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Abstract
Background
14-3-3 proteins are considered master regulators of many signal
transduction cascades in eukaryotes. In plants, 14-3-3 proteins
have major roles as regulators of nitrogen and carbon metabolism,
conclusions based on the studies of a few specific 14-3-3 targets.

Results
In this study, extensive novel roles of 14-3-3 proteins in plant
metabolism were determined through combining the parallel analyses
of metabolites and enzyme activities in 14-3-3 overexpression
and knockout plants with studies of protein-protein interactions.
Decreases in the levels of sugars and nitrogen-containing-compounds
and in the activities of known 14-3-3-interacting-enzymes were
observed in 14-3-3 overexpression plants. Plants overexpressing
14-3-3 proteins also contained decreased levels of malate and citrate,
which are intermediate compounds of the tricarboxylic acid (TCA)
cycle. These modifications were related to the reduced activities
of isocitrate dehydrogenase and malate dehydrogenase, which are
key enzymes of TCA cycle. In addition, we demonstrated that 14-3-3
proteins interacted with one isocitrate dehydrogenase and two malate
dehydrogenases. There were also changes in the levels of aromatic
compounds and the activities of shikimate dehydrogenase, which
participates in the biosynthesis of aromatic compounds.
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Conclusion
Taken together, our findings indicate that 14-3-3 proteins play roles as
crucial tuners of multiple primary metabolic processes including TCA
cycle and the shikimate pathway.

Background
14-3-3 proteins are known to regulate diverse processes via binding
phosphorylated target proteins in all eukaryotes [1-5]. Although
hundreds of potential 14-3-3-interacting proteins have been identified
[1,5], there have been limited studies that confirm in vivo interactions
and/or elucidate the regulating functions of 14-3-3 proteins [6-10].
The most intensively characterized 14-3-3 target proteins are nitrate
reductase and H+-ATPase. 14-3-3 proteins activate H+-ATPase [11] and
inhibit nitrate reductase activity [12]. Our previous study suggests that
three 14-3-3 isoforms (kappa, chi and psi) also play important roles in
nitrogen and sulfur metabolic processes by regulating the activities of
phosphoenolpyruvate carboxylase and O-acetylserine lyase [13].
Plant 14-3-3 proteins are mainly thought to be regulators of carbon and
nitrogen metabolism [2]. However, this assumption is based on studies
of only a few target proteins, such as nitrate reductase and sucrose-
phosphate synthase [14]. Nitrate reductase is phosphorylated in the
dark by the calcium-dependent protein kinase (CDPK) and the sucrose
non-fermenting related kinase 1 (SnRK1) that initiates the interaction
of the enzyme with the 14-3-3 proteins and its inactivation. In the light,
nitrate reductase is dephosphorylated by a protein phosphatase 2A,
leading to the dissociation of the 14-3-3 and the activation of nitrate
reductase [15-18]. In carbon metabolism, some carbon metabolic
enzymes such as sucrose phosphate synthase [19], and the dual function
protein 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase [20], have
been identified as interacting targets of 14-3-3 proteins. The functional
relevance of 14-3-3 proteins in the regulatory mechanism of their
targets, however, is still not clear. Considering the hundreds of possible
14-3-3 target proteins revealed through multiple screening studies, the
roles so far described are likely to be only a small part of the functions
of 14-3-3 proteins [5,13,21].
Metabolite profiling is a powerful tool that has contributed to the
understanding of plant physiology, including phenotypic differences,
gene annotations, metabolite regulation, and characterization of stress
responses [22,23]. Moreover, the integration of metabolomics with other
'omics,' such as genomics, enzymomics, and interactomics, leads not
only to construction of metabolic networks but also to understanding
the roles particular proteins play within the metabolic network [24,25].
In this study, by combining metabolomics and genetical, enzymological,
biochemical, and molecular approaches, we were able to draw a
comprehensive map of the functional roles 14-3-3 proteins play in
essential metabolic processes.
Our study further confirms that 14-3-3 proteins are important regulators
of both nitrogen and carbon metabolic processes. Specifically, we show
that 14-3-3 proteins play roles to control the tricarboxylic acid (TCA)
cycle and the shikimate pathway.
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Results
Metabolite profiling: ectopic expression of 14-3-3
proteins altered primary metabolite levels

