11	27-103	69	Arcneogiobus tuigiaus	ZUEB_A
L37	L37e	Oryza sativa		94	94	1-94	100		1008_1
L38	L38e	Oryza sativa		69	69	1-09	100	Homo sapiens	
L39	L39e		Q51/K/	51	51	1-51	100		
L40	L40e	Oryza sativa	P35290	22	41	13-55	1/	Suitolobus soltataricus	ZAYJ_A
L41	L41e	Oryza sativa	P02125	25	25	1-25	100	de novo	11/08 3
L42	L44e	Oryza sativa Oryza sativa		201	105	1-105	100	Haloarcula marismortui	1VQ8_3
L45 D0	L37de	Oryza sativa Oryza sativa	Q3Q10133	210	32	1 262	100	Burococcus borikoshii and	2A1V C and 2KV A
FU	Liop	Oryza saliva	1053	219	202	1-202	02	Methanocaldococcus	
								ianaschii	
P1	l 12n	Triticum sectivum	051745	110	58	6_63	52	Pyrococcus borikoshii	3∆1V F
P2	112p	Triticum aestivum	07X729	117	59	1-59	53	Pyrococcus horikoshii	3A1Y F
	- 12P	micam acsuvum	211/123	112		1.55		, yrococcus norikosilli	2011-1

PNAS PNAS

Acc., accession; PDB, Protein Data Bank. *Bold rows indicate newly localized r proteins in this study, compared to the bacterial and archaeal X-ray structures.

Table S4. Summary of modeled yeast small subunit r proteins

Protein	Protein			Size,	Modeled	Modeled	Percent		
name	family	Organism	Acc. no.	aa	length, aa	range, aa	modeled, %	Template	PDB ID
rpS0	S2p	Saccharomyces cerevisiae	P32905	252	252	1–252	100	Thermus thermophilus	2J00_B
rpS2	S5p	Saccharomyces cerevisiae	P25443	254	254	1–254	100	Escherichia coli	2QAL_E
rpS3	S3p	Saccharomyces cerevisiae	P05750	240	204	12–215	85	Escherichia coli	2QAL_C
rpS4*	S4e	Saccharomyces cerevisiae	P05753	261	200	43–242	77	Thermoplasma acidophilum	3KBG_A
rp\$5	S7p	Saccharomyces cerevisiae	P26783	225	199	27–225	88	Pyrococcus horikoshii	1IQV_A
rpS7	S7e	Saccharomyces cerevisiae	P26786	190	143	1–143	75	Polyalanine	—
rpS9	S4p	Saccharomyces cerevisiae	O13516	197	197	1–197	100	Thermus thermophilus	2J00_D
rpS11	S17p	Saccharomyces cerevisiae	P26781	156	85	39–123	54	Thermus thermophilus	2J00_Q
rpS13	S15p	Saccharomyces cerevisiae	P05756	151	121	31–151	80	Escherichia coli	2QAL_O
rpS14	S11p	Saccharomyces cerevisiae	P06367	137	119	19–137	87	Thermus thermophilus	2J00_K
rpS15	S19p	Saccharomyces cerevisiae	Q01855	142	88	49–136	62	Escherichia coli	2QAL_S
rpS16	S9p	Saccharomyces cerevisiae	P40213	143	126	18–143	88	Thermus thermophilus	2J00_I
rpS17	S17e	Saccharomyces cerevisiae	P02407	136	136	1–136	100	Methanobacterium thermoautotrophicum	1RQ6_A
rpS18	S13p	Saccharomyces cerevisiae	P35271	146	140	7–146	96	Escherichia coli	2QAL_M
rpS19	S19e	Saccharomyces cerevisiae	P07280	144	144	1–144	100	Pyrococcus abyssi	2V7F_A
rpS20	S10p	Saccharomyces cerevisiae	P38701	121	113	9–121	93	Thermus thermophilus	2J00_J
rpS21	S21e	Saccharomyces cerevisiae	P0C0V8	87	87	1–87	100	de novo	_
rpS22	S8p	Saccharomyces cerevisiae	P0C0W1	130	130	1–130	100	Escherichia coli	2QAL_H
rpS23	S12p	Saccharomyces cerevisiae	P32827	145	145	1–145	100	Thermus thermophilus	2J00_L
rpS24	S24e	Saccharomyces cerevisiae	P26782	135	96	1–96	71	Pyrococcus abyssi	2V94_A
rpS25	S25e	Saccharomyces cerevisiae	Q3E792	108	85	24–108	78	Pyrococcus horikoshii	1UB9_A
rpS26	S26e	Saccharomyces cerevisiae	P39938	119	92	1–31;59–119	77	de novo	_
rpS27	S27e	Saccharomyces cerevisiae	P35997	82	50	31–80	61	Archeoglobus fulgidus	1QXF_A
rpS28	S28e	Saccharomyces cerevisiae	Q3E7X9	67	60	1–60	90	Pyrococcus horikoshii	1NY4_A
rpS29	S14p	Saccharomyces cerevisiae	P41057	56	48	9–56	86	Thermus thermophilus	2J00_N
rpS30	\$30e	Saccharomyces cerevisiae	Q12087	63	63	1–63	100	de novo	—
RACK1	RACK1	Saccharomyces cerevisiae	P38011	319	319	1–319	100	Mus musculus	2PBI_B

