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SUMMARY

Establishment of intercellular interactions between
various cell types of different origin is vital for
organism development and tissue maintenance.
Therefore, precise timing, expression pattern, and
amounts of extracellular matrix (ECM) proteins
must be tightly regulated. Particularly, the ECM is
important for the development and function of myo-
tendinous junctions (MTJs). We find that precise
levels of the ECM receptor Dystroglycan (Dg) are
required for MTJ formation in Drosophila and that
Dg levels in this process are controlled by miR-9a.
In the embryo, Dg is enriched at the termini of the
growing muscles facing the tendon matrix and ab-
sent from miR-9a-expressing tendons. This gradient
of Dg expression is crucial for proper muscle-tendon
attachments and is adjusted by miR-9a. In addition
to Dg, miR-9a regulates the expression of several
other critical muscle genes, and we therefore pro-
pose that during embryogenesis,miR-9a specifically
controls the expression of mesodermal genes to
canalize MTJ morphogenesis.

INTRODUCTION

To achieve successful results, despite the extreme fluctuation

of internal cues, genetic background, and external conditions,

embryonic development must be stabilized. Coordinated tran-

scription factor networks are prominent regulatory features of

cell fate establishment during embryonic development and adult

life. It is now becoming evident that, in conjunction with tran-

scription factors, at least three epigenetic elements help to

form a reciprocal regulatory circuit to maintain cell identity and

differentiation: chromatin structure, DNA methylation, and mi-

croRNAs (miRNAs) (Gaspar-Maia et al., 2011; Lindeman et al.,

2011; Nguyen and Frasch, 2006). miRNAs, based on their para-

doxical properties, e.g., being highly evolutionarily conserved,

but not essential, have been proposed to play a role in generating

biological robustness as canalization factors to buffer gene

expression against perturbation or variability (Hornstein and

Shomron, 2006; Waddington, 1942). As canalization factors,
Developm
miRNAs have previously been shown to liquidate transcripts

resulting from aberrant gene expression (Ebert and Sharp,

2012; Herranz andCohen, 2010;Wu et al., 2009) or leaky splicing

(Stark et al., 2005; Weng et al., 2013). The previously described

in vivo cases of miRNA-based regulation mostly are examples

of simple pairs, in which one miRNA is targeting one gene. How-

ever, increasing evidence suggests that functionally related

genes are clustered at the level of DNA sequence, histone

modifications, chromatin loops, or chromosome territories

(Hurst et al., 2004) and are under similar transcriptional control.

Taking into account that, first, the gene expression in general

is a noisy process that incidentally allows leaky expression of

‘‘neighboring’’ genes (Arias and Hayward, 2006; Macneil and

Walhout, 2011) and, second, that one miRNA can regulate

multiple genes, it is logical to propose that as a canalization

factor one miRNA should be capable of regulation of multiple

genes that are involved in the same signaling network. Therefore,

we studied whether this type of miRNA-based regulation,

employed to confer robustness of embryonic development,

actually takes place.

Assembly of muscle tissue requires communication

between mesoderm-derived myotubes and ectoderm-origi-

nated epidermal muscle-attachment cells or tendons. Since

tendon cells invaginate into mesoderm, some mechanism that

reassures the robustness of their identity must exist. Initially,

the pretendon cells send signals to the myotubes and direct

myotube attraction and adhesion to their target cells; sub-

sequently, the muscle cells communicate a reciprocal signal to

the epidermal muscle attachment cells, initiating their terminal

differentiation into tendon-like cells (Frommer et al., 1996). This

suggests the necessity of a microenvironment that will allow

for both a rapid and precise signal transduction between these

ectodermally and mesodermally derived cell types.

Importantly, the process of muscle guidance and attachment

in Drosophila is remarkably similar to that of vertebrates, as

both are greatly dependent on the extracellular matrix (ECM)

gradient that is established through differential recruitment and

clustering of transmembrane receptors by extracellular-pre-

sented signaling molecules (Martin-Bermudo and Brown, 2000;

Snow and Henry, 2009). During Drosophila embryonic develop-

ment, the initial determination of myoblast fate is controlled by

high expression of the basic-helix-loop-helix protein Twist; after

the myoblast division and fusion, multinucleated myotubes are

formed (Baylies and Bate, 1996). At stage 12–14, myotubes

undergo a substantial transformation: not only do they continue
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to grow through cell fusion, but they also change their shape and

form elongated filopodia at the leading edge that help to find their

proper tendon cells in the epidermis (Schnorrer and Dickson,

2004). At the same time, the tendon cells also undergo a series

of cell shape rearrangements, including apical constriction

and apical-basal elongation, which results in the formation of

epidermal furrows. When myotubes reach their targets, the

surface of the myotube facing the tendon cells loses filopodia

and multiple adhesion complex molecules accumulate at the

muscle attachment site toward the tendon cell in order to form

a stable adhesion complex (Martin-Bermudo and Brown,

2000). While the signaling crosstalk between these cell types

has been extensively studied, it is not clear whether a genetic

program exists that would aid cells that are subjected to similar

spatiotemporal signaling to undergo distinct developmental

programs. The role of miRNAs in this process, vital for muscle

physiology, has not yet been analyzed; however, vigorous cell

rearrangements and cell fate specifications that take place

during establishment of the muscle attachment suggest a need

for a mechanism that enhances robustness of the process by

attenuating leaky transcripts.

In our study, we found that Drosophila miR-9a is involved

in canalization of myotendinous junction (MTJ) assembly. Defi-

ciency of miR-9a affects embryonic survival, a phenotype that

can be rescued by specific expression of this miRNA in tendon

cells. The survival of miR-9a mutants depends on the speed of

embryonic development that reciprocally correlates with tran-

scriptional noise. miR-9a is expressed in epidermally derived

tendon cells, while many miR-9a predicted targets are essential

muscle genes that are misregulated due tomiR-9a loss and gain

of function. Moreover, exogenous expression of miR-9a in

mesoderm completely abolishes muscle formation. Therefore,

we put forward a hypothesis that miR-9a adjusts tendon cell

differentiation by preventing misexpression of muscle genes

resulting from stress or aberrant transcription. To prove this

hypothesis, we misexpressed putative miR-9a targets in tendon

cells and found that ectopic heartless (htl), wishful thinking (wit),

and Dystroglycan (Dg) in tendons cause muscle attachment and

embryonic lethality phenotypes similar to those found in miR-9a

mutants. In particular, we found that the muscular-dystrophy-

associated ECM receptor, Dg, is regulated posttranscriptionally

via the miRNA,miR-9a. During the early embryonic stages, Dg is

present in all epidermal cells; however, for proper assembly

of muscle attachment sites it is essential that Dg is eliminated

from epidermally derived tendon cells, with miR-9a modulating

the precision of this expression. Dg establishes a specific ECM

gradient that influences muscle-tendon signaling; therefore, its

differential localization is crucial for proper muscle-tendon

attachments and is adjusted by miR-9a. When Dg is mis-

expressed in tendon cells, the composition of the tendon matrix

is affected, resulting in aberrant muscle attachments and em-

bryonic death.

