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ABSTRACT

Motivation: An estimated 25% of all eukaryotic proteins contain

repeats, which underlines the importance of duplication for evolving

new protein functions. Internal repeats often correspond to structural

or functional units in proteins. Methods capable of identifying

diverged repeated segments or domains at the sequence level can

therefore assist in predicting domain structures, inferring hypotheses

about function and mechanism, and investigating the evolution of

proteins from smaller fragments.

Results: We present HHrepID, a method for the de novo identifica-

tion of repeats in protein sequences. It is able to detect the sequence

signature of structural repeats in many proteins that have not yet

been known to possess internal sequence symmetry, such as outer

membrane �-barrels. HHrepID uses HMM–HMM comparison to

exploit evolutionary information in the form of multiple sequence

alignments of homologs. In contrast to a previous method, the new

method (1) generates a multiple alignment of repeats; (2) utilizes

the transitive nature of homology through a novel merging procedure

with fully probabilistic treatment of alignments; (3) improves

alignment quality through an algorithm that maximizes the expected

accuracy; (4) is able to identify different kinds of repeats within

complex architectures by a probabilistic domain boundary detection

method and (5) improves sensitivity through a new approach to

assess statistical significance.

Availability: Server: http://toolkit.tuebingen.mpg.de/hhrepid;

Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID

Contact: soeding@lmb.uni-muenchen.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

About 25% of all eukaryotic protein sequences contain

repeating amino acid segments (Marcotte et al., 1999). The

percentage of repeat-containing proteins grows with the

complexity of the organism, with repeat proteins being

particularly abundant in multicellular organisms (Bjorklund

et al., 2006). In vertebrates, for example, tandemly arranged

repeats often serve as a structural framework for the

formation of protein–protein interactions (Kobe and Kajava,

2001; Li et al., 2006). Furthermore, assemblies of repeats are

readily evolvable and provide an organism with opportunities

to easily expand its repertoire of cellular functions (Street et al.,

2006).
We would like to predict repeats from protein sequences for

the following reasons: (1) It can help to elucidate the domain

structure of multi-domain proteins by determining the bound-

aries of domains with internal repeats or by detecting the

presence of duplicated structural domains. This facilitates the

application of subsequent sequence analysis methods and

can help to design constructs for X-ray crystallography.

(2) For proteins without any known homologs, the identifica-

tion of repeats may give hints to their fold or family. (3) Since

duplication is an important mechanism to generate new folds,

the determination of protein repeats may yield insights into

the origin of protein folds (Lupas et al., 2001; Söding and

Lupas, 2003).
There are three classes of methods to detect repeats in protein

sequences. The first is specialized in detecting repeats in fibrous

proteins and does not allow for insertions within (Coward and

Drablos, 1998) or between repeat units (Gruber et al., 2005;

Lupas et al., 1991; McLachlan and Stewart, 1976; Newman and

Cooper, 2007).
The second class utilizes a database of single repeat units in

the form of sequence profiles or profile hidden Markov models

(HMMs) that have been compiled from known repeat families.

These profiles are compared one by one to the query sequence.

To be able to detect multiple instances of a particular repeat

type, more than one hit to a repeat profile is allowed. The well-

known HMMER/Pfam package (Eddy, 1998; Sonnhammer

et al., 1998) as well as REP (Andrade et al., 2000) and Mocca

(Notredame, 2001) belong to this group.
The third class of methods does not rely on a priori know-

ledge about repeat families. Instead, these methods detect

internal sequence symmetries by comparing the protein

sequence to itself. Six methods belong to this class: internal

repeat finder (Sonnhammer et al., 1998), PROSPERO (Mott,

2000), REPRO (Heringa and Argos, 1993), RADAR (Heger

and Holm, 2000), TRUST [the successor of REPRO,

Szklarczyk and Heringa (2004)], and the HHrep server

(Söding et al., 2006). With the exception of HHrep, all methods

utilize sequence–sequence comparison to find suboptimal*To whom correspondence should be addressed.
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self-alignments. The HHrep server is a straightforward
implementation of HMM–HMM comparison that exploits

evolutionary information in the form of homologs to the query.
RADAR and TRUST are the only tools that build a repeat

profile to determine exact repeat borders and thereby extract a
multiple alignment of repeats.

