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Abstract

Climate extremes can affect the functioning of terrestrial ecosystems, for instance via
a reduction of the photosynthetic capacity or alterations of respiratory processes. Yet
the dominant regional and seasonal effects of hydrometeorological extremes are still
not well documented. Here we quantify and characterize the role of large spatiotempo-
ral extreme events in gross primary production (GPP) as triggers of continental anoma-
lies. We also investigate seasonal dynamics of extreme impacts on continental GPP
anomalies. We find that the 50 largest positive (increase in uptake) and negative ex-
tremes (decrease in uptake) on each continent can explain most of the continental
variation in GPP, which is in line with previous results obtained at the global scale.
We show that negative extremes are larger than positive ones and demonstrate that
this asymmetry is particularly strong in South America and Europe. Most extremes in
GPP start in early summer. Our analysis indicates that the overall impacts and the
spatial extents of GPP extremes are power law distributed with exponents that vary
little across continents. Moreover, we show that on all continents and for all data sets
the spatial extents play a more important role than durations or maximal GPP anomaly
when it comes to the overall impact of GPP extremes. An analysis of possible causes
implies that across continents most extremes in GPP can best be explained by wa-
ter scarcity rather than by extreme temperatures. However, for Europe, South America
and Oceania we identify also fire as an important driver. Our findings are consistent
with remote sensing products. An independent validation against a literature survey on
specific extreme events supports our results to a large extent.

1 Introduction

The terrestrial carbon cycle is tightly linked to the global climate system. Favorable con-
ditions for vegetation in the future are expected to increase terrestrial carbon uptake,
while extreme climatic conditions might drastically decrease this uptake (Reichstein
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et al., 2013). Separating the enhancing and attenuating effects of growth in the ter-
restrial biosphere requires, besides others, a precise understanding of the feedbacks
between climate extremes and terrestrial carbon fluxes.

The impacts of climate extremes on ecosystems and the carbon cycle are di-
verse. Storms transform carbon stocks from living biomass to dead wood and thus
increase the risk of fire and pathogen outbreaks (Negron-Juarez and Chambers, 2010).
Droughts and heat waves have an impact on plant physiology, phenology and carbon
allocation (Ciais et al., 2005; Reichstein et al., 2007; Phillips et al., 2009). Inevitable
consequences are often increased tree mortality, higher fire risks and susceptibility
to pathogens. On the long term, droughts might also influence vegetation composi-
tion. Due to lagged effects like increased tree mortality in years after a severe drought
(Bréda et al., 2006; Bigler et al., 2007) or changes in the respiration of soil heterotrophic
organisms a year after an anomalously warm season (Arnone et al., 2008), impacts of
droughts on the carbon cycle are difficult to assess generally. Fires have an immediate
and large impact on carbon stocks and vegetation structure (Westerling et al., 2006;
Field et al., 2009). Ice storms and frost may cause physical damage up to whole-stand
destruction (Irland, 2000; Sun et al., 2012). Hence, it is a major challenge to design an
analytic approach that consistently quantifies the diverse impacts of climate extremes
on the terrestrial biosphere.

Past studies often first identified extreme events in climate variables or other drivers
and subsequently analyzed their aftermath in ecosystems and the carbon cycle (Page
et al., 2002; Ciais et al., 2005; Kurz et al., 2008; Zeng et al., 2009; Zhao and Running,
2010). This forward approach is appealing because one can, for instance, focus on
a certain region or specific time span and concentrate on one extreme event with all
its consequences. However, such an event-based analysis can easily lead to a biased
perception of extreme events. Extreme events that affect regions of social or economi-
cal interest gain more attention than extreme events in regions with less public interest.
For instance, very few experimental studies are done in Africa. Furthermore, climate
extremes do not necessarily lead to extreme responses of the biosphere. Inversely,
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not all extreme responses of the terrestrial biosphere are unambiguously explicable by
some climate extreme or disturbance event. For instance, a very unlikely constellation
of drivers with each of them being not extreme in its own domain might still cause
extreme changes in ecosystems (so-called compound extremes, IPCC, 2012; Leonard
et al., 2013). To tackle some of these drawbacks, Smith (2011) suggested the definition
of extreme climatic event (ECE) as “an episode or occurrence in which a statistically
rare or unusual climatic period alters ecosystem structure and/or function”. A pure for-
ward analysis, instead, is always at the risk of overlooking extreme changes in the state
of the biosphere and hence not desirable.

In a recent study, Zscheischler et al. (2014) presented a quantification of negative
extremes in of Gross Primary Production (GPP) based on four different data sets at
global scale. This study explicitly adopted an impact driven perspective (Reichstein
et al., 2013), aiming for an assessment of globally relevant extreme changes in an
impact variable. By an impact variable we understand a variable describing the state
of the biosphere including the fraction of absorbed photosynthetically active radiation
(fAPAR), leaf area index (LAl), the enhanced vegetation index (EVI), or biosphere—
atmosphere carbon exchange.

A classical approach to identify extremes in time series is based on Extreme Value
Theory (EVT, Coles, 2001; Ghil et al., 2011). Samples exceeding a specific threshold
are modeled using certain extreme value distributions. This approach is called Peak
Over Threshold method (POT). Gumbel (2004) showed that for any well behaved initial
distribution only a few models are needed. However, because the sample size is limited
by the samples exceeding the set threshold, this approach is not feasible in our case
where we are confronted with relatively short time series. Moreover, we are interested
in those extremes that affect larg contiguous areas and/or long time periods. More for-
mally, we are interested in the “volume of extreme events” which we understand as
three-dimensional structures contiguous in time and space where each single value
exceeds a certain threshold. For that reason, here we use an alternative approach mo-
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tivated by a three-dimensional drought assessment (LIoyd-Hughes, 2012; Zscheischler
et al., 2013).

In this contribution, we directly follow up on Zscheischler et al. (2014) where it could
be shown that a few extreme events in GPP explain most of its interannual variability
and investigate the underlying regional patterns and temporal dynamics. In particular,
we will look for regions in time and space where carbon uptake is much lower compared
to normal conditions. We will then trace these extreme changes back to anomalous
meteorological variables or fires and aim at understanding continental differences. It
has been suggested earlier that the size distribution of extreme events in the biosphere
follow a power law (Zscheischler et al., 2013, 2014; Reichstein et al., 2013). Here we
investigate whether this power law behavior is robust across continents and different
spatial and temporal resolutions. To validate our approach we compare the spatial
patterns of GPP extreme events with extremes in independent remote sensing products
and the current literature.

2 Material and methods
2.1 Data

To identify extreme events that are relevant for the terrestrial carbon exchange and
hence the terrestrial biosphere, we rely on four different data sets describing Gross
Primary Production (GPP) which cover the last 30yr (1982—2011). The range of the
data sets spans from purely data driven (upscaled model tree ensemble, (MTE, Jung
et al., 2011)) over semi-empirical (based on light-use efficiency, MOD17+, Running
et al., 2004) towards process-based global ecosystem (Lund—Potsdam—-Jena Dynamic
Global Vegetation Model for managed Land, LPJmL, Sitch et al., 2003) and land-
surface models (OCN, Zaehle and Friend, 2010).

MTE involves training a Model Tree Ensemble at site level using FLUXNET (a global
network of eddy covariance observations in tandem with site level meteorology, Bal-

1873

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-print.pdf
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

docchi et al., 2001) to extrapolate to large spatiotemporal domains. We use a fully data
driven upscaling product that relies mainly on a composite of different remote sensing
fAPAR products but also uses climate data from ERA interim (Dee et al., 2011).