Our previous studies demonstrated that 14-3-3 chi, kappa and psi
proteins interact with more than a hundred proteins and that these
interactions regulate the activities of some metabolic enzymes [13].
However, it remained unclear why 14-3-3 proteins interact with so many
proteins and what their true targets are in planta. To comprehend the
biological roles of 14-3-3 proteins, metabolic profiling was performed
on plants overexpressing a 14-3-3 protein (14-3-3 ox) and on previously
confirmed 14-3-3 kappa knockout plants (kappa-KO), 14-3-3 chi
knockout plants (chi-KO) and 14-3-3 psi RNAi plants (psi-RNAi) that
showed 70% reduction of endogenous 14-3-3 psi expression [13]. 14-3-3
ox plants with 14-3-3 contents of at least two times more than wild type
in planta were used [13]. Long day (16 h light/8 h dark) plate-grown
plants were divided into shoots and roots, and changes in their levels of
primary metabolites relative to wild type plants were determined using
GC-TOF-MS (gas chromatography-time of flight-mass spectrometry).
To visualize the metabolomic changes in 14-3-3 ox and KO plants,
principal component analysis (PCA) was conducted using metabolite
profile data matrix to plot the samples' distribution. 14-3-3 kappa-ox,
chi-ox, and psi-ox were distributed in distinguishable clusters, with
kappa-ox having the most significantly different metabolite profile
compared to wild type (Figure 1). The subsequent supervised method,
orthogonal projections to latent structures-discriminant analysis (OPLS-
DA) reconfirmed that 14-3-3 ox plants have different metabolic profiling
patterns compared to wild type (Figure 1). The scatter plot showed
that the metabolites, such as amino acids, TCA intermediate and
carbohydrates, of 14-3-3 kappa-ox were clearly distinguishable from
that of 14-3-3 kappa-KO and wild type (Figure 2A); and the chi-ox plants
showed similar trends of metabolites distribution as 14-3-3 kappa-ox
(Figure 2B).

Figure 1
The OPLS-DA score scatter plots of three 14-3-3 overexpressing
and wild type samples for (A) shoots and (B) roots. Each point
represents an independent plant sample in the score scatter plots. We
used 55 shoots and 56 roots for the analysis. (A) The OPLS-DA model for
shoot samples shows three significant components, with R2X, R2Y and
Q2Y values of 0.37, 0.67 and 0.41, respectively. (B) The OPLS-DA model
for root samples shows three significant components, with R2X, R2Y and
Q2Y values of 0.30, 0.50 and 0.23, respectively. Black square, wild type;
blue diamond, kappa-ox; yellow triangle, chi-ox; green circle, psi-ox.

Figure 2
The OPLS-DA score scatter plots (left) and loading scatter plots
(right) of shoot samples of (A) kappa-ox and kappa-KO (B) chi-
ox and chi-KO. Wild type samples were used as controls. Each point
represents an independent plant in the score scatter plots and an
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individual metabolite peak in the loading plots. (A) The OPLS-DA model
of kappa samples shows two significant components, with R2X, R2Y
and Q2Y values of 0.53, 0.95 and 0.65, respectively. (B) The OPLS-DA
model of chi samples shows three significant components, with R2X,
R2Y and Q2Y values of 0.31, 0.67 and 0.41, respectively. These models
were validated using analysis of variance of cross-validated predictive
residuals (CV-ANOVA) (pCV < 0.01). (Left) Black square, wild type; blue
diamond, kappa-ox; pale-green star, kappa-KO; yellow triangle, chi-ox;
green circle, psi-ox; pink-inverted triangle, chi-ox. (Right) Pale-green
circle, amino acids; orange diamond, TCA intermediates; blue star,
metabolites that consists of CHON-elemental composition; pink square,
metabolites that consists of CHO-elemental composition; gray triangle,
unclassified peaks. Number of biological replicates: wild type, n = 6;
kappa-ox, n = 16; kappa-KO, n = 6; chi-ox, n = 16; chi-KO, n = 6; psi-ox,
n = 17; psi-RNAi, n = 6. pCV, p-value of the probability level of the F-test
in each model.

The 14-3-3 ox lines and KO lines had clear alterations of many
metabolites (Table 1 and Additional file 1). Twelve metabolite contents
were significantly modified in the roots; and twenty five, in the shoots
(Table 1). 14-3-3 chi-ox and 14-3-3 kappa-ox roots had decreased levels
of some amino acids, such as alanine, phenylalanine and glutamate,
compared to wild type but fewer metabolite changes were found in
the roots of 14-3-3 psi-ox and KO plants for all three 14-3-3 proteins.
Interestingly, the changes of metabolites in the shoots were more
pronounced-the levels of many metabolites that decreased in 14-3-3
ox shoots increased in KO shoots (Table 1). Metabolites differentially
regulated in 14-3-3 ox shoots were divisible into four groups. First, many
amino acids, including alanine, glycine, and lysine, decreased in 14-3-3
ox plants. Second, sugar levels decreased in 14-3-3 ox lines. Third,
metabolite contents of TCA cycle, such as malate and citrate, decreased
in 14-3-3 ox plants. However, levels of α-ketoglutarate increased
in kappa-ox but decreased in psi-ox. Fourth, metabolites related to
the shikimate pathway were altered. The contents of phenylalanine
decreased in 14-3-3 kappa-, chi- and psi- ox lines. In addition, tyrosine
amount decreased in kappa ox plants and the contents of shikimate
increased in kappa KO plants (Table 1). From these results, it can be
hypothesized that 14-3-3 proteins are involved in the regulation of TCA
cycle, sugar metabolism and the shikimate pathway.