RESULTS

Embryonic miR-9a Modifies the Process of Muscle-
Tendon Attachment
Since miRNAs have been suggested to act as canalization

factors to protect the developing organism from transcriptional
336 Developmental Cell 28, 335–348, February 10, 2014 ª2014 Elsev
noise that increases due to unfavorable conditions in the natural

environment (Arias and Hayward, 2006; Hornstein and Shom-

ron, 2006), we searched for a miRNA that would play this role

in Drosophila embryogenesis. miR-9a caught our attention

because previous data indicated that this miRNA acts as a

canalization factor controlling the ‘‘bistable’’ circuitry that sets

the threshold for the formation of sense organ precursors versus

neighboring cells (Bejarano et al., 2010; Li et al., 2006).

Drosophila belongs to ectothermic animals; the speed of its

development is directly proportional to the ambient tempera-

ture. Since accelerated development may cause errors and

additional fluctuations in transcriptional status, we tested

whether miR-9a would influence embryogenesis under different

temperature conditions. In particular, we tested if lower and

higher temperatures would have an effect on embryonic lethality

of miR-9a mutants. We observed that at higher temperatures

(25�C and 29�C), when the developmental processes are accel-

erated, the frequency of embryonic survival was significantly

decreased in miR-9a loss-of-function mutants (miR-9aLOF; Fig-

ure 1A; Table S1 available online), suggesting that miR-9a is a

candidate miRNA conferring biological robustness of embryonic

development. Therefore, next we focused on the following ques-

tion: what process during embryogenesis does miR-9a have a

role in?

First, we analyzed themiR-9a expression pattern in the devel-

oping embryo using the locked nucleic acid (LNA) in situ hybrid-

ization assay and observed that, starting from developmental

stage 11, miR-9a was detected in parasegments (Figure 1B).

At embryonic stage 13–14, miR-9a shows an obvious striped

expression pattern and was localized in the epidermal cells of

segmental grooves (Figure 1B, arrows). The grooves contain in-

vaginations of epidermal cells that accept a smooth cuticle cell

fate and differentiate into tendon-like cells upon induction of

the expression of the epidermal-growth-factor-like transcription

factor Stripe (Sr; Frommer et al., 1996). Importantly, the embry-

onic lethality caused by miR-9a deficiency was rescued by spe-

cific expression of exogenous miR-9a in tendon cells in miR-9a

loss-of-function background (Figure 1C; Table S1). These results

together with highly specific miR-9a embryonic expression

pattern suggest that this miRNA functions predominantly in the

tendon cells.

Tendons are connected to the muscle via the specialized

tendon matrix, forming the muscle-tendon attachment called

the MTJ. The architecture of the MTJ can be easily visualized

by Tiggrin (Tig), an ECM component of the tendon matrix

(Fogerty et al., 1994) Titin, that outlines the end of the myotube

facing the tendon matrix (Fabian et al., 2007), and TropoMyosin

(TM), which contours muscles fibers (Bullard et al., 1988). In

Control, at embryonic stage 16, the ends of all muscles were

opposed and attached to the corresponding tendons (Figures

1D and 1E). In miR-9a mutants, myotubes elongated; however,

more than half of the muscle ends were disintegrated from their

attachment sites (Figures 1D and 1E; Table S2). Not only was the

process of muscle attachment disturbed, but also the formation

of tendons was affected (Figure 1E, arrowheads). Most of the

MTJs of miR-9a embryos were shorter in length or contained

splits and gaps as visualized by Titin staining (Figure 1E). These

data show that the presence of miR-9a is critical for proper

establishment of muscle-tendon attachments.
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Consistent with the highly defined temporal and spatial

expression pattern of miR-9a during embryogenesis and its

specific role in establishment of MTJs, miR-9a deficit led to

high embryonic, but not postembryonic, lethality. Approximately

60% of the miR-9a-deficient embryos hatched, and miR-9a

larvae and adults showed no gross morphological defects in

muscle organization (Figure 1F), confirming that miR-9a does

not play an essential role but rather a refining role during

embryogenesis.

Many Key Muscle Genes Are Putative miR-9a Targets
We analyzed possible miR-9a targets using TargetScan, PicTar,

miRanda, and TarBase miRNA target prediction algorithm

databases (Enright et al., 2003; Garcia et al., 2011; Grün et al.,

2005; Kheradpour et al., 2007; Vergoulis et al., 2012) and, inter-

estingly, found that more than 15% of all putativemiR-9a targets

are key regulators of muscle development (Figure 2A; Table S3).

If miR-9a were capable of downregulating multiple genes

essential for muscle maintenance and differentiation, then it is

probable that misexpression of this miRNA in the muscle tissue

would cause substantial defects. To test this assumption, we

exogenously expressed miR-9a using different tissue-specific

Gal4 drivers. As expected, we found that miR-9a should not be

present in muscle cells, since exogenous expression of miR-9a

in mesodermal cells using different muscle-specific drivers re-

sulted in embryonic lethality with the same frequency as with

ubiquitous drivers (Figure 2B; Table S1). On the contrary, when

miR-9a was overexpressed in the nervous system or in tendon

cells, it did not affect embryonic development and the frequency

of embryonic survival was comparable to that of Control (Fig-

ure 2B; Table S1). This implies thatmiR-9a does not have targets

fundamental for neuronal and tendon cell fate determination and

that the endogenous levels of miR-9a effectively obliterate its

targets in those tissues, therefore increasingmiR-9a levels there

does not impact embryogenesis.

Consistent with the idea that multiple miR-9a targets are

essential muscle genes, the causes for the lethality upon meso-

dermal miR-9a expression were severe abnormalities in muscu-

lature development. The severity of this phenotype depended

on the expression strength and developmental timing of used

mesodermal driver (Figure S1G). The mef2-Gal4/UAS-miR-9a

embryos showed defects in myoblast fusion and muscle attach-
Figure 1. miR-9a Is Expressed Dynamically during Embryogenesis and

(A) Loss of miR-9a decreases embryonic survival at higher (25�C and 29�C) but n
(B) At embryonic stage 11, miR-9a is expressed at low levels in the ectodermal c

cells surrounding the parasegmental grooves. NomiR-9a expression is detected i

stage 13 epidermis withmiR-9a expression in the two- to three-cell row surroundi

ventral view of the stage 14 epidermis showing miR-9a expression in epidermal

(C) Loss ofmiR-9a (miR-9aLOF) leads to high embryonic lethality, which can be fully

miR-9aLOF).