MOD17+ is derived using the same model structure as the MODIS GPP data stream
(Running et al., 2000) linking shortwave incoming radiation, minimum temperature and
vapor pressure deficit. The model parameterization of Beer et al. (2010), based on
Bayesian inversion against GPP time series from FLUXNET, is applied here. The terms
in the MODIS-MOD17 biome-specific look-up table are used as priors. For regionalizing
the model parameters we stratify the results of the in-situ calibration per vegetation type
and bioclimatic class. As climatic drivers we use the ERA-interim dataset and the same
composite of fAPAR products as in MTE (Jung et al., 2011).

LPJmL is a dynamic vegetation model that mechanistically represents plant physi-
ological and biogeochemical processes (Sitch et al., 2003) including the hydrological
cycle (Gerten et al., 2004) and a process-based fire model (Thonicke et al., 2010).
Vegetation is in the model represented as plant functional types (PFTs), which are de-
scribed by their bioclimatic limits, and morphological, phenological and physiological
parameters. The model is also capable to simulate agricultural land (crop functional
types, Bondeau et al., 2007) but for the present study, the model is applied in its nat-
ural vegetation mode. For each PFT, the model simulates photosynthesis (based on
Farquhar et al. (1980) with adjustment of carboxylation capacity and leaf nitrogen sea-
sonally and within the canopy profile (Haxeltine and Prentice, 1996)) and respiration,
and the allocation of accumulated carbon to the plant’s compartments (leaves, stem,
root and reproductive organs).

OCN is a land-surface model derived from the ORCHIDEE DGVM (Krinner et al.,
2005), which prognostically simulates foliar area and N content and employs a two-
stream radiation scheme coupled to the process-based calculation of photosynthesis
in light-limited and light-saturated chloroplasts within each canopy layer (Friend and
Kiang, 2005).
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AVG is the average of the above four data sets. Although in most cases we will report
averaged results of MTE, MOD17+, LPJmL and OCN, we will also compute extremes
on the averaged data set assuming that averaging levels out artifacts of individual data
sets and emphasizes common features.

To attribute GPP extreme events to climatic drivers we use temperature (7) and
precipitation (P) from bias corrected ERA-interim (Dee et al., 2011) as used by the
models predicting GPP, the water availability index (WAI), burned area (BA), and CO,
emissions from fires (FE, Giglio et al., 2010). WAI is a surrogate for soil moisture and
was computed according to Prentice et al. (1993) using daily precipitation and potential
evapotranspiration data from ERA Interim and a map of plant available water holding
capacity from the Global Harmonized World Soil Database. The spatial resolution for
all above data sets is 0.5°. T, P, WAI and all GPP data sets are available monthly from
1982-2011, BA and FE from 1997-2010.

To compare results obtained from the GPP data sets (in particular hot spots of ex-
treme events and scaling behavior) with other remote sensing products we use the
following data sets. A composite of the fraction of absorbed photosynthetically active
radiation (fAPAR, Jung et al., 2011) and the leaf area index (LA, Liu et al., 2012) from
1982-2011 on a 0.5° spatial and monthly temporal resolution, the enhanced vegeta-
tion index from MODIS (EVI, Huete et al., 2002) from 2001—2011 on a 0.5° spatial and
8 day temporal resolution, and GPP from MODIS (MODISGPP, Running et al., 2004)
from 2001-2011 on a 0.1° spatial and 8 day spatial resolution.

We define six areas for the continental cutouts from the 26 areas of the SREX report
of the IPCC (2012) (Fig. 2 in Zscheischler et al., 2013). The areas are aggregated as
follows: North America 1-6, South America 7—10, Europe 11-13, Africa 14-17, Asia
18—23, Oceania 24-26.

2.2 Preprocessing

For T, WAI, EVI, fAPAR, LAI, and all GPP data sets we first subtract linear trend and
then the mean annual cycle at each pixel to obtain anomalies comparable across time.
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2.3 Extreme event identification

In accordance with the IPCC climate extreme classifications (Seneviratne et al., 2012),
we define extremes as the occurrence of certain values in the tails of the probability
distribution of the anomalies. We define extremes to be outside a certain threshold g
which is defined by a percentile on the absolute values of the anomalies (Fig. 1). We
choose the thresholds for each of the four data sets such that extremes (positive and
negative together) comprise 1,...,10% of the anomalies at each continent separately.
We then define an extreme event by spatiotemporally contiguous values being larger
than g (positive extremes) and smaller than —g (negative extremes), respectively. To
decide whether two elements in a 3-D data cube, so-called voxels (short for volumetric
pixel, used e.g. in Neuroscience or computer gaming), are connected, different defi-
nitions are possible. Naturally, for a three-dimensional data set, connectivities of 6, 18
and 26 are possible. A connectivity of 6 means, that only horizontal or vertical neighbors
are considered as connected to it (each voxel has 6 horizontal and vertical neighbors).
A connectivity of 18 means that all neighbors in the 3 x 3 x 3 neighborhood of one voxel
count as connected, excluding the 8 corners (3 x 3 x 3 = 27 — 8corners — center = 18),
while a connectivity 26 means that all 26 vertical, horizontal and diagonal neighbors are
considered as connected to the central voxel (27 — 1 = 26). Note that in principle, the
connectivity could also extend over more than one neighboring pixel (Lloyd-Hughes,
2012). Throughout most of this study, we will use a connectivity of 26. We generally
compute the largest 200 positive and negative GPP extreme events on each continent.

To evaluate the sensitivity of our method to some of the relevant parameters, we
will analyze the scaling behavior of different temporal and spatial resolutions as well
as different definitions of connectivity on the MODISGPP data set, which is available
in high temporal and spatial resolution. To evaluate spatial patterns of hot spots we
compare our results with the same extreme event detection approach on EVI, fAPAR,
LAI and the mean of the four 0.5° GPP data sets.
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2.4 Nomenclature

The integral of anomalies over time and space comprising one GPP extreme event
is called overall impact of an event. Its spatial extent is the maximal spatial extent of
all pixels contained in the event, independent from the time. Duration is the maximal
length of an event in months. An event computed using 5th-percentiles is called a 5th-
percentile extreme.

2.5 Statistics on extreme events

We test whether the distributions of overall impacts and spatial extents of extreme
events follow power laws following the suggestions by Clauset et al. (2009). We assess
whether positive and negative extreme events are equally big by dividing the n largest
negative events by the n largest positive events. To study asymmetry at pixel scale we
subtract global maps of negative and positive extremes from each other (see below).

The impact of extreme events can be analyzed in time or space. For a temporal
analysis, all anomalies in any extreme event (according to the definition under consid-
eration) are summed over a time step in the region of interest. This summation yields
one regional time series of the total impact of the respective extreme events. Such time
series of GPP extremes can then be correlated with e.g. the continental GPP anomaly
in order to obtain the fraction of explained variance. Similarly, for an analysis in space,
all anomalies during extreme events are summed together at a specific location (pixel).
A summation of this type leads to a map of the cumulative impact of the extreme events
under consideration.

