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ABSTRACT

The inverse Compton (IC) scattering of relativistic electrons is one of the major gamma-ray
production mechanisms in different environments. Often the target photons for the IC scattering
are dominated by black (or grey) body radiation. In this case, the precise treatment of the
characteristics of IC radiation requires numerical integrations over the Planckian distribution.
Formally, analytical integrations are also possible but they result in series of several special
functions; this limits the efficiency of usage of these expressions. The aim of this work is the
derivation of approximate analytical presentations which would provide adequate accuracy for the
calculations of the energy spectra of up-scattered radiation, the rate of electron energy losses, and
the mean energy of emitted photons. Such formulae have been obtained by merging the analytical
asymptotic limits. The coefficients in these expressions are calculated via the least square fitting
of the results of numerical integrations. The simple analytical presentations, obtained for both
the isotropic and anisotropic target radiation fields, provide adequate (as good as 1%) accuracy
for broad astrophysical applications.

Subject headings: radiation mechanisms: non-thermal – methods: analytical – gamma rays: general –

gamma rays: stars

1. Introduction

Relativistic electrons can transfer their energy
to gamma rays through the process of inverse
Compton (IC) scattering of the ambient low en-
ergy photons. Together with bremsstrahlung, this

process represents a major channel of gamma-
ray production by relativistic electrons (and
positrons). At energies below 100 MeV, a non-
negligible contribution to the gamma-ray contin-
uum can be supplied by annihilation of positrons
on flight. In the same energy band, one may ex-
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pect a contribution from the synchrotron radiation
of electrons. However, the latter scenario can be
effectively realized only in quite unique objects
called extreme accelerators, when the particle ac-
celeration proceeds at the maximum (theoretically
possible) rate. In general, the synchrotron radia-
tion is released well below the gamma-ray band,
and, in fact, is considered as a dissipative process
as long as it concerns the efficiency of gamma-
ray production. Indeed, in environments with the
energy density of the magnetic field significantly
exceeding the energy density of the radiation field,
f = B2/(8πwrad) ≫ 1, only a small fraction (f−1)
of the kinetic energy of electrons is released in
high energy gamma rays. Otherwise, the radiative
cooling of electrons is dominated by the IC scat-
tering, making the latter an extremely effective
gamma-ray production mechanism, especially at
very high energies, when the radiative cooling due
to bremsstrahlung is suppressed compared to the
IC scattering1. Because of the large cross-section
of the process and the presence of high density
radiation fields, the IC scattering undoubtedly is
the most prolific and universal gamma-radiation
mechanism which contributes from low (MeV) to
ultrahigh (tens of TeV) energies of emission of
almost all nonthermal source populations - su-
pernova remnants (SNR), pulsar wind nebulae
(PWNe), compact binary systems, active galactic
nuclei, etc.

The energy spectrum of the up-scattered pho-
tons depends strongly on the energy of target pho-
ton, especially in the Thomson regime, when the
average energy of the up-scattered photon is pro-
portional to the energy of the target photon. In
the Klein-Nishina regime, the most fraction of the
electron energy is transferred to the up-scattered
photon, thus the dependence on the target photon
energy gradually disappears. Given this nontriv-
ial dependence on the target photon energy, the
accurate calculations of the IC spectrum require
good knowledge of the energy distribution of tar-
get photons. Fortunately, in many cases the domi-
nant contribution to the IC scattering comes from
photons belonging to black-body (or grey-body)
radiation, i.e. they are described by the standard

1This follows from the ratio of the cooling times due to the
bremsstrahlung and IC scattering (in the Thomson regime):
tbr/tIC ∝ E × (Ngas/wrad), where E is the electron’s en-
ergy, and Ngas is the gas density.

Planckian distribution:

dNph ∝
ω2
0dω0

eω0/T − 1
, (1)

where T and ω0 are the photon gas temperature
and the photon energy, respectively (hereafter the
energies of both photons and electrons, as well as
the photon gas temperature, are expressed in units
of mec

2).

Planckian distribution is realized in the case of
IC scattering on the 2.7 K cosmic microwave back-
ground radiation (CMBR). Remarkably, in SNRs
and PWNe in our Galaxy, as well as in extragalac-
tic objects like large scale AGN jets and Clusters
of galaxies, the IC scattering in the VHE band is
strongly dominated by CMBR. The target pho-
tons for the IC scattering can be well described
by the Planckian distribution also in compact sys-
tems like gamma-ray emitting binaries containing
either a pulsar (binary pulsars) or a black hole (mi-
croquasars). Despite the different origins of the
nonthermal energy, supported in the first case by
a rotation-powered pulsar wind, and in the second
case by an accretion-powered jet, the most likely
mechanism of gamma-radiation is the IC scatter-
ing. In both type of objects the target photons
are supplied by the thermal radiation of the bright
optical star. Finally, in some cases quite complex
photon distributions can be represented as a su-
perposition of several grey-body components.

Since the Planckian distribution of photons is
characterized by a rapid decrease of the density
both at low and at high energies, numerical in-
tegrations of the Compton cross section over the
Planckian photon field generally do not impose
computational difficulties, but simply require ad-
ditional computational time. Often, to shorten the
calculations, different approximations are used.
The most common approach is the δ-functional ap-
proximation for the narrow Planckian spectrum.
This approximation can correctly describe the
lower energy part of the spectrum, but is not ap-
plicable for the precise computations of the en-
tire gamma-ray spectra (see Section 6). There-
fore, some other approximations for calculations
of IC spectra have been recently suggested in the
literature (see Petruk 2009; Zdziarski & Pjanka
2013). These approaches provide a better descrip-
tion for the IC spectra and are characterized by
a higher precision than the δ-functional approxi-
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mation does, although they are not free of certain
limitations (see discussion in Section 6).

In this paper we propose new, very simple an-
alytical presentations obtained for both isotropic
and mono-directional angular distributions of tar-
get radiation field assuming that its energy spec-
trum is precisely described by the Planckian distri-
bution. We provide analytical formulae for the en-
ergy spectra of upscattered radiation, as well as for
the interaction and the energy-loss rates of elec-
trons. The “threshold” for the accuracy of these
formulae in all cases has been set at the level of
1%.

2. Approximate description of the IC pro-

cess

The interaction of electrons with photons is de-
scribed with the standard means of quantum elec-
trodynamics. In the astrophysical context, the
general expressions for the Compton cross-section
can be significantly simplified using the fact that
the energy of the target photons is typically small,
ω0 ≪ 1, and the electrons are relativistic, E ≫ 1
(this condition, in particular, implies that the up-
scattered photon moves in the direction of the ini-
tial velocity of the electron). Under these circum-
stances, for the target photons with a fixed di-
rection, the scattering rate by an electron moving
with a velocity which makes an angle θ with the
photon’s direction has the following simple form
(Aharonian & Atoyan 1981):

dνani
dω dNph dt = c (1− cos θ) dσ

dω

=
4πcr20(1−cos θ)

bθE
×

[

1 + z2

2(1−z) −
2z

bθ(1−z) +
2z2

b2θ(1−z)2

]

,

(2)

where E, ω0 = bθ/ [2E(1− cos θ)] and ω = zE
are energies of electron, soft photon, and up-
scattered photon, respectively; r0 = e2/(mec

2)
is the electron classical radius; and Nph is num-
ber of target photons per unit of volume. If the
target photon field is isotropic, the above expres-
sion should be averaged over the interaction angle
(Aharonian & Atoyan 1981):

dνiso
dω dNph dt = c

∫

(1− cos θ) dσ
dω

dΩ
4π

=
8πcr20
bE ×

[

1 + z2

2(1−z) +
z

b(1−z) −
2z2

b2(1−z)2−

z3

2b(1−z)2 − 2z
b(1−z) log b(1−z)

z

]

,

(3)

where b = 4ω0E is the Klein-Nishina parameter
and the notation log is used for logarithm to the
base e, i.e. “natural logarithm”. Note that
Equation (3) has been originally derived by Jones
(1968) in a straight way, without using the in-
termediate angle-dependent rate given by Equa-
tion (2) (for a review see Blumenthal & Gould
1970).

In the case of black-body target photons, the
scattering rates given by Equations (2) and (3)
should be integrated over the Planckian distribu-
tion of target photons:

dNph =
m3

ec
3κ

π2~3

ω2
0 dω0

eω0/T − 1
, (4)

where κ is the dilution factor in the case of grey-
body radiation. The lower integration limit, ω0 ≥

ǫani/iso, is determined by the kinematic conditions
(i.e., conditions imposed by the conservation of 4-
momentum) as

ǫani =
ω

2E

1

(E − ω)

1

(1− cos θ)
=

z

1− z

T

tθ
(5)

and

ǫiso =
ω

4E

1

(E − ω)
=

z

1− z

T

t
(6)

for the cases of mono-directional and isotropic
photon distributions, respectively. Here, the fol-
lowing notations are used: tθ = 2ET (1 − cos θ)
and t = 4ET .

Formally, for large values of ω0 → +∞, Equa-
tions (2) and (3) are not applicable, since the ba-
sic assumption, ω0 ≪ ω, used for the derivation
of these expressions fails. However, assuming a
non-relativistic photon temperature T ≪ 1, one
can safely extend the integration upper limit to
+∞. Therefore, the interaction rate with black-
body distribution of target photons is

dNani/iso

dω dt
=

T 3m3
ec

3κ

π2~3

∞
∫

ǫani/iso/T

dνani/iso
dω dNph dt

x2dx

ex − 1
.

(7)

The substitution of Equations (2) and (3) into
Equation (7) leads to an expression that can be
presented in the form which contains the follow-
ing functions introduced by Zdziarski & Pjanka
(2013) (Equations (15) and (29) in their paper):

fi =

∞
∫

x0

xi dx

ex − 1
, (8)
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for i = −1, 0 and +1; and

fln =

∞
∫

x0

log(x) dx

ex − 1
. (9)

While the integral f0 is expressed through elemen-
tary functions:

f0 = − log
(

1− e−x0
)

, (10)

and f+1 allows a representation with the diloga-
rithm function (see Equation(7) of Zdziarski & Pjanka
2013), the two other functions (f−1 and fln),
as shown by Zdziarski & Pjanka (2013), can be
expressed through series (Equation (14, 28) of
Zdziarski & Pjanka 2013). However, each of these
terms contains special functions, which makes the
usage of these expressions rather inconvenient.

We use a different approach to obtain approx-
imate formulae for the IC cross-section. First,
we present the cross-section in a form containing
strictly positive terms. This dramatically reduces
the risk of large mistakes because of the summa-
tion of rounding errors. Furthermore, we approxi-
mate these terms by simple analytical expressions.
The derivations of these expressions are based on
analytical computations of the asymptotic limits
and the introduction of correction functions for the
intermediate range of energies by invoking a least
square fit. This allows us to present Equation (7)
in a form that contains only elementary functions.

For the case of a mono-directional photon field,
Equation (7) can be expressed as:

dNani

dω dt
=

2r2om
3
ec

4κT 2

π~3E2
×

[

z2

2(1− z)
F1 (x0) + F2 (x0)

]

,

(11)
where x0 = z

(1−z)tθ
, and the positive functions F1

and F2 are determined as:

F1(x0) = f+1 (x0) , (12)

F2(x0) = f+1 (x0) +

2x2
0f−1 (x0)− 2x0f0 (x0) . (13)

For the case of an isotropic photon field, Equa-

tion (7) obtains the following form:

dNiso

dω dt
=

2r2om
3
ec

4κT 2

π~3E2
×

[

z2

2(1− z)
F3(x0) + F4(x0)

]

,

(14)
where x0 = z

(1−z)t . The positive functions F3 and

F4 are expressed via f−1, f0, f+1 and fln:

F3(x0) = f+1(x0)− x0f0(x0) ; (15)

and

F4(x0) =

(

f+1(x0)− x0f0(x0)

)

+

2x0

(

log(x0)f0(x0)− fln(x0)

)

+

2x0

(

f0(x0)− x0f−1(x0)

)

.

(16)

Thus, the IC radiation spectra can be presented
in simple analytical forms of Equations (11) and (14)
as functions of the variable z through the term
z2/(2(1 − z)) and four functions F1, F2, F3 and
F4. All these functions depend only on the pa-
rameter x0, which is equal to z/((1 − z)tθ) and
z/((1 − z)t) in the case of mono-directional and
isotropic photon fields, respectively.

The functions F1 and F2 have the same asymp-
totic limits:

F1,2 =

{

π2

6 ,

x0e−x0 ,

x0 ≪ 1

x0 ≫ 1
. (17)

A simple function with the similar asymptotic be-
havior can be used as a zeroth-order approxima-
tion for the functions F1 and F2 (see Figure 1):

G
(0)
1,2 =

(

π2

6
+ x0

)

e−x0 . (18)

A numerical comparison of these functions shows

that G
(0)
1 provides2 accuracy of 10% and 50% for

F1 and F2, respectively. To improve the accuracy,
we introduce correction functions:

G1,2 = G
(0)
1,2 (x0)× g1,2 (x0) , (19)

2The functions G
(0)
1 and G

(0)
2 are identical.
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We present the correction factors g1 and g2 as
functions of the variable x0 with four free param-
eters:

gi (x0) =

[

1 +
aix

αi
0

1 + bix
βi

0

]

−1

. (20)

The parameters αi > 0, ai, βi > αi, bi > 0 were
used for the least-square fitting of functions F1,2.
Obviously, this is not a unique representation for
the approximation function, but since g → 1 for
x ≪ 1 and x ≫ 1, the considered function fam-
ily should preserve the asymptotic behavior of the

zeroth-order fit G
(0)
1,2 and provide enough freedom

for fitting. We therefore use Equation (20) as the
correction function for fitting procedures used in
this paper.

The numerical least square fitting gives the fol-
lowing sets of parameters

α1 = 0.857, a1 = 0.153,
β1 = 1.84, b1 = 0.254 ;

(21)

and

α2 = 0.691, a2 = 1.33,
β2 = 1.668, b2 = 0.534 ,

(22)

which provide a precision of better than 1% for the
entire range of x0, as shown in Figures 2 and 3.

A similar approach can be used for the approx-
imation of the angle averaged IC spectra deter-
mined by Equation (14). The functions F3 and F4

have the same asymptotic:

F3,4 =

{

π2

6 ,

e−x0 ,

x0 ≪ 1

x0 ≫ 1
, (23)

which suggests the following family of approxima-
tion functions:

G3,4 = G
(0)
3,4(x0)× g3,4(x0) , (24)

where

G
(0)
3,4(x0) =

π2

6

1 + c3,4 x0

1 +
π2c3,4

6 x0

e−x0 . (25)

The functions G
(0)
3,4 have a similar asymptotic be-

havior as the functions F3,4; it is demonstrated
in Figure 4. Here c3,4 > 0 are parameters which

do not change the asymptotic behavior of G
(0)
3,4.

Therefore, they can be optimized for a better de-
scription of functions F3,4. In particular, for the

value of c3 = 2.73 the function G
(0)
3 provides a 3%

accuracy for the function F3, as shown in Figure 4.

As can be seen in Figure 4, the function F4×ex0

features a ