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ABSTRACT
The paper describes an explicit multi-dimensional numerical scheme for Special Rel-
ativistic Two-Fluid Magnetohydrodynamics of electron-positron plasma and a suit of
test problems. The scheme utilizes Cartesian grid and the third order WENO inter-
polation. The time integration is carried out using the third order TVD method of
Runge-Kutta type, thus ensuring overall third order accuracy on smooth solutions.
The magnetic field is kept near divergence-free by means of the method of generalized
Lagrange multiplier. The test simulations, which include linear and non-linear contin-
uous plasma waves, shock waves, strong explosions and the tearing instability, show
that the scheme is sufficiently robust and confirm its accuracy.

Key words: magnetic fields –plasmas– relativistic processes – MHD – waves – meth-
ods: numerical

1 INTRODUCTION

It is now well recognized that magnetic fields play a very important role in many astrophysical phenomena and in particular
in those involving relativistic outflows. The magnetic fields are likely to be involved in launching, powering and collimation of
such outflows. The dynamics of relativistic magnetized plasma can be studied using diverse mathematical frameworks. The
most developed one so far is the single fluid ideal relativistic Magnetohydrodynamics (RMHD). During the last decade, an
impressive progress has been achieved in developing robust and efficient computer codes for integration of its equations. Only
within a scope of proper review one can acknowledge the numerous contributions made by many different research groups and
individuals. This framework is most suitable for studying large-scale macroscopic motions as it does not require to resolve
the microphysical scales for numerical stability. One of its obvious disadvantages is that it allows only numerical dissipation.
While at shocks this is not of a problem, the dissipation observed in simulations at other locations may be questionable.
This becomes more of an issue as ever growing body of evidence suggests the importance of magnetic dissipation associated
with magnetic reconnection in dynamics of highly magnetized relativistic plasma. The framework of resistive RMHD allows
to incorporate this magnetic dissipation but the inevitably phenomenological nature of its Ohm’s law puts constraints on its
robustness. It is not yet clear how much progress can be achieved in this direction.

At the other extreme is the particle dynamics, describing the motion of individual charges in their collective electromag-
netic field. The so-called Particle-in-Cell (PIC) numerical approach has been extremely productive in studying the micro-
physics of relativistic collisionless shock waves and magnetic reconnection. The numerical stability considerations require PIC
codes to resolve the scales of plasma oscillations. The accuracy considerations can be even more demanding, pushing towards
the particle gyration scales. The accuracy of PIC simulations also depends on the number of macro-particles and rather
weakly, with the numerical noise level being inversely proportional of the square root of the number. These features make
this approach less suitable for studying macroscopic phenomena and only few examples of such simulations can be found in
literature (e.g. Arons et al. 2005; Spitkovsky & Arons 2002).
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2 Barkov & Komissarov

Somewhere in between there lays the multi-fluid approximation, where plasma is modeled as a collection of several inter-
penetrating charged and neutral fluids, coupled via macroscopic electromagnetic field and inter-fluid friction. Undoubtedly,
this approach is not as comprehensive in capturing the microphysics of collisionless plasma as the particle dynamics (and
kinetics). However, it does this better than the single fluid MHD. In particular, it captures the collective interaction between
positive and negative charges which results in plasma waves with frequencies above the plasma frequency. Compared to the
resistive MHD, the generalized Ohm’s law of the multi-fluid approximations takes into account the finite inertia of charged
particles. From the numerical prospective, the potential of this framework is not clear. By the present time, there has been
only a very limited effort to explore it. Zenitani et al. (2009a,b) used this approach for studying the relativistic magnetic
reconnection, Amano & Kirk (2013) for studying the termination shocks of pulsar winds, and Kojima & Oogi (2009) tried
to construct two-fluid models of steady-state pulsar magnetospheres. The ability, or the lack of it, to describe accurately the
magnetic reconnection is probably the most important issue. Zenitani et al. (2009a) concluded that the inertial terms make
a significant contribution to the reconnection electric field, even exceeding that of the friction term, which represents the
resistivity. This hints that the inertial terms can play an important role in driving the magnetic reconnection. On the other
hand, they have also found that the outcome strongly depends on the model of resistivity. Thus, the reconnection issue remains
widely open. Another issue is the required numerical resolution. Zenitani et al. (2009a,b) set the grid scale to be comparable
to the electron gyration radius. If such high resolution is indeed required then it will be easier just to do PIC simulations. Only
if much lower resolution is sufficient, the multi-fluid approach can be advantageous when it comes to macroscopic simulations.

The aforesaid works on the relativistic multi-fluid numerical simulations neither described in details the design of their
numerical schemes nor presented test simulations demonstrating their robustness and accuracy. Zenitani et al. (2009a,b) state
that they use a “modified Lax-Wendroff scheme”, which employs artificial viscosity, and comment that this is a “bottleneck” of
their code. In particular, they find that the contribution of the artificial viscosity to the reconnection electric field is comparable
to other contributions. In this paper, we present a high-order accurate Godunov-type scheme for the two-fluid RMHD which
does not involve such artificial terms. As a first step, we constrain ourselves with the Special Relativistic framework and the
case of pure electron-positron plasma. The scheme utilizes the third order WENO interpolation and the time integration is
carried out using the third order TVD method of Runge-Kutta type, thus ensuring overall third order accuracy on smooth
solutions. In order to keep the magnetic field divergence-free we employ the method of generalized Lagrange multiplier. The
code is parallelized using MPI. We also present a suit of one-dimensional and multi-dimensional test problems and the results
of our test simulations. The code is parallelized using MPI. It can be provided by the authors on request.