Only HHrep and TRUST explicitly make use of consistency
(also termed transitivity in this context), a concept that has led

to significant improvements in multiple sequence alignment

(Notredame et al., 2000). Owing to consistency, TRUST and
HHrep can find additional suboptimal self-alignments that

were either missed or previously deemed insignificant.
Consequently, TRUST and HHrep are the methods that have

been reported to be most sensitive to date (Söding et al., 2006).
Here, we present an HMM-based de novo method with

several novel algorithmic improvements. First, we extend the
maximum expected accuracy (MAC) algorithm (Holmes and

Durbin, 1998), which maximizes the sum of posterior prob-

abilities in the alignment, to the case of local HMM–HMM
alignment. Second, we pursue a fully probabilistic approach

to consistency through a novel merging procedure based
on posterior probabilities. Third, we automatically detect

domain boundaries allowing for the identification of
different repeat types within complex multi-domain architec-

tures. Due to its extreme sensitivity, the presented method

is able to detect for the first time with high significance
very divergent repeat patterns in many outer membrane

�-barrels (OMPs), which points to their origin by amplifi-
cation of a single �-hairpin (Remmert, Biegert et al., to be

published).

2 MATERIALS AND METHODS

A flow diagram with all steps of the HHrepID repeat detection

algorithm is given in Figure 1. The individual steps will be explained in

the following sections.

2.1 Generation of query HMM

In order to construct an HMM of the query sequence, the HHrepID

algorithm requires an alignment of protein sequences as input.

HHrepID utilizes the buildali.pl PERL script of the HMM–

HMM comparison suite HHsearch (Söding, 2005) to construct an

alignment of homologs with PSI-BLAST [Altschul et al. (1997),

buildali.pl was run with default parameters and is available at

ftp://ftp.tuebingen.mpg.de/pub/protevo/HHsearch]. Before the query

HMM is generated by HHrepID, the input alignment is filtered to a

maximum bit per column score of 0.3 between the query sequence and

its homologs to reduce the influence of non-homologous fragments and

wrongly aligned homologs.

2.2 Posterior probabilities

To detect sequence signatures of repeats in a query protein, HHrepID

uses local HMM–HMM self-comparison. In addition to calculating

the alignment with the maximum score with the Viterbi algorithm,

HHrepID computes posterior probabilities with the Forward/

Backward algorithm. Given two sequences x and y, the posterior

probability P(xis yj | x,y) quantifies the probability that residue

i in sequence x is aligned to residue j in sequence y (Miyazawa, 1995).

This approach was extended to the case of local sequence–sequence

alignment by Mückstein et al. (2002). In order to be able to detect local

repeat patterns, we generalize the concept of posterior probabilities to

the case of local HMM–HMM comparison. Furthermore, we introduce

a random model in the calculation of posterior probabilities, a measure

that was found to lead to significant gains in sensitivity for Viterbi

alignment [HMM-to-sequence comparison: Durbin et al. (1998),

HMM-to-HMM comparison: Söding, unpublished]. The details about

the calculation of posterior probabilities for local HMM–HMM

comparison can be found in the Supplementary Material.

2.3 Maximum accuracy alignment

To derive an alignment from a posterior probability matrix, Holmes

and Durbin (1998) proposed a maximum accuracy (MAC) algorithm.

Fig. 1. Flowchart illustrating the main steps of the HHrepID repeat

detection algorithm. References at the lower right of each process box

indicate the section describing the step in detail and give the respective

subfigures in Figure 2.
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A MAC alignment � maximizes the expected number of correctly

aligned pairs of residues:

Að�Þ ¼
X
ði; jÞ2�

PðM
q
i �M

p
j Þ ! max : ð1Þ

Here, PðM
q
i �M

p
j Þ denotes the posterior probability of match state i in

HMM q to be aligned to match state j in HMM p [see Söding (2005) for

details about HMM–HMM alignment]. Because PðM
q
i �M

p
j Þ is always

positive, MAC alignments maximizing A(�) are always global. Since we

need local alignments, we introduce an additional probability threshold

parameter T that governs the greediness of the MAC alignment. Our

local MAC alignment should maximize the expected sum of posterior

probabilities minus probability T per aligned pair along the alignment

path. This new type of alignment score will generally give a more

accurate alignment than the Viterbi algorithm and has the additional

advantage of a tunable ‘greediness’ parameter. The method to derive

our local maximum accuracy alignment is a modified version of the

method proposed by Holmes and Durbin (1998), which uses the

posterior probabilities as substitution scores:

Aði; jÞ ¼ max

0;
Aði� 1; j� 1Þ þ PðM

q
i �M

p
j Þ � T;

Aði� 1; _jÞ � T=2;
Aði; j� 1Þ � T=2:

8>><
>>:

ð2Þ

After matrix A has been filled, a standard traceback procedure will

produce the best alignment. The cost of T/2 associated with the

placement of gaps in the alignment ensures that the local MAC

alignments are compact. A gap in HMM p cannot be followed directly

by a gap in HMM q since the gap penalties would outweigh the

mismatch score incurred when the two unaligned regions are shifted

onto each other.

