Supporting Information

For

Synthetic Access to a Hydrocarbon-soluble Trifluorinated Ge(II) Compound and its Sn(II) Congener

Prinson P. Samuel¹, Yan Li², Herbert W. Roesky¹*, Veniamin Chevelkov³, Adam Lange,³ Anja Burkhardt⁴ and Birger Dittrich⁵*.

¹Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077, Göttingen, Germany

²State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China

³Research group Solid-State NMR spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany

⁴Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607, Hamburg, Germany

⁵Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146, Hamburg, Germany

S1. ¹⁹F Solid-state NMR

Solid-state magic-angle spinning (MAS) NMR spectra were recorded at temperatures of 10-20 °C on a 14.1 T (600 MHz ¹H Larmor frequency) wide-bore Bruker instrument. Micro-crystals of compounds **3** and **4** were packed under inert atmosphere into 4.0-mm MAS rotors. The spectra were recorded at MAS frequencies of 3 kHz, 4 kHz, 6 kHz and 10.5 kHz for compound **3** and MAS frequencies of 4 kHz, 6 kHz, 10.5 kHz and 11.5 kHz were employed for compound **4**. Initial ¹⁹F magnetization was created by direct ¹⁹F excitation or by ¹H–¹⁹F cross-polarization (CP) with 50 or 500 µs contact time. The spectra recorded with different initial ¹⁹F magnetization show the same pattern. Proton decoupling was applied during acquisition using the SPINAL-64 scheme with RF field amplitudes in the range of 50-55 kHz. The inter-scan delay was set to 4 s. Chemical shifts were calibrated externally using a C₆F₆ sample as a reference for ¹⁹F (-164.9 ppm).

The spectra recorded at slow spinning rates (e.g. Figures S1 B and S1 D) show a number of spinning side bands, reflecting the presence of sizeable anisotropic interactions, namely ¹⁹F-¹⁹F dipolar couplings and chemical shift anisotropy, determined by the anisotropy of the electronic environment of the observed nuclei. Compound **4** exhibits more spinning side bands, which reflects stronger effective anisotropic interactions. This can be due to a larger anisotropy of the electronic interactions. The line width of the center band at an MAS rate of 10.5 kHz is 243 Hz and 1581 Hz for compounds **3** and **4**, respectively. The broader line width of compound **4** might reflect higher structural heterogeneity and/or the presence of different conformers.

Figure S1. ¹⁹F direct excitation spectra of compound **3** (A and B) and compound **4** (C and D) recorded at MAS frequencies of 10.5 kHz and 4 kHz on a 600 MHz spectrometer.

S2. Crystallographic Information

Parameters	3	4
CCDC No.	965765	965766
Empirical formula	$C_{15}H_{25}N_2F_3Ge$	$C_{15}H_{25}N_2F_3Sn$
Formula Weight	362.98	408.84
Crystal system	orthorhombic	monoclinic
Space group	P2 ₁ 2 ₁ 2 ₁	$P 2_1/c$
Unit cell dimensions	a = 9.3477(11) Å	a = 9.573(5) Å
	b = 10.5608(12) Å	b = 17.473(4) Å
	c = 17.8086(19) Å	c = 11.177(12) Å
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 90$ °	$\beta = 105.99(5)^{\circ}$
	$\gamma = 90$ °	$\gamma = 90$ °
Volume, Z	1758.1(3) Å ³ , 4	1797(2) Å ³ , 4
Density (calcd)	1.367 g/cm^3	1.510 g/cm^3
Absorption coefficient	1.766 mm ⁻¹	0.986 mm ⁻¹
F (000)	752	824
Crystal size/mm	0.98 x 0.49 x 0.21	0.32 x 0.09 x 0.09
θ range for data collection	2.242 to 27.546 °	1.930 to 21.793 °
Limiting indices	-12≤ <i>h</i> ≤11,-13≤ <i>k</i> ≤13,-23≤ <i>l</i> ≤21	-11≤ <i>h</i> ≤11,-20≤ <i>k</i> ≤20,-13≤ <i>l</i> ≤12
Reflections collected	15229	9783
Independent reflections	$4054 (R_{\rm int} = 0.0402)$	$3192 (R_{int} = 0.0488)$
Completeness to θ	$100 \% (\theta = 25.241^{\circ})$	98.3 %(θ = 21.835 °)
Refinement method	Full-matrix least-squares on F^2	Full - matrix least - squares on F^2
Data/restraints/parameters	4054 / 177 / 256	3192 / 106 / 251
Goodness - of - fit on F^2	1.041	1.072
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.0281, wR2 = 0.0566	R1 = 0.0362, wR2 = 0.0980
R indices (all data)	R1 = 0.0360, wR2 = 0.0587	R1 = 0.0377, wR2 = 0.0993
Largest diff. peak and hole	0.274 and -0.190 e.Å ⁻³	0.410 and -0.457 e.Å ⁻³

 Table S1. Crystal data and structure refinement parameters for compounds 3, and 4.