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Sequence alignment and database searching are essential tools in
biology because a protein’s function can often be inferred from
homologous proteins. Standard sequence comparison methods
use substitution matrices to find the alignment with the best sum
of similarity scores between aligned residues. These similarity
scores do not take the local sequence context into account. Here,
we present an approach that derives context-specific amino acid
similarities from short windows centered on each query sequence
residue. Our results demonstrate that the sequence context con-
tains much more information about the expected mutations than
just the residue itself. By employing our context-specific similarities
(CS-BLAST) in combination with NCBI BLAST, we increase the
sensitivity more than 2-fold on a difficult benchmark set, without
loss of speed. Alignment quality is likewise improved significantly.
Furthermore, we demonstrate considerable improvements when
applying this paradigm to sequence profiles: Two iterations of
CSI-BLAST, our context-specific version of PSI-BLAST, are more
sensitive than 5 iterations of PSI-BLAST. The paradigm for biological
sequence comparison presented here is very general. It can replace
substitution matrices in sequence- and profile-based alignment and
search methods for both protein and nucleotide sequences.
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Substitution matrices quantify the similarity between amino
acids or nucleotides (1-3). As a mainstay of biological
sequence comparison, they are at the heart of standard align-
ment methods such as the Needleman—Wunsch and Smith—
Waterman algorithms (4, 5), which find the alignment with the
maximum sum of similarity scores between aligned residues or
bases. Sequence-search programs such as BLAST and FASTA
(6, 7) use substitution matrices to score short seeds and final
alignments, multiple alignment programs such as CLUSTALW
(8) employ them in sum-of-pairs scoring to quantify the simi-
larity between aligned sequence-profile columns, and in se-
quence profile-based methods such as PSI-BLAST (9) or HH-
search (10) they are used for calculating pseudocounts (11, 12).

For proteins, the importance of substitution matrices to
identify homologs and calculate accurate alignments has stim-
ulated various advances. Yu et al. (13) have developed a rationale
for compositional adjustment of amino acid substitution matri-
ces by transforming the background frequencies implicit in a
substitution matrix to frequencies appropriate for the compar-
ison of protein sequences with nonstandard global amino acid
composition. Others have derived specialized transmembrane
substitution matrices from alignments of experimentally verified
or predicted transmembrane segments to improve alignments of
sequences with transmembrane regions (14-16). The logic is that
the structural environment of an amino acid residue partly
influences into what amino acids it is likely to mutate.

Taking this idea a step further, so-called structure-dependent
substitution matrices have been trained for a number of envi-
ronments, defined by a combination of secondary structure
state, solvent accessibility class, environmental polarity class,
and/or hydrogen bonding (17-20). EvDTree (21) also computes
structure-dependent substitution scores, but the selected struc-
tural descriptors depend on residue types. All of these structural
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environment-dependent matrices allow for the detection of more
homologous proteins than standard substitution matrices. How-
ever, their application is limited by the need to know the
structure of one of the proteins to be compared.

In contrast, sequence context-dependent methods do not rely
on 3D structure information to define local environments. They
describe the environment of a residue by the sequence surround-
ing it. Jung and Lee trained several 400 X 400 substitution
matrices for contexts consisting of pairs of residues up to 4
positions apart and obtained a 30% increase in sensitivity on a
set of 107 proteins (22), although this result could not be
confirmed in a large-scale study (23). Gambin ez al. derived 400
substitution matrices, one for each context consisting of the 2
residues neighboring the central residue (24, 25). PHYBAL (26)
models the selective pressure inside and outside of hydrophobic
blocks by 2 different substitution matrices and 2 different sets of
gap penalties.

Huang et al. (27) took a decisive step forward, employing 281
substitution matrices for 281 states of a hidden Markov model
(HMM) trained on sequences of known structure. Each HMM
state represents a single profile column. Context information is
encoded essentially in the transition probabilities between the
states. By mixing mutation probabilities from the substitution
matrices, weighted by posterior probabilities for the correspond-
ing HMM states, HMMSUM achieved considerable improve-
ments in alignment quality when compared with standard sub-
stitution matrices (27). We expect such sequence contexts to
predict mutation probabilities better than structural environ-
ments, because very different sequences with very specific amino
acid preferences can adopt similar local structures (28). When all
of these sequences are pooled into the same structural environ-
ment, the specific amino acid preferences are lost.