We compute the number of extreme events starting at each month in the year to an-
alyze whether there is a seasonality in the occurrence of GPP extreme events. To as-
sess which factors are most responsible for the overall impact of a GPP extreme event
we correlate the overall impact of events against spatial extent, duration and maximal
anomaly of the event. To investigate the influence of the resolution and connectivity on
the power law coefficient we perform a 3-way ANOVA with the factors spatial resolution
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26

2.6 Attributing drivers to GPP extremes

We follow Zscheischler et al. (2013) to identify drivers that possibly caused extremes
in GPP on each continent separately. More specifically, for a certain GPP extreme
event we compute the median of a driver variable over the same region. By shifting
the event in time and computing such medians for each possible time shift, we obtain
a test statistic for each driver variable and each GPP extreme event. We then compute
p values for the 200 largest negative 1st-percentile events of each GPP data set on
each continent where we use the drivers T, P, WAI, BA, FE and count a driver as
“cause” if p < 0.1. Accordingly, if a driver and GPP are not related one would expect
on average 10 % of the events “caused” by that driver. The choice of the threshold
is arbitrary and reflects how conservative the researcher wants to be. Our general
conclusions are not sensitive to the specific choice of this parameter.

2.7 Literature validation

The mere number of extreme events makes it difficult to compare the data sets event
by event. In this study we focus on the largest event of each data set per continent.
In order to evaluate our detection approach against some independent evidence, we
perform a literature search where we searched for hints that the largest negative GPP
extreme events (5data setsx6continents = 30 in total) are reported in case studies. We
compare this to well-known extremes in climate but also other variables in the literature
that might have reduced the carbon uptake substantially.
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3 Results and discussion
3.1 Extreme events in GPP are power law distributed

Power laws have been studied in a variety of applications. In ecology, most often they
occur either as bivariate relationships, e.g. population density—body mass (Marquet
et al., 1990) or frequency size distributions, e.g. body sizes (Morse et al., 1985), vege-
tation patches (Kéfi et al., 2007) fire magnitudes (Turcotte et al., 2002) or canopy gaps
(Asner et al., 2013). Mathematically, a variable is following a power law if it is drawn
from a probability distribution

p(x) o x™1, (1)
where a is the scaling parameter. Earlier attempts to describe disturbance events in
form of power laws were restricted to their spatial extent (Fisher et al., 2008; Gloor
et al., 2009; Kellner and Asner, 2009; Asner et al., 2013). It has recently been shown
that also the overall impacts of negative extreme events in fAPAR (Zscheischler et al.,
2013) and GPP (Zscheischler et al., 2014) can be well approximated by power laws
at the global scale. Here, we look at each continent separately and also consider the
spatial extent of extreme events.

Overall, the exponents a of the overall impacts of an event are lower than the expo-
nents of the spatial extents (1.69 vs. 1.86 on average, Fig. 2). We also notice a slight
upward trend for more extreme percentiles. Except for a few values most of the expo-
nents of GPP extremes defined by the 5th percentile or higher are well in the range
between 1.55-1.75, and 1.65—-1.95 for overall impact and spatial extent, respectively.
Hence, the values for the spatial extent fall in the range of exponents recently estimated
for canopy gaps in tropical forests (a = 1.83+0.09, Asner et al., 2013). Such low power
law exponents (a < 2.0) imply that the distribution of extremes is largely dominated by
few very large events, as has been discussed for the case of canopy gaps (Fisher et al.,
2008; Asner et al., 2013).
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Power laws can have a variety of origins (Newman, 2005; Sornette, 2006). In case of
spatiotemporal extreme events a couple of explanations are possible. Because we set
a threshold to obtain extreme events, thresholding of stochastic processes (Touboul
and Destexhe, 2010) or the theory of large deviation (Varadhan, 1966; Sornette, 2006)
might provide reasonable explanations. In ecology it has been shown that power laws
can emerge from a complex interplay of spatial interactions (Pascual and Guichard,
2005; Pueyo et al., 2010). Additionally, for multidimensional lattices, even without any
spatial interaction, it follows from percolation theory (Bollobas and Riordan, 2006) that
the size distribution of random clusters can follow a power law. Whether the emergent
power laws for overall impact and spatial extent arise from a combination of the above
mentioned mechanisms, or whether there is an even different mechanism generating
these, cannot be conclusively resolved here and needs further investigation.

As already stated above, in variables that are power law distributed, very few ele-
ments can dominate the whole distribution (depending on the power law exponent a).
To understand the importance of individual extreme events, we investigate how much
of each continents variability in GPP can be explained by extremes in GPP. It has been
shown recently that at global scale about 200 extreme events can explain nearly 80 %
of the global anomaly (Zscheischler et al., 2014). On the continental level, 50 posi-
tive and negative events are enough to obtain an averaged correlation coefficient with
continental anomaly between 0.88 (Asia) and 0.95 (Oceania) (Fig. 3).

For 1st-percentile extremes the spatial extent is the dominating factor (as already
mentioned in Reichstein et al., 2013), while the duration and maximal anomaly play
a minor role. This relation changes only little throughout the continents (Fig. 4). For
10th-percentile extremes the duration gains on importance and has similarly high cor-
relations with overall impact as the spatial extent (not shown).

3.2 Global distribution of GPP extremes

The averaged map of an average year of the 200 largest negative 10th-percentile GPP
extreme events computed for each continent is visually nearly identical with the av-
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eraged map for the globally largest 1000 extreme events (Fig. 5, cf. Figure 3a in
Zscheischler et al., 2014). We find that mostly savannas and grasslands are hit by
large-scale extremes in GPP. The regions which experience the largest GPP extreme
events on average at global scale include Caatinga (Brazil), the Pantanal (Brazil), the
Great Plains (US), the grasslands connecting Kenya, Tanzania and Uganda (Africa),
Highveld (South Africa), the Indus—Ganga Plain (India), and Eastern Australia.

At a continental perspective extremes in GPP are largest in Asia (on average
0.87 PgCyr'1 for 10th-percentile extremes, ranging from 0.50 PgCyr'1 in MOD17+
to 1.35 PgCyr‘1 in LPJmL) and lowest in Europe (on average 0.23 PgCyr_1 for 10th-
percentile extremes, ranging from 0.13 PgCyr'1 in MTE to 0.41 PgCyr'1 in LPJmL,
Fig. 6a—f). The overall impact of extreme events in GPP obviously depends on the size
of the continent. The spread between the data sets is similar for each continent. How-
ever, in all continents the two models (LPJmL and OCN) exceed the two data driven
approaches (MTE and MOD17+) by a factor of at least two. Studies that compare
model and data-driven GPP products found that the interannual variability of GPP is
generally lower in MTE compared to carbon cycle models (Jung et al., 2011; Keenan
et al., 2012; Piao et al., 2013). In South America, the two models agree very well, while
in Europe and Africa the two data driven approaches nearly coincide (Fig. 6b—d). The
magnitude of extremes in the averaged data set AVG lies at the lower range of the
four other data sets. The averaging process levels out the tails of the distributions of
the anomalies of the individual data sets (where those do not agree among each other)
and hence contains less strongly pronounced extremes as can also be seen from a his-
togram of the anomalies (not shown). The difference between the averaged extremes
and the extremes of the averaged data set (Fig. 7) highlights again that extremes in
AVG are generally smaller. Yet in tropical areas, in particular in densely vegetated re-
gions, the extremes in AVG exceed the averaged extremes of the individual four data
sets. This suggests that the data sets agree rather well in densely vegetated regions
albeit the lower magnitude of extremes.
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Negative GPP extreme events mainly start in summer, both in the northern and
Southern Hemisphere except Oceania (Fig. 8). This pattern is much stronger pro-
nounced in the northern continents, presumably because of less pronounced seasonal
differences in the tropical regions and the more land area in northern latitudes than in
southern latitudes. For South America and Africa the increasing number of extremes
coincides with the end of the dry season and with the wet season (ONDJ).

