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Abstract

In this study we compare commonly used coiled-coil prediction methods against a database derived from proteins of known structure.
We Wnd that the two older programs COILS and PairCoil/MultiCoil are signiWcantly outperformed by two recent developments: Marcoil,
a program built on hidden Markov models, and PCOILS, a new COILS version that uses proWles as inputs; and to a lesser extent by a
PairCoil update, PairCoil2. Overall Marcoil provides a slightly better performance over the reference database than PCOILS and is con-
siderably faster, but it is sensitive to highly charged false positives, whereas the weighting option of PCOILS allows the identiWcation of
such sequences.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Coiled-coils are built by two or more �-helices that wind
around each other to form a supercoil. Their structure is
better understood than that of any other fold and, uniquely
among proteins, their coordinates can be calculated from
parametric equations (Crick, 1953). In essence they are built
of sequence elements of three and four residues whose
hydrophobicity pattern and residue composition is funda-
mentally compatible with the structure of amphipathic
�-helices (Hicks et al., 1997; Gruber and Lupas, 2003). By
far the most common arrangement of elements in coiled
coils is the regular alternation of threes and fours, referred
to as the heptad repeat. In this repeat the individual posi-
tions are labelled a–g, with positions a and d being gener-
ally hydrophobic (for a recent review of coiled-coil
structure see Lupas and Gruber, 2005).

The prediction of coiled-coils from protein sequences
was pioneered by Parry (1982), who showed that each hep-
tad position has a characteristic residue distribution and
proposed to score the coiled-coil-forming propensity of a
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sequence by its match to a position-speciWc scoring matrix
derived from these distributions. To our knowledge this
represents the Wrst application of sequence proWles for
structure prediction.

The Wrst widely-used prediction program, COILS
(Lupas et al., 1991; Lupas, 1996), extended this approach by
substituting residue preferences for frequencies, introduc-
ing a scanning window, and scaling scores against reference
databases to obtain probabilities.

Three subsequent programs, PairCoil (Berger et al.,
1995), MultiCoil (Wolf et al., 1997), and LearnCoil (Berger
and Singh, 1997) were built on similar concepts, but
increased the amount of informational input by incorporat-
ing pairwise residue correlations into the scoring matrix
(PairCoil has recently been updated to PairCoil2 (McDon-
nell et al., 2006) trained with a larger set of coiled-coil
data.). MultiCoil goes beyond generic coiled-coil prediction
by additionally diVerentiating between two- and three-
stranded coiled-coils. LearnCoil can be trained iteratively
on a speciWc set of target proteins and is available for histi-
dine kinases (Singh et al., 1998) and viral membrane fusion
proteins (Singh et al., 1999).

A further increase in informational input was achieved
by Marcoil (Delorenzi and Speed, 2002), which calculates
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posterior probabilities from a hidden Markov model and is
currently the only windowless method, removing a limita-
tion of previous prediction programs.

We have recently also increased the informational input
into COILS by developing a version, PCOILS (Gruber
et al., 2005), which substitutes proWle-proWle comparisons
for the sequence-proWle comparison step in COILS (http://
protevo.eb.tuebingen.mpg.de/coils). The proWles are either
derived from a multiple sequence alignment provided as
input or are generated by an automated procedure based
on PSI-BLAST (Altschul et al., 1997).

In this study, we have undertaken a comparative analy-
sis of these prediction programs employing a strict bench-
mark set of coiled coil superfamilies that were unknown at
the time when the individual programs were trained (except
for PairCoil2, which has just been released). By taking
advantage of the large number of coiled-coil structures
solved to atomic resolution in recent years, we developed a
benchmark database of over 16,000 residues. This database
includes a large number of comparatively short coiled-coils,
thus representing a more realistic benchmark than the
databases of long coiled-coils such as tropomyosin, myosin
and intermediate Wlaments, which have hitherto been used,
for instance in the most recent comparison provided by
McDonnell et al. (2006). An essential diVerence of this
database over previously used testing databases is its more
objective nature. By using the intersection between the
SCOP coiled-coil class and the output of the SOCKET pro-
gram, we have eliminated arbitrary decisions from the data-
base generation process. Our results show that COILS and
MultiCoil provide similar performance, but that MultiCoil
is too restrictive in assigning probabilities. Both programs
are substantially outperformed by Marcoil and PCOILS,
with Marcoil providing the best performance overall. The
recent PairCoil update, PairCoil2, is less performant than
either Marcoil or PCOILS, despite including most proteins
of the test set in its training database.

