
Sequence context-specific profiles for homology
searching: Supplementary Information
A. Biegert and J. Söding ∗

∗Gene Center Munich and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Generation of context profile library
N = 1 million training profiles of length l = 2d+1 were gener-

ated as described in the main text and Figure 2. Each training profile
is represented by a count profile cn(j, x), which specifies the counts
of amino acid x ∈ {1, . . . , 20} at position j ∈ {−d, . . . , d}. These
counts are obtained by multiplying the sequence profile tn(j, x) by
the effective number of sequences Nn(j) at position j in the align-
ment from which training profile tn(j, x) was calculated: cn(j, x) =
Nn(j)tn(j, x) (see next section for details).

Here, we describe how these N profiles are clustered in or-
der to obtain a set of K context profiles which recur frequently
among the training profiles and which together can describe all train-
ing profiles. More precisely, we seek to determine context profiles
p = (p1, . . . , pK) and their prior probabilities α = (α1, . . . , αK)
that maximize the likelihoodP (c|p, α) that the training profile counts
c = (c1, . . . , cN) were generated by the context profiles. We model
the distribution of counts cn(j, x) in each column j by a multinomial
distribution. Since cn(j, x) can be real-valued, however, we replace
the factorials in the multinomial distribution by Gamma functions
(n! = Γ(n + 1)). The probability for context profile pk to have
emitted counts cn(j, x) (j ∈ {−d, . . . , d}, x ∈ {1, . . . , 20}) is

P (cn|pk) =

dY
j=−d

Γ(Nn(j) + 1)Q20

x=1 Γ(cn(j, x) + 1)

20Y
x=1

pk(j, x)cn(j,x)

!wj

,

[1]
were the wj are weights on the window positions as discussed in sec-
tion 2 of the main text.

We use the Expectation Maximization (EM) algorithm to find
(p∗, α∗) which optimize the likelihood P (c|p, α). In order to
make this problem tractable, we introduce hidden variables z =
(z1, . . . , zN). Hidden variable zn ∈ {1, . . . ,K} indicates which
context profile pk has emitted training counts cn. With this defini-
tion, we can solve the following optimization problem:

(p∗, α∗) = argmax
p,α

P (c|p, α) = argmax
p,α

X
z

P (c, z|p, α) [2]

Suppose we have obtained values p̃ and α̃k in a previous iteration
of the EM algorithm. Then the new values are obtained by (M-step)

(p, α) = argmax
p,α

Q(p, α) . [3]

where Q(p, α) is the expectation value of the log likelihood of the
data over all possible z ∈ {1, . . . ,K}N :

Q(p, α) =
X
z

P (z|c, p̃, α̃) logP (c, z|p, α) [4]

= Ez[logP (c, z|p, α)] [5]

Note that the probability of z is conditioned on the values (p̃, α̃) from
the previous iteration and does not depend on (p, α). In order to
maximize Q(p, α), we first apply Bayes’ Theorem to calculate the
probability ditribution over z:

P (z|c, p̃, α̃) =
P (c|z, p̃)P (z|α̃)P
z′ P (c|z′, p̃)P (z′|α̃)

∝ P (c|z, p̃)P (z|α̃) . [6]

The first term on the right is obtained by applying eq. (1) to
P (cn|p̃zn) for all n,

P (c|z, p̃) =

NY
n=1

dY
j=−d

Γ(Nn(j) + 1)Q20

x=1 Γ(cn(j, x) + 1)

20Y
x=1

p̃zn(j, x)cn(j,x)

!wj

,

[7]
while the second term on the right side is simply

P (z|α̃) =
NY
n=1

α̃zn . [8]

Therefore, we can calculate the probability that training counts cn
were emitted by context profile pk (E-step):

P (zn = k|c, p̃, α̃)

=
α̃k
Qd
j=−d

“
Γ(Nn(j)+1)Q20

x=1 Γ(cn(j,x)+1)

Q20
x=1 p̃k(j, x)cn(j,x)

”wj

PK
k′=1 α̃k′

Qd
j=−d

“
Γ(Nn(j)+1)Q20

x=1 Γ(cn(j,x)+1)

Q20
x=1 p̃k′(j, x)cn(j,x)

”wj

=
α̃k
Qd
j=−d

“Q20
x=1 p̃k(j, x)cn(j,x)

”wj

PK
k′=1 α̃k′

Qd
j=−d

`Q20
x=1 p̃k′(j, x)cn(j,x)

´wj
. [9]