In this work, we present a new method that derives sequence
context-specific amino acid similarities from 13-residue windows
centered on each residue. We predict the expected mutation
probabilities for each position by comparing its sequence window
to a library with thousands of context profiles, generated by
clustering a large, representative set of sequence-profile win-
dows. The mutation probabilities are obtained by weighted
mixing of the central columns of the most similar context profiles
(see Fig. 1B). Whereas iterative profile search tools such as
PSI-BLAST align homologous, long sequence matches to the
query with weights independent of the quality of the match, our
method aligns mostly nonhomologous, ungapped, short profiles,
giving higher weights to better matching profiles. In contrast to
HMMSUM, no substitution matrices are needed. Also, the
context information is encoded explicitly in the context profiles
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Fig. 1. Method of context-specific sequence comparison. (A) Sequence
search/alignment algorithms find the path that maximizes the sum of simi-
larity scores (color-coded blue to red). Substitution matrix scores are equiva-
lent to profile scores if the sequence profile (colored histogram) is generated
from the query sequence by adding artificial mutations with the substitution
matrix pseudocount scheme. Histogram bar heights represent the fraction of
amino acids in profile columns. (B) Computation of context-specific
pseudocounts. The expected mutations (i.e., pseudocounts) for a residue
(highlighted in yellow) are calculated based on the sequence context around
it (red box). Library profiles contribute to the context-specific sequence profile
with weights determined by their similarity to the sequence context (see
percentages). The resulting profile can be used to jump-start PSI-BLAST, which
will then perform a sequence-to-sequence search with context-specificamino
acid similarities. (C) Positional window weights are chosen to decrease expo-
nentially with the distance from the center position to model the decreasing
information value of farther positions for the central profile column.
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with no need for transition probabilities. This leads to a simpler
computation and to a much better runtime that scales linearly
instead of quadratically with the number of states/contexts (see
Discussion). The context library can therefore be many times
larger, and hence finer-grained, than in HMMSUM, enabling us
to describe contexts as specific as “a large aliphatic residue with
preference for I or M on the hydrophobic face of an amphipathic
a-helix,” for example.

A crucial insight for achieving speeds comparable to substi-
tution matrix-based methods such as BLAST is this: Sequence-
to-sequence comparison by using a substitution matrix is exactly
equivalent to profile-to-sequence comparison, if the sequence
profile is calculated from one of the sequences by using full
substitution matrix pseudocounts. Hence, we can employ profile-
based methods, which have similar speeds as their sequence-
based counterparts, to implement sequence context-specific
amino acid similarities.

CS-BLAST, our context-specific version of BLAST, works in
the following way. We generate a sequence profile for the query
sequence by using context-specific pseudocounts and then jump-
start NCBI’s profile-to-sequence search method PSI-BLAST
with this profile. We demonstrate that, on a difficult benchmark
set, sequence searches with our new context-specific amino acid
similarities are more than twice as sensitive as BLAST with the
standard BLOSUMBS62 substitution matrix, produce higher-
quality alignments, and generate reliable E-values, all without
loss of speed.

Finally, we apply the new paradigm to profile-to-sequence
comparison by calculating context-specific pseudocounts for
sequence profiles. The only difference to the previously de-
scribed sequence-based scheme is that we now compare se-
quence-profile windows with our library of context profiles. In
contrast to substitution matrix and Dirichlet pseudocounts (11,
12, 29, 30), these pseudocounts do not depend only on the
single-profile column, but also on the entire sequence context of
the profile column. We report considerable improvements of this
context-specific scheme (CSI-BLAST) over PSI-BLAST.

Results

We first show that amino acid substitution scores are directly
related to pairwise amino acid mutation probabilities and se-
quence-profile pseudocounts. We can therefore derive sequence
context-specific amino acid similarity scores from context-
specific mutation probabilities. These mutation probabilities can
be predicted with a probabilistic model by using a large library
of sequence-profile windows representing very specific local
sequence contexts.