2 3+1 SPECIAL RELATIVISTIC ELECTRON-POSITRON TWO-FLUID MHD

In the multi-fluid approximation, it is assumed that plasma consists of several interacting fluids, one per each kind of particles
involved, and the electromagnetic field. Charged fluids interact with each other electromagnetically and via the so-called
inter-fluid friction. The coupling between a fluid of electrically neutral particles and other fluids is only via the inter-fluid
friction. Given such understanding, the system of multi-fluid approximation consists of the Maxwell equations and copies of
the usual single fluid equations, one per each involved fluid, augmented with the force terms describing these interactions.
The fluid equations may be derived via averaging of the corresponding kinetic equations (e.g. Goedbloed & Poedts 2004).

In one form or another, the equations of relativistic two-fluid MHD were used by many researchers, going back to the work
by Akhiezer & Polovin (1956). Following Zenitani et al. (2009a) we adopt the 3+1 Special Relativistic equations originated
from the covariant formulation by Gurovich & Solov’ev (1986). In a global inertial frame with time-independent coordinate
grid, the equations of two-fluid RMHD include the continuity equations

∂t(ρ±γ±) +∇i(ρ±ui±) = 0 , (1)

the energy equations

∂t(w±γ
2
± − p±) +∇i(w±γ±ui±) = (ji±Ei) ± κfc

2n+n−(γ− − γ+) , (2)

the momentum equations

∂t
(
(w±/c

2)γ±u
s
±
)

+∇i((w±/c2)ui±u
s
± + gisp±) = q±E

s +
1

c
esikj±i Bk ± κfn+n−(us− − us+) , (3)

and the Maxwell equations

∇iBi = 0 , (4)

1

c
∂tB

s + esik∂iEk = 0 , (5)
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Two-fluid RMHD 3

∇iEi = 4π(q+ + q−) , (6)

1

c
∂tE

s − esik∂iBk = −4π

c
(js+ + js−) . (7)

We apply these to the case of electron-positron plasma, so n± is the proper number density of positrons and electrons (as
measured in the rest frame of the positron and electron fluids respectively), ρ± = men± is the proper mass density, γ± is
the Lorentz factor, u± = γ±v± are the spatial components of 4-velocity, w± is the relativistic enthalpy, p± is the isotropic
thermodynamic pressure, q± = ±eγ±n± is the electric charge density, j± = ±en±u± is the electric current density, gij is the

metric tensor of space, eijk is the Levi-Civita tensor of space, and c is the speed of light. The last two terms in Eqs.2 and 3
describe the internal friction between the two fluids. The 4-scalar κf is called the dynamic coefficient of this friction. These
equations have to be supplemented by equations of state (EOS), e.g. the polytropic EOS

w± = n±mec
2 + Γp±/(Γ− 1) , (8)

where Γ is the ratio of specific heats.
By subtracting the momentum equations for the positron and electron fluids, one obtains the so-called generalized Ohm

law of the two-fluid MHD:

∂t

(∑
±

±(w±/c
2)γ±u

s
±

)
+∇i

(∑
±

±((w±/c
2)ui±u

s
± + p±g

is)

)
= eñEs +

e

c
esikviBk −

2κf

e
(n+j

s
− + n−j

s
+) , (9)

In this equation,

ñ = n+γ+ + n−γ− (10)

is the total number density of charged particles as measured in the laboratory frame and

v =
n+u+ + n−u−

ñ
=

j+ − j−
eñ

(11)

is their average velocity in this frame. In general, the internal friction of a single fluid, not introduced in our model, leads
to viscosity and the internal friction between two charged fluids to resistivity. In order to understand the properties of this
resistivity, consider the Ohm’s law in the plasma frame (where v = 0) and ignore the inertial terms (the terms in the left-hand
side of the generalized Ohm’s law). This gives us

E =
2κf

e2ñ
(n+j− + n−j+) . (12)

Since v = 0, we have j+ = j− = j/2, where j = j+ + j− is the total electric current, and hence obtain the usual Ohm’s law

j = σE , (13)

with the scalar conductivity coefficient

σ =
e2

κf

(
ñ

n+ + n−

)
. (14)

The corresponding resistivity coefficient is defined as η = 1/4πσ.
For the purpose of mathematical analysis and computations, it is best to deal with dimensionless equations. Denote as

B0 the characteristic value of magnetic (and electric) field, as T0 the characteristic time scale, as L0 = cT0 the characteristic
length scale, and as n0 the characteristic number density of particles. Then the characteristic scale for ρ is men0 and the
characteristic scale for w and p is mec

2n0. The corresponding dimensionless equations of the two-fluid electron-positron RMHD
are

∂t(n±γ±) +∇i(n±ui±) = 0 , (15)

∂t(w±γ
2
± − p±) +∇i(w±γ±ui±) = ± 1

Km
n±(ui±Ei) ±

1

Kf
n+n−(γ− − γ+) , (16)

∂t (w±γ±u
s
±) +∇i(w±ui±us± + gisp±) = ± 1

Km
n±γ±(Es + esikv±i Bk) ± 1

Kf
n+n−(us− − us+) , (17)
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4 Barkov & Komissarov

Table 1. Important plasma parameters in dimensional and dimensionless form. Here the magnetic field B̂ is measured in the plasma

rest frame, w = w+ + w−, p = p+ + p− and n = n+ + n−.