Let us now take a closer look at Q(p, α):

Q(p, α) = Ez[logP (c, z|p, α)]

= Ez[log(P (z|z, p, α)P (z|α))]

=

NX
n=1

dX
j=−d

wj

0@ log Γ(Nn(j) + 1)−
20X
x=1

log Γ(cn(j, x) + 1)

+

20X
x=1

cn(j, x)Ez[log pzn(j, x)]

!
+

NX
n=1

Ez[logαzn] . [10]

Here,

Ez[log pzn(j, x)] =
KX
k=1

P (zn = k|c, p̃, α̃) log pk(j, x) [11]

and

Ez[logαzn] =

KX
k=1

P (zn = k|c, p̃, α̃) logαk . [12]

To maximize Q(p, α) under the constraints

KX
k=1

αk = 1 and
20X
x=1

pk(j, x) = 1 ∀k, j [13]

we define Lagrange multipliers λ, µkj ∈ R for these constraints:

∂Q

∂αk
=

NX
n=1

P (zk|c, p̃, α̃)

αk
= λ · ∂

∂αk

KX
k=1

αk − 1

!
| {z }

1

, [14]

www.pnas.org/cgi/doi/10.1073/pnas.0709640104 PNAS Issue Date Volume Issue Number 1–4

∂Q

∂pk(j, x)
=

NX
n=1

wjcn(j, x)P (zn = k|c, p̃, α̃)

pk(j, x)

= µkj ·
∂

∂pk(j, x)

20X
x=1

pk(j, x)− 1

!
| {z }

1

. [15]

Solving for αk and pk(j, x) and using the normalization constraints
in eq. (13) to eliminate λ and the µkj yields

α(k) =

PN
n=1 P (zn = k|c, p̃, α̃)PK

k′=1

PN
n=1 P (zn = k′|c, p̃, α̃)

[16]

pk(j, x) =

PN
n=1 P (zn = k|c, p̃, α̃)cn(j, x)P20

y=1

PN
n=1 P (zn = k|c, p̃, α̃)cn(j, y)

[17]

These two equations give the recipe for updating model parameters p
and α to new values in the M-step of the EM algorithm. In the E-step
we use eq. (9) to estimate hidden variables z.

Note that our clustering approach corresponds to a soft clustering
of training profiles. Each training profile can be generated by any of
the context profiles (see eq. (2)), and hence each context profile has
contributions from all training profiles, as can be seen in eq. (17).
This kind of clustering is adapted to the intended use of our context
profile library, in which we mix context profiles according to their
posterior probabilities in order to generate pseudocounts, instead of
deriving the pseudocounts from the most similar context profile.

In practice, we have found that the EM algorithm converges reli-
ably after 25 iterations forK = 4000, running about 100h on a single
core of a 2.2 GHz 64-bit Quad-Core AMD Opteron processor. Sev-
eral independent EM runs yield context profiles whose CS-BLAST
sensitivity was within less than 2% of each other.

Effective number of sequences
The effective number of seqences at column i of a multiple alignment
is calculated on the subalignment Mi formed by all sequences with
a residue in column i and by all columns with at most 10% terminal
gaps in these sequences. A terminal gap is a gap that lies either to
the left or to the right of the entire sequence. For each column j of
Mi we calculate amino acid frequencies p(j, x), using the Hennikoff
sequence weighing scheme. Then the number of effective sequences

Fig. 1. Time required for generating the context-specific profile in CS-BLAST de-
pending on query length L and size of context library K = 1000, 2000, 4000
(window length l = 13). The plot verifies that the runtime T scales roughly
with T ∝ KlL. To limit the runtime of the profile generation in CS-BLAST for a
typical protein with 200 residues to∼ 1s, we choose K = 4000.

Fig. 2. Computation of the library of context profiles representing local sequence contexts. From a database (NR30) of 1.5M groups of aligned sequences covering
the NR database, we select the 50 000 most diverse alignments and enrich these with homologs from a BLAST search. The alignments are converted to sequence
profiles and 1 Mio. profile windows are randomly sampled and used to train K context profiles (K = 500, 1000, 2000, 4000) with the expectation maximization
algorithm.

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

is

Nn(i) = exp

0@− 1

Li

X
j∈Mi

20X
x=1

p(j, x) log p(j, x)

1A . [18]

Here, Li is the number of columns in Mi.

