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Abstract

We show that combined permanent and induced electric dipole interactions of linear po-

lar and polarizable molecules with collinear electric fields lead to a sui generis topology of

the corresponding Stark energy surfaces and of other observables – such as alignment and

orientation cosines – in the plane spanned by the permanent and induced dipole interac-

tion parameters. We find that the loci of the intersections of the surfaces can be traced

analytically and that the eigenstates as well as the number of their intersections can be

characterized by a single integer index. The value of the index, distinctive for a particular

ratio of the interaction parameters, brings out a close kinship with the eigenproperties ob-

tained previously for a class of Stark states via the apparatus of supersymmetric quantum

mechanics.
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I. INTRODUCTION

The pursuit of means to manipulate molecular rotation and translation is a

leading frontier of chemical/molecular physics. Among recent developments are new

methods to control the orientation and/or alignment of molecules [1–21] as well as

methods to deflect and focus their translational motion [22] and to achieve molecular

trapping [23]. The importance of orientation comes also to light in novel appli-

cations such as attaining time-resolved photoelectron angular distributions [24–26],

diffraction-from-within [27], separation of photodissociation products [28–30], der-

acemization [31], high-order harmonic generation and orbital imaging [32–38], quan-

tum simulation [39, 40] or quantum computing [41–46]. All methods to manipulate

molecular trajectories rely on the ability to create directional states of molecules. This

is because only in directional states are the molecular body-fixed multipole moments

“available” in the laboratory frame where they can be acted upon by space-fixed

fields. In the case of polar molecules, the body-fixed permanent dipole moment is put

to such a full use in the laboratory by creating oriented states characterized by as

complete a projection of the body-fixed dipole moment on the space-fixed axis as the

uncertainty principle allows. Such a high degree of orientation can now be achieved

by a versatile technique [2, 12, 15, 47, 48] that combines a static electric field with

a nonresonant optical field. The combined fields give rise to an amplification effect

which occurs for any polar molecule, as only an anisotropic polarizability, along with

a permanent dipole moment, is required. This is always available in polar molecules.

Thus, for a variety of molecules in their rotational ground state, a very weak static

electric field can convert second-order alignment by a laser into a strong first-order

orientation that projects up to 90% of the body-fixed dipole moment on the static

field direction. The “combined fields” technique has found applications ranging from

molecular imaging to surface science [49–53] and has been extended to the case of

molecules trapped in octahedral crystal fields [54–56].

In our previous work, the permanent and induced dipole interactions were as-

sumed to arise, respectively, from electrostatic and nonresonant optical fields whose

strength could be varied independently of each other, with the induced dipole interac-

tion dominating over the permanent dipole interaction. Herein we investigate aspects

of the combined interactions of a polar and polarizable molecule with either different

collinear fields or the same field that span the whole range of interaction strengths

for both interactions.

The combined permanent and induced dipole interactions lead to a sui generis

topology of the corresponding Stark energy surfaces and other observables spanned by

the permanent and induced dipole interaction parameters, with intersections whose
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FIG. 1: Collinear electric fields, ε1 and ε2, acting on the molecular dipole moment, µ, and

the parallel, α||, and perpendicular, α⊥, components of the molecular polarizability. Also

shown are the polar angle θ between the common direction of the field vectors and the

direction of the molecular axis, r, as well as the uniformly distributed azimuthal angle, φ

about the field vector.

loci can be traced analytically. The eigenstates as well as the number of their intersec-

tions can be characterized by a single index whose value, distinctive for a particular

ratio of the interaction parameters, brings out a close kinship with the eigenproperties

obtained previously for a class of Stark states via the apparatus of supersymmetric

quantum mechanics [57, 58]. Although the present work deals with eigenproperties,

it prepares the soil for our forthcoming work on the dynamics of directional states of

polar and polarizable molecules created by the inherently non-adiabatic interaction

[4, 59] with a half-cycle pulse of a nonresonant optical field [60–62]. Such a pulse

gives rise to both the permanent and induced dipole interactions at the same time.