3.3 Positive extremes offset negative extremes only partly

It has been shown recently that, on a global scale, negative extreme events in GPP
are larger than positive extremes (Zscheischler et al., 2014). One question we want
to address here is if this observations holds for all continents. The observed global
asymmetry seems to be mainly generated by asymmetries in South America and Eu-
rope (Fig. 6h and i). In Africa and Asia, instead, positive and negative GPP extremes
are balanced, whereas in Oceania the positive extremes are slightly larger (Fig. 6j-).
The averaged data set AVG, in contrast, exhibits a strong asymmetry towards larger
negative GPP extreme events for all continents except Asia (Fig. 6h-I).

Figure 9 shows an average of the pixel-wise difference between the largest 200 posi-
tive and negative 10th-percentile GPP extreme events in MTE, MODSI17+, LPJmL and
OCN (a), and the pixel-wise difference between the largest 200 positive and negative
10th-percentile GPP extreme events of AVG (b), respectively. The patterns are similar
in most regions of the world. The asymmetry between negative and positive extremes
in GPP hence seems to be a robust feature, which persists through the averaging pro-
cess. Although it seems that overall the regions with larger negative extremes do not
dominate at global scale (Fig. 9, blue and red occupy a similar amount of land surface),
their magnitude is often much larger. Also, in most tropical regions negative extremes
are dominating (blue dominates in tropical areas).
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3.4 Influence of resolution and connectivity on the scaling parameter

One may remark that the identified scaling behavior (the exponents of the power law)
of the GPP extremes is partly an effect of spatial resolution and chosen connectivity
(cf. Sect. 3.1). In order to investigate this issue, we use MODISGPP to analyze the
sensitivity of the power law exponent to the spatial and temporal resolution because
MODISGPP is available on higher resolutions than the four data sets we have analyzed
before. We can detect a dependence of a to the spatial and temporal resolution as well
as to the connectivity (3-way ANOVA, p < 0.05in 81 % and 69 % of the cases for overall
impact and spatial extent, respectively), but the effects are remarkably small. The mean
over the exponent a for the distribution of overall impacts for all continents and all
configurations is 1.87+0.09. For the spatial extent we obtain a mean of 1.97+0.14. This
suggests that the emergent power law behavior in size and spatial extent is a roubust
feature of extreme events in GPP.

3.5 Water scarcity as the dominant driver for negative extreme events

Recent studies identified water scarcity as the globally dominant driver for negative ex-
treme GPP events (Reichstein et al., 2013; Zscheischler et al., 2014). Breaking down
the analysis to the continental level supports these findings in general. The patterns for
the different data sets look alike (Fig. 10) although differing slightly in magnitude. GPP
in LPJmL is most sensitive to droughts (on average 76 % of the GPP extremes could
be associated with low levels of WAI, Fig. 10, orange bars). But there are also some
differences between continents. In Europe, GPP does not seem to be as susceptible
to droughts as in the other continents. Here we find on average 20 % less associa-
tions of GPP extremes with low values of WAI compared to other continents. Instead,
cold spells are associated with negative GPP extremes higher-than-average, similarly
to Oceania (on average 10 % and 11 % more than random, respectively, Fig. 10, blue
bars. Random is here defined as the expected fraction of events attributed to any driver
if the variables were unrelated (= 10%)). In contrast, in North America more often high
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temperatures lead to large reductions in GPP (10 % more than random; Fig. 10, red
bars). Intense precipitation events play a significant role in reducing GPP in South
America and Oceania (6 % and 7 % more than random, respectively; Fig. 10, green
bars) wheras fires are an important driver in South America, Europe, Africa and Ocea-
nia, (14 %, 11 %, 9 % and 18 % more than random, respectively; Fig. 10, yellow bars).
Note that not all negative GPP events can be attributed to the driver variables applied
here. Other drivers like wind throw, insect outbreaks, intensive grazing, logging, and hu-
man deforestation which are not considered in this study might likewise reduce carbon
uptake drastically (Reichstein et al., 2013). We also do not consider effects of so-called
compound events in climate here (Seneviratne et al., 2012; Leonard et al., 2013), i.e.
events in which a constellation of two or more drivers is extreme in the multivariate vari-
able space which can lead to possibly large changes in carbon uptake. In Europe, the
number of unexplained events is largest (Fig. 10, brown bars). The attribution patterns
of the averaged data set AVG agree very well with the other data sets.

3.6 Validation with literature

In general it is difficult to validate purely data based analyses if no “ground truth” is
available. Table 1 summarizes the timing, approximate region, probable reason, and
a reference (where one could be found) for these events. Out of all 30 events, only two
could not be associated with a reference (Eastern Europe, 1987 in MTE, and Eastern
Malaysia, Oceania, 2002—2004 in MOD17+). Due to the good coverage of the other
events by the literature evidence, however, we can consider these two events as ex-
amples of overlooked continentally relevant GPP extremes. In Asia, all data sets agree
and detect the big heat wave in Russia 2010 (Barriopedro et al., 2011) as largest event.
Of course, the largest event in one data set might as well appear as second largest in
another. The two models agree in three of the six continents. It is noteworthy that the
averaged data set finds mostly well known extreme event, so for instance the year of
extreme weather in the United States in 2011 (Coumou and Rahmstorf, 2012), the
Amazon drought of 2010 (Lewis et al., 2011), the European and Russian heat waves
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in 2003 (Ciais et al., 2005) and 2010 (Barriopedro et al., 2011), respectively, and the
extreme drought in South Eastern Australia at the beginning of the 21st century, also
known as “Big Dry” (Leblanc et al., 2009; Ummenhofer et al., 2009). The good match-
ing between the AVG and well-known events from the literature is encouraging because
it demonstrates that averaging different data sets with high uncertainties can result in
a reasonably good representation of large-scale extreme events. An example for such
an averaging is a recently presented data product of evapotranspiration (ET, Mueller
et al., 2013).

3.7 Comparison with other data sets

We compare the global patterns of extremes in GPP from the four data sets MTE,
MOD17+, LPJmL and OCN with spatiotemporal extremes in other remote sens-
ing products, in particular EVI, FAPAR, and LAI. All these data sets have a three-
dimensional (spatiotemporal) structure albeit with different spatial and temporal res-
olutions, and hence we can apply the extreme event detection method here, as de-
scribed in Sect. 2.3. Note, however, that units are not transferable into changes in
carbon uptake. The patterns for EVI and FAPAR (Fig. 11a and b, respectively) show
good agreement with the overall patterns of GPP extreme events (Fig. 5) in Brazil, the
Great Plains, Eastern Europe, Tanzania/Kenya, South Africa and South Eastern Aus-
tralia. The hot spot in the Indus—Ganga Plain (India) is not visible in EVI and FAPAR.
LAl shows strongly pronounced extremes in tropical forests (Amazon and Kongo basin,
Indonesia, Fig. 11c). LAl values in tropical forests vary over a much wider range com-
pared to other biomes (Liu et al., 2012). This in turn leads to a much larger interannual
variability in these areas resulting in larger extremes.
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4 Conclusions

We present a detailed analysis of spatiotemporal contiguous extremes in different data
sets of gross primary productivity (GPP) over the last 30 yr and compare their impacts
across continents. We show that the overall impact and spatial extent of extreme events
in GPP follow power law distributions and confirm earlier findings that water scarcity
has to be regarded as the key driver of negative GPP extremes. However, we identify
pronounced regional deviations from this global picture. Depending on the continent,
also fires (all continents except North America and Asia), high temperatures (North
America), cold spells (Europe and Oceania), and intense precipitation events (South
America and Oceania) provoke major decreases in GPP. A comparison of these find-
ings with a literature survey and a validation with remotely sensed data sets including
EVI and fAPAR generally supports our identification of the largest GPP extremes, and
confirms the reported geographical distributions.