(D) The lateral view of embryo at stage 16 stained with antibodies against Tig that

(Tig; red) and muscles (TM; green) appear disorganized in comparison to Contro

(E) Titin is not properly localized (arrowheads) inmiR-9a embryos when compared

In addition, ventral longitudinal muscles (marked by TM) are not properly attache

(F) BothmiR-9a hatched larvae and eclosed adults do not exhibit any significant m

defects counted from muscle sections of adult flies is similar in Control and miR

n = 101).

Lateral views of embryos are shown with anterior to the left (B, D, and E). Panels in

intensity projections of confocal Z-stacks. Data presented as average (AVE) ± ave

two-tailed Student’s t test. See also Tables S1 and S2.
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ment processes (Figure 2C, arrowheads). Even though some twi-

Gal4/UAS-miR-9a escapers could survive until the larval stage,

they could not molt and died at the second instar (Figures S1A

and S1B). Molting requires strong muscle contractions, but in

the mutant larvae, muscles were underdeveloped, rounded,

and lacked proper attachments to their tendons when compared

to Control (Figures S1A0 and S1B0). Even at the later preadult

stages, initiation of miR-9a expression in mesoderm (mhc-

Gal4/UAS-miR-9a) caused substantial muscle phenotypes:

most of the indirect flight muscles were significantly smaller or

totally absent (Figures S1C and S1D), showing that the presence

of miR-9a in muscle tissue is fatal. Notably, miR-9a misexpres-

sion led to severe muscle phenotypes only in developing, but

not in terminally differentiated adult muscles (Figures S1E

and S1F), suggesting that miR-9a predominantly targets genes

important for muscle development.

Next, we tested if any muscle-related candidates are mis-

regulated in miR-9a mutants. Due to high embryonic lethality in

miR-9a mutants (Table S1) and an observation that miR-9a is

also expressed postembryonically (Figure S2A; Table S4), we

analyzed in adult miR-9aLOF survivors the mRNA levels of pre-

dicted miR-9a target genes involved in muscle and neuromus-

cular junction development. We observed that the mRNA levels

of wit, myoblast city (mbc), htl, Dg, derailed (drl), kettin, and

SCAR were significantly increased due to loss of miR-9a

(Figure 2D; Table S5). Next, we overexpressed this miRNA using

preadult mhc-Gal4 and adult induced 24B-Gal4ts mesodermal

drivers to test the effect of exogenous miR-9a expression in

muscles on predicted targets. Since exogenous expression of

miR-9a withmhc-Gal4 causes severe muscle loss and degener-

ation (Figure S1D), levels of the most tested muscle genes were

reduced (Figure 2D; Table S5). Postdevelopmentally induced

muscle expression of miR-9a did not affect muscle formation

(Figure S1E), but it still led to significantly reduced levels of wit,

Dg, CG9849, and upheld (up; Figure 2D; Table S5). Levels of

drl were always upregulated, while up was always downregu-

lated in miR-9a loss- and gain-of-function mutants. Since levels

of wit, mbc, htl, Dg, and kettin were reciprocally affected, it is

conceivable that miR-9a can directly target their mRNA.

Improper mRNA expression levels of other genes imply that

miR-9a can also indirectly affect multiple factors regulating

muscle development. Since miR-9a muscle target genes are
Is Required for Embryonic Survival and MTJ Formation

ot at the lower (18�C) temperatures.

ells of parasegmental grooves. At stage 14, miR-9a is clearly expressed in the

nmutantmiR-9a embryos. Right upper panel shows enlarged lateral view of the

ng epidermal invagination sites (white arrows). Right lower panel is an enlarged

cells at the location of MTJs.

rescued by exogenous expression ofmiR-9a in tendons (sr-Gal4/UAS-miR-9a;

marks the MTJs and TM to visualize muscles. InmiR-9a embryos, both MTJs

l.

toControl. Note the appearance of shorterMTJs that also have gaps and splits.

d.

uscle architecture defects in comparison to Control. The frequency of muscle

-9a mutants (Control 5.3% ± 4%, n = 107 muscles; miR-9aLOF 7.5% ± 3%,

(B) and (F) (adult) are single-plane views. Panels in (D)–(F) (larva) are maximum

rage deviation (AD) (A and C) and AVE ± SEM (D). ***p < 0.001, calculated by a
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Figure 2. miR-9a Affects Muscle Gene Expression and Leads to Increased Embryonic Lethality When Ectopically Expressed in the Meso-

dermal Tissue

(A) A table of GO terms of putativemiR-9a targets shows enrichment within the groups associatedwithmuscle biology (see also Table S3 for target gene function).

(B) Ectopic expression of miR-9a using ubiquitous (tub-Gal4, act-Gal4, and da-Gal4) and muscle (24B-Gal4, mef2-Gal4, and twist-Gal4), but not nervous (insc-

Gal4 and elav-Gal4) and tendon (sr-Gal4) specific drivers leads to increased embryonic lethality when compared to Control.

(C) Ectopic expression of miR-9a with the mef2-Gal4 driver results in myoblast fusion defects of lateral and ventral muscles (round cells, arrowheads; TM, red;

DAPI, blue).

(D) Relative expression levels of multiple putativemiR-9a targets important for muscle differentiation are altered inmiR-9a adults or flies exogenously expressing

miR-9a in muscle tissue with the preadult mhc-Gal4 and adult induced 24B-Gal4/tub-Gal80ts drivers. Note that titin and kettin are two isoforms of the sallimus

gene, but only kettin contains 30UTR with miR-9a binding site and responds to miR-9a levels.

(E) A map of known and predicted protein interactions built using STRING database, which includes predictedmiR-9a targets that are shown to be misregulated

due to miR-9a deficiency and overexpression in the muscle tissue.

Panels in (C) are maximum intensity projections of confocal Z-stacks. Data presented as AVE ± SD; *p < 0.05, **p < 0.005, ***p < 0.001, calculated by a two-tailed

Student’s t test. See also Figures S1 and S2 and Tables S1, S3, and S5.
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interconnected in the regulatory circuitry controlling muscle

development and maintenance (Figures 2E), miR-9a misexpres-

sion destabilizes this developmental network. These results

allow us to propose that the miRNA,miR-9a can regulate various

genes crucial for muscle development and that some of them

could potentially be its direct targets.