This paper is organized as follows. In Sec. II, we briefly describe the Hamil-

tonian of a polar and polarizable molecule subject to collinear fields as a function

of reduced dimensionless parameters that characterize the strengths of the perma-

nent and induced dipole interactions. In Sec. III we present the eigenproperties of

the above Hamiltonian such as eigenenergies, energy gaps between adjacent levels

and directional properties (orientation and alignment cosines), and characterize the

topology of the dependence of these eigenproperties on the reduced dimensionless

parameters as a function of their ratio. In Sec. IV, we apply our results to the case

where both the permanent and induced dipole interactions arise from the same field,

in which case the ratio of the permanent to induced-dipole interaction is fixed for a

given molecule. Finally, we discuss the ramifications of our findings for the dynamics

of states created by time-dependent fields and point out a connection of the topology

of the Stark energy surfaces to supersymmetry.
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II. THEORY

The Hamiltonian of a polar 1Σ rigid-rotor molecule with a body-fixed dipole

moment µ, body-fixed static-polarizability components α|| and α⊥, and a rotational

constant B subject to collinear electric fields ε1 and ε2 is given by

H = BJ2 + Vµ + Vα (1)

where J2 is the operator of square angular momentum,

Vµ = −µε1 cos θ (2)

Vα = −1

2
(α|| − α⊥)ε2

2 cos2 θ − 1

2
α⊥ε

2
2 (3)

are, respectively, the permanent- and induced-dipole moment potentials, ε1,2 ≡ |ε1,2|
are the electric field strengths acting on the permanent and induced dipole moments,

respectively, and θ is the polar angle between the common direction of ε1 and ε2 and

the direction of the molecular axis, r, see Figure 1. We note that ε1 can be due to an

electrostatic field and ε2 to a non-resonant optical field of intensity I such that

ε2 =

(
2I

cε0

)1/2

(4)

with c the speed of light in vacuum and ε0 the vacuum permittivity. In this case, the

fields ε1 and ε2 would indeed act on the permanent and induced dipoles separately,

without adding up to a single effective field. However, the induced and permanent

dipole interactions can also arise due to the same field ε1 = ε2 = ε, in which case the

ratio of the permanent dipole interaction squared to the polarizability interaction is

field-independent and fixed for a given molecule, as will be discussed in Sec. V.

The Hamiltonian, eq. (1), can be recast in dimensionless form by dividing

through the rotational constant B; as a result

H

B
= J2 − η cos θ −∆η cos2 θ − η⊥ (5)

where

η ≡ µε1

B
∆η ≡ η|| − η⊥ η||,⊥ ≡

α||,⊥ε
2
2

2B
. (6)

We note that the interaction strength is characterized by the parameters η and ∆η

for any 1Σ molecule. The eigenproperties obtained from the reduced Schrödinger

equation
H

B
Ψ =

E

B
Ψ (7)

are thus arbitrarily “transferrable” from one molecular species to another. Table I lists

the molecular parameters for a set of representative 1Σ molecules (along with a couple
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of other symmetry species). Conversion factors needed to obtain the dimensionless

reduced parameters from the molecular parameters expressed in terms of customary

units are given in Table II.

TABLE I: Parameters for representative linear molecules, see text. Note that the values of

k are obtained via eq. (19). Compilation based on Refs. [63, 64] for the alkali dimers, Ref.

[65] for HD, and on Ref. [3] for the rest.