Name Dimensional expression Dimensionless expression

plasma frequency Ω2
p = 4πe2n2c2

w
Ω2

p = 1
KqKm

(
n2

w

)
skin depth λs = c

Ωp
λs =

(
1

Ωp

)
magnetization β β = 8πp

B̂2
β = Km

Kq

(
2p

B̂2

)
magnetization σm σm = B̂2

4πw
σm =

Kq
Km

(
B̂2

w

)
gyration radius Rg = mec

2

eB̂

((
w−p
ρc2

)2
− 1

)1/2

Rg = Km
B̂

((
w−p
n

)2
− 1

)1/2

∇iBi = 0 , (18)

∂tB
s + esik∂iEk = 0 , (19)

∇iEi =
1

Kq
(n+γ+ + n−γ−) , (20)

∂tE
s − esik∂iBk = − 1

Kq
(n+u

s
+ − n−us−) . (21)

The three dimensionless parameters in these equations are

Kq =
B0

4πeL0n0
, Km =

mec
2

eB0L0
, Kf =

mec

κfn0L0
. (22)

The dimensionless polytropic EOS is

w± = n± + Γp±/(Γ− 1) . (23)

We write the dimensionless two-fluid equations in the form which focuses on their mathematical structure. Although this
somewhat hides the physical origin of the system, all the important plasma parameters can be easily recovered when this is
needed. Some of them are listed in Table 1. The parameters Km, Kf, and Kq also allow simple physical interpretation. Km is
the ratio of the particle rest mass energy mec

2 to the potential drop eB0L0 in the electric field of strength E0 = B0 over the
characteristic length scale of the problem. Obviously, this is a measure of the magnetic field strength. Kf is the ratio of the
relaxation time scale Tf = me/n0κf in plasma of number density n0 and the light-crossing time scale T0 = L0/c. Kq is the
inverse ratio of n0 and the Goldreich-Julian number density of charged particles

nGJ = B0/4πeL0 . (24)

From the expressions for the plasma magnetizations β and σm given in Table 1 it is easy to see how to setup two-fluid
problems corresponding to single-fluid RMHD problems, e.g. the test problems of Komissarov (1999). One can use the same
dimensionless values for the total thermodynamic pressure and density, but scale the electromagnetic field by the factor of√
Km/Kq.

By summing together the energy equations Eqs.16 and then utilizing the Maxwell equations one obtains the conservation
law for the total energy,

∂t

(∑
±

(w±γ
2
± − p±) +

Kq

2Km
(B2 + E2)

)
+∇i

(∑
±

w±γ±u
i
± +

Kq

Km
eijkEjBk

)
= 0 . (25)

Similarly, one finds the total momentum conservation law

∂t

(∑
±

w±γ±u
s
± +

Kq

Km
esjkEjBk

)
+∇i

(∑
±

(w±u
i
±u

s
± + p±g

is) +
Kq

Km

(
−EiEs −BiBs +

1

2
(B2 + E2)gis

))
= 0 . (26)
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Two-fluid RMHD 5

By subtracting the dimensionless momentum equations for the positron and electron fluids one obtains the dimensionless
generalized Ohm law of the two-fluid MHD:

∂t

(∑
±

±w±γ±us±

)
+∇i

(∑
±

±(w±u
i
±u

s + p±g
is)

)
=

1

Km
ñ(Es + esikviBk) +

2

Kf
n+n−(us− − us+) . (27)

In this equation, ñ = n+γ+ + n−γ− is the total number density of charged particles as measured in the laboratory frame
and vi = (n+γ+v

i
+ + n−γ−v

i
−)/ñ is their average velocity in this frame. Subtracting the dimensionless energy equations, we

obtain the time component of the generalized Ohm’s law

∂t

(∑
±

±(w±γ
2
± − p±)

)
+∇i

(∑
±

±(w±γ±u
i
±)

)
=

1

Km
ñ(viEi) +

2

Kf
n+n−(γ− − γ+) . (28)

3 NUMERICAL METHOD

From the analysis of Sec.2, it follows that there is a significant freedom in the selection of mathematically equivalent closed
system of equations to describe the dynamics of two-fluid plasma. However for numerical integration, it is often advantageous
to select equations which do not involve source terms. In this case, one can utilize the ability of modern shock capturing
schemes to preserve conserved quantities down to the computer rounding error, which is important for problems involving
discontinuities. For this reason, the fluid equations utilized in our numerical scheme include Eqs. 15, 25 and 26. The system
is closed by including the generalized Ohm’ law, Eqs. 27 and 28, and the so-called augmented Maxwell equations, which are
described below.

3.1 Augmented Maxwell Equations

In order to keep the magnetic field divergence free and to ensure that the Gauss law is satisfied as well, we use the so-called
Generalized Lagrange Multiplier method (Munz et al. 2000; Dedner et al. 2002; Komissarov 2007). To this end, the Maxwell
equations are modified in such a way that all four of them become dynamic. Namely,

∂tΦ +∇iBi = −κΦ , (29)

∂tB
s + esik∂iEk +∇sΦ = 0 , (30)

∂tΨ +∇iEi =
1

Kq
(n+γ+ + n−γ−)− κΨ , (31)

∂tE
s − esik∂iBk +∇sΨ = − 1

Kq
(n+u

s
+ − n−us−) , (32)

where the scalars Φ and Ψ are two additional dynamic variables and κ is a positive constant, which determines the rate
of decay of ∇iBi and ∇iEi − (1/Kq)(n+γ+ + n−γ−). Obviously, the resultant equations are of the same structure as the
fluid equations and hence they can be discretized in exactly the same way. This property greatly simplifies computational
algorithms and coding.

3.2 Finite-difference conservative scheme

In our numerical scheme, we integrate Eqs. 15, 25, 26, 27, 28, and the augmented Maxwell equations 29-32. Taken together,
they can be written as a single phase vector equation of the form

∂Q
∂t

+
∂Fm

∂xm
= S , (33)

where Q is the vector of conserved variables, Fm is the vector of fluxes in the xm direction and S is the vector of source
terms. When {xm} are Cartesian coordinates, and this is the only case we have coded so far, one can simply replace ∇m with
∂m and hence read the components of Q, Fm and S directly from the aforesaid equations. Otherwise, these expressions will
also involve components of the metric tensor.