Table 1
List of signature metabolites that were changed in 14-3-3
overexpression plants compared to wild type plants.
Fold change compared to wild type plants
Metabolite kappa-ox1 kappa-ox2 kappa-ox3 kappa-KO chi-ox1 chi-ox2 chi-ox3
chi-KO psi-ox1 psi-ox2 psi-ox3 psi-RNAi
Shoot #-alanine 0.613 0.741 0.628 1.401 0.809 0.912 1.002 1.642 1.662 1.296
0.999 2.087
GABA 0.682 0.527 0.440 1.271 0.627 0.886 0.647 0.836 1.101 0.571 0.578 0.758
threonic acid 0.616 0.657 0.641 1.178 1.106 1.324 0.859 0.945 0.973 0.662 0.869
1.524
phenylalanine 0.746 0.764 0.572 1.050 0.702 0.798 1.032 1.009 1.102 0.813 0.692
0.793
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1,3-diaminopropane dihydrochloride 0.546 0.496 0.413 0.875 0.439 0.485 0.478
0.711 0.761 0.574 0.473 0.552
ribose 0.747 0.618 0.415 1.501 0.651 0.929 0.809 1.110 1.358 0.876 0.740 1.102
citrate 0.825 0.735 0.733 1.154 0.444 0.654 0.538 0.799 1.222 0.595 0.670 0.712
fructose 0.439 0.447 0.479 0.771 0.335 0.419 0.426 0.904 0.670 0.500 0.461 0.914
tyrosine 0.639 0.684 0.323 0.681 1.013 1.107 1.082 0.991 1.687 1.036 0.969 1.130
glycine 0.448 0.402 0.364 0.984 0.517 0.485 0.722 0.786 1.384 0.935 0.640 0.704
aspartate 0.860 0.707 0.648 1.936 0.764 1.115 1.068 1.535 1.258 1.027 0.926
1.181
pyroglutamate 0.855 0.833 0.590 1.709 0.775 1.008 1.041 1.444 1.051 0.873 0.758
0.869
glutamate 0.921 1.044 0.766 1.734 0.850 1.089 0.934 1.375 1.132 1.046 0.935
1.083
asparagine 0.922 0.561 0.350 2.059 0.762 1.338 0.979 1.393 1.351 0.917 0.710
1.363
glutamine 0.697 0.439 0.214 0.858 0.696 0.986 0.703 0.578 1.484 1.213 0.743
1.283
glucose 0.451 0.387 0.278 0.723 0.294 0.335 0.336 0.530 0.567 0.475 0.360 0.720
lysine 0.892 0.687 0.374 1.052 0.919 1.207 1.041 1.069 1.069 0.908 0.729 1.016
sucrose 0.550 0.454 0.354 0.647 0.489 0.721 0.603 0.820 0.501 0.550 0.251 0.681
palmitate 0.813 1.013 0.984 1.193 0.878 0.922 1.069 1.231 0.986 0.919 0.804
0.904
shikimate 0.846 0.722 0.602 1.801 0.788 0.776 0.678 1.322 1.073 0.965 0.718
0.950
1,4-diaminobutane 0.609 0.561 0.484 0.953 1.333 1.522 0.986 0.973 0.912 0.775
0.917 1.758
Fructose-6-phosphate 1.156 0.800 0.678 1.655 0.642 0.879 0.942 1.108 1.089
0.967 0.771 1.071
malate 0.745 0.665 0.642 1.017 0.674 0.866 0.809 0.847 1.452 0.911 0.955 1.008
#-ketoglutarate 0.566 0.991 0.546 0.653 0.465 0.701 0.657 0.583 3.061 1.869
2.120 1.111
myo-inositol 0.746 0.969 0.562 1.487 1.251 1.039 0.805 1.275 0.971 0.933 0.865
1.181
Root #-alanine 0.662 0.830 0.647 1.331 0.649 0.617 0.703 0.891 1.009 0.621 0.749
1.153
phenylalanine 0.739 0.742 0.509 1.314 0.697 0.792 0.842 1.158 0.964 0.849 0.722
0.880
proline 2.282 1.578 0.762 1.301 2.046 1.700 1.254 1.908 2.318 1.678 3.929 2.340
pyroglutamate 0.755 0.734 0.525 1.341 0.751 0.836 0.852 1.250 0.923 0.775 0.529
0.801
glutamate 0.685 0.875 0.546 1.237 0.741 0.766 0.788 1.077 1.055 0.815 0.762
0.964
trans-Sinapate 0.447 0.751 0.409 0.697 0.616 0.553 0.516 0.567 0.643 0.690 0.470
0.723
palmitate 0.742 0.945 0.814 1.103 0.800 0.784 0.864 1.060 0.992 0.912 0.723
0.845
1,4-diaminobutane 0.960 0.935 0.767 1.645 0.635 0.736 0.857 0.985 1.112 0.794
0.933 1.209
Fructose-6-phosphate 0.780 0.751 0.538 1.251 0.780 0.860 0.790 1.059 0.906
0.779 0.598 0.908
shikimate 1.946 1.912 1.702 3.127 1.553 1.666 1.811 1.979 2.161 1.733 1.909
2.311
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myo-inositol 0.716 0.806 0.626 1.385 0.909 0.763 0.821 1.249 0.980 0.867 0.699
1.043
phytol 0.179 0.438 0.141 1.137 0.233 0.154 0.219 1.089 0.374 0.418 0.167 0.266