Molecule B [cm−1] µ [D] ∆α [Å3] ∆α [Å3]B [cm−1]/µ2 [D] ∆η/η2 k

CsF(X1Σ) 0.1843 7.87 (3.0) 8.93×10−3 8.83×10−7 532.0

ICN(X1Σ) 0.1075 3.72 (7.0) 5.44×10−2 5.38×10−6 215.6

LiCs(X1Σ) 0.188 5.52 49.5 3.07×10−1 3.04×10−5 90.6

NaK(X1Σ) 0.091 2.76 39.5 4.72×10−1 4.67×10−5 73.1

KCs(X1Σ) 0.033 1.92 64.6 5.8×10−1 5.72×10−5 66.1

RbCs(X1Σ) 0.016 1.27 72.8 7.22×10−1 7.14×10−5 59.1

ICl(X1Σ) 0.1142 1.24 (9.0) 6.68×10−1 6.61×10−5 61.5

CO(A3Σ) 1.681 1.37 (1.5) 1.34 1.33×10−4 43.3

OCS(X1Σ) 0.2039 0.709 4.1 1.66 1.64×10−4 39.0

KRb(X1Σ) 0.032 0.76 54.1 2.99 2.96×10−4 29

LiNa(X1Σ) 0.38 0.566 24.7 29.29×101 2.89×10−3 9.3

NO(X2Π) 1.703 0.16 2.8 1.86×102 1.82×10−2 3.7

CO(X1Σ) 1.931 0.10 1.0 1.93×102 1.91×10−2 3.6

HD(X1Σ) 45.644 5×10−4 0.305 5.56×107 5.508×103 6.7×10−3

The eigenproperties of Hamiltonian (5) were obtained by expanding its eigen-

functions Ψ in the free-rotor basis set, |J,M〉,

Ψ =
∑
J

cJ̃ ,MJM (η,∆η)|J,M〉 ≡ |J̃ ,M ; η,∆η〉 (8)

and diagonalizing the corresponding Hamiltonian matrix truncated at Jmax = 100,

which sufficed to achieve convergence for the range of the field strengths considered.

The hybridization coefficients cJ̃ ,MJM (η,∆η) depend, for a given state |J̃ ,M ; η,∆η〉,
solely on the reduced interaction parameters, as indicated. We note that the projec-

tion, M , of the angular momentum J on ε1,2 is a good quantum number while J is
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not. However, the value of J of the field-free rotational state |J,M〉 that adiabatically

correlates with the hybrid state can be used as a label, which we designate by J̃ , so

that |J̃ ,M ; η,∆η〉 → |J,M〉 for η,∆η → 0. Below we present results for states with

M = 0, which render a playing field large-enough to capture the salient features of

the combined-fields problem’s topology. In what follows, we’ll simplify our notation

and label the |J̃ ,M = 0; η,∆η〉 states by |J̃〉. For η > 0, the states |J̃〉 have an

indefinite parity. We note that for η = 0, the states have a definite parity, given by

(−1)J̃ , independent of the value of ∆η.

TABLE II: Conversion factors needed to obtain the dimensionless reduced parameters from

the molecular parameters expressed in terms of customary units.

Parameter Expression

η 1.68× 10−2ε[kV/cm] µ[Debye]/B[cm−1]

∆η 2.79× 10−8ε2[kV/cm] ∆α[Å3]/B[cm−1]

∆η
η2

9.892× 10−5η2∆α[Å3] B[cm−1]/µ2[Debye]

III. RESULTS AND DISCUSSION

Fig. 2 shows the resulting Stark energy surfaces pertaining to the lowest six

eigenstates as functions of the parameters η and ∆η that characterize the strengths of

the permanent and induced dipole interactions. In order to rationalize the observed

features of the displayed energy surfaces, we first consider the case when the molecule

interacts solely via the permanent dipole interaction, i.e., ∆η = 0, which roughly

corresponds to the case of a polar molecule subject to a weak electrostatic field.

As can be seen in Fig. 2a, the energy of the ground state, J̃ = 0, monotonously

decreases with increasing η (i.e., the state is high-field seeking). In marked contrast,

the eigenenergies of all the other states first increase with increasing η, run through

an inflection point at E/B = η (where the given state just becomes bound), and

reach a maximum at η ≈ 2.15J̃(J̃ +1) +1.2, beyond which the eigenenergies decrease

again, without undergoing any curve crossings or exhibiting degeneracies.

When a molecule interacts solely via its induced dipole moment, i.e., when

η = 0 as would be the case for a non-polar molecule in an electrostatic or many-

cycle non-resonant optical field, the eigenenergies monotonously decrease with the

increasing interaction parameter ∆η (the states are all high-field seeking), see Fig.

2b. Adjacent states, |J̃〉 and |J̃ + 1〉 with J̃ even, have opposite parity and form
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FIG. 2: Views of the lowest six reduced energy surfaces, EJ̃(η,∆η)/B, of Hamiltonian (5)

for a linear molecule subject to an electric field. The Stark energy surfaces are shown as

functions of the parameters η and ∆η that characterize the strengths of, respectively, the

permanent and induced dipole interactions.

tunneling doublets. The interaction strength at which the doublet splitting drops

below B is ∆η ≈ −2.6(J̃ + 1)2 − 9.1(J̃ + 1) + 14. The splitting of the tunneling

doublets decreases as [2, 3]