Parameter optimization
Our context-specific search tools CS-BLAST and the EM cluster-

ing procedure for generating the library of context profiles (see sec-
tion about generation of context profiles) contain several adjustable
parameters: The number of context profiles K, the profile window
length l, the positional weight parameters wcenter and β, and the
pseudocount admixture τ . We optimize these parameters using a ho-
mology detection benchmark that is similar to the benchmark utilized
to compare CS-BLAST with BLAST (see main text for details). The
optimization runs, however, are performed on a small optimization
set (1329 domains) that is distinct from the comprehensive test set
(5287 domains) with no optimization set member sharing a common
fold with any test set member. For a given parameter configuration
(K, l, wcenter, β, and τ) we first generate a library of K context pro-
files by EM clustering, then we perform an all-against-all comparison
of the training-set domains and count the true positive (TP) and false
positive (FP) hits at various E-value thresholds. From this we can
infer a ROC5 score (∈ [0, 1]) for each query. The ROC5 score is
defined as the area under the TP-versus-FP ROC curve (receiver op-
erating statistic) up to the fifth false positive hit, divided by the area
under the optimal ROC curve. To assess the overall homology de-
tection performance, one can plot the fraction of queries with ROC5
scores above a variable ROC threshold (∈ [0, 1]). The area under
such a curve, the mean ROC5 score, conveniently captures the ho-
mology detection performance in a single value and is therefore used
as performance index in the parameter optimization. Optimization
results by mean ROC5 score proved to be more robust and less noisy
than results obtained by optimizing the overall sensitivity at a given
error rate.

Ideally, we would like to compute mean ROC5 scores for a wide
range of different parameter configurations. However, due to the con-
siderable runtime of the EM clustering algorithm we have to restrict
our optimization runs to a selected set of reasonable parameter set-
tings. Parameter values for window size l and library size K re-
sult from a compromise between sensitivity and time efficiency in
CS-BLAST. To limit the runtime of the profile generation in CS-
BLAST for a typical protein to about 1s, we choose K = 4000
and l = 13 (see Figure 1). With K and l fixed, we benchmark all 60
possible parameter combinations for wcenter ∈ {1.3, 1.6, 2.0, 2.5},
β ∈ {0.8, 0.85, 0.9}, and τ ∈ {0.8, 0.85, 0.9, 0.95, 1.0}. The opti-
mization runs reveal that parameter setting wcenter = 1.6, β = 0.85,
and τ = 0.9 gives the best mean ROC5 score of 0.2374. Around
this optimal configuration we test the effect of different values for
cluster size (K = 500, 1000, 2000, 4000) and window length (l =
9, 11, 13, 15). The results suggest that the homology detection per-
formance improves not only with the number of context profiles K,
as expected, but also with the length of the context window l. How-
ever, a subsequent evaluation of window lengths parameters l = 13

and l = 15 on the benchmark set revealed almost identical perfor-
mance for both settings. We therefore chose l = 13 for the benefit of
faster runtime. Figure 3A-E illustrates the effect of varying one pa-
rameter at a time while keeping the others fixed at the optimum con-
figuration (K = 4000, l = 13, wcenter = 1.6, β = 0.85, τ = 0.9).

In addition to CS-BLAST parameters (K, l, wcenter, β, τ), we
also need to optimize pseudocount admixture parameters a and b for
CSI-BLAST (see methods section in main text). We employ the same
benchmark procedure as described above, but perform three rounds
of CSI-BLAST instead of CS-BLAST. The last search is performed
against our training database; all previous iterations use the full NR
database. Since we already know the optimal pseudocount admixture
for the one-sequence case from the optimization of τ in CS-BLAST,
we set a to 0.9. Benchmark runs for b = 6, 8, 10, 12, 16, 20 reveal
that b = 12 gives the best results and is therefore the default setting
in CSI-BLAST (Figure 3F).

Fig. 3. Optimization of parameters K, l, wcenter, β, τ and CSI-BLAST pa-
rameter b. The plots illustrate the effect of varying one parameter at a time
while keeping the others fixed at the optimal configuration K = 4000, l =
13, wcenter = 1.6, β = 0.85, and τ = 0.9. Red circles indicate the optimal
parameter value that is chosen as default in CS-BLAST/CSI-BLAST. A Number
of context profiles K. B Window length l. C Weight of central profile column
wcenter. D Weight decay parameter β. E Pseudocount admixture τ . F Pseu-
docount extinction parameter b in CSI-BLAST (a = 0.9). Three iterations of
CSI-BLAST were performed for this optimization. Note the different y-scale.

Footline Author PNAS Issue Date Volume Issue Number 3