The research on extreme events in both climate variables and vegetation indexes
is important to fully understand carbon cycle variability and ultimately carbon cycle—
climate feedbacks. While in the past changes in the mean were the primary focus of
research, today studies on climate extremes and their impacts on the terrestrial bio-
sphere are mounting. This change in focus might have been driven by the insight that
changes in extreme events can alter the functioning of terrestrial ecosystems more
strongly than changes in the mean (Jentsch and Beierkuhnlein, 2008). But before ac-
cessing changes in extremes (including their impacts) we first have to understand how
extremes in climate and vegetation are related. In this contribution we corroborate the
importance of extreme events for interannual variability of GPP at continental scales.
Yet, despite the prominence of water availability as most important driver for extremes
in GPP at all continents, the susceptibility to other drivers such as fires and extreme
temperatures largely differs across continents. The reason for that might lie in different
vulnerabilities of the dominant ecosystems on each continent towards extreme envi-
ronmental conditions.

1886

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-print.pdf
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Acknowledgements. This study was supported by the projects CARBO-Extreme (grant
agreement no. 226701) and GEOCARBON (grant agreement no. 283080) of the European
Community’s 7th framework program. We thank Sénke Zaehle for providing data from OCN
and Martin Jung for providing upscaled fields of GPP (MTE). Natalia Ungelenk helped with the
literature review behind Table 1. JZ is part of the International Max Planck Research School for
global Biogeochemical Cycles (IMPRS-gBGC).

The service charges for this open access publication
have been covered by the Max Planck Society.

References

Anderson, L. O., Malhi, Y., Aragéao, L. E., Ladle, R., Arai, E., Barbier, N., and Phillips, O.: Remote
sensing detection of droughts in Amazonian forest canopies, New Phytol., 187, 733-750,
2010. 1896

Arnone, J. a., Verburg, P. S. J., Johnson, D. W., Larsen, J. D., Jasoni, R. L., Lucchesi, A. J.,
Batts, C. M., von Nagy, C., Coulombe, W. G., Schorran, D. E., Buck, P. E., Braswell, B. H.,
Coleman, J. S., Sherry, R. A,, Wallace, L. L., Luo, Y., and Schimel, D. S.: Prolonged sup-
pression of ecosystem carbon dioxide uptake after an anomalously warm year, Nature, 455,
383-386, 2008. 1871

Asner, G. P, Kellner, J. R., Kennedy-Bowdoin, T., Knapp, D. E., Anderson, C., and Martin, R. E.:
Forest canopy gap distributions in the southern Peruvian Amazon, PloS ONE, 8, e60875,
doi:10.1371/journal.pone.0060875, 2013. 1879

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P, Bernhofer, C.,
Davis, K., Evans, R. et al.: FLUXNET: a new tool to study the temporal and spatial variability
of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol.
Soc., 82, 2415-2434, 2001. 1873

Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and Garcia-Herrera, R.: The hot
summer of 2010: redrawing the temperature record map of Europe, Science, 332, 220—224,
2011. 1884, 1885, 1896

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rédenbeck, C.,
Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lin-

1887

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-print.pdf
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1371/journal.pone.0060875

10

15

20

25

30

droth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenen-
daal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial gross carbon
dioxide uptake: global distribution and covariation with climate, Science, 329, 834—838, 2010.
1874

Bigler, C., Gavin, D. G., Gunning, C., and Veblen, T. T.: Drought induces lagged tree mortality
in a subalpine forest in the Rocky Mountains, Oikos, 116, 1983—1994, 2007. 1871

Bollobas, B. and Riordan, O.: Percolation, Cambridge University Press, Cambridge, 2006. 1880

Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-
Campen, H., Mdller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for
the 20th century global terrestrial carbon balance, Glob. Change Biol., 13, 679-706, 2007.
1874

Bréda, N., Huc, R., Granier, A., and Dreyer, E.: Temperate forest trees and stands under se-
vere drought: a review of ecophysiological responses, adaptation processes and long-term
consequences, Ann. For. Sci., 63, 625—644, 2006. 1871

Ciais, P.,, Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N.,
Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P,
Grinwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G.,
Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G.,
Soussana, J. F.,, Sanz, M. J., Schulze, E. D., Vesala, T., and Valentini, R.: Europe-wide reduc-
tion in primary productivity caused by the heat and drought in 2003, Nature, 437, 529-533,
2005. 1871, 1885, 1896

Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-law distributions in empirical data,
SIAM Rev., 51, 661-703, 2009. 1877

Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer, London, 2001.
1872

Coumou, D. and Rahmstorf, S.: A decade of weather extremes, Nat. Clim. Change, 2, 491-496,
2012. 1884, 1896

Dee, D., Uppala, S., Simmons, A., Berrisford, P, Poli, P., Kobayashi, S., Andrae, U., Balmaseda,
M., Balsamo, G., Bauer, P, Bechtold, P.,, Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bor-
mann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., HéIm, E. V., Isaksen, L., Kallberg, P.,, Kéhler, M., Matricardi, M., McNally, A.
P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P, Tavolato, C.,

1888

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-print.pdf
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

30

Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553-597, 2011. 1874, 1875

Dong, X., Xi, B., Kennedy, A., Feng, Z., Entin, J. K., Houser, P. R., Schiffer, R. A., LEcuyer, T,
Olson, W. S., Hsu, K.-L., Liu, W. T., Lin, B., Deng, Y., and Jiang, T.: Investigation of the 2006
drought and 2007 flood extremes at the Southern Great Plains through an integrative anal-
ysis of observations, J. Geophys. Res.-Atmos., 116, D03204, doi:10.1029/2010JD014776,
2011. 1896

Farquhar, G., Caemmerer, S., and Berry, J.: A biochemical model of photosynthetic CO, as-
similation in leaves of C3 species, Planta, 149, 78-90, 1980. 1874

Field, R. D., van der Werf, G. R., and Shen, S. S. P.: Human amplification of drought-induced
biomass burning in Indonesia since 1960, Nat. Geosci., 2, 185-188, 2009. 1871

Fisher, J. I., Hurtt, G. C., Thomas, R. Q., and Chambers, J. Q.: Clustered disturbances lead
to bias in large-scale estimates based on forest sample plots, Ecol. Lett., 11, 554-563,
doi:10.1111/j.1461-0248.2008.01169.x, 2008. 1879

Friend, A. D. and Kiang, N. Y.: Land surface model development for the GISS GCM: effects of
improved canopy physiology on simulated climate, J. Climate, 18, 2883-2902, 2005. 1874

Galvin, K. A., Boone, R. B., Smith, N. M., and Lynn, S. J.: Impacts of climate variability on East
African pastoralists: linking social science and remote sensing, Clim. Res., 19, 161-172,
2001. 1896

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: Terrestrial vegetation and
water balance — hydrological evaluation of a dynamic global vegetation model, J. Hydrol.,
286, 249-270, 2004. 1874