∆E/B ≡ (EJ̃+1 − EJ̃)/B ∝ exp[−∆η
1
2 ] (9)

rendering the members of a given tunneling doublet quasi-degenerate and drops to

zero altogether in the high field regime, where the interaction approaches the harmonic

librator limit. There, the eigenenergies of the tunneling doublets are given by [66, 67]

EJ̃/B = −∆η + 2J̃∆η
1
2 + 2∆η

1
2 − J̃2

2
− J̃ − 1

= −∆η + 2(J̃ + 1)∆η
1
2 − (J̃ + 1)2

2
− 1

2
= EJ̃+1/B

with J̃ = 2n and n = 0, 1, 2, ...

(10)

from which it follows that the reduced energy difference between the (J̃/2)-th doublet
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and the (k + J̃/2)-th doublet

EJ̃+2k/B − EJ̃/B = 4k∆η
1
2 − 2(J̃ + 1)k − 2k2 (11)

We note that the gap between adjacent tunneling doublets (such as |0〉,|1〉 and |2〉,|3〉)
becomes

EJ̃+2/B − EJ̃/B = 4∆η1/2 − 2(J̃ + 2) (12)

This energy separation between adjacent quasi-degenerate tunneling doublets as well

as the tunneling splitting of Eq. (9) become accurate for, e.g., the two lowest doublets

at ∆η > 50 [66].
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FIG. 3: Reduced eigenenergies, EJ̃/B, of a linear molecule subject to an electric field for

∆η = 58 as a function of η. Note that this value of ∆η connects to Fig. 2 where ∆η (and

η) range up to the value of 58. Blue curves: Numerically obtained energies. Red lines:

Energies in the harmonic librator limit assuming linear η–dependence of eq. (13), with the

loci of their intersections given by eq. (15). Black vertical lines: Intersection loci due to eq.

(16).

As shown in our previous work on polar and polarizable molecules subject to

combined static and optical fields [2, 3], for a large-enough induced dipole interaction
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that renders the members of a given tunneling doublet quasi-degenerate, a very weak

permanent dipole interaction, η � ∆η, is sufficient to couple the opposite-parity

members of the tunneling doublets and thus create highly oriented states (of indefinite

parity). By making use of a two-state model [3], we were able to show that the

energy levels of the members of the tunneling doublets repel each other approximately

proportionately to the strength η of the permanent dipole interaction, see also the

energy surfaces in Fig. 2b and the red lines in Fig. 3 which show schematically the

energies as a function of η for fixed ∆η = 200 in the harmonic librator limit. For a

large-enough permanent dipole interaction, this leads to a hierarchy of intersections

between the (J̃+1)-th state and the (J̃+2k)-th state, i.e., between the upper member

of the (J̃/2)-th doublet and the lower member of the (J̃/2 + k)-th doublet (with J̃

even, cf. eq. (10)). Within the linear approximation of Ref. [3] for energy splittings

of the tunneling doublets with η at a given ∆η, these intersections occur at energies

EJ̃+1/B + η = EJ̃+2k/B − η (13)

which, upon substitution from eq. (12), yields

∆η =
1

4k2
(η + (J̃ + 1)k + k2)2 (14)

or, equivalently,

η = 2k∆η1/2 − (J̃ + 1)k − k2 with J̃ = 2n, n = 0, 1, 2, ..., and k = 1, 2, 3, ... (15)

These intersection points are visible as the crossings of the red lines in Fig. 3 which

correspond to the energies in the harmonic librator limit as a function of η for fixed

∆η = 58, assuming a linear η–dependence employed in eq. (13). Fig. 3 also shows, by

blue curves, the numerically obtained Stark energy surfaces for the combined-fields

system. Remarkably, the loci of their intersections are found at values

η = 2k∆η1/2 (16)

which are indicated by vertical lines in Fig. 3. Note that at values of (η,∆η) well

below the harmonic librator limit, these values are not too far from the loci obtained

in the harmonic librator limit, eq. (15).