2. Materials and methods

2.1. Benchmark database

A challenge in constructing a benchmark database is
that many sequences of known coiled-coil structures are
already included in the matrices used by the methods, and
therefore it would not be surprising if those structures
could easily be detected. This is why we only considered
coiled-coil superfamilies whose member structures are
recent enough that they could not be included in the train-
ing sets of any program, with the exception of PairCoil (this
program was not available at the time of submission of this
article and was included in revision). We thus obtained
coiled-coil superfamilies from the latest SCOP database
(version 1.69) that were not yet included in the SCOP 1.55
release (i.e. after July 2001), 19 in total (Murzin et al., 1995,
http://scop.mrc-lmb.cam.ac.uk/scop). Myosins and
SNAREs were excluded, because at least one program
already used them for training. For each superfamily, a rep-
resentative structure was taken and analyzed with
SOCKET (Walshaw and Woolfson, 2001, http://www.life-
sci.sussex.ac.uk/research/woolfson/html/coiledcoils/socket).
Only sections that were clearly identiWed as being engaged
in knobs-into-holes packing were considered (superfamilies
h.4.10, h.4.11, h.4.14, h.4.16, and h.6.1 were thus excluded,
since SOCKET could not Wnd this packing in any member
structure). For the database of non-coiled coils, one tenth
of the families present in the SCOP alpha and beta protein
class (a/b) were chosen at random (superfamilies c.37.1,
c.49.2, c.67.1, and c.93.1 were discarded, as they contain
coiled-coil domains). To enrich these databases with reli-
able homologs, searches of the nonredundant protein
sequence database were made with PSI-BLAST (two itera-
tions, E-value cutoV of 10¡4). Prior to the searches the data-
base was reduced to a set with a maximum of 90% sequence
identity and low-complexity regions were masked out with
PWlt (Jones and Swindells, 2002). The identiWed sequences
were aligned and again Wltered to sequences that had a min-
imum coverage of 20% and a minimum sequence identity of
40% to the query sequence by hhWlter (Soding, 2005).
Finally, an input proWle from this alignment was compiled
with hhmake for use in the proWle-version of COILS. The
Wnal database contained 16,449 residues in the positive set
and 1,287,148 residues in the negative set.

2.2. Analyzing the performance of COILS and PCOILS

Three parameters can be set by the user in COILS: the
window size (14, 21, or 28), the proWle matrix (MTK or
MTIDK), and a weighting option for core residues (on or
oV). The signiWcance of the window size is well-understood:
generally a longer window provides higher statistical sig-
niWcance, but as soon as the window size exceeds the size of
the coiled-coil region, extraneous residues are included and
distort the results. Since our benchmark set contains many
coiled coils that are shorter than 28 residues and a window
of 14 residues would not properly reXect the performance
of COILS, we used a window of 21 residues throughout.

The two matrices in COILS were compiled over a decade
ago on a very limited dataset of ‘certain’ coiled coils (myo-
sins, tropomyosins, and keratins (intermediate Wlaments
type I and II) in the case of MTK and myosins, paramyo-
sins, tropomyosins, intermediate Wlaments type I–V, desmo-
somal proteins and kinesins in the case of MTIDK). To
study whether matrices compiled from a larger and more
diverse dataset would improve the performance of COILS,
we generated a matrix derived from coiled coils of known
structure (the PDB matrix) and a converged matrix built by
iterative searches over the nonredundant protein sequence
database (the iterated matrix). For the PDB matrix we used
proteins that we had identiWed as coiled coils by visual
inspection and SOCKET analysis in preparation for a
recent review article (Lupas and Gruber, 2005) (note that
we did not use this set to build the reference database of
coiled coils for this study since it is biased by our view of
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the structure database; rather, we used the intersection of
SCOP and SOCKET as a ‘safer’ and more impartial set.).
For the iterated matrix, we scanned the nonredundant
sequence database with COILS, using the PDB matrix and
retained all residues above a given probability threshold
(for this purpose the sequence database was Wltered to 70%
sequence identity with both regions of low complexity and
regions with extremely biased amino acid compositions
masked out by PWlt (Jones and Swindells, 2002)). From the
retained residues we calculated a new matrix and repeated
this procedure until the matrix converged (convergence was
deWned as a root mean square deviation of less than 0.05%
relative to the preceding matrix). We found that the proce-
dure converged fastest at a probability cutoV of 98.8%
(Fig. 1). The converged matrix at this cutoV was the one we
used in this study.