Acc., accession; PDB, Protein Data Bank.

PNAS PNAS

*Bold rows indicate newly localized r proteins in this study, compared to the bacterial and archaeal X-ray structures.

Table S5. Summary of	f modeled	yeast large	subunit r	proteins
----------------------	-----------	-------------	-----------	----------

Protein	Protein			Size,	Modeled	Modeled	Percent		
name	family	Organism	Acc.no.	aa	length	range	modeled, %	Template	PDB ID
rpL1	L1p	Saccharomyces cerevisiae	P53030	217	217	1–217	100	Thermus thermophilus	2HW8_A
rpL2	L2p	Saccharomyces cerevisiae	P05736	254	254	1–254	100	Haloarcula marismortui	1VQ8_A
rpL3	L3p	Saccharomyces cerevisiae	P14126	387	387	1–387	100	Haloarcula marismortui	1VQ8_B
rpL4	L4p/L4e	Saccharomyces cerevisiae	P10664	362	329	1–261;	91	Haloarcula marismortui	1VQ8_C
						295–362	2		
rpL5	L18p	Saccharomyces cerevisiae	P26321	297	297	1–297	100	Haloarcula marismortui	1VQ8_N
rpL6*	L6e	Saccharomyces cerevisiae	Q02326	176	176	1–176	100	Sulfolobus solfataricus	2JOY_A
rpL7	L30p	Saccharomyces cerevisiae	P05737	244	239	6–244	98	Haloarcula marismortui	1VQ8_W
rpL8	L7ae	Saccharomyces cerevisiae	P17076	256	197	60–256	77	Haloarcula marismortui	1VQ8_F
rpL9	L6p	Saccharomyces cerevisiae	P05738	191	191	1–191	100	Haloarcula marismortui	1VQ8_E
rpL10	L10e	Saccharomyces cerevisiae	P41805	221	189	33–221	86	Haloarcula marismortui	3CC2_H
rpL11	L5p	Saccharomyces cerevisiae	P0C0W9	174	168	1–168	96	Haloarcula marismortui	1VQ8_D
								and Thermus thermophilus	and 2J01_G
rpL12	L11p	Saccharomyces cerevisiae	P17079	165	127	12–138	77	Haloarcula marismortui	2QA4_I
rpL13	L13e	Saccharomyces cerevisiae	Q12690	199	169	14–182	85	Polyalanine	—
rpL14	L14e	Saccharomyces cerevisiae	P36105	138	138	1–138	100	Sulfolobus solfataricus	2JOY_A
rpL15	L15e	Saccharomyces cerevisiae	P05748	204	193	1–193	95	Haloarcula marismortui	3CC2_M
rpL16	L13p	Saccharomyces cerevisiae	P26784	199	199	1–199	100	Haloarcula marismortui	1VQ8_J
rpL17	L22p	Saccharomyces cerevisiae	P05740	184	170	1–170	92	Haloarcula marismortui	1VQ8_R
rpL18	L18e	Saccharomyces cerevisiae	P07279	186	161	1–161	87	Haloarcula marismortui	1VQ8_0
rpL19	L19e	Saccharomyces cerevisiae	P05735	189	189	1–189	100	Haloarcula marismortui	1VQ8_P
rpL20	L18ae	Saccharomyces cerevisiae	P0C2I0	172	167	1–167	97	Methanobacterium	2JXT_A
								thermoautothropicum	
rpL21	L21e	Saccharomyces cerevisiae	Q02753	160	160	1–160	100	Haloarcula marismortui	1VQ8_Q