Introduce a uniform coordinate grid such that xmi is the coordinate of the center of the ith cell, and xmi±1/2 are the
coordinates of its right and left interfaces. Replace, the continuous function Q with a discrete function defined at the cell
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6 Barkov & Komissarov

centers and the continuous functions Fm with discrete functions defined at the centers of xm cell interfaces. Finally, replace
∂mFm with the finite difference approximations:

DF i,j,k =
F1
i+1/2,j,k −F1

i−1/2,j,k

∆x1
+
F2
i,j+1/2,k −F2

i−1/2,j,k

∆x2
+
F3
i,j,k+1/2 −F3

i,j,k−1/2

∆x3
. (34)

As the result Eq.33 becomes a set of coupled ODEs

dQi,j,k
dt

= Li,j,k(Q) (35)

where

Li,j,k(Q) = −DF i,j,k(Q) + S(Qi,j,k) . (36)

In this equation, the notation DF i,j,k(Q) means that, strictly speaking, the argument of DF i,j,k is the whole of the discrete
function Q (exactly the same applies to Li,j,k(Q)). However in reality, only few of its values, in the cells around the (i, j, k)-cell,
are involved – this defines the scheme stencil.

It is easy to see that, when the equations of the system (35) are integrated simultaneously, the quantities∑
i,j,k

Qi,j,k (37)

are conserved down to rounding error. Any larger variation may only be due to a non-vanishing source term in (35) or a non-
vanishing total flux of the quantity through the boundary of the computational domain. In this sense, this finite difference
scheme is conservative.

3.3 Third-order WENO interpolation

In order to calculate fluxes at the cell interfaces, and hence DF i,j,k(Q), we use the third-order weighted essentially
non-oscillatory (WENO) interpolation developed by Liu et al. (1994), in the improved form proposed by Yamaleev &
Carpenter (2009). However, instead of interpolating the conserved variables we prefer to interpolate the primitive ones,
P = (n±, p±, u

s
±, E

s, Bs, Φ, Ψ). The benefit of this is twofold. Firstly, this reduces by the factor of two the number of
required conversions of conserved variables into the primitive ones. Indeed, in order to compute the flux vector from the
vector of conserved variables one would have to convert the latter into the vector of primitive variables first. This would have
to be done twice per each interface. Secondly, this ensures physically meaningful interpolated phase states.

The aim of the interpolation is to provide us with phase states immediately to the left and right of each cell interface given
those at the cell centers. In the third order WENO interpolation, the interface values are found via a convex linear combination
of two linear interpolants, which provides third order accuracy on smooth solutions. For the i-th cell the interpolants are

P+(x) = Pi +
∆P+

∆x
(x− xi) and P−(x) = Pi +

∆P−
∆x

(x− xi) ,

where ∆P+ = Pi+1 −Pi and ∆P− = Pi −Pi−1. Here we consider only one of the coordinate directions and omit indexes for
others. Their convex combination is

P(x) = w+P+(x) + w−P−(x) ,

where w± > 0 and w+ + w− = 1. These conditions on the weights are satisfied when

w+ =
α+

α+ + α−
and w− =

α−
α+ + α−

,

where α± > 0. Removing the arbitrary small constant ε, artificially introduced in Yamaleev & Carpenter (2009) in order
to avoid division by zero during the calculations of α±, and somewhat rearranging their equations, we find the interpolated
values of P at the left and right interfaces of the cell

Pi±1/2 = Pi ± (a±∆P± +
1

2
a∓∆P∓)/(2a± + a∓) , (38)

where

a± = ∆P2
∓
(
∆P2
± + (∆P+ + ∆P−)2) . (39)

It is easy to verify that Eq.38 yields Pi±1/2 = Pi when either ∆P− = 0 or ∆P+ = 0. Thus, one can put

Pi±1/2 = Pi if ∆P−∆P+ = 0 . (40)

This allows us to avoid the 0/0 indeterminacy implied by Eqs.38,39, via a simple inspection of data.
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Two-fluid RMHD 7

3.4 Riemann solver

Using the interpolation described in the previous section, one obtains two phase states, Pl and Pr, to the left and right of each
cell interface respectively. This defines 1D Riemann problems whose solutions can be used to compute the interface fluxes
required in Eq.34. Finding exact and even linearized solutions of Riemann problems for complicated systems of equations can
be rather expensive. In such cases, it makes sense to utilize methods which use minimum amount of information about there
characteristic properties, like the Lax-Friedrich flux, which requires to know only the highest wave speed of the system and
purely for the stability consideration. Since in the relativistic framework this speed is limited from above by the speed of light,
the latter can replace the former in the Lax-Friedrich flux, leading to the equation

FLF =
1

2
(Fl + Fr)−

1

2
(Qr −Ql) , (41)

where {Fl,Fr} and {Ql,Qr} are the vectors of fluxes and conserved variables corresponding to the left and the right phase
states respectively (e.g. Fl = F(Pl)). The second term in the right-hand side of this equation introduces diffusion, which
stabilizes numerical solutions. Although this diffusion may be excessive, its negative effect is significantly diminished in
smooth regions, when schemes with highly accurate reconstruction are employed.

3.5 Time integration

For the integration of the coupled ODEs given by Eq.35 we use the popular third-order total variation diminishing (TVD)
Runge-Kutta scheme by Shu & Osher (1988). The one time-step calculations proceed as follows.