The third parameter that can be set in COILS is the
weighting of the core positions a and d relative to the other
positions (2.5:1 versus 1:1). In the unweighted mode, the
two core positions are outweighed by the solvent-exposed
coat positions, introducing a bias into the method towards
hydrophilic, charge-rich sequences. Occasionally this leads
to high predicted coiled-coil probabilities in the obvious
absence of heptad periodicity and coiled-coil-forming
potential. COILS therefore allows the user to assign the
same weight to the two hydrophobic positions a and d as to
the Wve hydrophilic positions b, c, e, f, and g. We analyzed
the performance of both COILS and PCOILS in the
weighted and unweighted mode.

2.3. Comparison of the diVerent tools

In this study we compared COILS, MultiCoil, Marcoil,
PairCoil2, and PCOILS by analyzing coverage versus reli-
ability. Coverage was deWned as true positives/(true
positives + false negatives) and shows the proportion of
coiled-coil residues that were correctly predicted. Reliabil-
ity was deWned as true positives/(true positives+ c£ false
positives) with c being a correction factor that imposes the

Fig. 1. Convergence of COILS matrix in an iterative process to Wnd an
ideal matrix.
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assumption that in nature non-coiled-coil residues occur 20
times more often than coiled-coil residues.

Moreover, the quality of the coiled-coil probabilities
reported by the programs were analyzed (Fig. 3), with the
exception of Paircoil2 which does not provide probabilities.
For the benchmark set, the density of the reported probabili-
ties was analyzed separately for positives and negatives in
discrete 10% steps. The probability Pobserved was then recalcu-
lated as densitypositives/(densitypositives + 20£densitynegatives),
with 20 imitating the frequency of non-coiled-coil residues as
compared to coiled-coil residues.

3. Results and discussion

3.1. Analyzing the performance of COILS and PCOILS

3.1.1. The ideal matrix
Fig. 2(a) illustrates the eVect of the choice of matrix on

the performance of COILS and PCOILS. In COILS, the
iterated matrix, which is the most recent one and also
includes the most sequence data, performs best and the
MTK matrix, which is the oldest one and derived from the
smallest dataset performs worst. However, the diVerence is
not as large as one might have expected, suggesting that
much of the positional information inherent in coiled-coil
sequences can be gleaned from a dataset as small as a few
thousand residues. In PCOILS, the diVerence in perfor-
mance between matrices seems largely erased, with the two
new matrices barely having an edge at high reliabilities. We
propose that this is due to the additional information
added by the proWles, which eVectively reduces the idiosyn-
crasies of the older matrices resulting from their limited
training set.

3.1.2. Weighting
When originally introduced into COILS, weighting

appeared to slightly decrease the performance of the pro-
gram (Lupas, 1996). We do not conWrm this Wnding with
the structure-based database used here. If anything the
weighted mode very slightly outperforms the unweighted
one for all matrices tested. This is not the case for PCOILS,
where weighting clearly lowers performance for the PDB
and iterated matrices at high reliabilities. The reason for
this seems to be that some coiled-coil proteins such as Coli-
cin E3 or Arfaptin have unusual core residues, for which
the scores in the matrices diVer, especially in the PDB
matrix with its few data. This eVect is multiplied if the core
residues are weighted. Since the justiWcation for introducing
the weighting option was the detection of highly charged
false positives (see Section 2), but such segments are not
represented in our database, we show the case of the KEKE
motif in PA28 (PDB code: 1AVO) as an example of
weighted versus unweighted prediction (Fig. 4). PCOILS
provides a better detection of the KEKE motif as a false
positive and in both methods the iterated matrix performs
substantially worse than the other three matrices. Given the
observations described here, we have set weighting and the
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MTIDK matrix as the default options in our web server
(http://protevo.eb.tuebingen.mpg.de/coils).

3.1.3. COILS versus PCOILS
Regardless of the matrix used, PCOILS performs signiW-

cantly better than COILS. At a reliability of 90% it assures a
coverage of 90–93%, whereas COILS ranges between 35%
and 61% depending on the parameters used. As noted above,
PCOILS also becomes largely independent of the scoring
matrix. However, this increase in performance is obtained at
the expense of speed; whereas COILS is a very fast program,
PCOILS is limited by the speed of PSI-BLAST.

Fig. 2. Comparison of CC prediction tools for reliabilites of at least 80% on a
set of known CC structures. (a) Unweighted (upper panel) and weighted
(lower panel) performance of COILS and PCOILS. (b) General benchmark
of all programs (COILS and PCOILS unweighted with the MTIDK matrix).
Note that PairCoil2 included sequences from the test set in its training data.
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3.2. Comparison of the diVerent tools

COILS and MultiCoil show comparable performances
in coverage versus reliability (Fig. 2b), with COILS main-
taining a slight edge at reliabilities under 90%. From an
informational standpoint, this is somewhat surprising:
MultiCoil uses the same principles as COILS, but employs
a much more elaborate matrix containing pairwise residue
correlations and more recent data. This matrix can however
only provide an improved performance to MultiCoil if
enough sequences are available to Wll its many more Welds
with statistically signiWcant data. The improved perfor-
mance of PairCoil2 suggests that this is now the case.
COILS and MultiCoil do diVer in one point, however,
namely the way in which they assign probabilities (Fig. 3).
While in COILS the reported probabilities approximately
correspond to the eVective probabilities, MultiCoil is too
restrictive. At a reported probability of 20%, for example,
the actual probability is already at 56%. This means that
MultiCoil was tuned to provide ‘safe’ positive predictions
and thus systematically underpredicts coiled-coil segments.
On the positive side MultiCoil has few problems with
highly charged false positives. With the recent release of
PairCoil2, the PairCoil/MultiCoil developers have aban-
doned the use of probabilities and only report scores. With
this decision, it has become impossible to compare their
results with that of other prediction programs and is there-
fore missing from Figs. 3 and 4. It will remain to be seen
whether this prediction format is accepted by the users.

COILS, MultiCoil, and to a lesser extent PairCoil2 are
outperformed by Marcoil and PCOILS, with Marcoil pro-
viding a slightly higher performance than PCOILS over
practically the entire range of reliabilities. We interpret this
as being due to the fact that Marcoil operates without a
scanning window, thus being able to calculate posterior
probabilities from its hidden Markov model. This increase
in Xexibility allows it to customize its prediction to the size
of the coiled coil under study. In contrast, PCOILS uses a

Fig. 3. Information quality of the given probabilities. Probabilities pro-
vided by MultiCoil are generally too low, while probabilities from both
Marcoil and PCOILS are too high.
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Wxed window size and only operates optimally when this is
the same as the size of the coiled coil. Both Marcoil and
PCOILS assign probabilities too loosely; on the positive
side this means that they provide ‘safe’ negative predictions.

3.3. Implications for users and outlook

Marcoil and PCOILS are prediction tools of a new gen-
eration, whose underlying methods signiWcantly outper-
form those of older developments. Even with an updated
training database, the PairCoil algorithm does not reach
the performance of these two programs. Although Marcoil
and PCOILS are approximately comparable, Marcoil has
the substantial advantage that it is much faster, since it does
not rely on time-consuming PSI-BLAST runs. In both pro-
grams, the assignment of probabilities is overly optimistic,
but once this fact is known to the user, this can be taken
into account. A disadvantage of Marcoil lies in its suscepti-
Fig. 4. Behavior of the prediction programs in case of highly charged sequence fragments as in residues 70–100 in the �-subunit of PA28 (gi accession num-
ber of the sequence: 186513, helices are underlined, the charged fragment is in bold letters, PDB code of the corresponding structure: 1AVO).
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bility to highly charged false positives (Fig. 4), which can be
dealt with eVectively with the weighting option in PCOILS.

As the two best-performing programs obtain their
advantage from entirely diVerent approaches, Marcoil from
calculating posterior probabilities and thereby making the
sliding window obsolete and PCOILS from exploiting addi-
tional biological information, it would be desirable to com-
bine these two traits for the next-generation coiled-coil
prediction tools. Furthermore, the problem of reliably pre-
dicting coiled coils that deviate globally from a heptad peri-
odicity remains to be addressed. In addition, although tools
with a probability assignment that is too optimistic
(PCOILS) or too pessimistic (MultiCoil) can help to
exclude false negatives or false positives, respectively, it will
be necessary in the future to provide some solid statistics,
which draw a more accurate picture.
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