Also, we analyzed expression levels of some miR-9a putative

target genes and found that one-third of them were significantly

upregulated at higher temperature and half of them were sig-

nificantly downregulated at lower temperature (Figure S2C;

Table S5), while miR-9a levels did not show any temperature

dependence (Figure S2D; Table S4). Fluctuation in expression

levels of miR-9a targets reveals differential requirements for

this miRNA at different conditions. This result helps to get insight
Developm
into the molecular basis as to whymiR-9amutants have different

survival rates at various temperatures and suggests thatmiR-9a

acts as one of the factors that prevent aberrant muscle gene

expression in tendon cells upon fluctuating external conditions

(Figure S2B).

Misexpression of Predicted miR-9a Muscle Targets in
Tendons Causes MTJ Defects
To test this assumption, we analyzed misexpression of some of

the potential ‘‘direct’’ miR-9a targets in tendon cells (mbc, wit,

Dg, and htl). We found that overexpression of wit, Dg, and htl

in tendons caused embryonic lethality (Figure 3A; Table S1).

Even more, upon tendon-specific overexpression of these

putative miR-9a targets, the occurrence of aberrant and
ental Cell 28, 335–348, February 10, 2014 ª2014 Elsevier Inc. 339
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discontinuous MTJs was significantly increased and was com-

parable to the frequency of muscle attachment defects of

miR-9a mutants (Figure 3A; Table S2). Similar to miR-9a MTJs,

muscle attachment sites were underdeveloped and some myo-

tube endswere separated from their attachment sites (Figure 3B;

Table S2), showing that the presence of these genes in the

tendon is disastrous for MTJ development (Figure 3C).

Interestingly, all candidates formiR-9a targeting in the tendon

(wit, Dg, and htl) are transmembrane proteins implicated in

extracellular signaling. Wit is the Drosophila homolog of the

vertebrate bone morphogenetic protein type II receptor (Aberle

et al., 2002), Htl is the Drosophila homolog of the vertebrate

fibroblast growth factor receptor (Gisselbrecht et al., 1996),

and evolutionarily conserved Dg is a major nonintegrin ECM

receptor involved in cell-ECM adhesion (Deng et al., 2003). Since

the ECM plays a crucial role for MTJ assembly, our data suggest

that loss ofmiR-9amay affect MTJ formation due to alteration in

the tendon matrix.

The ECM Receptor Dg Is a miR-9a Target
In general, cells can attach to the ECM via integrins or proteo-

glycan (e.g., Dg) complexes that do not contain integrins. While

the role of integrins in MTJs has been extensively studied, Dg

involvement in the process has not been documented in

Drosophila. The ECM receptor Dg is best known as a key

component of the Dystrophin glycoprotein complex (DGC) that

is responsible for development of a variety of muscular dystro-

phies. Like in integrins, the extracellular part of the Dg protein

binds to essential ECM components and plays a role in ECM

constitution, while the cytoplasmic tail connects to the actin

cytoskeleton via the cytosolic protein Dystrophin (Figure 4A).

First, we tested whether Dg is a bona fide miR-9a target.

Analysis of Dg 30UTR using the TargetScan database showed

the presence of multiple miRNA binding sites, including miR-9a

(Figure 4B). To validate whether Dg is regulated by this miRNA,

we performed an in vitro luciferase assay with an �300 bp frag-

ment of Dg’s 30UTR and observed a 2.7-fold decrease in lucif-

erase activity upon overexpression of miR-9a (Figure 4C). To

test if miR-9a regulates Dg in vivo, we examined if Dg protein

levels are changed due to miRNA overexpression in follicle

epithelial cells, where Dg has been shown to have a distinct

pattern and where clonal cells can be easily introduced and

analyzed (Deng et al., 2003). We found that the levels of Dg

decreased by almost two times as a result of exogenous expres-

sion of miR-9a in the follicular epithelium (Figure S3). Together,

these data imply thatmiR-9a can regulate Dg in vitro and in vivo.

Second, we analyzed the expression pattern of the ECM

receptor, Dg, in the developing Drosophila embryo and found

that at earlier stages, the Dg protein is uniformly present in all

epidermal cells (Figure 4D); however, starting from stage
Figure 3. Ectopic Expression of Predicted miR-9a Targets in the T

Morphology

(A) Ectopic expression of potentialmiR-9a targets (wit, Dg, and htl) leads to increa

per embryo (AVE ± SEM); *p < 0.05, **p < 0.005, ***p < 0.001, calculated using a

(B) In contrast toControl, the ECMprotein Tig is not properly localized inmiR-9aLO

sr>htl; arrowheads). In addition, ventral longitudinal muscles VL1–VL4 (marked b

maximum intensity projections of confocal Z-stacks.

(C) Models showing the consequence of miR-9a differential expression in muscl

Developm
13–14, Dg is detected in a striped pattern (Figure 4D). It is absent

from the epidermal cells of the segmental grooves that will give

rise to the tendon cells. At stage 16, the Dg expression pattern

becomes even more defined, where Dg is present in multiple

cell types (Shcherbata et al., 2007); however, it is excluded

from tendon cells (Figure 4D). Importantly, the onset of miR-9a

expression coincides with the time period when Dg is eliminated

from these epidermal clusters (compare enlarged panels in

Figures 1B and 4D). These data show that miR-9a and Dg are

expressed in a mutually exclusive pattern, suggesting that Dg

is regulated by miR-9a in the developing embryo.

Third, to prove thatmiR-9a targets Dg in tendons, we analyzed

Dg expression levels at the sites of muscle-tendon interactions

in Control and miR-9a embryos. Careful analysis of the Dg

protein expression levels demonstrated that Dg expression at

the tendon matrix was muscle specific; moreover, higher

amounts of Dg are concentrated at the periphery of muscle or

at the myotube ends, while tendon cells were devoid of Dg

(Figures 4E and 4G). Upon miR-9a deficiency, Dg could be

detected not only in muscles at muscle attachment sites, but

also on the membrane of tendon cells (Figures 4E and 4G).

This improper expression of Dg resulted in disorganization of

musculature assembly and alteration of contacts between

muscle cells and tendons, demonstrating thatmiR-9a-mediated

targeting of Dg in tendon cells is one of the prerequisites for

accurate development of MTJs. In agreement with this hypothe-

sis, the embryonic lethality rate was significantly, but not fully,

rescued upon reduction of Dg by one copy in the miR-9a-

deficient background (Figure 4F; Table S1), implying that other

factors are managed by this miRNA.

Fourth, to investigate if MTJ phenotypes observed in miR-9a

mutant embryos and embryos with ectopic expression of Dg

in tendon cells are not caused by abnormalities in tendon or

muscle founder cell fates, we analyzed the distribution of

specific myoblast and tendon cell identity markers (Figure S4).