Ghil, M., Yiou, P, Hallegatte, S., Malamud, B. D., Naveau, P., Soloviev, A., Friederichs, P., Keilis-
Borok, V., Kondrashov, D., Kossobokov, V., Mestre, O., Nicolis, C., Rust, H. W., Shebalin, P,
Vrac, M., Witt, A., and Zaliapin, |.: Extreme events: dynamics, statistics and prediction, Non-
linear Proc. Geoph., 18, 295-350, 2011. 1872

Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P. S., Collatz, G. J., Morton, D. C.,
and DeFries, R. S.: Assessing variability and long-term trends in burned area by merging
multiple satellite fire products, Biogeosciences, 7, 1171-1186, doi:10.5194/bg-7-1171-2010,
2010. 1875

Gloor, M., Phillips, O. L., Lloyd, J. J., Lewis, S. L., Malhi, Y., Baker, T. R., Lépez-Gonzalez, G.,
Peacock, J., Almeida, S., de Oliveira, A. C. A., Alvarez, E., Amaral, |., Arroyo, L., Aymard, G.,
Banki, O., Blanc, L., Bonal, D., Brando, P.,, Chao, K.-J., Chave, J., Davila, N., Erwin, T,

1889

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-print.pdf
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2010JD014776
http://dx.doi.org/10.1111/j.1461-0248.2008.01169.x
http://dx.doi.org/10.5194/bg-7-1171-2010

10

15

20

25

30

Silva, J., Di Fiore, A., Feldpausch, T. R., Freitas, A., Herrera, R., Higuchi, N., Honorio, E.,
Jiménez, E., Killeen, T., Laurance, W., Mendoza, C., Monteagudo, A., Andrade, A., Neill, D.,
Nepstad, D., Vargas, P. N. N., Pefiuela, M. C., Cruz, A. P. N., Prieto, A., Pitman, N., Que-
sada, C., Salomao, R., Silveira, M., Schwarz, M., Stropp, J., Ramirez, F., Ramirez, H.,
Rudas, A., ter Steege, H., Silva, N., Torres, A., Terborgh, J., Vasquez, R., and van der
Heijden, G.: Does the disturbance hypothesis explain the biomass increase in basin-wide
Amazon forest plot data?, Glob. Change Biol., 15, 2418—-2430, 2009. 1879

Gumbel, E.: Statistics of Extremes, Dover Publications, Dover, 2004. 1872

Haxeltine, A. and Prentice, |.: A general model for the light-use efficiency of primary production,
Funct. Ecol., 10, 551-561, 1996. 1874

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L.: Overview of the radio-
metric and biophysical performance of the MODIS vegetation indices, Remote Sens. Envi-
ron., 83, 195-213, 2002. 1875

IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adap-
tation, A Special Report of Working Groups | and Il of the Intergovernmental Panel on Climate
Change, edited by: Field, C. B., Barros, V., Stocker, T. F, Qin, D., Dokken, D. J., Ebi, K. L.,
Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2012. 1872, 1875

Irland, L. C.: Ice storms and forest impacts, Sci. Total Environ., 262, 231—242, 2000. 1871

Jentsch, A. and Beierkuhnlein, C.: Research frontiers in climate change: effects of extreme
meteorological events on ecosystems, C. R. Geosci., 340, 621-628, 2008. 1886

Jung, M., Reichstein, M., Margolis, H., Cescatti, A., Richardson, A., Arain, M., Arneth, A., Bern-
hofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., E.,
L. B., Lindroth, A., Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of carbon dioxide,
latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological ob-
servations, J. Geophys. Res, 116, G00J07, doi:10.1029/2010JG001566, 2011. 1873, 1874
1875, 1881

Keenan, T., Baker, I., Barr, A., Ciais, P, Davis, K., Dietze, M., Dragoni, D., Gough, C. M.,
Grant, R., Hollinger, D., Hufkens, K., Poulter, B., McCaughey, H., Raczka, B., Ryu, Y., Schae-
fer, K., Tian, H., Verbeeck, H., Zhao, M., and Richardson, A. D.: Terrestrial biosphere model
performance for inter-annual variability of land—atmosphere CO, exchange, Glob. Change
Biol., 18, 1971-1987, 2012. 1881

1890

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-print.pdf
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2010JG001566

10

15

20

25

30

Kéfi, S., Rietkerk, M., Alados, C. L., Pueyo, Y., Papanastasis, V. P, ElAich, A., and
De Ruiter, P. C.: Spatial vegetation patterns and imminent desertification in Mediterranean
arid ecosystems, Nature, 449, 213-217, 2007. 1879

Kellner, J. R. and Asner, G. P.: Convergent structural responses of tropical forests to diverse
disturbance regimes, Ecol. Lett., 12, 887-97, 2009. 1879

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P,
Ciais, P, Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for stud-
ies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, GB1015,
doi:10.1029/2003GB002199, 2005. 1874

Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., Ebata, T,,
and Safranyik, L.: Mountain pine beetle and forest carbon feedback to climate change, Na-
ture, 452, 987-990, 2008. 1871

Leblanc, M. J., Tregoning, P, Ramillien, G., Tweed, S. O., and Fakes, A.: Basin-scale, inte-
grated observations of the early 21st century multiyear drought in southeast Australia, Water
Resour. Res., 45, W04408, doi:10.1029/2008WR007333, 2009. 1885, 1896

Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., Mclnnes, K., Risbey, J.,
Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound event framework for under-
standing extreme impacts, Wiley Interdisciplinary Reviews: Climate Change, 2013. 1872,
1884

Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., and Nepstad, D.: The 2010
Amazon drought, Science, 331, p. 554, 2011. 1884, 1896

Liu, Y., Liu, R., and Chen, J. M.: Retrospective retrieval of long-term consistent global leaf area
index (1981-2011) from combined AVHRR and MODIS data, J. Geophys. Res.-Biogeo., 117,
G040083, doi:10.1029/2012JG002084, 2012. 1875, 1885

Lloyd-Hughes, B.: A spatio-temporal structure-based approach to drought characterisation, Int.
J. Climatol., 32, 406-418, 2012. 1873, 1876

Marquet, P. A., Navarrete, S. A., and Casitilla, J. C.: Scaling population density to body size in
rocky intertidal communities, Science, 250, 1125-1127, 1990. 1879

Minetti, J. L., Vargas, W. M., Poblete, A., Acuia, L., and Casagrande, G.: Non-linear trends
and low frequency oscillations in annual precipitation over Argentina and Chile, 1931-1999,
Atmoésfera, 16, 119-135, 2009. 1896

Morse, D., Lawton, J., Dodson, M., and Williamson, M.: Fractal dimension of vegetation and the
distribution of arthropod body lengths, Nature, 314, 731-733, 1985. 1879

1891

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-print.pdf
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2003GB002199
http://dx.doi.org/10.1029/2008WR007333
http://dx.doi.org/10.1029/2012JG002084

10

15

20

25

30

Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B,
Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F, Reichstein, M., Sheffield, J.,
Wang, K., Wood, E. F, Zhang, Y., and Seneviratne, S. |.: Benchmark products for land evap-
otranspiration: LandFlux-EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17, 3707—
3720, doi:10.5194/hess-17-3707-2013, 2013. 1885

Myneni, R. B., Los, S. O., and Tucker, C. J.: Satellite-based identification of linked vegetation
index and sea surface temperature Anomaly areas from 1982—-1990 for Africa, Australia and
South America, Geophys. Res. Lett., 23, 729-732, 1996. 1896

Namias, J.: Spring and summer 1988 drought over the contiguous United States — causes and
prediction, J. Climate, 4, 5465, 1991. 1896

Negron-Juarez, R. and Chambers, J.: Widespread Amazon forest tree mortality from a single
cross-basin squall line event, Geophys. Res., 37, 1-5, 2010. 1871

Newman, M. E. J.: Power laws, Pareto distributions and Zipf’s law, Contemp. Phys., 46, 323—
351, 2005. 1880

Page, S. E., Siegert, F., Rieley, J. O., Boehm, H.-D. V., Jayak, A., and Limink, S.: The amount
of carbon released from peat and forest fires in Indonesia during 1997, Nature, 420, 61-65,
2002. 1871

Pascual, M. and Guichard, F.: Criticality and disturbance in spatial ecological systems, Trends
Ecol. Evol., 20, 88—95, 2005. 1880

Phillips, O., Aragao, L., Lewis, S., and Fisher, J.: Drought sensitivity of the Amazon rainforest,
Science, 323, 1344-1347, 2009. 1871

Piao, S., Sitch, S., Ciais, P, Friedlingstein, P., Peylin, P, Wang, X., Ahlstrom, A., Anav, A,
Canadell, J. G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin, X,
Lomas, M. R., Lu, M., Luo, Y., Ma, Y., Myneni, R. B., Poulter, B., Sun, Z., Wang, T., Viovy, N.,
Zaehle, S., and Zeng, N.: Evaluation of terrestrial carbon cycle models for their response to
climate variability and to CO, trends, Glob. Change Biol., 19, 2117-2132, 2013. 1881

Prentice, C. I., Sykes, M. T., and Cramer, W.: A simulation model for the transient effects of
climate change on forest landscapes, Ecol. Model., 65, 51-70, 1993. 1875

Pueyo, S., de Alencastro Gracga, P. M. L., Barbosa, R. I., Cots, R., Cardona, E., and Fearn-
side, P. M.: Testing for criticality in ecosystem dynamics: the case of Amazonian rainforest
and savanna fire, Ecol. Lett., 13, 793-802, 2010. 1880

Rao, V. B., Hada, K., and Herdies, D. L.: On the severe drought of 1993 in north-east Brazil, Int.
J. Climatol., 15, 697-704, 1995. 1896

1892

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-print.pdf
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/hess-17-3707-2013

10

15

20

25

30

Reichstein, M., Ciais, P, Papale, D., Valentini, R., Running, S., Viovy, N., Cramer, W,
Granier, A., Ogée, J., Allard, V., Aubinet, M., Bernhofer, C., Buchmann, N., Carrara, A.,
Grinwald, T., Heimann, M., Heinesch, B., Knohl, A., Kutsch, W., Loustau, D., Manca, G., Mat-
teucci, G., Miglietta, F,, Ourcival, J., Pilegaard, K., Pumpanen, J., Rambal, S., Schaphoff, S.,
Seufert, G., Soussana, J.-F.,, Sanz, M.-J., Vesala, T., and Zhao, M.: Reduction of ecosystem
productivity and respiration during the European summer 2003 climate anomaly: a joint flux
tower, remote sensing and modelling analysis, Glob. Change Biol., 13, 634—651, 2007. 1871

Reichstein, M., Bahn, M., Ciais, P., Mahecha, M. D., Seneviratne, S. |., Zscheischler, J., Beer, C.,
Buchmann, N., Frank, D., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M.,
Vicca, S., Walz, A., and Wattenbach, M.: Climate extremes and the carbon cycle, Nature,
500, 287-295, 2013. 1870, 1872, 1873, 1880, 1883, 1884

Rojas, O., Vrieling, A., and Rembold, F.: Assessing drought probability for agricultural areas
in Africa with coarse resolution remote sensing imagery, Remote Sens. Environ., 115, 343—
352, 2011. 1896

Rouault, M. and Richard, Y.: Intensity and spatial extension of drought in South Africa at differ-
ent time scales, Water SA, 29, 489-500, 2003. 1896

Running, S. W., Thornton, P. E., Nemani, R., and Glassy, J. M.: Global terrestrial gross and net
primary productivity from the Earth Observing System, in: Methods in Ecosystem Science,
44-57,2000. 1874

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and Hashimoto, H.:
A continuous satellite-derived measure of global terrestrial primary production, Bioscience,
54, 547-560, 2004. 1873, 1875

Seneviratne, S. |, Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y.,
Marengo, J., Mclnnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang,
X.: Changes in climate extremes and their impacts on the natural physical environment, in:
Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adapta-
tion (IPCC SREX Report), edited by: Field, C. B. et al., 109-230, 2012. 1876, 1884

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S.,
Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics,
plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model,
Glob. Change Biol., 9, 161-185, 2003. 1873, 1874

Siwkcki, R. and Ufnalski, K.: Review of oak stand decline with special reference to the role of
drought in Poland, Eur. J. Forest Pathol., 28, 99-112, 1998. 1896

1893

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-print.pdf
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

30

Smith, M. D.: An ecological perspective on extreme climatic events: a synthetic definition and
framework to guide future research, J. Ecol., 99, 656663, 2011. 1872

Sornette, D.: Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and
Disorder, Springer, 2006. 1880

Sun, Y., Gu, L., Dickinson, R. E., and Zhou, B.: Forest greenness after the massive 2008 Chi-
nese ice storm: integrated effects of natural processes and human intervention, Environ.
Res. Lett., 7, 085702, doi:10.1088/1748-9326/7/3/035702, 2012. 1871

Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.:
The influence of vegetation, fire spread and fire behaviour on biomass burning and
trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991-2011,
doi:10.5194/bg-7-1991-2010, 2010. 1874

Touboul, J. and Destexhe, A.: Can power-law scaling and neuronal avalanches arise from
stochastic dynamics?, PLoS One, 5, e8982, doi:10.1371/journal.pone.0008982, 2010. 1880

Turcotte, D. L., Malamud, B. D., Guzzetti, F., and Reichenbach, P.: Self-organization, the cas-
cade model, and natural hazards, P. Natl. Acad. Sci. USA, 99, 2530-2537, 2002. 1879

Ummenhofer, C. C., England, M. H., Mcintosh, P. C., Meyers, G. A., Pook, M. J., Risbey, J. S,
Gupta, A. S., and Taschetto, A. S.: What causes southeast Australia’s worst droughts?, Geo-
phys. Res. Lett., 36, L04706, doi:10.1029/2008GL036801, 2009. 1885

Varadhan, S. R. S.: Asymptotic probabilities and differential equations, Commun. Pur. Appl.
Math., 19, 261-286, 1966. 1880

Waple, A. and Lawrimore, J.: State of the climate in 2002, B. Am. Meteorol. Soc., 84, 800-800,
2003. 1896

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming and earlier spring
increase western US forest wildfire activity, Science, 313, 940-943, 2006. 1871

Zaehle, S. and Friend, A. D.: Carbon and nitrogen cycle dynamics in the O-CN land surface
model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates,
Global Biogeochem. Cy., 24, GB1005, doi:10.1029/2009GB003521, 2010. 1873

Zeng, H., Chambers, J. Q., Negrén-duarez, R. |., Hurtt, G. C., Baker, D. B., and Powell, M. D.:
Impacts of tropical cyclones on US forest tree mortality and carbon flux from 1851 to 2000,
P. Natl. Acad. Sci. USA, 106, 7888-7892, 2009. 1871

Zhao, M. and Running, S. W.: Drought-induced reduction in global terrestrial net primary pro-
duction from 2000 through 2009, Science, 329, 940-943, 2010. 1871

