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Abstract
GabiPD is an integrative plant “omics” database that has been
established as part of the German initiative for Genome Analysis
of the Plant Biological System (GABI). Data from different “omics”
disciplines are integrated and interactively visualized. Proteomics is
represented by data and tools aiding studies on the identification of
post-translational modification and function of proteins. Annotated
2D electrophoresis-gel images are offered to inspect protein sets
expressed in different tissues of Arabidopsis thaliana and Brassica
napus. From a given protein spot, a link will direct the user to
the related GreenCard Gene entry where detailed gene-centric
information will support the functional annotation. Beside MapMan-
and GO-classification, information on conserved protein domains
and on orthologs is integrated in this GreenCard service. Moreover,
all other GabiPD data related to the gene, including transcriptomic
data, as well as gene-specific links to external resources are provided.
Researches interested in plant protein phosphorylation will find
information on potential MAP kinase substrates identified in different
protein microarray studies integrated in GabiPD’s Phosphoproteomics
page. These data can be easily compared to experimentally identified
or predicted phosphorylation sites in PhosPhAt via the related Gene
GreenCard. This will allow the selection of interesting candidates for
further experimental validation of their phosphorylation.
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INTRODUCTION
Over the last few years we have witnessed the “coming of age”
of many “omics” technologies in the plant field. This has led to
valuable resources in the field of transcriptomics (Zimmermann et
al., 2004), metabolomics (Tohge and Fernie, 2009), and last but not
least proteomics (Schulze and Usadel, 2010). Moreover new “omics”
disciplines spring to life, e.g., “fluxomics” (Schwender, 2011) or
“enzymomics” (Gibon et al., 2004).
Transcriptomics data has been mined extensively using not only simple
differential expression analysis but also correlation approaches which
have led to a better understanding of many different processes such
as starch metabolism or cell wall biosynthesis (Usadel et al., 2009a).
However, it is significantly more difficult to integrate, e.g., metabolite
and transcript data (Fernie and Stitt, 2012). As the underlying
hypothesis about co-regulation for candidate gene finding relies on the
fact that transcript levels can serve as a proxy for protein level and
that the encoded proteins would interact, we should expect even more
powerful approaches once more and more complete proteomic data
becomes publicly available.
Unfortunately, these co-regulation approaches rely on close to full
genomic coverage, which is currently still difficult to achieve in
proteomic sciences despite many promising developments in the last
few years (Heazlewood, 2011). As a consequence, it might help to better
integrate the proteomic data at hand with data from other “omics”
disciplines to facilitate the best use of the data that can be produced
now. Indeed some laboratories started generating data-sets comprising
more than one “omics” discipline to answer specific biological questions.
These integrative approaches have already led to the identification
of new target genes and have enabled studies on certain pathways
(for an overview, e.g., Tohge et al., 2005; Yonekura-Sakakibara et al.,
2008; Mounet et al., 2009; Baginsky et al., 2010; Hannah et al., 2010).
However, whilst this is a promising approach, a multitude of resources is
necessary for proper data integration, analysis, and interpretation.
Data integration is one of the specialties of the Gabi Primary Database
(GabiPD Riaño-Pachón et al., 2009). As such, GabiPD constitutes a
repository and analysis platform for a wide array of heterogeneous
data in different plant species. Its strength is the extensive underlying
sequence information that helps not only to integrate between the
different “omics” disciplines, but also to bridge between different plant
species. Therefore, currently one major way to access data is in a gene-
or protein-centric way, where data can be accessed based on sequence
similarity, keywords, or simply identifiers. It is then possible to link to
other data resources.

ACCESS TO PLANT PROTEOMIC DATA IN GabiPD
The plant proteomic data that is being hosted by GabiPD is available on
a specific proteomics microsite. The proteomics pages provide access to
annotated 2D-PAGE gel images from Arabidopsis thaliana and Brassica
napus (see below), to a new Arabidopsis subcellular protein prediction
engine,and to the Phospho-proteomics page.
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Phosphoproteomics is presented as a collection of potential protein
kinase substrates of different mitogen-activated protein kinases
(MAPKs) and MAPK kinases (MAPKKs) in Arabidopsis which were
derived from protein microarray experiments (see below).
Furthermore, the GabiPD plant proteomics portal serves as a knowledge
repository by providing an overview over several important publications
and links to other plant proteomics resources and groups. Thus, it is
possible for researchers which are new to proteomics to get a quick
overview of this emerging field.

SUBCELLULAR PREDICTION BASED ON
EXPRESSION DATA

The last few years have seen a major improvement of our knowledge
about the subcellular localization of proteins based on meticulously
conducted proteomics experiments. Despite this wealth of information,
there is no experimentally determined subcellular localization for
more than half of all Arabidopsis proteins and even less information is
available for crop plants.
Therefore, prediction of protein subcellular localization remains a
necessary stop-gap. Often, this has been done by identifying signal
peptides or by analyzing the protein composition in each compartment
(see Emanuelsson et al., 2007 for an overview of these methods). That
said, we have recently established that large scale transcript expression
might help in predicting the subcellular localization of proteins targeted
to the chloroplast. Whilst so far there is only direct evidence for the
model plant Arabidopsis, transcript expression seems to contain
information about the targeting of rice proteins to plastids as well
(Ryngajllo et al., 2011). Based on the microarray experiments that were
most important for the prediction, it seems likely that protein targeting
to the chloroplast is, in this case, based upon strong coordination of
chloroplastic processes driven by the light regime or diurnal/circadian
cycles (Ryngajllo et al., 2011). Expression also seems to contain some
information about mitochondrial localization, however it is not yet
clear whether this is also driven by certain mitochondrial processes.
Based on the above mentioned findings, we developed SLocX to perform
subcellular predictions in Arabidopsis (Ryngajllo et al., 2011). In the
case of AT1G16000, e.g., we could show that, GFP studies confirmed
mitochondrial localization, as predicted by SLocX, despite an apparent
absence of an N-terminal import signal. This underlines that SLocX
might help in identifying proteins targeted by non-classical pathways.
We had initially provided a separate SLocX web resource to perform
these predictions, this resource is now also integrated into the
GreenCards view. In addition, the prediction engine now links back to
the Gabi Primary Database, so that users can further benefit from the
extensive sequence data presented there.

ANNOTATED 2DE GELS LINKED WITH GENE-
CENTRIC INFORMATION

The efficient separation, visualization, and identification of complex
protein populations are prerequisites for successful proteome analysis.
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2D electrophoresis (2DE) and subsequent mass spectrometry (MS)
to identify individual spots are classical approaches fulfilling these
requirements.
GabiPD hosts plant 2DE data providing annotated 2DE images of
eight different Arabidopsis thaliana tissues and of the 80S ribosome
(Giavalisco et al., 2005a,b) as well as of Brassica napus phloem and
xylem (Kehr et al., 2005; Giavalisco et al., 2006). The Arabidopsis
thaliana proteins were analyzed by matrix assisted laser desorption/
ionization time of flight MS peptide mass fingerprinting (Giavalisco
et al., 2005a,b) whereas the Brassica napus proteins were identified
by MS/MS (tandem MS in an electrospray ionization quadrupole time-
of-flight tandem mass spectrometer) followed by database searches
resulting in peptide fragmentation spectra (Kehr et al., 2005; Giavalisco
et al., 2006). In the case of the Arabidopsis resource, the tissue-specific
2DE images include more than 650 different proteins represented by
a few thousand spots. Whilst there are obviously fewer proteins for
the 80S ribosome, the data is also linked to the underlying graphical
Mascot reports, allowing the user to verify the obtained results. In the
case of Brassica napus, proteomics data for the xylem and phloem sap is
available, featuring about 70 and 140 proteins, respectively.
All annotated 2DE images in GabiPD are downloadable in SVG format.
This allows the users to obtain a local interactive copy of these images.
Thus, the user is able to click on individual spots and to obtain their
description as if these images were available online. Moreover, the
underlying data is available as an Excel table allowing the direct
comparison across the different tissues. In the web resource, the
annotated images are searchable by AGI codes or GenBank protein
accession codes. As a result, all images including spots of the query
protein will be listed and the protein is highlighted by a cross in each
image. Protein spots on the gel image are linked with the related
Gene GreenCards and vice versa to connect proteomic data with gene-
centric views. As an example, Figure 1A presents a 2DE gel image
of Arabidopsis leaf. AT1G33590.1, a protein annotated as “disease
resistance protein-related” was identified among many other proteins
in this gel. From the protein spot, the related Gene GreenCard (Figure
1B) is accessible, where gene-centric information is integrated, thus
supporting functional annotation. Beside all sequences related to
AT1G33590.1, MapMan- (Usadel et al., 2009b) and GO-classification
(Ashburner et al., 2000), information on conserved protein domains
and orthologs are accessible. The provided MapMan classifications
(Usadel et al., 2009b) allow the user to get a quick insight into the
potential biological function of the underlying protein, as the MapMan
ontology was specifically tailored to plants and has been designed to be
as redundancy free as possible.

FIGURE 1
Proteomic data in GabiPD. (A) 2D-PAGE gel image from A.thaliana
primary leaf at GabiPDs Proteomics pages. All protein spots identified
by MS are highlighted with red crosses. Clicking on one distinct spot
(blue cross-hair) directs the user to a more detailed description of the
related protein, i.e., a disease resistance protein-related (AT1G33590.1).
The related Gene GreenCard is accessible via the integrated GabiPD
link. (B)Gene GreenCard of AT1G33590.1 with detailed annotation
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information (GO, MapMan, etc.) and information on all GabiPD data
related to this gene, such as links to 2D PAGE-images of other A.
thaliana tissues. The integrated link to a related Affymetrix probe-set
(245768_at) directs the user to the GreenCard of this probe. (C) The
GreenCard of the Affymetrix probe-set 245768_at includes, beside
the probe description, a list of related transcriptomic experiments
where the transcript is significantly up- or down-regulated, e.g., a
salt stress experiment. The related experimental data are linked. (D)
MapManWeb user interface at the MapMan Site of Analysis displaying
the results of the salt stress transcriptomic experiment in A. thaliana.
AT1G33590.1 is up-regulated as indicated by a blue filled rectangle
representing 245768_at in the “Biotic Stress” field of the presented
“Cellular_Response_overview.”

Within the Gene GreenCard of AT1G33590.1, the user will find links to
all other GabiPD data entries related to this gene, including additional
2D gel images of other tissues where the protein is present (Figure
1B). In this case, the GreenCard entry indicates that the protein was
also identified in primary leaf and seedlings. These tissue-specific
protein expression data can be compared to transcript expression
data accessible via the gene-specific link to the Arabidopsis eFP
browser (Winter et al., 2007) in the Gene GreenCard (external links).
Transcript expression data are also accessible via the links to Affymetrix
representatives on ATH1-121501 that are integrated in the Gene
GreenCards. In the case of AT1G33590.1, this is measured by a
particular Affymetrix probe-set (245768_at, Figure 1B) which directs
the user to the sample description (Figure 1C) including a list of
related transcriptomic experiments where the transcript is up- or down-
regulated. AT1G33590.1 is up-regulated, e.g., during salt stress (Figure
1C). The whole stress experiment can be visualized in its entirety using
the MapManWeb user interface integrated into GabiPD (Figure 1D).

PROTEIN KINASE – SUBSTRATE RELATIONS ON
GabiPD’s PHOSPHOPROTEOMICS PAGE

Phosphoproteomics comprises the identification of phosphoproteins,
the precise mapping and quantification of phosphorylation sites, and
the linkage of phosphorylation sites in substrates to specific protein
kinases, which may phosphorylate special amino acid residues under
specific physiological conditions (Kersten et al., 2009). Despite recent
progress that has been made in the quantitative and dynamic analysis
of mapped phosphorylation sites in plants (Schulze, 2010; Novakova et
al., 2011), only a handful of plant studies were successful in establishing
links between substrates (or even individual phosphorylation sites in a
substrate) and a specific protein kinase in vivo (in Arabidopsis, e.g., Liu
and Zhang, 2004; Joo et al., 2008; Lampard et al., 2008; Merkouropoulos
et al., 2008; Bethke et al., 2009; Wang et al., 2010; Mao et al., 2011).
Whereas a few plant databases host phosphoproteomic data from
medium to large scale studies on protein phosphorylation by MS
[e.g., PhosPhAt (Durek et al., 2010), P3DB (Gao et al., 2009), RIPP-
DB (Nakagami et al., 2010)], GabiPD provides data on potential
protein kinase–substrate relations. These data were taken from
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different in vitro studies based on kinase assays on Arabidopsis protein
microarrays (Feilner et al., 2005; Popescu et al., 2009). All AGI codes
of the potential Arabidopsis MAPKK/MAPK substrates identified in
these studies, are listed together with their phosphorylating protein
kinase(s) and their predicted functions at the Phosphoproteomics pages
(Figure 2A). The user can switch from the AGI code of a substrate of
interest to the related Gene GreenCard, as presented in Figure 2B
for one of the potential substrates of MPK3 and MPK6, for RSZP21
(AT1G23860.1). The in vitro-kinase assay results as well as links to
the Gene GreenCard of the phosphorylating kinases are provided
here. RSZP21 has been annotated by MapMan to be involved in
“RNA.processing/splicing” (Figure 2B). This is consistent with results
from a large-scale analysis of protein phosphorylation in Arabidopsis
which has led to the suggestion that the plant mRNA splicing machinery
is a major target of phosphorylation (de la Fuente van Bentem et al.,
2006).