We could not observe any gross defects, indicating that these

cell identities were not changed upon miR-9a deficiency or Dg

misexpression.

Together, these data show that during embryogenesis, both

miR-9a and Dg have dynamic expression patterns that become

mutually exclusive in the regions of muscle-tendon connections.

Dg protein is present in all ectodermal cells, except for the ones

that are differentiating into epithelial tendon cells and are also

expressing miR-9a. Interestingly, a detailed analysis of Dg

mRNA isoforms during Drosophila embryogenesis showed that

Dg mRNA can be detected in some of the tendon cells

(Schneider and Baumgartner, 2008), while Dg protein is not pre-

sent in these cells, which necessitates its posttranscriptional

regulation. Our data demonstrate that elimination of Dg from

tendon precursor cells is required for proper muscle attachment
endon Cells Leads to High Embryonic Lethality and Affects MTJ

sed embryonic lethality (AVE ± AD) and a higher percentage of abnormal MTJs

two-tailed Student’s t test. See also Tables S1 and S2.
F or embryos ectopically expressingwit,Dg, or htl in tendon cells (sr>wit; sr>Dg;

y TM) are not properly attached in these embryos (arrows). Panels shown are

e and tendon cells.
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assembly, and miR-9a helps to ensure that Dg is not mis-

expressed in these precursors. This suggests that miR-9a acts

as one of the factors that buffer Dg gene expression in tendon

cells.

Dg Misexpression Affects the Tendon Matrix
Finally, we wanted to unravel how misexpression of the ECM

receptor Dg could affect MTJ assembly. The major players that

have been shown to play an essential role in the MTJ estab-

lishment are integrins. Since Dg and integrins bind some of the

same ECM components, for example Laminin (Lan), we hypo-

thesized that misexpression of Dg affects the tendon matrix

composition. To assay whether Dg affects the ECM and to avoid

tissue-specific (muscle versus tendon) control of differential

gene expression, we turned our attention to the ovarian follicular

epithelium, where all cells are of the same origin and their

differentiation is synchronized in each egg chamber. According

to the genotype, Dg overexpression marked by GFP resulted in

very high levels of Dg in the follicle cells (Figure S5A). Notably,

Dg-overexpressing cells displayed appreciably lower levels of

bPS Integrin (Figure S5B), while the levels of the known Dg

ECM binding partner Lan (Figure S5C) were significantly

increased. This demonstrates that levels of Dg can modulate

amounts of certain ECM components, e.g., Lan, which is a

trimeric protein interconnected to form a cross-like structure

that binds to other cell membrane and ECM molecules. Lan

molecules join to make net-like sheets that spread over the

epithelial cells, and amounts of Lan determine 3D structure

and composition of the ECM. We observed that an increase in

Lan levels was seen not only around the cells overexpressing

Dg, but also around the wild-type cells touching the clone (Fig-

ure S5, yellow arrows), suggesting that Lan enrichment does

not stop at the clone border but is gradually decreasing over

the adjacent cells. The increase in Lan amount was coincident

with the increased bPS Integrin levels found at the membrane

of neighboring cells, which demonstrates that higher levels of

Lan can stimulate bPS Integrin levels and suggests that ECM

receptor levels can be readjusted via modulation of the ECM

gradient (Figure S5D).

Since tendons and muscles share the ECM at the MTJ, next

we wanted to understand howmisexpression of Dg would affect

the ECM constitution at the muscle-tendon site and cause
Figure 4. miR-9a Targets Dg in Embryo MTJs

(A) Schematic drawing of Drosophila DGC.

(B) Localization and the sequence of miRNA binding sites in the Dg’s 30UTR.
(C) Ectopic expression of miR-9a in S2 cells downregulates Dg-30UTR luciferase

1.00 ± 0.10; act>miR-9a, 2.71 ± 0.12).

(D) At embryonic stage 11, Dg protein (red) is present uniformly in the ectodermma

the epidermis in the middle of parasegments but not in the epidermal cells surroun

marker Sr visualized by expression of GFP and lacZ driven by sr-Gal4. Right pan

shown in the left panels. Lateral views of embryos are shown with anterior to the

(E) In wild-type embryo, Dg is enriched in the muscle fibers at theMTJ site, stained

InmiR-9a embryos, higher levels of Dg can be observed at the muscle attachmen

tendons resulting from Dg and Cad colocalization).

(F) The lethality caused by miR-9a loss can be partially rescued by reducing one

calculated by a two-tailed Student’s t test.

(G) Ventral view of the embryonicMTJ showing higher levels of Dg protein inmiR-9

of the ventral view of embryonic MTJs showing that the role formiR-9a in tendon

of MTJs.

Panels in (D)–(G) are maximum intensity projections of confocal Z-stacks. See a
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abnormal MTJs. Based on our analysis in follicular epithelium,

which demonstrated that Dg levels can influence the amount of

bPS Integrin cell autonomously (since cells overexpressing Dg

have decreased bPS Integrin levels) and cell nonautonomously

(since neighboring cells have increased bPS Integrin levels), we

hypothesized that due to Dg misexpression in tendons, the

ECM assembly at the MTJ would be changed. This, in turn,

would alter the ECM receptor bPS Integrin levels in the muscle

and tendon cells. To test this assumption, we analyzed the

distribution of the ECM receptor bPS Integrin upon Dg over-

expression in tendon cells and found that the levels of bPS Integ-

rin were significantly reduced in tendon cell bodies (Figures 5A,

red rectangles, and 5B). At the same time, amounts of bPS Integ-

rin in muscles (yellow rectangles) and MTJs (cyan rectangles)

were increased by �30% (Figure 5B). As a result of this misex-

pression, the length and area of MTJs were significantly reduced

(Figure 5B). Additionally, more Lan could be found at the mutant

tendon matrix resulting from ectopic Dg expression (Figure 5C,

yellow arrowheads) in comparison to Control, where Lan is

present at the MTJs and in the basement membranes of

muscles, being evenly enriched at the edge where muscles are

connected to tendons (Figure 5C, arrows).

Thus, we propose two mechanisms, which are not mutually

exclusive, of how misregulation of Dg can be influencing MTJ

assembly. First, Dg competes with other ECM receptors for

membrane localization, which would change the ratio and/or

composition of ECM receptors at the cell membranes and result

in changes in cell-ECM adhesion. Second, Dg misexpression

alters the ECM, which in turn signals to the cells to readjust

accordingly to the altered ECM composition, the expression

levels of the cell adhesion proteins at the transcriptional level.