1894

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-print.pdf
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1088/1748-9326/7/3/035702
http://dx.doi.org/10.5194/bg-7-1991-2010
http://dx.doi.org/10.1371/journal.pone.0008982
http://dx.doi.org/10.1029/2008GL036801
http://dx.doi.org/10.1029/2009GB003521

Zscheischler, J., Mahecha, M. D., Harmeling, S., and Reichstein, M.: Detection and attribution
of large spatiotemporal extreme events in Earth observation data, Ecol. Inform., 15, 66—73,
2013. 1873, 1875, 1878, 1879
Zscheischler, J., Mahecha, M. D., von Buttlar, J., Harmeling, S., Jung, M., Rammig, A., Rander-
son, J., Schoélkopf, B., Seneviratne, S. |., Tomelleri, E., Zaehle, S., and Reichstein, M.: Few
extremes dominate interanual variability in gross primary production, Environ. Res. Lett., 9,
720 in press, 2014. 1872, 1873, 1879, 1880, 1881, 1882, 1883, 1897, 1901

1895

| Jadeq uoissnosigq | Jeded uoissnosiq | Jaded uoissnosiqg

Jaded uoissnosiq

BGD
11, 1869-1907, 2014

GPP extremes across
continents

J. Zscheischler et al.

(8
K ()


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-print.pdf
http://www.biogeosciences-discuss.net/11/1869/2014/bgd-11-1869-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table 1. Approximate location, timing and literature for the largest negative 1st-percentile GPP
extreme event at each of the five data sets MTE, MOD17+, LPJmL, OCN and AVG on each

continent.

MTE MOD17+ LPJmL OCN AVG
NA 2011 1988 2006 2006 2011
where Texas, South West US Midwestern US Great Plains Great Plains Texas, South West US
what drought drought drought drought drought
ref (Coumou and Rahmstorf, 2012) (Namias, 1991) (Dong et al., 2011) (Dong et al., 2011) (Coumou and Rahmstorf, 2012)
SA 1992-1993 2010 1995-1996 2004-2006 2010
where NE Brazil Amazon Northern Argentina Eastern Amazon SE Amazon
what drought drought drought drought drought
ref (Rao et al., 1995) (Lewis et al., 2011) (Minetti et al., 2009) (Anderson et al., 2010) (Lewis et al., 2011)
EU 1987 2003 1992 2002 2003
where Eastern Europe Central Europe Central Eastern Europe South Western Russia Central Europe
what drought, heat wave drought cold spell, flooding drought, heat wave
ref (Ciais et al., 2005) (Siwkcki and Ufnalski, 1998)  (Waple and Lawrimore, 2003) (Ciais et al., 2005)
AF 1984-1985 1996-1997 1992 1991-1994 1996-1997
where Sahel East Africa South Africa East Africa East Africa
what drought, famine drought drought drought drought
ref (Rojas et al., 2011) (Galvin et al., 2001) (Rouault and Richard, 2003) (Galvin et al., 2001) (Galvin et al., 2001)
AS 2010 2010 2010 2010 2010
where Russia Russia Russia Russia Russia
what heat wave heat wave heat wave heat wave heat wave
ref (Barriopedro et al., 2011) (Barriopedro et al., 2011) (Barriopedro et al., 2011) (Barriopedro et al., 2011) (Barriopedro et al., 2011)
oC 2002-2003 2002-2004 1982-1983 1982-1983 2002-2003
where SE Australia Eastern Malaysia SE Australia SE Australia SE Australia
what Millennium drought drought drought Millennium drought

ref

(Leblanc et al., 2009)

(Myneni et al., 1996)

(Myneni et al., 1996)

(Leblanc et al., 2009)
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(e.g.) 10% of the data
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negative extreme positive extreme

frequency

S

-q 0 q anomaI\'/

f

(e.g.) 90% of the data

Fig. 1. Sketch of how extremes are defined on GPP anomalies. A symmetric threshold g is
set such that (e.g.) 90% of the data anomalies fall in between —g and g. Those values which
exceed the threshold are defined to be extreme. In this example the extremes are defined using
the 10th-percentile definition (not to scale). Reprint of Fig. A2 in Zscheischler et al. (2014).
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Fig. 2. Values of the power law exponent a for the overall impact (blue) and spatial extent (red)
of extremes in GPP. Shown are the median (dot) and the range of the data sets MTE, MOD17+,
LPJmL, OCN and AVG for the positive (+) and negative(-) extremes for the percentiles 1 to 10.
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d) South America e) Africa f) Oceania

correlation of extremes with continental anomaly
o
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Fig. 3. Correlations of 10th-percentile extremes (positive and negative) with aggregated anoma-
lies on each continent. Depicted are the correlation coefficients for the data sets MTE (blue
circles), MOD17+ (green cross), LPLPJmL (red square), OCN (cyan diamond). The dashed
black line shows the mean of the correlation coefficients of the four data sets.
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Fig. 5. Global averaged map of negative 10th-percentile extreme events in GPP. The largest
200 10th-percentile extremes in GPP for each continent and the four data sets MTE, MOD17+,
LPJmL and OCN were computed and then averaged to obtain the typical impact of GPP ex-
treme events per year. Compare with Fig. 3a in Zscheischler et al. (2014) for an analysis at the
global scale.
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Fig. 6. Overall impact and asymmetry of GPP extreme events. Depicted are the 4 different GPP
data sets (MTE, MOD17+, LPJmL, OCN), the average of the results of the four (MEAN), and
the results for the averaged data set (AVG). (a—-f) Sum of the overall impact of the largest 200
extreme events in GPP for each continent using the percentiles 1 to 10. (g-1) Quotient between
200 largest negative and 200 largest positive extreme events in GPP for each continent using
different the percentiles 1 to 10.
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Fig. 7. Difference between negative GPP extreme events of the averaged data set AVG and
averaged negative GPP extreme events of the four data sets MTE, MOD17+, LPJmL, and
OCN. Depicted is the difference in impact per year. For each continent and each data set the
200 largest negative 10th-percentile GPP extreme events were computed and then integrated
over time. Red areas imply smaller extreme events in AVG (less negative impact).
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a) North America

# extremes

# extremes

b) Europe

Fig. 8. Number of GPP extreme events starting per month for the largest 200 1st-percentile
extremes in GPP for each continent and the data sets MTE, MOD17+, LPJmL, OCN.
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Fig. 9. Pixelwise difference between the 200 largest positive and the 200 largest negative
extreme events. In the red areas negative extremes dominate. (a) Averaged difference between
GPP extreme events in the four data sets MTE, MOD17+, LPJmL and OCN. (b) Difference
between GPP extreme events in the averaged data set AVG.
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Fig. 10. Percentage of extreme p values (p < 0.1) of the 200 largest 1st-percentile GPP ex-
treme events for each of the six continents, all four data sets and the variables high and low
temperature (7, red and blue), high and low precipitation (P, green and purple), low water avail-
ability (drought, orange), and high burned area or fire emissions (fire, yellow). The horizontal
line depicts the significance threshold (0.1), i.e. the percentage of events which are expected to
have p values below 0.1 if the data were random. The last bar (rest, brown) depicts the fraction
of events that could not be attributed to any of the former variables.
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Fig. 11. Average impact per year due to negative extreme events in (a) EVI (2001-2011), (b)
FAPAR (1982-2011), and (c) LAI (1982-2011). On each continent the 200 largest negative
10th-percentile extremes were computed and merged to obtain a global map. The maps depict
the decrease in the respective variable compared to the average year generated by extreme
events in that variable.
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