Although a MAC alignment path often overlaps with the optimal

Viterbi path, there are cases where MAC and Viterbi alignments differ

completely. Unlike Viterbi scores, MAC scores are not guaranteed to be

distributed according to an extreme value distribution (EVD). This

makes the Viterbi algorithm more suited for the calculation of P-values.

2.4 Addition of suboptimal alignments

When compared to itself, a typical repeat protein with n consecutive

repeat units will give rise to 2n� 1 suboptimal alignments: one trivial

self-alignment and n� 1 pairs of equivalent alignments. The correct and

hence consistent set of suboptimal alignments contains the complete

information about length and spacing of repeats. To find a set of

suboptimal alignments that is maximally accurate and consistent our

method uses posterior probabilities calculated with the Forward/

Backward algorithm.

Each search for suboptimal alignments starts with the calculation

of a Viterbi alignment. If the P-value of the Viterbi alignment is above

a specified threshold the current search for suboptimal alignments is

terminated. Otherwise, HHrepID proceeds to calculate a posterior

probability matrix P with the Forward/Backward algorithm. The

posterior probabilities are also recorded in a total posterior probability

matrix Ptot, which has been initially set to the identity matrix. After

calculating the posterior probabilities Pij for the next suboptimal

alignment, we update the total probability matrix by taking the

maximum (Fig. 2C):

ðP tot
ij Þ

0
¼ maxðPij;P

tot
ij Þ: ð3Þ

Matrix P will normally contain only the trace of the next best

suboptimal alignment instead of all remaining suboptimal alignments.

By using max in Equation (3) we ensure that the total posterior

probability matrix Ptot gathers the probabilities of all suboptimal

alignment traces that have been found so far. The newly calculated

posterior probabilities Pij not only contribute to the total posterior

matrix but are also used as substitution scores in the calculation of a

MAC alignment. The cells covered by the MAC alignment are masked

to be able to find the next alignment, similar to the algorithm by

Waterman and Eggert (1987). Figure 2A shows the first suboptimal

MAC alignment in the repeat protein 1DCE and the posterior

probability matrix Pij from which it was computed. The Viterbi,

Forward/Backward and MAC computation steps are repeated until no

further significant suboptimal alignments are found (Fig. 2B).

2.5 Suppression of spurious alignments of repeats

Spurious suboptimal alignments are caused by chance similarities

between non-homologous regions within repeat units. The insignificant

score of one such match may then get multiplied by the number of

repeat units minus one. This problem becomes more severe as the

number of repeats increases. It is therefore difficult to discriminate

between true and spurious self-alignments of a repeat protein on the

basis of their P-values. Spurious alignments are normally inconsistent

with the already detected correct suboptimal alignments. The suppres-

sion of spurious alignments works by restricting the search for the next

suboptimal alignment to those cells in the dynamic programming

matrix that are approximately consistent with already found suboptimal

alignments. Suppose we have detected a suboptimal alignment in which

residue i is aligned to j and j is aligned to k. Then, we can infer that there

has to be a second suboptimal alignment which aligns residue i to k.

Such an alignment would be consistent with the already found

suboptimal alignment. This concept of consistency can also be

formulated in terms of posterior probabilities. Do et al. (2005)

employ a probabilistic consistency transformation in the multiple

alignment program ProbCons. In HHrepID, we utilize a similar

approach and mask cells (i, k) that are inconsistent with already

detected suboptimal alignments:

fði; kÞ :
1

r� 1

XL
j¼1

Ptot
ij Ptot

jk 50:001g : ð4Þ

Here, 1=ðr� 1Þ is simply a scaling factor to ensure that the results of the

consistency transformation stay below 1 when searching for the r-th

suboptimal alignment. The low value of the threshold ensures that only

cells that are completely inconsistent with the posterior probabilities

of already found suboptimal alignments are masked. (We mask cells

by forcing their score to �1 and their probability to zero.) As an

example, brown regions in Figure 2B represent cells that are

inconsistent with the posterior probabilities computed during the

search for the first suboptimal alignment (Fig. 2A). These cells have

been excluded from the search for the second suboptimal alignment.