As eq. (16) is independent of J̃ , the number of intersections an energy surface

partakes in is equal to the adiabatic label J̃ of the corresponding eigenstate: the lowest

energy surface, with J̃ = 0, is thus not involved in any intersection; the first excited

state surface, with J̃ = 1, is involved in a first-order (k = 1) intersection (between

nearest doublets); the second excited state surface, with J̃ = 2, is involved both in

a first-order (k = 1) intersection (between nearest doublets) and in a second-order
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(k = 2) intersection (between second nearest doublets), etc. Consequently, at the loci

of the k-th order intersections given by eq. (16), we find an energy level pattern with k

single states at the bottom, followed by all other states which are doubly degenerate.

In contrast, there are no degeneracies arising anywhere between the intersection loci,

as can be seen in both Fig. 3 and Fig. 2a.

In order to further visualize the topology of the energy surfaces and their

intersections, we consider the energy gaps, displayed in Fig. 4, between adjacent

intersecting surfaces for the seven lowest states in the plane spanned by the interaction

parameters η and ∆η. The valleys (as well as the ridges) occur along straight lines

with slope two in the double-logarithmic representation of the figure, thus indicating

a quadratic dependence of ∆η on η. The former ones coincide very accurately with

the white lines drawn at

∆η =
1

4k2
η2 (17)

which is equivalent to eq. (16) for the loci of the intersections, thereby confirming

our derivation given above. Again, we see that the number of intersections an energy

surface partakes in equals the adiabatic label J̃ of that eigenstate: While the ground

state, J̃ = 0, does not exhibit any degeneracies, the first excited state, J̃ = 1, displays

a first order (k = 1) intersection with J̃ = 2 at ∆η = η2/4. In addition, the J̃ = 2

state displays a second order (k = 2) intersection with the J̃ = 3 state at ∆η = η2/16.

The J̃ = 3 state, has two more intersections with the J̃ = 4 state, one of first order

and one of third order at ∆η = η2/36.

The η dependence of the energy gaps between adjacent states J̃ and J̃ + 1

along the lowest-order intersection loci is shown in Fig. 5a. Beginning with 2(J̃ + 1)

in the free-rotor limit, η,∆η → 0, we find that for k = 1 the 1–2, 3–4, ... energy gaps

are decaying to nearly zero in an almost stepwise manner while the remaining ones,

0–1, 2–3, ... suddenly increase. For the k = 2 intersection manifold, where the lowest

two states remain single for all field strengths, we see a pairing of 2–3, 4–5, ... As can

also be gleaned from Fig. 4, these drops or rises occur at lower/higher field strengths

for lower/higher values of k and/or J̃ and mirror the number of nearly-degenerate

tunneling doublets that would have been generated by the induced dipole interaction

alone. Conversely, at the intersection locus, the lower states may already have formed

nearly-degenerate doublets while higher states are still avoiding an intersection, cf.

Fig. 2.

The directional properties of the eigenstates, as characterized by the expecta-

tion values 〈cos θ〉J̃ (degree of orientation) and 〈cos2 θ〉J̃ (degree of alignment), exhibit

a topology similar to that of the eigenenergies. The dependencies of the orientation

and alignment cosines on the dimensionless interaction parameters η and ∆η are
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FIG. 4: Energy gaps, (EJ̃+1−EJ̃)/B, between adjacent eigenenergy surfaces of Hamiltonian

(5) for a linear molecule subject to an electric field. The (reduced) energy gaps are shown

as functions of the parameters η and ∆η that characterize the strengths of, respectively, the

permanent and induced dipole interactions. White lines indicate the loci of the k-th order

intersection of adjacent surfaces, see Eq. (17).

shown, respectively, in Figs. 6 and 7. In addition, one–dimensional representations

along the first three intersections (k = 1, 2, 3) are displayed in Fig. 5b,c. The ground

state, J̃ = 0, exhibits, at quite weak fields, high orientation and alignment, which

are seen to further increase with both η and ∆η. The directionality of higher states
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FIG. 5: Properties of the lowest 8 eigenstates along the lowest order intersection manifolds

∆η = η2/(4k2), k = 1, 2, 3. Top: energy gaps, (EJ̃+1−EJ̃)/B, between adjacent eigenenergy

surfaces of Hamiltonian (5). Middle: Degree of orientation, 〈cos θ〉J̃ . Bottom: Degree

of alignment, 〈cos2 θ〉J̃ . The red circles superimposed on the red ground state curves in

the middle and bottom panels show the analytic results obtained via supersymmetry, see

Eq. (21).

is strongly influenced by their intersections. For instance, consider the first excited

state, J̃ = 1. For ∆η > η2/4, we see a strong anti-orientation, 〈cos θ〉1 → −1, to-

gether with high alignment, 〈cos2 θ〉1 → 1, see upper right panels of Figs. 6 and 7,

respectively. This is in keeping with the fact that this state correlates with the upper

component of the lowest tunneling doublet in the limit of η → 0, see also Fig. 2.

However, this behavior is thoroughly altered at the first-order (k = 1) intersection

where, for ∆η < η2/4, the orientation suddenly changes its sense while the alignment
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FIG. 6: Degree of orientation, 〈cos θ〉J̃ , for the lowest eigenstates of the Hamiltonian (5) for

a linear molecule subject to a static electric field. White lines indicate the loci of the k-th

order intersections of neighboring surfaces, see Eq. (17).

is substantially reduced. This is connected with the fact that for η → 0 the J̃ = 1

state intersects the lower member, J̃ = 2, of the first excited tunneling doublet at the

said first order intersection. This pattern then repeats itself for the higher excited

states. There is always an upper doublet member (anti-oriented for sufficiently large

∆η and for η → 0) crossing a lower doublet member (oriented for sufficiently large ∆η

and for η → 0) at each of the intersections, see Fig. 6. As a result, the J̃–th state in

13



the combined fields exhibits J̃ sign changes of the orientation cosine, and these sign

changes occur abruptly at the first J̃ intersections as given by Eq. (17). For the same

reason, at these loci, the degree of alignment is found to be almost discontinuous as

well, see Fig. 7. We note that for the higher doublets, the directionality tends to

vanish as those states are unbound and their orientation and alignment approaches

that of an (isotropic) free rotor.
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FIG. 7: Degree of alignment, 〈cos2 θ〉J̃ , for the lowest eigenstates of the Hamiltonian (5) for

a linear molecule subject to a static electric field. White lines indicate the loci of the k-th

order intersections of neighboring surfaces, see Eq. (17).
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Fig. 5b attests, in addition, that at the loci of the first-order intersections, k =

1, the ground-state orientation is always positive, approaching unity at strong fields

while all other states shown exhibit a weak anti-orientation which tends to vanish at

strong fields. For higher-order intersections, k > 1, the first k states also exhibit a

nearly “perfect orientation” with increasing field strength while the remaining states

are always anti-oriented with a vanishing orientation at high fields. The weak anti-

orientation along the intersections seams seen for J̃ ≥ k in Fig. 5b implies that the

sign changes of the orientation cosine do not occur exactly at the intersection loci

(white lines in Fig. 6) but are slightly shifted towards the “foothills,” cf. Fig. 6.

Fig. 5c details the alignment cosines along the intersection seams for the eigen-

states considered. Except for the ground state, the alignment is first decreasing, ex-

hibiting anti-alignment (〈cos2 θ〉 < 1
3
) before rising again and approaching unity at

strong fields. Neither here do the almost discontinuous changes of the alignment co-

sine coincide with the intersection loci (white lines in Fig. 7) exactly but are slightly

shifted away from the ridges.

IV. APPLICATIONS AND PROSPECTS

If both the permanent and induced dipole interactions arise from the same

field ε1 = ε2 = ε, it follows from eq. (6) that the ratio of the combined permanent

and induced electric dipole interaction parameters is fixed for a given molecule with a

body-fixed permanent electric dipole moment, µ, polarizability anisotropy, ∆α, and

rotational constant, B,
∆η

η2
=

∆αB

2µ2
. (18)

Figure 8 displays this dependence of the induced dipole interaction parameter ∆η on

the permanent dipole interaction parameter η for the molecules listed in Table I. Note

that the higher the value of the ∆αB
2µ2

parameter, the more easy it is to reach the regime

where the induced-dipole interaction exceeds the permanent dipole interaction. This

regime arises above the ∆η = η line, also shown in Fig. 8.

This observation puts our main result – Eq. (17) for the loci of the Stark energy

intersections – into a new perspective: First of all, the quadratic dependence of ∆η on

η is exactly what obtains for a fixed ratio ∆αB
2µ2

pertaining to a given molecule subject

to an electric field ε1 = ε2 = ε, cf. Fig. 8. It follows that the quantum dynamics

induced by an electric field ε (of arbitrary time dependence) will be also constrained

to lines with slope two in a double-logarithmic representation of the (η,∆η) plane

(such as the one in Fig. 4), i.e., parallel to the intersection loci. This motivates
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FIG. 8: Nomogram for the dependence of the induced dipole interaction parameter ∆η on

the permanent dipole interaction parameter η as given by eq. (18) for the set of molecules

listed in Table I. Also shown are the ∆η = η line (dashed), above which the induced-dipole

interaction exceeds the permanent dipole interaction, and the dependence of ∆η on η for a

sampling of values of k (which label the grey lines).

assigning the index k to molecules according to

k =
η

2
√

∆η
=

√
∆αB√

2µ
(19)

which is listed in Table I for the choice molecules. The dependence of ∆η on η for se-

lected values of k is included in Fig. 8. Depending on whether the k index is (nearly)

integer or, say, (nearly) half-integer, the resulting dynamics will be qualitatively dif-

ferent. Whereas in the former case, an increase in the field strength will drive the

system into the intersections, in the latter case the intersections will be avoided. We

note that the ground state never partakes in any intersections.
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Yet another intriguing feature of the intersections is their apparent connection

to supersymmetry. At the loci of the first order intersections, ∆η = η2/4, see eq.

(17) with k = 1, the eigenproperties of Hamiltonian (5) were previously derived

analytically in closed form via the apparatus of supersymmetric quantum mechanics

(SUSY QM) [57, 58]. The analytic solution was obtained for a class of states (stretched

states, with M = J̃) for a particular ratio of the interaction parameters, namely for

∆η

η2
=

1

4(M + 1)2
(20)

which yields ∆η = η2/4 for M = 0. We emphasize that both η and ∆η must be

nonzero in order for the analytic solutions to exist, which means that these are not

available for either the permanent or induced dipole interaction acting alone.

As an example, we list the analytic SUSY results for the energy, orientation,

and alignment of the ground state along the loci of the first order intersection, ∆η =

η2/4,

E0

B
= −η

2

4
= −∆η

〈cos θ〉0 = coth η − 1

η

〈cos2 θ〉0 = 1 +
2

η2
− 2 coth η

η
(21)

all of which are reproduced quantitatively by our numerical results; the latter two are

shown in Fig. 5b,c.

Hence our present work provides an additional insight, namely that the con-

dition for the existence of an analytic solution for the ground state coincides with

the condition for the intersection loci of the first and second excited states of the

underlying combined-fields Hamiltonian.
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[15] M. Härtelt and B. Friedrich, “Directional states of symmetric-top molecules produced

18



by combined static and radiative electric fields,” J. Chem. Phys., vol. 128, p. 224313,

2008.

[16] L. Holmegaard, J. H. Nielsen, I. Nevo, and H. Stapelfeldt, “Laser-Induced Align-

ment and Orientation of Quantum-State-Selected Large Molecules,” Phys. Rev. Lett.,

vol. 102, p. 23001, 2009.

[17] N. Owschimikow, B. Schmidt, and N. Schwentner, “State selection in nonresonantly

excited wave packets by tuning from nonadiabatic to adiabatic interaction,” Phys. Rev.

A, vol. 80, p. 53409, 2009.

[18] Y. Ohshima and H. Hasegawa, “Coherent rotational excitation by intense nonresonant

laser fields,” Int. Rev. Phys. Chem., vol. 29, pp. 619–663, 2010.

[19] E. Gershnabel and I. Averbukh, “Deflection of Field-Free Aligned Molecules,” Phys.

Rev. Lett., vol. 104, 2010.

[20] N. Owschimikow, F. Königsmann, J. Maurer, P. Giese, A. Ott, B. Schmidt, and

N. Schwentner, “Cross sections for rotational decoherence of perturbed nitrogen mea-

sured via decay of laser-induced alignment,” J. Chem. Phys., vol. 133, p. 044311, 2010.

[21] N. Owschimikow, B. Schmidt, and N. Schwentner, “Laser-induced alignment and

anti-alignment of rotationally excited molecules,” Phys. Chem. Chem. Phys., vol. 13,

p. 8671, 2011.
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