Any matrix of substitution scores S(x,y) describing the
similarity between amino acidsx and y can be written in the form
(31) S(x,y) = const X log [P(x,y)/P(x)P(y)], where P(x, y) is the
probability that x and y occur aligned to each other in an
alignment of homologous sequences, and P(x) and P(y) are the
background probabilities of x and y to occur in representative
sequences (whether aligned or unaligned). This can also be
written as a log odds score, S(x,y) = log [P(y[x)/P(y)], where
P(ylx) = P(x, y)/P(x) is the conditional probability of y given x,
i.e., the probability for amino acid x to mutate into y. If y occurs
more often in positions aligned with an x (described by P(y}x))
than what would be expected by chance (described by P(y)), then
the score is positive, otherwise negative.

We next explore the connection of mutation probabilities
P(ylx) with sequence-profile pseudocounts. A sequence profile is
a matrix p(i, y) that succinctly represents a multiple alignment of
homologous sequences: p(i, y) is the frequency of amino acid y
in column i of the multiple alignment. The profile describes what
amino acids are likely to occur in related sequences at each
position, or, in other words, the probability of a residue at
position i to mutate into amino acid y. A single sequence (x;) can
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be turned into a sequence profile by adding artificial mutations
(i.e., pseudocounts) with the method of substitution matrix
pseudocounts (11, 12): p(i, y) = P(y}x;). Here, P(ylx;) are the
conditional probabilities giving rise to substitution matrix S(x, y).
The profile-to-sequence score of column of this single-sequence
profile p with residue y; of a sequence (y;) is

S, y):=1 _ P(yjlx)
L ayj . og P(Yj) 0og P(y])
Hence, substitution matrix scores can be seen as a special case of
profile-to-sequence scores, where the profile is generated from one
of the sequences by using substitution matrix pseudocounts.

Fig. 1A illustrates the equivalence of sequence-to-sequence
and profile-to-sequences scoring with the alignment matrix of 2
zinc-finger sequences (x;) and (y;). The query profile resulting
from the artificial mutations is illustrated as a histogram, in
which the bar heights are proportional to the corresponding
amino acid probabilities p(i, y). The score of each matrix cell (i, j)
can be interpreted in 2 ways: either as sequence-to-sequence score
S(x;, yj) between residues x; and y;, or as profile-to-sequence score
S(p(i,’).y;) between profile column p(i,-) and residue y;.

In the above schemes, the expected mutation probabilities
P(y/x;) at position i depend only on the single amino acid x;.
However, the sequence context X;, defined below, contains much
more information than just residue x; itself about what amino
acids to expect in related sequences. If we were able to calculate
a context-specific mutation probability P(y|X;), we could define
a score in a way analogous to Eq. 1, but by using a context-specific
profile p.(i, y) = P(y|X;) instead of P(ylx;).

The context X; is defined as the window of [ residues sur-
rounding x;, i.e., X; = (Xi—g, ..., Xj+4) With [ = 2d + 1. To predict
the mutation probabilities for each position i, we compare its
sequence window X; with a precomputed library of K context
profiles, p1, ..., pk, each of length /. The context-specific muta-
tion probability P(y|X;), i.e., the probability of observing amino
acid y in a homologous sequence given context X;, will be
calculated by a weighted mixing of the amino acids in the central
columns of the most similar context profiles (Fig. 1B). To derive
the weight of each profile pi, we first need the probability
P(Xi|px) that the sequence window X; is emitted by profile py,
which is equal to the product of probabilities for x;4; (j €
{—d, ..., d}) being emitted by profile column p.(j,"): P(Xilpx) =
Hj‘-’: _a Pk, Xi+j). Because the inner positions in the window will
be most informative to predict the amino acid distribution for the
central residue, we can refine the above formula by defining
coefficients w;, which weight the contribution of each window
position: P(Xipx) = MY_ _, pi(j, xi+;)". The values of w; are
parameterized by weenter and B (see Fig. 1C). (For i within d
residues from either end of (x;) the product runs only over those
j for which x;; is defined.)

Next, we need to know the probability P(pi|X;) that profile py
was the one that emitted X;. Using Bayes’ theorem, we find

= S(x; y_,-)- [1]

P(Xi|pi) P(pr)

d
P()(t) * P(pk) H pk(ja xi+j)WJ' [2]

j=—d

P (Pk|Xi) =

P(py) is the Bayesian prior probability for profile py, determined
in the process of computing the profile library [supporting
information (SI) Appendix]. It quantifies the probability that a
sequence window is emitted by profile pi prior to knowing that
sequence window. P(X;) = Zx P(Xi|px) P(py) is a normalization
constant.