To test these hypotheses, we used different transgenic con-

structs encoding for full-length or truncated Dg protein. Interest-

ingly, only when transgenes that contained the extracellular

domain of Dg (Dg full-length:UAS-Dg-FL and Dg C-terminal

end deletion:UAS-Dg-C1) were misexpressed in tendon cells,

embryonic survival was affected (Figure 5D; Table S1). Con-

trarily, ectopic expression of Dg with a truncated extracellular

domain (Dg-DExD) did not lead to a significant increase in em-

bryonic lethality (Figure 5D; Table S1). Since this construct still

contains the transmembrane domain, the first hypothesis that

upon overexpression Dg simply outcompetes integrins for the
reporter (relative downregulation of luciferase activity [AVE ± SEM]: Control,

rked by DE-Cad (green). At stage 14, higher levels of Dg protein are detected in

ding the grooves. At stage 16, Dg staining does not overlap with the tendon cell

els show the enlarged view of embryo segments of the corresponding stages

left.

with Cad (green) that marks the membrane of tendon cells (cyan dashed lines).

ts and in the membrane of tendon cells (note the yellow, ladder-like pattern in

copy of Dg (Dg086/+; miR-9aLOF). Data presented as AVE ± AD, ***p < 0.001,

a tendons (arrowhead) when compared toControl (arrow). Schematic drawings

cells is to downregulate the muscle gene Dg, which allows for proper assembly

lso Figures S3 and S4 and Table S1.
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membrane localization cannot fully explain the bPS Integrin mis-

localization phenotype. Importantly, misexpression of Dg that

contains the extracellular, but lacks the intracellular, domains

(Dg-C1) affected MTJ formation and caused abnormal bPS

Integrin and Lan distribution at the MTJs, similarly to tendon-

specific overexpression of full-length Dg (Figure 5E). This sup-

ports the hypothesis that the presence of the ECM-interacting

domain of Dg is sufficient to modulate the expression of proteins

at the tendon matrix. Therefore, next we tested whether

abnormal ECM caused by Dg misexpression would affect bPS

Integrin and Lan expression at the transcriptional level. We

measured the levels of bPS Integrin (myospheroid [mys]) and

Laminin B1 (LanB1) mRNAs and found that, upon Dg over-

expression in tendon cells, mRNA levels of mys and LanB1 are

significantly increased (Figure 5F), which is consistent with the

increased amounts of bPS Integrin protein seen in muscles

and Lan detected at the MTJs. These results demonstrate that

Dg misexpression in tendons cell autonomously influences

LanB1 and bPS Integrin levels and attracts more ECM proteins

to the tendon matrix, which cell nonautonomously enhances

bPS Integrin expression in the attached muscle cells (Figure 5G).

Collectively, these data support the idea that the transmembrane

receptor Dg is involved in regulation of the ECM constitution at

the muscle-tendon site and is capable of readjusting the levels

of ECM receptors in both tendon and muscle cells at the level

of transcription. Therefore, managing the precision of Dg’s differ-

ential expression in muscle versus tendon cells is key for normal

tendon matrix constitution and signaling, and miR-9a plays an

important role in this process.

DISCUSSION

Here we show that the muscular-dystrophy-associated ECM

receptor Dg can be posttranscriptionally regulated by miR-9a.

During embryogenesis, both miR-9a and Dg have dynamic

expression patterns that become mutually exclusive in the

regions of muscle-tendon connections. Dg protein is present in

all ectodermal cells, except for the ones that are differentiating

into epithelial tendon cells and are also expressing miR-9a.

Our data show that the elimination of Dg from tendon precursor
Figure 5. Dg Affects bPS Integrin Localization and ECM Composition

(A) Ectopic expression of Dg in tendons (sr>Dg) decreases bPS Integrin levels in th

at the MTJs (sr>Dg; cyan rectangles) and in muscles (sr>Dg; yellow rectangles)

(B) Relative levels of bPS Integrin fluorescence in tendons (Control, 1.00 ± 0.17, n =

areas; sr>Dg, 1.35 ± 0.29, n = 17), and in MTJs (Control, 1.00 ± 0.22, n = 18MTJs;

MTJ’s length (Control, 31.7 ± 1.8 mm, n = 18 MTJs; sr>Dg, 25.4 ± 1.8 mm, n = 15)

(C) Ectopic expression of Dg in tendon cells (sr>Dg) leads to accumulation of La

(D) Ectopic expression in tendons of the full-length and truncated Dg protein w

embryonic lethality compared to Control; however, ectopic expression of Dg w

embryonic survival.

(E) Ectopic expression of the truncated Dg containing the ECM-binding domain (s

at theMTJ, which is similar to the defects seen at theMTJs of embryos overexpres

in sr>Dg-C1 mutants is 57%, n = 14 MTJs.

(F) Ectopic expression of Dg in tendon cells affects the levels of mys (Control, 1.0

sr>Dg, 2.01 ± 0.01; p = 1.5 3 10�7) mRNAs measured by qRT-PCR.

(G) Scheme describing the potential impact of Dg misexpression in the tendon c

Measurements of bPS Integrin fluorescence were done from Z-stack projections

areas).

Panels in (A), (C), and (E) are maximum intensity projections of confocal Z-stack

**p < 0.005, ***p < 0.001, calculated by a two-tailed Student’s t test. See also Fi
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cells is required for accurate muscle-tendon matrix assembly.

The miR-9a ensures that Dg is not misexpressed in tendon

precursors due to leaky transcription, as these epidermal cells

invaginate into and reside within the mesoderm.

Embryonic development is an extremely dynamic process

in which rapid cell specifications and rearrangements take

place, features indicative of the need for stabilization. miRNAs

have been implicated in stabilization of biological robustness in

different animal systems (Ebert and Sharp, 2012). We now found

that miRNAs are involved in the stabilization of the process

of muscle-tendon attachment in the developing Drosophila

embryo. In particular, our data imply that miR-9a acts as a

backup mechanism in tendons to diminish the effects of leaky

expression of a group of muscle genes. When two adjacent cells

have different cell fates, evolutionarily it would make a lot of

sense for a canalization factor in one cell type to regulatemultiple

genes critical for the differentiation of the other cell type. Appar-

ently, many essential muscle differentiation genes are miR-9a

predicted targets, and their ectopic expression in ectodermal

tendon cells causes embryonic lethality and abnormal MTJs.

Moreover, exogenous expression of miR-9a in the mesoderm

completely abolishes muscle formation. With this in mind, we

hypothesize that miR-9a specifically acts as a guardian to pre-

vent aberrant muscle gene expression in the epidermal tendon

precursor cells.