In addition to this masking procedure, we can utilize the repeat

length w to further suppress spurious suboptimal alignments. The

repeat length w is estimated by the median distance of the best scoring

MAC alignment to the main diagonal (see Fig. 2A). Then, in addition

to Equation (4), we mask all cells within w/2 positions from the already

found MAC alignments.

2.6 Consistency reinforcement

After no further significant Viterbi alignment can be found (Fig. 2C) we

improve the consistency of the total posterior matrix. This may also

permit to reconstruct traces of missing suboptimal alignments that are

consistent with the already detected suboptimal alignments. One way

to amplify the consistency would be the repeated application of

Do’s probabilistic consistency transformation p0ik ¼ const�
P

j pij pjk.

However, this will cause the posterior matrix either to converge to

the null matrix (if the largest eigenvalue � of the initial posterior
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Fig. 2. Basic steps of the HHrepID algorithm exemplified for the protein 1DCE consisting of six �-hairpin repeats and five Leucine-rich repeats.

See main text for details. (A) Generate next suboptimal alignment. (B) Mask inconsistent regions. (C) Accumulate posteriors into total

posterior matrix. (D) Mask, merge HMM and iterate steps A–C. (E) Determine alignment of repeats of type A. (F) Determine alignment of repeats of

type B.
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matrix is51) or to explode (if �41). Hence Do’s transformation does

not lead to convergence.

To reinforce consistency of the posterior matrix, HHrepID utilizes

a merging procedure that mixes the amino acid emission probabilities

of homologous columns in the query HMM with each other. If position

i has been found to be aligned with positions j and k in suboptimal

alignments we want the emission probabilities at position i to be a

weighted mixture of the emission probabilities at i, j and k. Each

column j should contribute to the mixture according to the certainty

that position i and j are homologous, which is simply the posterior

probability Ptot
ij :

p0iðaÞ ¼ const�
XL
j¼1

Ptot
ij NM

effðjÞpjðaÞ ð5Þ

where NM
eff ð jÞ is the number of effective sequences going through

state Mj. [We refer to the supplementary material for the calculation of

NM
eff ð jÞ.] Figure 3 illustrates the merging step for an idealized repeat

protein with three repeats and two suboptimal alignments. Note that

Ptot
ij ¼1 for i¼ j. We can merge the transition probabilities pj(X!Y) of

the HMM with itself in an analogous manner:

p0iðX!YÞ ¼ const�
XL
j¼1

Ptot
ij NX

effð jÞpjðX!YÞ ð6Þ

where X!Y stands for the transitions M!M, M! I, M!D,

I!M etc. By merging the HMMwith itself, HHrepID probabilistically

incorporates consistency information in the updated HMM. We

observed that in most cases when this new HMM is again compared

to itself, a much cleaner repeat pattern emerged and regions of washed

out probability density converged to the most probable alternative.

Often, this allowed us to identify previously undetected self-alignments.

As an example, Figure 2D illustrates how the repeat pattern of 1DCE

improves after two merge iterations. The presented merge routine

always converges, generally after three merge iterations, the default

setting in HHrepID. The improved repeat pattern recorded in the total

posterior matrix serves as the main input for the last step in the

HHrepID algorithm: the extraction of repeat units.

2.7 Extraction of repeats

Let us now explain the extraction of repeat units for the simpler case

where there is just one family of repeats. After the last search for

suboptimal alignments has been performed, HHrepID determines the

repeat borders of individual repeats. To do so, the algorithm requires

two kinds of information: (1) The traces of all suboptimal alignments

in the form of the converged total posterior probability matrix Ptot, and

(2) the last estimate of repeat length w (see Section 2.5).