Bold letter indicates statistically significant in metabolite level in the
line compared to wild type (P < 0.05).

It has been reported that 14-3-3 proteins and their targets are regulated
by light [26,27]. Therefore, comparisons in the levels of metabolites of
the 14-3-3 ox lines with that of wild type were made in light and dark
conditions (Figure 3). Light and dark did not affect the overall metabolic
trends in the 14-3-3 ox plants. However, starch content decrease (with
the exception of chi-ox1 and chi-ox3) was more significant in the dark, at
least 12% more than light; whereas malate content decrease was more
significant in the light, at least 10% more than dark. The alteration of
metabolite levels in 14-3-3-ox plants was therefore independent of the
presence or absence of light. This indicates that the targets of the 14-3-3
proteins do not act in an exclusively light-dependent manner.

Figure 3
Major metabolite changes in 14-3-3 overexpression plants during
day and night. The levels of starch, sucrose, fructose, malate and
amino acids were significantly decreased in 14-3-3 overexpression plants
compared to wild type (WT). Plants were harvested 1 h before switching
light conditions. T-tests were performed to determine significant
difference compared to WT (*, P < 0.05; **, P < 0.01; ***, P < 0.001).

Activity levels of primary metabolic enzymes in 14-3-3
ox plants

The metabolite profile of 14-3-3 ox plants suggests that starch and
sugar metabolism, TCA cycle, and the shikimate pathway are the main
target processes of 14-3-3 proteins. To elucidate whether the enzymes of
these metabolic processes are regulated by 14-3-3 proteins, the activity
of 29 enzymes in 14-3-3 ox plants and wild type plants were analyzed
(Figure 4 and Additional file 2). Because the most marked metabolic
changes were found in the shoots (Table 1), only shoots were used for
determining the enzyme activities.

Figure 4
The activities of metabolic enzymes were altered in 14-3-3
overexpression plants. Enzyme activities were determined in 14-3-3
overexpression plants and wild type Col-0 plants (WT). Asterisks indicate
significant differences compared to WT as determined by t-test with n >
7 (*, P < 0.05; **, P < 0.01; ***, P < 0.001).

We consider that there was no general reformatting of photosynthesis
in 14-3-3 ox plants basing on the fact that: 1) the chlorophyll
content in 14-3-3 ox plants and wild type plants were not
significantly different (Figure 4); 2) the activities of 19 enzymes,
including phosphoglucomutase, UDP glucopyrophosphorylase, the
sucrose metabolizing enzymes glucokinase, fructokinase and β-
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fructofuranosidase, and the Calvin-Benson cycle enzymes triose
phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase and
RubisCO were not altered in the 14-3-3 ox plants (Additional file 2).
As already known from other studies [15,17,18,28], the activity of
nitrate reductase decreased and the activity of sucrose phosphate
synthase increased in 14-3-3 ox plants (Figure 4). Our previous findings
showing that the activity of phosphoenol pyruvate carboxylase decrease
and that the activity of glutamate synthase does not change in 14-3-3
ox plants [13] were confirmed in this study (Figure 4). Interestingly,
several enzymes involved in TCA cycle (malate dehydrogenase and
isocitrate dehydrogenase), or closely related to TCA cycle (glutamate
dehydrogenase and aspartate aminotransferase) displayed decreased
activities in 14-3-3 ox plants (Figure 4). The activity of citrate synthase
also decreased in some of the 14-3-3 ox lines (Additional file 2). In
addition to enzymes of TCA cycle, fructose bisphosphate aldolase
activity increased in 14-3-3 ox plants compared to wild type plants. The
decreased activity of glucose-1-phosphate adenylytransferse (Figure
4), which is involved in starch synthesis, may be responsible for the
decreased starch synthesis observed in 14-3-3 ox lines (Figure 3).

14-3-3 proteins function in the shikimate pathway
Shikimate levels significantly increased in kappa-KO compared with
wild type plants (Table 1). In addition, the enzyme activity of shikimate
dehydrogenase was significantly reduced in 14-3-3 ox plants (Figure 4).
Because shikimate dehydrogenase is essential for the biosynthesis of
aromatic compounds in plants [29], this result is in accordance with the
reduced levels of phenylalanine in the chi, kappa, and psi ox lines, of
tyrosine in the kappa-ox lines, and of phytol in the 14-3-3 ox roots (Table
1). Together, these results suggest that 14-3-3 proteins play important
roles in the regulation of the shikimate pathway.

TCA cycle regulated by 14-3-3 proteins through
protein-protein interaction

The metabolomic profiling (Table 1 and Figure 3) and the analysis of
enzyme activities in 14-3-3 ox and wild type plants (Figure 4) suggest
that TCA cycle is regulated by 14-3-3 proteins. Our previous list of
proteins found to interact with 14-3-3 proteins [13] includes two
malate dehydrogenases (At1G04410 and At5G43330), an isocitrate
dehydrogenase (At4G35650), and also an aspartate aminotransferase
(At2G30970), which altered activities in 14-3-3 ox plants. To confirm
whether these TCA cycle enzymes are direct targets of 14-3-3 proteins,
yeast two-hybrid interaction assays were performed (Figure 5). The
malate dehydrogenases and isocitrate dehydrogenase clearly interacted
with 14-3-3 kappa, chi, and psi in yeast (Figure 5), suggesting that
14-3-3 proteins control TCA cycle through interaction with its metabolic
enzymes, malate dehydrogenase and isocitrate dehydrogenase (Figure
6).

Figure 5
14-3-3 proteins interact with TCA cycle enzymes in yeast.
Three 14-3-3 isoforms interact with isocitrate dehydrogenase (ICDH,



8 Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic
processes

At4G35650) and two malate dehydrogenases (MDH1, At1G04410;
MDH2, At5G43330) that were previously isolated as possible targets
of 14-3-3 proteins. AC indicates a pGADT7 and BD indicates a pGBKT7
vector. The positive control and negative control were described in
methods section.

Figure 6
The schematic model of metabolic pathways that are regulated
by 14-3-3 proteins. Grey box indicates unchanged metabolites; blue
box indicates decreased metabolites in 14-3-3 overepxression plants
compared to wild type plants; no colored box indicates that metabolites
were not measured in this study; purple box (α-ketoglutarate)
indicates that some overexpression lines showed higher level of
metabolite compared to WT but others showed lower than WT. Black
letters indicate that the activities of enzymes were unchanged in
14-3-3 overexpression plants compared to WT; Blue letters indicate
that the enzyme's activity was decreased in 14-3-3 overexpression
plants; Red letters indicate that the enzyme's activity was increased
in 14-3-3 overexpression plants. AGPase, Glucose-1-phosphate
adenylyltransferase; INV, β-fructofuranosidase; SPS, sucrose-phosphate
synthase; UGP, UTP-glucose-1-phosphate uridylyltransferase; PGM,
Phosphoglucomutase; PFK, 6-phosphofructokinase; cFBP, Fructose-
bisphosphatase; TK, Transketolase; GAPDH-NADP, Glyceraldehyde-3-
phosphate dehydrogenase (NADP+) (phosphorylating); TPI, Triose-
phosphate isomerase; FBP Ald, Fructose-bisphosphate aldolase; PFK,
6-phosphofructokinase; PEPC, Phosphoenolpyruvate carboxylase; PK,
Pyruvate kinase; Shikimate DH, Shikimate dehydrogenase; Ala AT,
Alanine-glyoxylate transaminase; CS, Citrate synthase; NAD-ICDH,
Isocitrate dehydrogenase (NAD+); NAD-MDH, Malate dehydrogenase;
GLDH, Glutamate dehydrogenase; NR, Nitrate reductase; ASP AT,
Aspartate transaminase.

Discussion
Numerous studies have shown that there are more than a hundred
potential 14-3-3 target proteins in plants [3-5,30-34]. In vivo, the
cellular distribution of 14-3-3 proteins are altered depending on the
interactions with cellular clients [35]. There are numerous examples of
14-3-3 proteins interacting with and regulating various target proteins
in different subcellular compartments including cytosol, nucleus,
chloroplast as well as mitochondria [36-40]. These results suggest
that 14-3-3 proteins localize in various subcellular compartments and
play diverse roles in many cellular processes. To better understand
the multi-faceted roles of 14-3-3 proteins in planta, a combination of
metabolomics, enzyme activity analysis, and protein-protein interaction
analysis was used in this study.
The interaction between nitrate reductase and 14-3-3 proteins was
demonstrated in various plant species using multiple methods [15,16].
However, the decrease in nitrate reductase activity upon interaction
with 14-3-3 proteins has only been measured in vitro, and the direct
influence of 14-3-3 proteins on nitrogen metabolite levels in planta
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has not been clearly reported [16]. Through metabolomics, we found
decreased levels of nitrogen containing metabolites, such as glycine,
GABA, glutamine and asparagine (Table 1) possibly resulting from the
alteration of nitrogen metabolic enzymes by 14-3-3 proteins (Figure 4)
[41,42].
In addition to the regulation of nitrate reductase, 14-3-3 proteins control
nitrogen metabolism through interaction with glutamine synthetase (GS)
enzyme [8]. In Medicago truncatula, degradation of GS2 by proteolysis
was related to the binding of 14-3-3 proteins to phosphorylated GS2
[43]. In contrast, in Brassica napus, 14-3-3 proteins were shown to
positively regulate activity and to negatively regulate degradation of the
cytosolic isoform of GS1 [38,43]. In healthy plants, the plastid-localized
GS2 isoform is predominant compared to GS1 isoform. However, during
senescence, GS2 degrades with the chloroplast and GS1 becomes
the predominant isoform in leaves [44]. In this study, as well as in the
previous study using 14-3-3 ox lines ([13]), no significant changes of GS
activities were detected (Additional file 2). There are several possible
explanations for the unchanged activity of GS in our conditions: 1)
the change of GS activity in 14-3-3 ox plants was not great enough to
be detected by our method; 2) the amount of GS proteins in 14-3-3 ox
plants was a limiting factor and/or there was enough 14-3-3 protein in
wild type plants to saturate GS activity; 3) alterations of metabolites
related to nitrogen metabolism were not due to an alteration of GS
activity but a disruption of the carbon-nitrogen balance, since drastic
changes in soluble sugar and starch levels were observed in 14-3-3 ox
lines (Table 1) [45-47]; 4) the method used to measure total GS activity
in this study was unable to discriminate GS1 and GS2, or distinguish
whether the balance between GS1 and GS2 had been modified in the
14-3-3 ox plants.
As photoperiodism is associated with drastic gene expressions, enzyme
activities and metabolite level changes, samples were analyzed at
time points most representative of these two periods: one hour before
onset of dark when plants have accumulated maximum photosynthate
such as starch, and one hour before onset of light when they have
remobilized photosynthate to ensure normal growth and development.
Since metabolic profiles at these two time points did not change overall
metabolic trend, we can exclude photoperiodism as a factor affecting the
reduction of carbohydrates in 14-3-3 ox plants.
The reduction of starch, sucrose and glucose levels in 14-3-3 ox plants
(Table 1 and Figure 3) indicates that 14-3-3 proteins regulate activities
of enzymes related to carbohydrate metabolism. 14-3-3 proteins bind to
several enzymes of carbohydrate metabolism, such as sucrose phosphate
synthase, trehalose-6-phosphate synthase and 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase [19,20,48]. Our results suggest
that overexpression of 14-3-3 proteins in planta is associated with the
modification of these carbohydrate metabolic enzymes and the decrease
of sucrose and starch levels in leaves. In addition, sucrose phosphate
synthase has several putative phosphorylation sites which regulate its
activities by interacting with 14-3-3 proteins [8,19]. Although effect by
other levels of regulation such as feedback control cannot be ignored,
we hypothesize that change in soluble sugar levels in 14-3-3 ox plants
resulted from the regulation of carbohydrate metabolic enzymes by
14-3-3 proteins and the lower fluxes in TCA cycle.
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In this study, detailed metabolomics analysis clearly show that
overexpression of 14-3-3 proteins is associated with drastic changes
in the levels of TCA-intermediates (Table 1). The modifications in
the levels of these TCA cycle intermediates coincide with decreased
malate dehydrogenase and isocitrate dehydrogenase activities (Figure
4). Moreover, we found that malate dehydrogenase and isocitrate
dehydrogenase are interacting partners of 14-3-3 chi, kappa, and
psi (Figure 5), with putative 14-3-3 binding motifs. Another study
identified a different form of isocitrate dehydrogenase isoform as a
possible interacting partner of 14-3-3 proteins [49]. The modifications
of metabolites involved in TCA cycle by 14-3-3s were due to alterations
in the activities of several TCA metabolic enzymes. It is highly likely
that the interactions of 14-3-3 proteins and two TCA key enzymes,
malate dehydrogenase and isocitrate dehydrogenase, are the crucial
factor controlling these enzyme activities. Considering these results,
we conclude that 14-3-3 proteins regulate TCA cycle through protein-
protein interaction with several enzymes of TCA cycle.
In addition to TCA cycle, our findings show that overexpression of 14-3-3
proteins deregulate the shikimate pathway, which plays a pivotal role in
the production of precursors for aromatic compounds including aromatic
amino acids in plants [50]. The activity of shikimate dehydrogenase was
down-regulated in 14-3-3 ox lines (Figure 4), and the shikimate level was
higher in 14-3-3 kappa-KO plants (Table 1). The decrease of tyrosine and
phenylalanine in 14-3-3 ox plants (Table 1) also supports the notion that
14-3-3 proteins affect the shikimate pathway.
Plant metabolic processes are complicate, delicate and tightly linked
reciprocally. Plants therefore need multi-functional players that can
modulate multiple processes as well as the steps in each process and
14-3-3 proteins are one of the best candidates for this role. 14-3-3
proteins reversibly interact with selectively phosphorylated form of
proteins and are involved in affecting targets to function in multiple
ways such as confirmation change, scaffolding, and altering cellular
location [2]. This is why 14-3-3 proteins have hundreds of target
proteins and their interactions are found ubiquitously. In this study,
we took established individual metabolic processes such as nitrogen
metabolism, and aimed to uncover the ubiquitous roles 14-3-3 proteins
play in the tightly linked metabolic processes. In 14-3-3 ox plants,
reduction of starch levels may be due to decreased activity of Glucose-1-
phosphate adenylyltransferase (AGPase). AGPase catalyzes the synthesis
of ADP-Glc, the glucosyl donor used by starch synthases for starch
biosynthesis [51], and regulates carbon storage in Arabidopsis [52].
AGPase is subjected to transcriptional regulation in diverse tissues
and additional regulatory mechanisms at the posttranscriptional
level [53]. The activities of starch metabolic enzymes are modulated
by effector molecules which are often metabolic intermediates, or
by posttranslational protein modification like phosphorylation [52].
Recent studies implicate that reversible protein phosphorylation play
a critical role in the regulation of starch related enzymes such as
AGPase [54,55]. Phosphorylated AGPase is possibly a target of 14-3-3
proteins and the binding can be a way to control its activity. From our
study, we conclude that modification of AGPase activity is caused by
drastic changes of carbon compounds in the 14-3-3 ox plants and the
binding of 14-3-3 proteins with the phosphorylated form of the AGPase.



Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic
processes

11

As a consequence, 14-3-3 ox plants have greatly reduced levels of
key metabolites in glycolysis leading to the decrease in carbohydrate
supply to TCA cycle and shikimate pathway. Assimilation of ammonium
to glutamine and glutamate is also negatively regulated in 14-3-3 ox
plants, also suppressing supply to TCA cycle (Figure 6). In our study,
we revealed that malate dehydrogenase and isocitrate dehydrogenase
are direct targets of 14-3-3 proteins (Figure 5). This result suggests a
mechanism in which 14-3-3 proteins bind and regulate key enzymes of
TCA cycle through altering conformational change or scaffolding via
protein-protein interaction. In addition, the decrease of glutamine and
glutamate content due to ubiquitous interaction with 14-3-3 proteins and
nitrate reductase and GS limit input to TCA cycle (Figure 6). With these
results, we theorize that the ubiquitous interactions between 14-3-3
proteins and multiple metabolic enzymes restrict input to TCA cycle and
shikimate pathway and consequently, TCA cycle itself is modulated by
14-3-3 protein via protein-protein interaction.

Conclusions
Integration of metabolome data with a panel of enzyme assays proved
to be a powerful tool to further our understanding of the function of
14-3-3 proteins in the regulation of primary metabolism in Arabidopsis.
We confirmed that 14-3-3 proteins modulate activities of key enzymes
of carbon and nitrogen metabolism and that these modifications were
associated with drastic changes in the carbon/nitrogen balance in
plants. In this study, we provide a novel functional link between 14-3-3
proteins and TCA cycle. The modification of the multiple metabolites
involved in TCA cycle may have occurred due to the modification of
enzyme activities of TCA cycle. Furthermore, our findings suggest that
14-3-3 proteins regulate TCA cycle through their interactions with
two key enzymes of TCA cycle and that 14-3-3 proteins regulate the
shikimate pathway and thus the production of aromatic compounds.