Q(1) = Qn + ∆tL(Qn) ,

Q(2) = Qn +
∆t

4

(
L(Q(1)) + L(Qn)

)
, (42)

Qn+1 = Qn +
∆t

6

(
L(Qn) + L(Q(1)) + 4L(Q(2))

)
,

where Qn and Qn+1 are the values of Q at the times tn and tn+1 = tn + ∆t, and Q(1) and Q(2) are two auxiliary vectors. For
stability, the time step must satisfy the Courant condition. Since the highest speed of communication in our case is the speed
of light, this condition reads ∆t = cn min(∆xi), where cn < 1. Even smaller time step is required when the source terms are
large.

3.6 Conversion of conservative into primitive variables

The recovering of the hydrodynamic primitive variables is carried out in three steps. First we use updated E and B to remove
the electromagnetic contributions from the updated total energy and momentum. Second, via adding and subtracting the
corresponding conserved variables we recover the energies and momenta of the electron and positron fluids. As the result, for
each of the fluids we have the set of five conserved quantities

D = nγ, E = wγ2 − p, Mi = wγ2vi , (43)

where we dropped ±. This is a set of non-linear equation for the primitive variables n, p, and vi. In the literature, one can find
a number of different algorithms for solving these equations. We employ the following simple iterative procedure, developed
earlier for our code for relativistic gas dynamics (Falle & Komissarov 1996). Denoting wγ2 as Y ,

Yk+1 = E + pk, v2
k+1 =M2/Y 2

k+1, nk+1 = D/γk+1, wk+1 = Yk+1/γ
2
k+1, pk+1 = p(wk+1, nk+1) . (44)

As the initial guess for p we use its value from the previous time step. Depending on how good this initial guess is, it takes
between 4 iterations in smooth regions to 20 iterations near shocks for the solution to converge down to eight significant digits.

4 TEST SIMULATIONS

Many of our test simulations are based on slab-symmetric one-dimensional problems with known exact analytic or semi-
analytic solutions. Such problems allow to test not only the 1D version of the code but also the multi-dimensional ones. The
latter is achieved simply via using the multi-dimensional codes to solve one-dimensional problems aligned with one of the grid
directions. In addition, we used truly multi-dimensional problems for which there is no exact solutions but which have been
found useful for testing one-fluid RMHD codes. The simulations have been carried out either on a laptop or/and a workstation
with multi-core processors.

In all simulations, the parameter κ of the augmented Maxwell equations is fixed at κ = 0.1.
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8 Barkov & Komissarov

Figure 1. Propagation of small amplitude electrostatic waves. The number density of electrons (left panel) and the electric field (right
panel). The continuous lines show the initial solution and the dots show the numerical solution after one period.

4.1 Electrostatic waves

The two-fluid equations allow additional types of waves compared to the single fluid MHD. The most basic new waves are the
electrostatic waves. In relativistic two-fluid MHD with Kf =∞, the properties of linear electrostatic waves were first studied
by Sakai & Kawata (1980). Their background solution describes uniform state with zero velocity and electric field. The waves
propagate along the magnetic field and perturb only the particle density and the components of velocity and electric field along
the magnetic field. Choosing the x axis aligned with the magnetic field, putting A = Ã exp(i(Ωt − kx)) for the perturbation
and assuming the same thermodynamic parameters for electron and positron fluids, one finds the dispersion relation

Ω2 = Ω2
p(1 + (k/kb)2) , (45)

where Ωp is the electron plasma frequency of the uniform background and

k2
b =

1

KmKq

(
2n2

b

Γpb

)
, (46)

where the nb and pb are the background electron (and positron) number density and pressure respectively. For the Fourier
amplitudes one has

ñ± = nb

(
k

Ω

)
ṽx± (47)

and

ṽx± = ±i
1

Km

nbΩ

(Γpbk2 − wbΩ2)
Ẽx . (48)

Figure 1 shows the results of 1D test simulations based on this solution. The parameters used in this test are Kq = Km = 1,
Kf = ∞, k = 2π, Γ = 4/3, nb = pb = 1 and Ẽx = 10−4. The uniform computational grid has 50 cells covering the domain
[0, 1]. One can see that in spite of the relatively low spatial resolution, the numerical solution is quite accurate, particularly
for the electromagnetic field. Noticeable errors are observed only in the gas parameters near the turning points of the wave
curve.

4.2 Circularly polarized “superluminal” waves.

These are nonlinear harmonic solutions of the two-fluid equations with Kf =∞ (e.g. Max 1973; Amano & Kirk 2013). Their
background solution describes uniform state with vanishing velocity, magnetic and electric fields and equal densities and
pressures of the electron and positron fluids. These waves do not perturb particle density and pressure, as well as the velocity
component along the wave vector. The components of vectors normal to the wave vector display pure rotation, whose direction
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Figure 2. Propagation of circularly polarized “superluminal” waves. The left panel shows Ey and the right panel shows By . The
continuous lines show the initial solution and the dots show the numerical solution after one period.

Table 2. L1 norm errors in the problem of circularly polarized wave.