First, HHrepID calculates the position of the representative repeat

that is most similar to all other repeats with the help of a sliding window

of w consecutive columns in the posterior matrix. The window should

be positioned over the best conserved columns in the matrix. To

quantify how well a particular position j is conserved throughout

repeats, we define

cð jÞ ¼
XL
i¼1

ðPtot
ij Þ

2:

This score c( j) is high for well-focused posteriors and spread out for

columns with a fluffy distribution of posteriors because the posterior

probabilities are summed with their squared value. Furthermore, we

would like to choose the repeat borders of the representative repeat

such that the middle part consists of well-focused posteriors whereas the

linkers may show a more smeared out probability distribution. This

reflects our assumption that repeats are generally well conserved in the

core and linked by less-conserved regions. Every column score c( j) is

therefore weighted according to its position in the sliding window with

weights in the center being higher than at its ends. More precisely, the

weight w(d) for position d within the window is given by a simple

triangular function

wðdÞ ¼
d� 1

2 ; d � w
2

w� dþ 1
2 ; d4w

2 :

�
ð7Þ

Among all possible windows, the one with the highest sum of weighted

column scores is chosen as representative repeat:

SðkÞ ¼
Xw�1

d¼0

wðdÞ cðkþ dÞ ! max : ð8Þ

The dot plot in Figure 2E illustrates the positioning of the

representative repeat with its borders placed over smeared out regions.

Once the position of the representative repeat is fixed, the MAC

alignments with all other repeats are calculated with the method of

Equation (2), using the values from the existing total posterior matrix.

After all repeat instances have been identified in this way, HHrepID

utilizes the pairwise alignments between each repeat unit and the

representative repeat to infer a multiple alignment of all repeat units.

2.8 Repeats in multi-domain proteins

We would like to be able to extract different kinds of repeats in complex

architectures. However, the algorithm as it has been presented so far is

only suited for single-domain proteins containing a single type of

repeats. Through the consistency reinforcement iterations, chance

similarities may amplify themselves and cause suboptimal alignments

to grow into non-homologous regions. Therefore, we would like to

mask all regions in the HMM that presumably do not contain repeats

or contain repeats that belong to a different family than those that have

given rise to the first suboptimal alignment. The algorithm will then

process the unmasked regions as described in the previous sections and

extract all repeats of one particular type (Fig. 2E). After all repeats have

been identified, the corresponding regions in the query HMM are

permanently masked before the next repeat alignment is calculated

(Fig. 2F). This procedure is then repeated until no further significant

repeats can be identified.

Fig. 3. Consistency reinforcement by merging the query HMM with

itself. The figure shows a repeat protein with three repeats A, B, C, its

amino acid profile on the left for illustration, and the posterior

probability matrix containing the trivial self alignment and two

suboptimal alignments in the upper triangular matrix. The new amino

acid emission probabilities at positions i are a weighted mixture of the

amino acid emission probabilities at position i, j and k. The size of

the circular marks indicates the weights.
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To determine the regions that have to be masked, we define a Boolean

vector (friend vector). It keeps track of all positions in the query that

belong to the same type of repeats as those matched in the first

suboptimal MAC alignment (see green positions in Figure 2A). In this

way, the first MAC alignment determines the type of repeats to be

extracted in the following search rounds. If a newly detected MAC

alignment has a certain minimum overlap (five residues) with the

marked vector positions, these positions are added to the friend vector

and Equation (3) is applied. Otherwise the suboptimal alignment and its

posterior probability matrix is rejected. However, previously rejected

alignments can later be accepted if they overlap with a later friend

vector. Figure 2C shows two suboptimal alignments (red), which belong

to Leucine-rich repeats in the protein 1DCE, that have been rejected

because they did not overlap with the friend vector (green). After

the initial search for suboptimal alignments has been completed, all

unmarked positions in the friend vector are masked in the dynamic

programming matrix and thereby excluded from the following search

rounds and consistency reinforcement iterations (see brown regions

in Fig. 2D).

Since the masking procedure has to be fairly conservative, regions

that have been masked might contain repeats which are so highly

diverged that they could not be picked up by suboptimal alignments in

the initial search round. By partially removing the domain mask just

before the last search for suboptimal alignments (Figure 2E and F), the

detection of so far undetected repeat units is often possible through the

improved consistency (Fig. 2E).

2.9 Calculation of P-values

We calculate two kinds of P-values to assess the statistical significance

of HHrepID’s repeat detection results: Repeat group P-values, which

refer to the whole group of homologous repeat units found together,

and P-values for individual repeat units. To compute the repeat group

P-value, we search a calibration database of unrelated proteins and fit

the parameters of the extreme value distribution (EVD) to the scores.