It has already been shown thatmiR-124 (Smirnova et al., 2005;

Sun et al., 2012; Weng and Cohen, 2012) and miR-9a (Bejarano

et al., 2010; Biryukova et al., 2009; Li et al., 2006, 2013) act to

canalize nonneuronal versus neuronal fates. Genes expressed

in the nervous system are highly enriched for miR-9a binding

sites (Stark et al., 2005), and our data show that multiple muscle

genes also have miR-9a target sites. Since miR-9a is ectoderm

specific and genes expressed in ectodermal tissues avoid

miR-9a sites, previous findings and our findings insinuate that

miR-9a can act as the key ectodermal canalization factor that

protects ectodermal cell fate by repressing genes of the sibling

tissues (such as muscle and nervous). This should reinforce

the robustness of ectodermal cell differentiation. It would be

interesting to find in the future if miRNAs that canalize meso-

dermal or endodermal fate exist and to address the question of
at the Embryonic MTJs

e tendon cell bodies (red rectangles); however, it increases bPS Integrin levels

in comparison to Control.

19 areas; sr>Dg, 0.78.4 ± 0.16, n = 15), in muscles (Control, 1.00 ± 0.21, n = 15

sr>Dg, 1.32 ± 0.24, n = 15). Ectopic expression of Dg in tendon cells affects the

and area (Control, 69.4 ± 3.7 mm2, n = 18 MTJs; sr>Dg, 59.6 ± 7.4 mm2, n = 15).

n (arrowheads) when compared to Control (arrows).

ithout the intracellular domain (sr>Dg-FL and sr>Dg-C1) leads to increased

ithout the extracellular domain (sr>Dg-DExD) does not significantly affect the

r>Dg-C1) causes abnormal accumulation of bPS Integrin and Lan (arrowheads)

sing the full-length Dg (sr>Dg-FL; A and C). The frequency of disorganizedMTJ

0 ± 0.04; sr>Dg, 2.15 ± 0.01; p = 6.4 3 10�3) and lanB1 (Control, 1.00 ± 0.05;

ells observed in miR-9a mutants and its effect on ECM composition.

(�1–2 mm thick for tendon cell membranes; �9–11 mm for MTJs and muscle

s. Data presented as AVE ± AD in (B) and (D) and AVE ± SD in (F); *p < 0.05,

gure S5 and Table S1.
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whether there are more examples of the miRNAs that target

multiple genes from the same functional network.

One of the muscle genes that we show is a bona fide miR-9a

target is the ECM receptor, Dg. The transmembrane protein Dg

has a distinct expression pattern at the MTJ. It is present at

the membrane of the developing muscle and is enriched at the

myotube ends; however, it is absent from the tendon cell

membranes. Similarly, a restricted expression pattern of Dg is

required for neuromuscular junction (NMJ) establishment in ver-

tebrates (Xenopus), with Dg being present at the entire muscle

membrane and showing enrichment at the NMJ site, where it

acts as a sink for the ECM component agrin, preventing its

binding to muscle-specific kinase (MuSK). At the site of nerve

contact, in the absence of Dg, agrin can bind to MuSK, allowing

acetylcholine receptor aggregation and synaptic development

(Heathcote et al., 2000). Thus, due to the distinct expression

patterns in cells that form connections via the ECM, Dg is able

to establish the ECM gradient, which, as we show, is also essen-

tial for proper formation of MTJs in the developing Drosophila

embryo. It would be interesting to investigate if there is a regula-

tory molecule that is differentially distributed between muscle

and tendon due to specific binding to Dg at the MTJ.

The extracellular environment of the cell is a complex organi-

zation of ECM receptors, matrix proteins, and the regulatory

molecules that reside in it. Also, it continuously changes during

development and allows rapid communication between different

cells to coordinate tissue formation (Edeleva and Shcherbata,

2013). Therefore, changes in the composition of the ECM can

have a profound effect on an organism’s development. Our

study shows that miR-9a-based regulation of Dg is needed to

adjust the ECM composition at theMTJ. Regulation of the affinity

of the transmembrane adhesion receptor integrins has a key role

during development as it generates strong adhesion of cells to

the insoluble ECM (Pines et al., 2011). Now we show that, at

the MTJ, Dg also acts as a receptor regulating ECM gradient

at the tendon matrix, since Dg levels affect the amount of the

ECM protein Lan. In addition, Dg can modulate expression of a

key ECM receptor, bPS Integrin. These data are consistent

with previous findings revealing a regulatory pathway between

the DGC and integrin receptors and lends the idea that Dg is

involved in selective regulation of integrin gene expression

(Côté et al., 2002; Hodges et al., 1997). Moreover, integrin over-

expression alleviates the development of muscular dystrophy

phenotypes in mdx mice (Burkin et al., 2001), supporting the

possibility that Dg and integrin compensate for each other in

mediating cell-ECM adhesion. Additionally, we show that this

regulation can be cell nonautonomous, since abnormal Dg

levels, through modification of Lan amounts, affect integrin

expression in the neighboring cells. In intestinal epithelial cells,

the DGC coprecipitates with b1-integrin, suggesting a possible

direct interaction among these proteins where the strength of

this interaction depends on the Lan type (Driss et al., 2006).

Moreover, it has been shown that increased Lan expression

can ameliorate muscular dystrophy in mice (Goudenege et al.,

2010; Van Ry et al., 2014). These results, on the one hand, sup-

port our findings that alterations in Lan levels influence the

expression of the ECM receptors but, on the other hand, pose

an interesting question of why, depending on the animal’s

genetic background (dystrophic or not), the increased levels of
346 Developmental Cell 28, 335–348, February 10, 2014 ª2014 Elsev
Lan have positive or negative effects on MTJs and muscles.

The beneficial influence of Lan was seen so far only when it

was upregulated in dystrophic animals: muscular dystrophy

mdx mouse (dystrophin deficient), dyw�/� merosin-deficient

congenital muscular dystrophy mouse model (Lan deficient),

andmuscular dystrophy zebrafishmodel (Dg reduced). All above

muscular-dystrophy-related components per se are required

for accurate Lan localization and distribution, suggesting that

restoration of Lan levels in the ECM has favorable effects

on dystrophic muscle maintenance. Previous studies did not

address what would happen if Lan were overexpressed in the

otherwise normal background or they were differentially upregu-

lated in muscle or tendons. Since elegant studies on the role

of Lan-111 in muscle development and maintenance (Van Ry

et al., 2014) propose Lan protein therapy as a treatment option

for muscular dystrophy patients, it would be important in the

future to study, using different models, the effects of differential

Lan expression on muscle-tendon attachments during devel-

opment and to determine the levels that can be tolerated without

induction of deleterious effects on muscle maintenance and

tendon attachments during adulthood.