rpL22	L22e	Saccharomyces cerevisiae	P05749	121	105	6–110	87	Artificial gene	2KL8_A
rpL23	L14p	Saccharomyces cerevisiae	P04451	137	131	7–137	96	Haloarcula marismortui	1VQ8_K
rpL24	L24e	Saccharomyces cerevisiae	P04449	155	73	1–73	47	Haloarcula marismortui	1VQ8_U
rpL25	L23p	Saccharomyces cerevisiae	P04456	142	122	21–142	86	Haloarcula marismortui	1VQ8_S
rpL26	L24p	Saccharomyces cerevisiae	P05743	127	123	1–123	97	Haloarcula marismortui	1VQ8_T
rpL27	L27e	Saccharomyces cerevisiae	P0C2H6	136	95	5–99	70	Sulfolobus solfataricus	2JOY_A
rpL28	L15p	Saccharomyces cerevisiae	P02406	149	149	1–149	100	Haloarcula marismortui	1VQ8_L
rpL29	L29e	Saccharomyces cerevisiae	P05747	59	22	38–59	37	Oryctolagus cuniculus	1UTG_A
rpL30	L30e	Saccharomyces cerevisiae	P14120	105	105	1–105	100	Saccharomyces cerevisiae	1CN7_A
rpL31	L31e	Saccharomyces cerevisiae	P0C2H8	113	110	1–110	97	Haloarcula marismortui	1VQ8_X
rpL32	L32e	Saccharomyces cerevisiae	P38061	130	130	1–130	100	Haloarcula marismortui	1VQ8_Y
rpL33	L35ae	Saccharomyces cerevisiae	P05744	107	100	1–100	93	Pyrococcus furiosus	1SQR_A
rpL34	L34e	Saccharomyces cerevisiae	P87262	121	118	1–118	97	Rhodobacter capsulatus	2PPT_A
rpL35	L29p	Saccharomyces cerevisiae	P39741	120	118	3–120	98	Haloarcula marismortui	1VQ8_V
rpL36	L36e	Saccharomyces cerevisiae	P05745	100	77	24–100	77	Archeoglobus fulgidus	20EB_A
rpL37	L37e	Saccharomyces cerevisiae	P49166	88	88	1–88	100	Haloarcula marismortui	1VQ8_1
rpL38	L38e	Saccharomyces cerevisiae	P49167	78	78	1–78	100	Homo sapiens	1WH9_A
rpL39	L39e	Saccharomyces cerevisiae	P04650	51	51	1–51	100	Haloarcula marismortui	1VQ8_2
rpL40	L40e	Saccharomyces cerevisiae	P14796	52	40	13–52	77	Sulfolobus solfataricus	2AYJ_A
rpL41	L41e	Saccharomyces cerevisiae	P05746	25	25	1–25	100	de novo	
rpL42	L44e	Saccharomyces cerevisiae	P02405	106	106	1–106	100	Haloarcula marismortui	1VQ8_3
rpL43	L37ae	Saccharomyces cerevisiae	P49631	92	92	1–92	100	Haloarcula marismortui	3CC2_Z
rpP0	L10p	Saccharomyces cerevisiae	P05317	312	257	1–257	82	Pyrococcus horikoshii and	3A1Y_G and
								Methanocaldococcus	3JSY_A
rnD1	112m		D05319	100	FO	F 63	E A	janaschii Durococcus borikozhii	
ו יינוי רחיי	L12p	Saccharomyces cerevisiae	PUD318	100	20	J−0∠	54	Pyrococcus norikosnii	3AIY_E
rpP2	LIZP	saccharomyces cerevisiae	P05319	106	58	1–58	55	Pyrococcus norikoshii	3AIY_F

*Bold rows indicate newly localized r proteins in this study, compared to the bacterial and archaeal X-ray structures.

