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1 BENCHMARK SETS

The difficulty in defining a benchmark set for the prediction of
ligand-binding residues is to distinguish the physiologic ligands in
crystal structures from the numerous molecules that are added to the
buffers in the search for good crystallization conditions. Capra and
Singh solve this problem by mapping the protein chains to EC num-
bers and accepting only ligands that are likely to be catalyzed by
the corresponding reaction. Ligand-binding residues are then defi-
ned using a standard 4A distance cut-off between atoms. This EC
benchmark set is one of the largest and most diverse reported to date
(Table 1).

The Catalytic Site Atlas (Porter et al., 2004) is a large database
listing catalytic residues for enzymes of known 3D structure. To
construct our CSA set, we take all 6083 entries in version 2.2.2 that
are generated directly from the literature. Many of these sequences
will contain more than one domain. This can be problematic since
often only one of several domains in a protein chain will have its
catalytic residues annotated. The other domains are then quite likely
to contain unannotated catalytic residues that would wrongly be
considered as false positives. In order to obtain single domains,
we map the structural domains with the annotated residues to the
corresponding domains from the SCOP database (Murzin et al.,
1995).

To avoid oversampling of particular protein families, one domain
from each SCOP family is selected. Since we would like to define
not only catalytic residues but also ligand-binding residues, we pick
only those SCOP domains which have a ligand in contact with at
least one annotated residue. Contact is defined by a 4 A distance cut-
off. Note that the ligands are validated, i.e. distinguished from co-
crystallized buffer molecules, by being in contact with the catalytic
residues. We exclude water and sulfate ions as ligands. In the few
cases, where more than one ligand is in contact with the annotated
residues, we chose both ligands. We are then left with 428 domain
sequences.

For generating the MSAs, we run PSI-BLAST on each of the
sequences with the non-redundant sequence database from NCBI
filtered at 90% sequence identity by CD-HIT (Li and Godzik, 2006).
Only sequences covering at least 80% of the query sequence resi-
dues are accepted into the evolving MSA, ensuring that only few
columns are highly gapped. The PSI-BLAST search stops when
500 or more sequences have been found or after a maximum of
ten iterations. After the PSI-BLAST search, we use hhfilter
from the HHsearch package (Soding, 2005) to remove sequences
with less than 0.25 bits score per column with the query sequence.

Table 1. Overview of the benchmark sets used in this study. The CSA
set uses two definitions of true positive residues: original CSA-annotated,
(CSA-cat) and ligand-binding (CSA-ligand). The diversity is measured by
the average number of different amino acids per column.

Proteins SCOP  Positive Negative Alignment
families residues residues  diversity
CSA-cat 423 423 1,536 107,463 11+4
CSA-ligand 5,331 103,668
SITE-ligand 711 711 9,547 142,628 11+4
EC-ligand 828 348 16,166 273,718 7T+3

This step guarantees that the sequences in the alignment are not too
distantly related to the query sequence because functionally import-
ant residues need not be conserved in very distant relatives. (In a
preliminary analysis on a smaller test set, we optimized the filter and
found a very flat maximum for all methods at a threshold around
0.25-bits-per-column.) Finally, we eliminate alignments with only
one or two sequences leaving us with 423 out of 428 alignments.

The SITE set is generated in an analogous fashion, using the PDB
SITE records instead of the Catalytic Site Atlas for the validation
of physiological ligands. We have constructed 726 alignments by
PSI-BLAST, 711 of which have more than two sequences after the
0.25-bits-per-column filter.

The functional residues are defined in two alternative ways.
First, to test the prediction of catalytic residues, the original CSA-
annotated residues are defined as positives and all other residues are
defined as negatives. This set is named “CSA-catalytic” (see table).
Second, to test the prediction of ligand-binding residues, we define
all residues in contact (4/1) with the validated ligands as positives
and all others as negatives. These sets are named “CSA-ligand” and
“SITE-ligand”. The table shows that all three data sets are fairly
large, and the CSA and SITE sets are the most diverse and evenly
sampled, containing just one member per SCOP family. Note that
the alignment diversity is much higher in the CSA and SITE set
than in the EC set.

2 PROFILE GENERATION

Following the work of Pei and Grishin (2001), we tested three
schemes to build sequence profiles from MSAs: “unweighted”,
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Fig. 1. ROC plot comparison of two profile building schemes on the CSA-
ligand benchmark data. The solid traces show the conservation score for
profiles built with independent counts, the broken traces refer to the Henikoff
weighted scheme. The unweighteed case is not shown since performance is
worse than for the other schemes in all methods.

“weighted” and “independent counts”. In the unweighted scheme,
no sequence weights are used to calculate the amino acid frequen-
cies, whereas in the weighted scheme, Henikoff sequence weights
are employed (Durbin et al., 1998; Henikoff and Henikoff, 1994). In
the independent count scheme (Sunyaev et al., 1999; Pei and Gris-
hin, 2001), the frequency p;, of amino acid a at position ¢ in the
MSA is proportional to the effective number of sequences Neg (4, a)
in the sub-aligment MSA (7, a) composed of those sequences that
have amino acid a at position i. Neg(i,a) is derived from the
average number Na, (i, a) of different amino acids per column in
MSA(%,a): Neg(i,a) = log(l — Naa(4,a)/20)/log(1l — 1/20).
Normalization of Neg(i,a) over the 20 amino acids yields the
profile frequencies p;,. In comparison to the sequence weighting
scheme, the independent count scheme weights amino acids that
are rare in a particular MSA column higher, effectively pushing the
amino acid composition more towards an equi-frequency distribu-
tion.

We have tested all benchmarked methods with all three profile
building schemes (see Fig. S1) (except Rate4Site which takes ali-
gnments as input) and picked the best scheme for each method. All
methods except Jensen-Shannon Divergence performed best with
independent counts. The latter was slightly better with the Henikoff-
weighted scheme, which was also employed in the original work
(Capra and Singh, 2007).

Except for the FRcons method, no pseudocounts are added to
the profiles because our tests have shown that pseudocounts do
not improve the performance of the methods once the scores are
normalized (Fig. 4 middle).

3 FRCONS METHOD
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Fig. 2. Procedure for predicting the conservation with FRcons using trained
amino acid background frequencies conditioned on the predicted relative
solvent accessibility (rsa) state (r; € {0,...,9}). The conditioning on
predicted secondary structure (ss) is omitted for simplicity.
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Fig. 3. (A) Bayesian network for modeling the likelihood in eq. (11).
(B) Predicting the probability for a functional residue by density estimation.
In the training step, the matrices A, R, S, and C' are estimated from the trai-
ning alignments with predicted rsa, ss, and FRcons score. In the prediction
step, the conditional probability for each query residue to be functional is
estimated, given its amino acid distribution, predicted rsa, ss, and FRcons
values.
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(B) SITE and (C) EC.
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