Taken together, previous studies and our findings show that

the amounts and types of the ECM receptors affect ECM con-

stitution and govern its remodeling, and then via ‘‘dynamic

reciprocity’’ the ECM readjusts intracellular signaling, gene

expression, and morphology of the cells and tissues. We show

that the crosstalk between tendons and muscles depends on

differentially expressed ECM receptor Dg that, together with

integrins, helps to establish the ECM gradient. The information

about the tendon matrix composition is communicated back to

the muscles and tendon cells that readjust their ECM receptor

expression profiles in order to reinforce and stabilize the MTJ.

Providing a link between the ECM and cytoskeleton, Dg acts as

a vital signal-transducing element that allows for communication

between the cell’s outer environment and inner milieu. In

vertebrates, Dg is implicated in multiple biological processes:

for example, formation of spatiotemporally regulated micro-

environments necessary for muscle fiber morphogenesis at the

MTJ (Snow and Henry, 2009). In Drosophila, in addition to its

function in muscle maintenance (Kucherenko et al., 2011;

Shcherbata et al., 2007), Dg is involved in control of neuron

behavior; modulation of the concentration of postsynaptic and

synaptic proteins, in particular the ECM component Lan at the

neuromuscular junction (Bogdanik et al., 2008; Marrone et al.,

2011a, 2011b); and regulationofmiRNAexpressionprofiles (Mar-

rone et al., 2012; Marrone and Shcherbata, 2011). The currently

increasing amount of research on the diverse roles of Dg during

development demonstrates its critical role in multiple develop-

mental circuits, suggesting that there is a necessity for precise

and dynamic regulation of Dg levels. Despite the vast data about

posttranslational regulation of Dg activity, Dg posttranscriptional

regulation has not been studied. Our data show that Dg can be

regulated by miRNAs and this regulation has an important func-

tional role at the MTJ. Since the human homolog of Drosophila

Dg (Dag1) also contains multiple predicted miRNA biding sites,

it would be important to study if miRNAs also play a role in regu-

lationofDg inmammals. Even though there are numerous studies

in vertebrate models indicating that MTJ assembly affects mus-

cle development, the role of aberrantMTJ inmusclemaintenance
ier Inc.
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and function in muscular dystrophy patients is greatly underap-

preciated; therefore, understanding of themiRNA-basedmecha-

nismscontrolling theECMassembly at theMTJmaysuggest new

directions for muscular dystrophy research.

EXPERIMENTAL PROCEDURES

Drosophila melanogaster stocks were raised on standard medium at 25�C
unless stated otherwise. To analyze the specificity of the loss of function

phenotypes and to eliminate the possibility of a second site mutation, hetero-

allelic flies were analyzed. All mutants and transgenes used in the experiments

had homogeneousw1118 genetic background. Flies were kept on standardized

medium and in controlled environment (25�C, constant humidity and the light-

dark cycle). The following flies were used: Control (OregonR crossed to

white1118) and miR-9aLOF (miR-9aJ27 crossed to miR-9aE39) (both lines were

a gift from Fen-Biao Gao) and Dg086/CyO (gift from Robert Ray). For ectopic

expression the following lines were used: tub-Gal4/TM3; actin-Gal4/CyO,

twist-Gal4; mhc-Gal4; mef2-Gal4; da-Gal4; insc-Gal4; elav-Gal4; 24B-Gal4,

tub-Gal80ts; UAS-htl and UAS-mbc (Bloomington Drosophila Stock Center);

sr-Gal4 (gift from Gerd Vorbrüggen); UASt-miR-9a (gift from Eric Lai); UASt-

Dg and UASt-Dg-DExD (Deng et al., 2003); UASp-Dg-Fl and UAS-Dg-C1

(Yatsenko et al., 2009); and UAS-wit (gift from Michael O’Connor). For rescue

experiments the following lines were used: sr-Gal4, UAS-dsRed:miR-9a;miR-

9aJ27/miR-9aE39 and Dg086/CyO; miR-9aJ27/miR-9aE39.

Immunofluorescent staining was done using the standard procedure

(Shcherbata et al., 2007). The following primary antibodies were used: Titin

(rabbit) 1:330 (gift from Deborah J. Andrew), Alien (rabbit) 1:1,000 (gift from

Achim Paululat), Tiggrin (rabbit) 1:1,000 (gift fromAndrew Simmonds), Nautilus

(guinea pig) 1:200 (gift from Susan Abmayr), Kruppel (rabbit) 1:1,000 (gift from

Herbert Jäckle), Tropomyosin (rat) 1:400 (Babraham Bioscience Technolo-

gies), betaPS (mouse) 1:20, beta-Gal (mouse) 1:20, DE-Cadherin (DE-Cad;

rat) 1:20 (DSHB), beta-Gal (rabbit) 1:1,000 (Invitrogen), GFP (chicken)

1:1,000, LanB (ab47651; rabbit) 1:1,000 (Abcam), and Dg (rabbit) 1:1,000

(gift from Hannele Ruohola-Baker). The following secondary antibodies were

used: Alexa 488, 568, or 633 goat anti-mouse; Alexa 488, 568, or 633 goat

anti-rabbit or Alexa 488, 568, or 633 goat anti-rat; and Alexa 488 goat anti-

chicken (1:500; Molecular Probes). To analyze muscle morphology in larva,

we used Alexa Fluor 568 phalloidin (1:40; Molecular Probes). For visualizing

cell nuclei, DAPI dye was used (Sigma). Analysis of indirect flight muscle

morphology was done as previously described (Kucherenko et al., 2010).

Images were obtained with a confocal laser-scanning microscope (Zeiss

LSM 700) and processed with Adobe Photoshop software. To identify

miR-9a predicted targets, Target Scan 6.0 (Kheradpour et al., 2007), PicTar

(Grün et al., 2005), TarBase 6.0 (Vergoulis et al., 2012), and miRANDA (Enright

et al., 2003) were used. To assess predicted protein-protein interactions and

gene ontology (GO) term associated with their function, the String 9.05 data-

base was used (Franceschini et al., 2013).

To determine mRNA expression levels, quantitative RT-PCR (qRT-PCR)

was performed on total RNA derived from whole adult animals; to determine

miRNA expression levels, TaqMan MicroRNA assay was used. LNA in situ

and muscle sections were done as in Kucherenko et al. (2010, 2012) and

Zimmerman et al. (2013). For detailed description of embryonic lethality,

morphometric analyses of MTJs, in situ, RNA preparation and qRT-PCR, lucif-

erase reporter assay, and ectopic expression of miR-9a and Dg in follicle cell

epithelium, see Supplemental Experimental Procedures. Statistical analysis

was done using Student’s t test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and five tables and can be found with this article online at http://

dx.doi.org/10.1016/j.devcel.2014.01.004.
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