The repeat group P-value is simply the P-value of the best suboptimal

Viterbi self-alignment given this EVD. The repeat-specific P-value is

determined during the repeat extraction stage: We first build a repeat

profile HMM of repeat length w by merging [Equations (5) and (6)] all

regions within the repeat extraction window (red box in Figure 2E) that

do not belong to the repeat to be evaluated. In this way, we obtain a

profile HMM that represents all but one consistently mixed repeat

units. With this repeat profile we search our calibration database and fit

parameters of the EVD, allowing us to calculate the repeat P-value

of the alignment between the original, unmerged repeat unit and the

repeat profile.

3 RESULTS AND DISCUSSION

We evaluate the repeat detection performance of HHrepID and

compare it to the newest de novo methods, TRUST and

RADAR, as well as to the database-dependent method

HMMER/Pfam (version 2.3.2). The HHrep server is not

included because it does not calculate explicit repeat alignments

and borders. The benchmark dataset consists of all protein

chains in the protein databank PDB [Berman et al. (2000),

revision February 2007], filtered to a maximum sequence

identity of 20% (6992 chains). We used default settings for all

tested methods and the global Pfam library. (The fragment

library is not suitable to detect repeats since local alignment

would not enforce overlap of detected domain or repeat

fragnments.) For HHrepID, parameter T [Equation (2)] is set

to 0.5, the total repeat P-value threshold for repeat families to
103, and the P-value threshold for suboptimal alignments to 0.1.
For each method, we would like to determine the number of

false positive and true positive repeat proteins detected. Ideally,
we would compare the repeat alignments with a gold standard
method, e.g. one based on structural alignment of repeat units.

Unfortunately, although one such method has been developed
(Murray et al., 2004), a tool is not available. We therefore use
the reported pairwise alignments between repeat units instead

to decide which proteins will be considered as true positive
repeat proteins. Predicted repeat alignments that yield a good
structural alignment are defined as correct. To classify a protein

as true positive repeat protein, we require that at least 50% of
predicted repeats in the protein have a correct alignment to at
least one other repeat unit. We define an alignment as correct if

its TMscore (Zhang and Skolnick, 2004) is greater or equal to
0.4 (TMscore2 [0,1]), which is the threshold for significant
structural similarity given by Zhang. (We checked that results

are very similar for a threshold of 0.5.) We ignore all repeats
that are shorter than 15 residues because TMscore is unsuited
for such short repeats. By conditioning the acceptance of a

repeat alignment on the alignment quality our benchmark not
only assesses performance in detecting repeat proteins but also
measures the quality of the underlying repeat alignments.

Figure 4A plots the number of true positive repeat-
containing proteins against the number of false positive
proteins detected above a threshold significance. As signifi-

cance measure we use the P-value of the best suboptimal self-
alignment (HHrepID), the reported E-value (HMMER), the
repeat family P-value (TRUST) and the repeat family score

(RADAR). At a cumulative error rate of 10% HHrepID
detects about thirty times more repeat proteins than RADAR,
about twice as many as TRUST, and about 20% more than

HMMER. Furthermore, HHrepID and TRUST show a very
low error rate at high significance levels: They are able to detect
120 (HHrepID) and 80 (TRUST) true positives before

identifying the first false positive. In contrast, HMMER
reports several wrong alignments with very significant
E-values. Although HMMER correctly picks up the sequence

signature of duplicated domains in these cases, the quality
of the constructed repeat alignments is below the cut-off
threshold of 0.4.

This benchmark measures how well a method can differ-
entiate between repetitive and non-repetitive proteins. It would
also be helpful to evaluate true positive versus false positive

rates on the level of individual repeat units since in practical
applications the exact repeat positions and borders are needed.
We therefore perform a second, repeat-specific test in which a

predicted repeat unit is judged as true positive if it takes part in
at least one alignment with TMscore greater than 0.4. As score
we use repeat probabilities (HHrepID Prob, see below), repeat

P-values (HHrepID P-value), and repeat E-values (HMMER).
Since TRUST and RADAR do not report repeat-specific
significance scores we rank results by the repeat family P-value

(TRUST) and repeat family score (RADAR).
Figure 4B shows the results of the repeat unit level

benchmark. The results are qualitatively similar to Figure 4A:

HHrepID is able to identify about twenty times more repeats
than RADAR, about twice as many repeats as TRUST and
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about 30% more than HMMER at a cummulative error rate

of 10%. The calculation of repeat-specific probabilities only

slightly enhances the sensitivity (HHrepID Prob). Probabilities

are calculated by kernel density estimation in a three-

dimensional space formed by the negative log of repeat

P-value, repeat length, and the length-normalized MAC score

obtained from Equation (2). (We use a Gaussian kernel and

2-fold crossvalidation on our benchmark dataset.)