We can now calculate the context-specific mutation probabil-
ities P(y|X;) by mixing the amino acid distributions p(0, y) from
the central columns of all K profiles with weights P(p«|X):
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K
P(y|X0) 2, pil0, y)P(pelXy). [3]
k=1

Normalizing over all 20 amino acids yields the expected mutation
probability P(y|X;). To have more flexibility in adjusting the
diversity of the context-specific profile p.(i,"), we mutate only a
fraction 7 € [0,1] of (x;) while leaving a fraction 1 — 7
unchanged:

pcs(iay) = (1 - T)Sx,,y + TP(Y‘)(Z) [4]
Here, &,,, = 1 ifx; = y and 0 otherwise. In principle, 7 needs to
be optimized depending on the evolutionary distance over which
homologous sequences are to be found, in a similar way as the
substitution matrix with optimum diversity might be chosen. In
practice, we have found that, as with substitution matrices, a
single diversity works well for the entire range of evolutionary
distances (SI Appendix).

Fig. 1B illustrates the calculation of expected mutation proba-
bilities P(y|X;) for a cysteine residue (highlighted in yellow) at
position i belonging to a zinc-finger motif. Three profiles similar to
the sequence window X; (red box) are shown, whose central
columns contribute to the context-specific sequence profile p(i,y) =
P(y|X;) at position i with weights P(pilX;) of 7%, 60%, and 3%,
respectively. With the resulting profile (Lower), a profile-to-
sequence search can be performed, e.g., by using PSI-BLAST,
which is equivalent to a sequence search with context-specific
amino acid similarity scores (Eq. 1). In this example, the context-
specific scheme recognizes the sequence context of the cysteine and
correctly assigns a zinc-finger profile a high weight, resulting in a
highly conserved cysteine.

The context-specificity paradigm is not restricted to sequences
but applies equally well to sequence profiles or profile hidden
Markov models (HMMSs) (Materials and Methods). It can there-
fore be used in profile-to-sequence (9, 32, 33) and profile-to-
profile (8, 10, 34-37) comparison, for example.

Our method CS-BLAST for context-specific protein sequence
searching is a simple extension of BLAST. First, a context-specific
sequence profile is generated for the query sequence as described.
This step is very fast. Then PSI-BLAST is jump-started with this
profile. PSI-BLAST is extended to the context-specific case in an
analogous way (CSI-BLAST) (Materials and Methods).

Benchmark

The homology detection performance of our context-specific
method CS-BLAST and standard NCBI BLAST is evaluated on
a benchmark dataset derived from SCOP 1.73 (38), filtered to a
maximum pairwise sequence identity of 20% (SCOP20, 6,616
domains). SCOP is a database of protein domains with known
structure, hierarchically ordered by class, fold, superfamily, and
family. Following a standard procedure, we consider all domains
from the same superfamily to be homologous (true positives) and
all pairs from different SCOP folds to be nonhomologous (false
positives). Domain pairs from the same fold but different super-
families are ignored.

We randomly assign members of every fifth fold in SCOP20
to the optimization set (1,329 domains), the others to the fest set
(5,287 domains). By using the optimization set, we determined
the best values for the pseudocount admixture (7 = 0.9) and the
window weights (Weenter = 1.6, B = 0.85). The values for the
window length (I = 13) and the context library size (K = 4,000)
are a trade-off between sensitivity and time efficiency (see SI
Appendix).

We perform an all-against-all comparison of the test-set
domains and count the true and false positive hits at various
E-value thresholds (Fig. 24). To avoid a few large families from
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Context information improves search performance and alignment quality. (A) Homology detection benchmark on SCOP20 dataset: true positives (pairs

from the same SCOP superfamily) versus false positives (pairs from different folds). CS-BLAST detects 138% more true positives than BLAST at 10% error rate.
(B) CS-BLAST has better average alignment sensitivity and precision than BLAST over the entire range of sequence identities of the aligned pairs. (C) Actual versus
reported E-values on the SCOP20 dataset show that CS-BLAST E-values are too optimistic by a factor of 3 to 5. (D) Same benchmark as A (note different y-scales),
but comparing CSI-BLAST with PSI-BLAST for one to five iterations. Two CSI-BLAST iterations are more sensitive than five PSI-BLAST iterations.