PNAS PNAS

Table S6. Localization of	f unassigned	eukaryotic 80S	r proteins
---------------------------	--------------	----------------	------------

Protein family	<i>Triticum aestivum</i> name	Saccharomyces cerevisiae name	Localization basis
L6e	L6	rpL6	 (i) Cross-linking and accessibility to proteolysis (1). (ii) Comparison of S. cerevisiae and T. aestivum cryo-EM maps (which contain L6e) with the Haloarcula marismortui 50S X-ray structure and the Pyrococcus furiosus 70S cryo-EM structure (which lack L6e)
			(iii) The N terminus of L6e was assigned based on differences between the density and the sequence of <i>T. aestivum</i> and <i>S. cerevisiae</i> .
L13e	L13	rpL13	(i) Cross-linking and accessibility to proteolysis (1).(ii) Heterogeneous distribution in archaea.
L14e	L14	rpL14	(i) Fold search and secondary structure prediction. (ii) Length differences between <i>S. cerevisiae</i> and <i>T. aestivum</i> L14e sequences, i.e., C terminus is longer
L18ae	L18a	rpL20	in <i>T. aestivum</i> L14e and N terminus is longer in <i>S. cerevisiae.</i> (<i>i</i>) The difference between archaea and eukaryotes, namely, that majority of this density existed only
			on eukaryotic ribosomes. (ii) Fold search revealed that the protein consists of two domains with a distinct LX motif.
L22e	L22	rpL22	 (i) Cross-linking and accessibility to proteolysis (1). (ii) Comparison of S. cerevisiae and T. aestivum cryo-EM maps (which contain L22e) with the H.
L27e	L27	rpL27	<i>marismortui</i> 505 X-ray structure and the <i>P. furiosus</i> 705 cryo-EM structure (which lack L22e). (<i>i</i>) Cross-linking and accessibility to proteolysis (1).
			(ii) Comparison of S. cerevisiae and T. aestivum cryo-EM maps (which contain L27e) with the H. marismortui 505 X-ray structure and the P. furiosus 705 cryo-EM structure (which lack L27e).
L28e	L28	_	(i) Difference map between <i>S. cerevisiae</i> 80S cryo-EM map with <i>T. aestivum</i> 80S cryo-EM maps, because L28e does not exist in <i>S. cerevisiae</i> , but is present in <i>T. aestivum</i> (2).
L29e	L29	rpL29	 (ii) Cross-linking and accessibility to proteolysis (1). (i) Cryo-EM reconstruction of ΔL29e-80S ribosome at 20.5 Å and comparison with yeast 80S ribosome
L34e	L34	rpL34	Based on the fact that it exists in Eukarya and Archaea, on the fold of the model, and the fact that this was the only major density left unarginated.
L35ae	L35a	rpL33	(i) Cross-linking and accessibility to proteolysis (1).
L36e	L36	rpL36	(i) Comparison of Science and Target and Tar
			marismortui 505 X-ray structure and the <i>P. furiosus</i> 705 cryo-EM structure (which lack L36e).
L38e	L38	rpL38	(i) Cryo-EM reconstruction of ∆L38e-80S ribosome at 21 Å and comparison with yeast 80S ribosome from wildtype strain (Fig. 1 C-E).
L40e	L40	rpL40	(i) Fold and the size of the protein.
L41e	L41	rpL41	(i) Size and density features: L41e is only 25 amino acids.
S4e	S4	rpS4	(i) Cross-linking (3).
			(ii) Structural information from Thermoplasma acidophilum PDB 3KBG.
S7e	S7	rpS7	(<i>i</i>) Immuno-EM (4).
S17e	S17	rpS17	(i) Cross-linking (3). (ii) Localization: All remaining density on the head of the small subunit was already assigned.
			(iii) Structural information (5).
S19e	S19	rpS19	(i) Location: Assembly precursors indicate S19e to be associated with the head of the small subunit (6). (ii) Structural information (7).
			(<i>iii</i>) Subsequently localized in the fungi 80S ribosome (8).