N p− B u−

50 9.94× 10−2 2.73× 10−3 3.56× 10−1

100 1.07× 10−2 4.23× 10−4 4.55× 10−2

200 1.23× 10−3 5.81× 10−5 5.32× 10−3

400 1.46× 10−4 7.57× 10−6 6.34× 10−4

depends on the wave polarization. Choosing the x-axis aligned with the wave vector and putting A = Ã exp(i(Ωt − kx)) for
the wave of left polarization one finds the dispersion relation

Ω = Ωp(1 + (k/kb)2)1/2, (49)

where Ωp is the plasma frequency and kb = 1/Ωp. The corresponding Fourier amplitudes are related via

ũ⊥,± = ± 1

Km

nb

kwb
B̃⊥ , (50)

Ẽ⊥ = −i
Ω

k
B̃⊥ , (51)

where as before nb and wb are the unperturbed background electron density and enthalpy respectively. For the right polar-
ization, A = Ã exp(−i(kx− Ωt)), Eq.50 is replaced with

ũ⊥,± = ∓ 1

Km

nb

kwb
B̃⊥ . (52)

Figure 2 shows the results of 1D test simulations, based on the solution for the left polarization wave. The parameters of
the problem are Kq = 1, Km = 1/(2π)2, Kf =∞, pb = 1/4, nb = 1, Γ = 4/3, vx± = 0, Bx = 0 and k = 2π. The corresponding
wave phase speed is vφ =

√
2. The uniform computational grid has 50 cells and covers the domain [0, 1]. In this figure the

continuous lines show the initial solution and the dots show the numerical solution after one wave period, at t = 1/
√

2. Table
2 show the L1 norm of the numerical errors for p− and the magnitudes of B, and u−, all of which should remain constant.
The data confirm that the scheme is third order accurate.

c© 0000 RAS, MNRAS 000, 000–000



10 Barkov & Komissarov

Figure 3. Fast magnetosonic shock case 1. The dashed line shows one-fluid RMHD shock solution. The solid lines in the top panels

and the dots in the bottom panels show the numerical two-fluid solution.

Table 3. Perpendicular fast magnetosonic shock solutions used in test simulations. The flow Lorentz factor and magnetic field strength
are given in the shock frame.

Case Left state Right state

1 n−, n+ = 0.5 n−, n+ = 1.02977
p−, p+ = 0.05 p−, p+ = 0.171023

γ−, γ+ = 10 γ−, γ+ = 4.93331

B = 189.728 B = 192.779

2 n−, n+ = 0.5 n−, n+ = 5.70015

p−, p+ = 0.05 p−, p+ = 8.09570
γ−, γ+ = 10 γ−, γ+ = 1.32728

B = 31.6214 B = 47.8497
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Two-fluid RMHD 11

Figure 4. Fast magnetosonic shock case 2. The dashed line shows one-fluid RMHD shock solution. The solid lines in the top panels

and the dots in the bottom panels show the numerical two-fluid solution.

4.3 Perpendicular fast magnetosonic shocks.

In these tests, we utilized single fluid ideal RMHD solutions for fast magnetosonic shock waves which were obtained by solving
the relevant shock equations. Although these solutions are discontinuities the corresponding two-fluid solutions could have
continuous structure with or without sub-shocks. In any case, the asymptotic left and right states must be the same as in the
single fluid solutions and this explains the virtue of such tests. The sub-shocks may appear as the two-fluid equations do not
have terms corresponding to viscosity.

Here we present only the case of perpendicular shock, where the magnetic field is tangent to and the flow velocity is
normal to the shock front respectively. The parameters of the one-fluid solutions in the shock frame are given in table 3. They
were used to setup discontinuities in the initial data ( Riemann problems ). In both cases, Km = Kf = 0.01 and Kq = 0.001. In
the case 1, the numerical grid contained 2000 cells covering the domain [−0.2, 0.5], whereas in the case 2, it had 1000 cells and
the domain [−0.05, 0.1]. As to the boundary conditions, we first used the zero gradient ones ( also known as the “free flow”
conditions) at both the boundaries, just like in the similar test simulations for our one-fluid RMHD code. However, various
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Figure 5. Cylindrical Blast Wave 2D test. Time t = 4. The top left panel shows the gas pressure, log10 p+ = log10 p−, The top right

panel shows the Lorentz factor γ− = γ+, the maximum value being γmax = 5.685. The bottom left panel shows the z component of
electric current, jz = n+uz+ − n−uz−. The bottom right panel shows the gas density n− = n+. All plots show the magnetic field lines.

waves were emitted from the position of the initial discontinuity in both directions1, noticeably upsetting both the boundary
states. This resulted in slightly different solutions compared to the reference ones. A somewhat better outcome is obtained
when the upstream boundary state is fixed at the reference state. In any case, both boundaries reflect incident waves and the
reflected waves interact with the shock, so a certain level of noise is present in the numerical solutions.

Figure 3 shows that in the case 1 the two-fluid solution does not involve a sub-shock – it is continuous in all variables.
The downstream part of the solution is a wave-train of gradually diminishing amplitude. The rate of decay is determined by
the dimensionless parameter Kf, higher Kf yielding slower decay. This suggests that for finite Kf, the fixed point of the shock

1 Waves can propagate upstream of fast shocks because in the two-fluid MHD their speed is not limited from above by the fast

magnetosonic speed.
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Figure 6. Cylindrical Blast Wave 2D test. Time t = 4. The solid line shows uz+ and the dotted line uz− along the line x = 0.

structure equations corresponding to the right state is a stable focus. For Kf = ∞, the fixed point must be encircled by a
limit cycle. This structure is in general agreement with the analysis of nonrelativistic shocks by Sagdeev (1966). However,
the wavelength of the wavetrain is significantly smaller than the skin-depth, which is λs ' 3, probably due to the relativistic
effects. On the contrary, the generalized gyration radius, Rg ' 7 × 10−4, is small compared to the wavelength2. When the
wavelength is not properly resolved, the numerical solution develops strong oscillations on the cell scale, leading to a crash,
unless these oscillations are dumped by high resistivity.

In contrast, the case 2 solution involves a hydro sub-shock – the density, pressure and velocity of the fluids are discon-
tinuous, whereas the electric and magnetic fields are not (see figure 4). Downstream of the sub-shock, one can also see a
wave-train similar to that of the case 1 but of smaller amplitude. In both cases, the two-fluid solution agrees with the single
fluid solution at x→ ±∞. In this problem, the generalized gyration radius Rg ' 4× 10−3 and the skin depth is λs ' 3.