dominating the benchmark, we weight each true and false
positive pair with 1/(size of SCOP family of first domain).
Compared with NCBI BLAST (version 2.2.19, BLOSUMG62,
default parameters), CS-BLAST detects 139% more homologs
at a cumulative error rate of 20%, 138% more at 10%, and, for
the easiest cases at 1% error rate, still 96% more. To get an idea
of the upside potential when parameters are trained on a larger
set, we optimized Weenter, 8, and 7 directly on the test set (red
broken trace). These parameters (Weenter = 1.3, 8= 0.9, and 7 =
0.95) are used in the official version of CS-BLAST.

To assess the alignment quality, we compare predicted se-
quence alignments to gold-standard structural alignments gen-
erated by TM-align (39). We start by randomly picking up to 10
domain pairs from each family in SCOP 1.73, requiring a
maximum sequence identity of 30%, and aligning each pair with
TM-align. Those domains that are not well superposable (TM-
align score < 0.6) are discarded. This results in 11,457 domain
pairs from 5,747 different domains. With each of the 5747
domains we perform a CS-BLAST and NCBI BLAST search
against a database consisting of all domains belonging to the
same family as the query domain and evaluate the quality of the
predicted alignments for those pairs with a structural reference
alignment. The alignment quality is assessed by 2 standard
performance measures: Alignment sensitivity is the fraction of
structurally aligned residue pairs that are correctly predicted,
i.e., pairs correctly aligned/pairs structurally alignable. Alignment
precision is defined as the fraction of aligned residue pairs in the
predicted alignment that are correct, i.e., pairs correctly aligned/
pairs aligned. Fig. 2B plots alignment sensitivity and precision
for various sequence identity bins. CS-BLAST is able to improve
the BLAST results over the entire range of sequence identities,
especially for the difficult alignments. Very similar results are
obtained when reference alignments are generated with DALI (40).

Another critical aspect for database search tools is the reli-
ability of the reported E-values. The E-value of a match is an
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estimate of the number of chance hits to be expected with a score
better than that of the database match. We check the reliability
of CS-BLAST E-values by using the all-against-all searches of
Fig. 24. We count the number of false positives at a given
E-value threshold, which, together with the size of the bench-
mark database, allows us to derive the actual E-value. Fig. 2C
plots the actual against the reported E-value. NCBI BLAST’s
reported E-values are nearly identical to the observed ones.
CS-BLAST E-values are too optimistic by a factor of ~3-5, e.g.,
a reported E-value of 1073 corresponds to an E-value of 5 X
1073. Considering that this deviation is quite small and that it
changes little with E-value, it should be easy to accommodate in
practice.

Finally, we evaluate the homology detection performance of
CSI-BLAST, the context-specific version of PSI-BLAST, on the
benchmark of Fig. 24. Because, typically, PSI-BLAST searches
are done with a large sequence database, such as the nonredun-
dant protein database (NR) at NCBI (41), to build diverse
profiles, only the last search is performed against our benchmark
database; all previous iterations use the full NR database
(E-value inclusion thresholds set to 1 X 1073 for PSI-BLAST and
2 X 10~* for CSI-BLAST). Fig. 2D plots true positives versus
false positives detected by PSI-BLAST and CSI-BLAST after up to
5 search iterations. (The trace for CSI-BLAST with 5 iterations has
been omitted because it does not significantly improve over 3
iterations anymore. The traces for one iteration are the same as in
Fig. 24.) Remarkably, 2 iterations of CSI-BLAST are more sen-
sitive than 5 rounds of standard PSI-BLAST (~15% more ho-
mologs detected). This result surprised us. We had expected that
context-specific profiles would only marginally improve sensitivity
over standard sequence profiles, because profiles already contain
family- and position-specific mutation rates. However, the lead of
CS-BLAST over BLAST is even extended in absolute terms after
the second iteration, demonstrating that the context profiles con-
tain local information from analogous sequences (i.e., with similar
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Fig. 3.  Proline-rich region in human transcription factor SOX-9. The muta-
tion profile computed with substitution matrix pseudocounts (Left) overesti-
mates the conservation in this region. The context-specific profile (Right)
shows weaker conservation of prolines, alanines, and glutamines, and in-
creased presence of these residues in neighboring columns.

sequence context) that is partially independent of information from
the homologous sequences in the profile.