PNAS PNAS

Protein	Triticum aestivum	Saccharomyces	Localization basis
family	name	<i>cerevisiae</i> name	
S21e	S21	rpS21	(<i>i</i>) Immuno-EM (4).
S24e	S24	rpS24	(<i>i</i>) Immuno-EM (4).
S25e	S25	rpS25	(i) Cross-linking to IRES elements (9).
S26e	S26	rpS26	(i) Cross-linking to mRNA (10).
S27e	S27	rpS27	(i) Structural information (11).
S28e	S28	rpS28	(i) Cross-linking to mRNA (10).
			(ii) Structural information (12).
S30e	S30	rpS30	(i) Cross-linking to mRNA (13, 14).

IRES, internal ribosome entry site.

DNA NG

() < 1 Marion MJ, Marion C (1987) Localization of ribosomal proteins on the surface of mammalian 60S ribosomal subunits by means of immobilized enzymes. Correlation with chemical cross-linking data. Biochem Biophys Res Commun 149:1077–1083.

2 Lecompte O, et al. (2002) Comparative analysis of ribosomal proteins in complete genomes: An example of reductive evolution at the domain scale. Nucleic Acids Res 30:5382–5390.

Gross B, Westermann P, Bielka H (1983) Spatial arrangement of proteins within the small subunit of rat liver ribosomes studied by cross-linking. *EMBO J* 2:255–260.
 Bommer UA, Lutsch G, Stahl J, Bielka H (1991) Eukaryotic initiation factors eIF-2 and eIF-3: Interactions, structure and localization in ribosomal initiation complexes. *Biochimie* 73:1007–1019.

5 Wu B, et al. (2008) The solution structure of ribosomal protein S17E from *Methanobacterium thermoautotrophicum*: A structural homolog of the FF domain. *Protein Sci* 17:583–588. 6 Ferreira-Cerca S, et al. (2007) Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. *Mol Cell* 28:446–457.

7 Gregory LA, et al. (2007) Molecular basis of Diamond-Blackfan anemia: Structure and function analysis of RPS19. Nucleic Acids Res 35:5913–5921.

8 Taylor DJ, et al. (2009) Comprehensive molecular structure of the eukaryotic ribosome. Structure 17:1591-1604.

9 Nishiyama T, Yamamoto H, Uchiumi T, Nakashima N (2007) Eukaryotic ribosomal protein RPS25 interacts with the conserved loop region in a dicistroviral intergenic internal ribosome entry site. Nucleic Acids Res 35:1514–1521.

10 Pisarev AV, et al. (2008) Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J 27:1609–1621.

11 Herve du Penhoat C, et al. (2004) The NMR solution structure of the 30S ribosomal protein S27e encoded in gene RS27_ARCFU of Archaeoglobus fulgidis reveals a novel protein fold. Protein Sci 13:1407–1416.

12 Aramini JM, et al. (2003) Solution NMR structure of the 30S ribosomal protein S28E from Pyrococcus horikoshii. Protein Sci 12:2823–2830.

13 Bulygin K, et al. (2005) The first position of a codon placed in the A site of the human 80S ribosome contacts nucleotide C1696 of the 18S rRNA as well as proteins S2, S3, S3a, S30, and S15. Biochemistry 44:2153–2162.

14 Takahashi Y, Mitsuma T, Hirayama S, Odani S (2002) Identification of the ribosomal proteins present in the vicinity of globin mRNA in the 40S initiation complex. J Biochem 132:705–711.