When interpreting the results in Figure 4A and B, one has to

keep in mind that, in contrast to the next best method

HMMER, HHrepID does not rely on a priori knowledge in

the form of a precompiled database of repeat families. On less

well studied sequences HMMER is likely to perform worse

than in our benchmark, whereas HHrepID’s performance will

stay the same. It should also be noted that we did not remove

sequences with trivial repeat signatures. The difference between

HHrepID and the other tools is therefore expected to be much

more pronounced when repeats have significantly diverged

in sequence.

To demonstrate HHrepID’s ability to detect repeats in

complex architectures we analyze RAB geranylgeranyltransfer-

ase (1DCE, Fig. 5A) which also served as example in Figure 2.

It consists of six prenyltransferase � subunit repeats and five

Leucine-rich repeats. HHrepID correctly identifies all six

prenyltransferase repeats including the inserted domain after
the fifth �-hairpin repeat and all five Leucine-rich repeats at the

C-terminus. For comparison, HMMER detects both repeat

families but still misses three of the five Leucine-rich repeats

(Figure S2B). RADAR is able to identify four prenyltransferase

repeats but predicts four wrong repeat units in the inserted

domain and in the C-terminal region (Figure S2D). TRUST

identifies two repeats in the prenyltransferase repeat region but

their repeat lengths and borders are clearly wrong (Figure S2C).
We further applied HHrepID to outer membrane � barrels

which are formed of between 4 and 11 ��-hairpins in a barrel-

shaped arrangement. The structure with the hairpin repeats

looks fairly regular, but until now a repeat signature in
sequence had not been identified (see Fig. S1B for results of

RADAR) (Neuwald et al., 1995). HHrepID is able to detect a

clear and unambiguous ��-hairpin repeat in half of all outer

membrane � barrels in the PDB. As an example, Figure 5B

shows results for OmpA where HHrepID even correctly

identifies the two velcro strands at the N and C-terminus.

4 CONCLUSION

During the development of HHrepID we devised several

algorithmic improvements for the detection of diverged repeats,

the placement of repeat borders, and the analysis of complex

domain architectures. Several of these algorithmic advances are

not restricted to the use in repeat detection: we generalized

the Forward–Backward algorithm to the case of local

Fig. 4. (A)Number of correctly detected repeat proteins (true positives)

versus number of false positives above a given significance score. The

dotted line indicates an error rate of 10%. (B) Number of correctly

detected repeat units (true positives) versus number of false positives

above a given significance score.

Fig. 5. (A) Structure of RAB geranylgeranyltransferase alpha subunit

(PDB identifier: 1DCE). Repeat units identified by HHrepID are

highlighted according to colors used in Figure 2e and f. (B) Structure

of outer membrane protein A. HHrepID correctly identifies three

��-hairpin repeats and two velcro strands with a P-value of 10�7.
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HMM–HMM alignment with a random model and use it to
calculate posterior probabilities, allowing the quantification of
the local reliability of an alignment. Our modified maximum
accuracy (MAC) alignment algorithm contains a tunable

greediness parameters with which we can continuously switch
between local and global alignment. This local MAC algorithm
has been implemented in the HMM–HMM comparison suite

HHsearch (Söding, 2005), version 1.5.0. Our probabilistic
consistency reinforcement procedure that acts on profiles
rather than posterior probabilities could also be transferred to

multiple sequence alignment, where consistency has been used
to suppress early alignment errors during progressive alignment.
Due to HHrepID’s increased sensitivity we are able to detect

the sequence signature of repeats in several ancient folds that
have not yet been known to possess internal sequence
symmetry, such as TIM barrels and outer membrane �-barrels.
Analysis with HHrepID confirms earlier results that TIM

barrels evolved by amplification of quarter barrel fragments
(Nagano et al., 1999; Söding et al., 2006) and not half barrels
(Lang et al., 2000). These results further support the ‘ancient

peptide hypothesis’, which posits that modern proteins arose by
recombination and fusion from a small set of fragments
(ancient peptides) (Lupas et al., 2001; Söding and Lupas,

2003). We believe that the repeats detected with HHrepID in
OMPs and TIM barrels are evolutionary remnants of these
ancient fragments.

ACKNOWLEDGEMENTS

We thank Michael Remmert, Christian Mayer and Oliver
Kohlbacher for stimulating discussions. We are particularly
grateful to Andrei Lupas for initiating this work and giving

ample support and advice. Financial support by the Max-
Planck-Society and partial support by the Center for Integrated
Protein Science Munich (CIPSM) is gratefully acknowledged.

Conflict of Interest: none declared.

REFERENCES

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs. Nucl. Acids Res., 25, 3389–3402.

Andrade,M.A. et al. (2000) Homology-based method for identification of protein

repeats using statistical significance estimates. J. Mol. Biol., 298, 521–537.

Berman,H.M. et al. (2000) The Protein Data Bank. Nucl. Acids Res., 28, 235–242.

Bjorklund,A.K. et al. (2006) Expansion of protein domain repeats. PLoS Comput.

Biol., 2, e114.

Coward,E. and Drablos,F. (1998) Detecting periodic patterns in biological

sequences. Bioinformatics, 14, 498–507.

Do,C.B. et al. (2005) ProbCons: Probabilistic consistency-based multiple

sequence alignment. Genome Res., 15, 330–340.

Durbin,R. et al. (1998) Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids. Cambridge University Press, Cambridge.

Eddy,S.R. (1998) Profile hidden Markov models. Bioinformatics, 14, 755–763.

Gruber,M. et al. (2005) REPPER – repeats and their periodicities in fibrous

proteins. Nucl. Acids Res., 33, 239–243.

Heger,A. and Holm,L. (2000) Rapid automatic detection and alignment of

repeats in protein sequences. Proteins Struct. Funct. Genetics, 41, 224.

Heringa,J. and Argos,P. (1993) A method to recognize distant repeats in protein

sequences. Proteins Struct. Funct. Genetics, 17, 391–341.

Holmes,I. and Durbin,R. (1998) Dynamic programming alignment accuracy.

J. Comput. Biol., 5, 493–504.

Kobe,B. and Kajava,A.V. (2001) The leucine-rich repeat as a protein recognition

motif. Curr. Opin. Struct. Biol., 11, 725–732.

Lang,D. et al. (2000) Structural evidence for evolution of the beta/alpha barrel

scaffold by gene duplication and fusion. Science, 289, 1546–1550.

Li,J. et al. (2006) Ankyrin repeat: a unique motif mediating protein-protein

interactions. Biochemistry, 45, 15168–15178.

Lupas,A. et al. (1991) Predicting coiled coils from protein sequences. Science, 252,

1162–1164.

Lupas,A.N. et al. (2001) On the evolution of protein folds: are similar motifs

in different protein folds the result of convergence, insertion, or relics of an

ancient peptide world? J. Struct. Biol., 134, 191–203.

Marcotte,E.M. et al. (1999) A census of protein repeats. J. Mol. Biol., 293,

151–160.

McLachlan,A.D. and Stewart,M. (1976) The 14-fold periodicity in alpha-

tropomyosin and the interaction with actin. J. Mol. Biol., 103, 271–298.

Miyazawa,S. (1995) A reliable sequence alignment method based on probabilities

of residue correspondences. Protein Eng., 8, 999–1009.

Mott,R. (2000) Accurate formula for P-values of gapped local sequence and

profile alignments. J. Mol. Biol., 300, 649–659.

Mückstein,U. et al. (2002) Stochastic pairwise alignments. Bioinformatics,

18 (Suppl. 2), 153–160.

Murray,K.B. et al. (2004) Toward the detection and validation of repeats in

protein structure. Proteins, 57, 365–380.

Nagano,N. et al. (1999) Barrel structures in proteins: automatic identification and

classification including a sequence analysis of TIM barrels. Protein Sci., 8,

2072–2084.

Neuwald,A.F. et al. (1995) Gibbs motif sampling: detection of bacterial outer

membrane protein repeats. Protein Sci., 4, 1618–1632.

Newman,A.M. and Cooper,J.B. (2007) XSTREAM: a practical algorithm for

identification and architecture modeling of tandem repeats in protein

sequences. BMC Bioinformatics, 8, 382–382.

Notredame,C. (2001) Mocca: semi-automatic method for domain hunting.

Bioinformatics, 17, 373–374.

Notredame,C. et al. (2000) T-Coffee: a novel method for fast and accurate

multiple sequence alignment. J. Mol. Biol., 302, 205–217.
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