Example: Activation Domain of SOX-9

Fig. 1B gave an example in which the context-specific method led
to above-average conservation of Zn-finger cysteines. In prac-
tice, it will be equally important to be able to guess which
residues are conserved less than average. As an example, Fig. 3
presents profiles of a region from the activation domain of
human SOX-9 transcription factor, generated with substitution
matrix pseudocounts (Left) and context-specific pseudocounts
(Right). Because this region is natively disordered, its sequence
is only very weakly conserved. The substitution matrix method
assigns the same amino acid distribution to the prolines as it
would to a proline in a globular domain. The context-specific
method, however, mixes the pseudocounts mainly from contexts
that are also disordered, weakly conserved, and have a similar,
biased amino acid distribution. Therefore, its profile exhibits below-
average conservation of prolines, alanines, and glutamines while
having higher overall probabilities for these residues.

Discussion

Sequence context is much more powerful than a single residue
in predicting which amino acids that particular residue is likely
to mutate into (Fig. 24 and B). Because this context information
is as easy to get as the sequence itself, it is surprising that
sequence context is practically never exploited. The main reason
seems to be the focus of past research on structural context, with
its limitation to proteins of known structures (17, 18, 20, 21, 27).
Another reason may be the challenge to develop sequence
context-specific methods that can compete with traditional
context-free methods such as BLAST and PSI-BLAST in speed
and usability (26, 27). We have shown how context-specific
pseudocounts can be used in combination with existing profile-
based methods to extend residue-centered sequence comparison
to the context-specific case, without loss of speed or usability.

As examples, we have built context-specific versions of BLAST
and PSI-BLAST that considerably improve their performance at
very little runtime overhead. For a typical protein of length L =
250 and a library size of K = 4,000, the computation of the
context-specific profile requires ~1 s CPU time. Also, runtime
scales favorably, T o« KIL (SI Appendix, Fig. S1). (Note that
HMMSUM’s runtime scales as T o« K?L, which places a strict
practical limit on the number K of states/contexts in HMM-
SUM.) Because the output of CS-BLAST and CSI-BLAST is
generated by the BLAST and PSI-BLAST programs themselves,
users do not have to get accustomed to different command line
options or output formats, and updates to the BLAST package
will directly benefit the context-specific versions. The only caveat
is that E-values need to be corrected by a factor of 3 to 5 (Fig.
2C). We expect CS-BLAST to be useful to find homologs for
singleton sequences, because, for these, the lack of homologs
precludes the use of profile-to-sequence search methods such as
PSI-BLAST.
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A pleasant surprise is the extent of improvements of sequence
profiles through context-specific pseudocounts (Fig. 2D), even
though profiles already contain evolutionary information on posi-
tion- and family-specific mutation probabilities. Hence, the infor-
mation from locally similar, analogous sequences that are contained
in the context profiles is at least partly orthogonal to the evolu-
tionary information in the homologous sequences that contribute to
the sequence profiles. Consequently, we can expect improvements
when applying the new paradigm to the pairwise comparison of
sequence profiles (34-36) and profile HMMs (10, 37), or to
hierarchical multiple sequence alignment programs (8, 42).

It is possible to extend Dirichlet mixture pseudocounts (29, 30)
to the context-specific case. This would yield an alternative
formulation of context-specific sequence comparison that is
worth exploring. In that scheme, the context library would have
K metaprofiles, i.e., multicolumn pseudocount priors. Each
metaprofile would consist of / Dirichlet distributions and would
be able to emit a profile with / columns. An advantage over the
presented scheme might be that the diversity of each column in
the metaprofiles is encoded by one additional parameter per
column (the sum of all pseudocounts in a column), which might
lead to better modeling of the profile contexts.

The paradigm presented here should be easily transferable to
nucleotide sequences. The application to noncoding regions such as
promoter regions and regions harboring putative noncoding RNAs
(ncRNAs) is of particular interest. The low information content of
nucleotide sequences and the often weak overall conservation in
these regions render alignments between related species difficult,
whereas reliable alignments offer enormous potential to identify
functional regions (such as cis-regulatory elements or ncRNAs)
through their interspecies conservation (see, e.g., ref. 43).