Methods
Plant materials and growth condition

Plants were grown on low salt media (LSM; 1.25 mM KNO3, 2 mM
Ca(NO3)2, 0.75 mM MgSO4, 0.5 mM KH2PO4, 50 μM H3BO3, 10 μM
MnCl, 2 μM ZnSO4, 1.5 μM CuSO4, 0.075 μM NH4Mo7O24, 74 μM Fe-
EDTA, pH 5.7) with 1% sucrose and 0.6% Seakem agarose at 22°C
with 16 h daylight at 150 μmol m-2 s-1 [56]. The all Arabidopsis plants
used in this study have the same ecotype background, Col-0. Plants
overexpressing 14-3-3 kappa, 14-3-3 chi and 14-3-3 psi and the knockout
mutants of 14-3-3 genes were used as described [13]. For metabolomic
profiling and enzyme activity analysis, three days after germination,
plants were transferred onto new LSM plates and grown vertically. To
reduce the effect by the position of plates in the growth chamber, plates
were moved every two days. After two weeks, shoots and roots were
harvested separately.
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Metabolite profiling and statistical analysis
Metabolite profiling using GC-TOF-MS was performed as described in
[57]. Briefly, three of the harvested shoot or root samples were pooled as
a replicate. Six replicates per line were used for metabolite profiling. A
total of 5 mg fresh weight of the shoot and root samples were subjected
to derivatization. An equivalent 6 μg of the derivatized samples were
injected into the GC-MS instrument. The non-processed data obtained
were pre-processed using the hierarchical multivariate curve resolution
method [58].
SIMCA-P +12 software (Umetrics, Umeå, Sweden) were used for
multivariate statistical analyses (i.e., PCA and OPLS-DA) and the
R statistical environment http://cran.r-project.org for other statistical
analyses such as the cross-contribution compensating multiple standard
normalization (CCMN) and calculation of a false discovery rate
(FDR). The PCA and OPLS-DA models were used to visualize the high-
dimensional data and determine the metabolomic variation between the
control (wild type) and the mutants (ox and/or KO). PCA was carried out
to show how different variables (metabolites) change in relation to each
other. OPLS-DA, which is as an extension of the supervised multivariate
regression method PLS, was employed to remove some variation which
was uncorrelated to class separation.
Outliers in the GC-MS data were identified using missing value robust
PCA [59] and removed prior to further analysis. Metabolite abundance
estimates were log transformed and scaled to unit-variance where
applicable. Analytical bias was monitored via 11 internal, isotope-labeled
standards and removed using the CCMN [60]. To validate OPLS-DA
models, we applied analysis of variance of cross-validated predictive
residuals (CV-ANOVA) in the SIMCA-P software [61].
Differentially abundant metabolites were identified using the LIMMA
package [62]. Briefly, a linear model was fitted to each metabolite to
compare the levels of wild type with levels in the mutants. Significant
changes were declared for metabolites with a FDR level < 0.05 [63].
The day and night change of metabolites were analyzed as described
[64,65]. Three of the harvested shoots were pooled as a replicate and
six to eight replicates per genotype were analyzed. For day condition,
long-day-grown (16 h light/8 h dark) plants were harvested 1 hour
before offset of light and for night condition the plants were harvested
1 hour before onset of light. All data sets were analyzed for statistical
differences compared to wild type by t-test using Prism 5 program
(GraphicPad software, La Jolla, USA).

Enzyme and metabolite assays
Chemicals were purchased as described in [66]. Fifteen of the harvested
shoots were pooled as a replicate and six to eight replicates per
genotype were analyzed. For enzyme measurements, aliquots of 20
mg frozen FW were extracted by vigorous mixing with extraction
buffer [65]. 6-phosphofructokinase, citrate synthase, isocitrate
dehydrogenase, and malate dehydrogenase were assayed as described
in [65]. Ribulose-bisphosphate carboxylase was assayed as described
in [67]. Triose-phosphate isomerase was assayed as described in [68].
Phosphoglucomutase was assayed as described in [69]. UTP-glucose-1-

http://cran.r-project.org
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phosphate uridylyltransferase was assayed as described [70]. Fructose-
bisphosphate aldolase was assayed by incubating crude extract or
dihydroxyacetone phosphate standards for 20 min in a freshly prepared
medium containing 0 or 5 mM fructose-1,6-Bisphosphate, 1 U ml-1 triose-
P isomerase, 2 U ml-1glycerol-3P dehydrogenase, 0.3 mM NAD+, 5 mM
MgCl2, 1 mM EDTA, 0.05% Triton X 100, and 100 mm tricine buffer,
pH 8.5. The reaction was stopped by addition of an equal volume of 0.5
M HCl. After incubation for 10 min at RT and neutralization with 0.5
M NaOH, the glycerol-3-phosphate produced was determined using
the glycerol-3-phosphate/dihydroxyacetone phosphate-based cycling
protocol described in [66]. All other enzymes assays in this study were
performed as described in [66]. The statistical differences between each
genotype and wild type were analyzed by t-test.

Protein-protein interaction assays
The interaction between three 14-3-3 isoforms (14-3-3 chi, At4G09000;
14-3-3 kappa, At5G65430; 14-3-3 psi, At5G38480), and two malate
dehydrogenases (At1G04410 and At5G43330) and an isocitrate
dehydrogenase (At4G35650) were confirmed using GAL4-based
Matchmaker yeast two-hybrid system (Clontech). Target proteins were
cloned into pGADT7 (Clontech) with the GATEWAY cassette (Invitrogen)
and then transformed into yeast strain AH109 using the lithium acetate-
mediated method. The 14-3-3 proteins were cloned into pGBKT7 with
the GATEWAY cassette (Invitrogen) and then transformed into Y187
and were confirmed that there were no autocatalytic activities. GFP
and empty vectors were used as a negative control for protein-protein
interaction [71]. Skip19 (At4G05460) and ASK2 (At5G42190) were
used as a positive control for protein-protein interaction [72]. Yeast
transformation and protein-protein interaction assays on selective media
(Synthetic Dropout (SD)-Leu/-Trp/-His/-Ade and SD-Leu/-Trp+X-α-gal)
were performed according to the manufacturer's instructions.
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14-3-3 ox: 14-3-3 overexpression line; chi-KO: 14-3-3 chi knockout line;
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