In our test problems, the flow magnetization σm ' 13 and σm ' 0.36 for the cases 1 and 2 respectively. Thus, our results
are is in agreement with those of Haim et al. (2012), who analyzed the structure equations of one-dimensional nonlinear
perpendicular waves and concluded that continuous soliton-type solutions of two-fluid RMHD do not exist in the low σm

limit.

4.4 Cylindrical and Spherical Blast Waves

All the test problems described so far are one-dimensional with the slab symmetry. We used them to test not only our 1D
scheme but also the 2D and 3D schemes. In these multi-dimensional tests, the initial solutions were aligned with the grid,
so that they varied only along one of the coordinate directions. The disadvantage of such approach is that it excludes waves
propagating at an angle to the grid. To verify that the code handles such cases as well, we carried out the following two tests.

The first one is the so-called cylindrical explosion problem, as introduced in Komissarov (1999) for testing ideal RMHD
codes and later applied by many other researches. This is a 2D problem with the slab symmetry and it describes the evolution
of a cylindrical fireball in a uniform perpendicular magnetic field. The domain is [−6, 6] × [−6, 6] with a uniform grid of
400× 400 cells. The magnetic field is B = (1, 0, 0) throughout the domain. The fireball is centered on the origin and its initial
radius is rb = 1. In the surrounding, for r > rb, the plasma parameters are 2n+ = 2n− = 0.01 and 2p+ = 2p− = 0.003.
Initially, inside the fireball 2n+ = 2n− = 1 and 2p+ = 2p− = 100 for r < 0.8 rb, and these decay exponentially down to the
external plasma values for rb < r < 0.8 rb The ratio of specific heats Γ = 4/3. Initially, the velocity vanishes everywhere.
Km = Kq = 0.01 and Kf = 1. The dimensionless generalized gyration radius is Rg = 0.022 and 4.0 outside and inside of the
fireball respectively and the corresponding magnetization σm = 23. and 1.2× 10−3.

Figure 5 illustrates the solution obtained with the 2D code at t = 4. One can see that angle between the blast wave
and the grid varies continuously, covering the whole available range, and so does the angle with the magnetic field. The
latter is important as the properties of waves moving along, perpendicular and at an intermediate angle to the magnetic field
vary significantly. In ideal MHD, well known degeneracies occur along and perpendicular to the magnetic field. Overall, the
two fluid-solution is very similar to the corresponding single fluid ideal (Komissarov 1999) and resistive (Komissarov 2007)
RMHD solutions, with all the key features present and having similar parameters. The highest Lorentz factor on the grid,
γmax = 5.685, is found on the y = 0 line, very close to the reverse shock. This value is somewhat higher than in the single-fluid

2 The equation for the generalized gyration radius, which is the gyration radius corresponding to the typical thermal speed of plasma
particles, is given in Table 1.
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14 Barkov & Komissarov

Figure 7. Spherical Blast Wave 3D test. Time t = 3. The left panel shows the total gas pressure ,log10(p+ + p−), and the magnetic

field lines in the XOZ plane. The right panel shows the Lorentz factor γ− = γ+, the maximum value being γmax = 7.5.

solutions. Given the very small size of this high speed region, this difference is most likely to be due to the higher accuracy of
the two-fluid simulations (The single fluid codes were only of the second order accuracy.). What is qualitatively different from
the single-fluid data is the unequal velocities of the electron and positron fluids. This is illustrated in Figure 6 which shows
the z component of the four-velocity along the y axis. It is this difference in velocities which yields the electric current shown
in bottom left panel of Figure 5.

This 2D problem was also used to test the 3D code, namely we carried out three test runs with the symmetry axis of the
fireball aligned with one of the three basis directions of the 3D Cartesian grid.

The second multi-dimensional test problem deals with a spherical blast wave. The initial setup is the same as in the case
of the cylindrical blast wave problem in all respect except the shape of the fireball, which is now a sphere of radius rb. The
computational domain is [−4, 4]× [−4, 4]× [−4, 4] with a uniform grid of 2003 cells. Figure 7 illustrates the solution at t = 3.
One can see that it is similar to the cylindrical case, with somewhat higher Lorentz factors. There are no features which are
grid related and hence artificial in nature.

The results of these tests suggest that multi-fluid codes can be as successful at capturing the large scale dynamics of
astrophysical flows as the single-fluid ones.

4.5 Tearing Instability

With the possible exception of the perpendicular shock problems, none of the above simulations test the inter-fluid friction
term, which is analogous to resistivity. In the absence of exact analytic solutions of equations with non-vanishing inter-fluid
friction term, we are forced simply to try problems where this term is expected to be of critical significance. For example, it
is well known that, at least in the single fluid framework, it is the resistivity what drives the tearing instability (e.g. Priest
& Forbes 2000; Lyutikov 2003; Komissarov et al. 2007). This important problem merits a separate comprehensive study,
which we are planning to carry out in the near future. Here we present only the results of two runs for one particular set of
parameters.

Following Komissarov et al. (2007) we consider a 2D current sheet with the rotating force-free magnetic field

B = B0[tanh(y/l)ix + sech(y/l)iz] , (53)

and a uniform static gas distribution. This configuration is perturbed via modifying the magnetic field, B → B + b, where

b = b0 sin(πx/λ)iy . (54)

The computational domain for this simulation is [−2,+2]×[−1,+1], with the periodic boundary conditions at the x boundaries
and the free flow boundary conditions at the y boundaries. The other parameters are B0 = 3.0, b0 = 10−3B0, λ = 2, l = 0.1,
n+ = n− = 1, p+ = p− = 0.1, Γ = 4/3, Km = Kq = 0.01 and Kf = 0.3.
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Figure 8. Convergence of the tearing instability solutions. The plots show log10B
y as a function of time for the models with 200× 200

( dashed line ) and 300× 300 ( solid line ) cells.