In summary, the paradigm of sequence context specificity offers
greatly improved sensitivity and alignment quality in protein se-
quence comparison and is likely to hold similar advantages for
nucleotide sequences. We believe that these advantages are suffi-
cient to warrant a paradigm shift in biological sequence compari-
son, alignment, and molecular evolution from amino acid- and
nucleotide-centric to context-specific methods.

Materials and Methods

Generalization to Sequence Profiles. To apply the paradigm to sequence
profiles and profile HMMs, we show how to generalize the calculation of
pseudocounts from the single sequence case in Eq. 2 to the case of sequence
alignments, from which the profile is derived. In analogy to the sequence
context X;, we define the context of the query alignment at positionjas Q; =
(cqli — dp), ... cgli + d,7)), where ¢4/, x) are the counts of amino acid x at
position j of the query alignment. These counts are obtained from the se-
quence profile g(j, x) by multiplying with the effective number of sequences N(})
at position j in the query alignment: c4(j, x) = Ng(j) q(j, x) (see SI Appendix for
details). We now merely need to show how to generalize P(Xipx) to P(Qilpk),
because all other transformations leading to Eq. 2 remain essentially unchanged.
To derive P(Qj|pk), we model the amino acid counts c4(/) with multinomial distri-
butions. Because Ny(j) can be real-valued, however, we replace the factorials in

the multinomial distribution by Gamma functions (n! = T'(n + 1))
P(Qilpi)
d L 20 Wi
T(N,G+))+1) .
= i cqli+jx)
,—Ed 12 (e (i +j,x) + 1) El Pl X% - B

Note that, because the factor containing the Gamma functions does not
depend on k, it will cancel out during the normalization of P(p« Q) (Eq. 2, S/
Appendix, Eq. S9). Similar to PSI-BLAST (9), we choose the pseudocount
admixture 7in Eq. 3 depending on the diversity of the query alignment, 7 =
a(b + /(b + Ng(i)), wherea = 0.9and b = 12.0 have been determined on
the training set as described in S/ Appendix.
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Fig. 4. Computation of the library of context profiles representing local
sequence contexts. From a database (NR30) of 1.5M groups of aligned se-
quences covering the NR database, we select the 50,000 most diverse align-
ments and enrich these with homologs from a single BLAST search. The
alignments are converted to sequence profiles and 1M profile windows are
randomly sampled and used to train K context profiles (K = 500, 1,000, 2,000,
4,000) with the expectation maximization algorithm.

Generation of Context Profile Library. The quality of the predicted amino acid
similarities depends to a large extent on the context profile library. The clustering
procedure to derive this library issummarized in Fig. 4. We start with all sequences
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from the NR, clustered into groups with maximum intergroup sequence identity
of 30% (NR30). In contrast to other approaches, in which only sequences with
solved structure in the PDB were used (17, 18, 20, 21, 27), this guarantees an
appropriate representation of all classes of local sequence contexts, such as
membrane helices, natively unfolded regions, or highly repetitive sequences.
From the 1.5 million cluster alignments in this NR30 database, we discard those
with an effective number of sequences <2.5 (see S/ Appendix) and jump-start a
PSI-BLAST search against the full NR database with each of the remaining align-
ments (E-value threshold = 0.001). This ensures an alignment diversity that is
sufficient to produce mutation probabilities in the same range as the BLOSUM62
matrix. After converting the alignments to profiles, we randomly sample 1 million
training profile windows of length / from the full-length profile database. For a
fixed number of context profiles (K = 500, 1,000, 2,000, 4,000) we determine the
profile amino acid probabilities and the profile prior probabilities P(px) by max-
imizing the total likelihood that the training profile windows are emitted by the
context profiles. The maximization is done with the expectation maximization
(EM) algorithm (44) (see SI Appendix).

Appendix: Availability of Datasets and Executables. The context profile library,
all benchmark datasets, and results data files can be downloaded from ftp://
toolkit.Imb.uni-muenchen.de/csblast. CS-BLAST executables for Linux (32 and
64 bit), Windows, and Mac are freely available for academic users. A free
CS-BLAST webserver can be accessed at http://toolkit.Imb.uni-muenchen.de/
cs_blast.
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