FIGURE 2
Phosphoproteomic data in GabiPD. (A) List of potential MAP kinase
substrates at GabiPD’s Phosphoproteomics page (www.gabipd.org/projects/
Arabidopsis_Proteomics/phosphoproteomics_summary.shtml). Substrates were
identified by in vitro kinase assays on Arabidopsis protein microarrays.
AGI codes of the substrates are linked to the related Gene GreenCard in
GabiPD. (B) Gene GreenCard of RSZP21 with integrated kinase assay
result. (C) Predicted (filled rectangles in green, blue, and purple) and
experimentally verified (flagged rectangles) phosphorylation sites in
RSZP21 according to PhosPhAt (Durek et al., 2010; see external links
at the Gene GreenCard). The red long box at the C-terminus of the
RSZP21 represents a hot spot of phosphorylation predicted recently
(Riaño-Pachón et al., 2010). The yellow boxes display conserved protein
domains.

The user can inspect predicted and experimentally verified
phosphorylation sites identified in RSZP21 in vivo, when switching
to PhosPhAt (Durek et al., 2010) via the external links section at the
Gene GreenCard. Although five amino acid residues in RSZP21 have
been shown to be phosphorylated in different experiments (Figure
2C), so far no link between any one of the phosphorylation sites to a
phosphorylating MAPK has been established in vivo. Of special interest
are SP/TP motifs, because they have been shown to be a consensus motif
of MAPK phosphorylation (Bardwell, 2006; Kersten et al., 2009). All of
the 10 SP/TP sites of RSZP21 were predicted/experimentally proved to
be phosphorylated (Figure 2C). Most of the (predicted) phosphorylation
sites of RSZP21 are located in a hot spot of phosphorylation that was
predicted outside the conserved protein domains at the C-terminus of
the protein (red long box in Figure 2C; Riaño-Pachón et al., 2010). All
these data place RSZP21 on a short-list of top candidate proteins for
further in vivo verification of their phosphorylation by MAP kinases.
GabiPD’s phosphoproteomics page thus is a valuable source for
selecting more substrates for in vivo verification. In vivo phosphorylation
by specific MAPKs of a few potential substrates listed here was already
reported, as for ACS-6 (AT4G11280.1; Liu and Zhang, 2004), ERF104

http://www.gabipd.org/projects/Arabidopsis_Proteomics/phosphoproteomics_summary.shtml
http://www.gabipd.org/projects/Arabidopsis_Proteomics/phosphoproteomics_summary.shtml
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(AT5G61600.1; Bethke et al., 2009), NIA-2 (AT1G37130.1; Wang et
al., 2010). Moreover, the substrate list is a great resource for in silico
approaches for studying cross-talk of different kinases associated
in diverse biological processes with their interacting kinases, as
recently shown (Taj et al., 2011). Furthermore, this rich resource might
represent a good training set for the in silico prediction of MAPK-specific
phosphorylation site motifs and of MAPK docking sites.

OUTLOOK
The further development of the proteomics resources in GabiPD will be
focused on the extension of the protein kinase–substrate resource to
support the discovery of signaling networks in plants. We will annotate
plant protein kinases through the MapMan framework. The existing
resource on in vitro protein kinase–substrate relations will be extended
by in vivo data. The integration of public data on protein–protein
interactions and co-expression will ease the selection of interesting
protein kinase–substrate relations from the in vitro data for further wet
lab investigation.
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