Figure 8 shows the evolution of the maximum value of By on the grid for two models which differ only by their numerical
resolution, one with 200×200 and another with 300×300 cells. One can see the difference between the two solutions is
very small, which indicates that the simulations have almost converged. This figure also shows that the perturbation grows
approximately exponentially, with gradually decreasing growth rate. At time t = 4 the e-folding time is τe ' 4.3.

In the approximation of resistive Magnetodynamics3 this problem was studied in details in Komissarov et al. (2007). In
order to compare our growth rate with theirs, we need to scale parameters in the same way. Since in this problem the fluid
motion is rather slow, γ± < 1.008, the resistivity is accurately represented by the expression

η ' c2κf

4πe2
(55)

(see Eq.14). The corresponding dimensionless resistivity is

η ' KmKq

Kf
' 3.3× 10−4 (56)

and hence the resistive time-scale of the current sheet

τd = l2/η ' 30 .

The dimensionless Alfvén speed

v2
a =

B2

B2 + (Km/Kq)(w+ + w−)
' 0.76 ,

leading to the Alfvén time-scale

τa = l/va ' 0.11

and the Lundquist number4

Lu =
√

2
τd
τa
∼ 370 .

Komissarov et al. (2007) have shown that in the limit of Magnetodynamics, the growth rate of perturbations peaks at
k∗ ' Lu−1/4l−1 and the shortest e-folding time scales as

τe ∝ (τdτa)1/2 . (57)

3 Force-free Degenerate Electrodynamics is another name for this system of equations.
4 In this equation, the factor

√
2 is introduced following Komissarov et al. (2007).
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Figure 9. Tearing instability 2D test. The left panels show the Bz component of the magnetic field at times t = 0, 15 and 30, from top
to bottom. The right panels show pmat = p− + p+ ( top ), jz = n+uz+ − n−uz− ( middle ) and q = n+γ+ − n−γ− ( bottom ) at t = 30.

In fact, their simulations show that for Lu=140 the coefficient of proportionality is ' 1.8. In our test simulations k ' 1.4k∗

and the coefficient ' 2.3. Thus, our results are very close to their findings.
The left panels of Figure 9 demonstrate how the instability leads to tearing of the current sheet during the non-linear

phase. Its right panels show in more details the structure of the higher resolution solution by the end of the simulation, at
t = 30. The solution exhibits expected features, such as the sub-layer of strong electric current, magnetic islands etc.

5 CONCLUSION

In this paper we considered the equations of relativistic two-fluid Magnetohydrodynamics for electron-positron plasma and
described a high-order explicit finite-difference scheme for their numerical integration. This work was carried out as a part
of the search for the most adequate mathematical model for the macroscopic dynamics of relativistic magnetized plasma,
with astrophysical applications in mind. There are reasons to believe that this model has advantages compared to both ideal
and resistive RMHD. Indeed, the ideal RMHD assumes E ·B = 0 and E2 < B2 and hence allows magnetic dissipation only
by slow shocks. The resistive RMHD allows resistive magnetic dissipation but utilizes a simplistic phenomenological Ohm’s
law. Both do not capture plasma waves above the plasma frequency. The two-fluid approach allows more realistic Ohm’s
law via introduction of some microphysics into the system. Yet, it seems to remain oriented more towards the large-scale
(macroscopic) dynamics. While other frameworks, like particle dynamics and kinetic models, capture the plasma microphysics
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much better, they are not practical for simulating phenomena with characteristic length scales greatly exceeding the gyration
radius. Our scheme will help to explore the practicality of the two-fluid framework.

The scheme integrates dimensionless equations which include three parameters, Km, Kq, and Kf, introduced by analogy
with the Reynolds number. In some applications, they may be of order unity. In others, much lower or much higher than unity.
Our numerical scheme has its limitations and will not always be able to cope with extreme values. However, if the solution
reaches asymptotic regimes rapidly it may not be necessary to deal with such extremes. Systematic studies of the parameter
space will be required to establish if this is the case.

The design of our numerical scheme is based on standard modern techniques developed for systems of hyperbolic con-
servation laws. In particular, we use third-order WENO interpolation to setup Riemann problems at the cell interfaces, the
hyperbolic fluxes are computed using the Lax-Friedrich formula and the explicit time integration is carried out with third order
TVD Runge-Kutta scheme. The results of test simulations presented in Sec.4 show that the numerical scheme is sufficiently
robust and confirm its third-order accuracy.

The test simulations revealed that in some problems including strong shocks the two-fluid shock structure may have
oscillations on the length scale below the skin depth. When not fully resolved, these are problematic and can lead to code
crashing. However, they can be damped with high localized resistivity. A more serious limitation concerns the plasma mag-
netization. Similarly to the existing explicit conservative schemes for single fluid RMHD, this scheme fails when σm � 1.
The reason for this is the very large magnetic terms compared to the gas ones in Eqs.25,26. Equivalently, the source terms in
Eqs.16,17 corresponding to the Lorentz force become very stiff in this limit. A different approach will be required to overcome
this limitation. One possible solution is an IMEX (implicit-explicit) type of scheme (e.g. Kumar & Misra 2012).

Here we considered only the case of electron-positron plasma. Although, this is already of significant interest in many
astrophysical problems, in other applications, protons and even neutrons need to be included. This is another potential
direction for continuation of this work.

The current version of our code, named JANUS, can be provided by the authors on request.
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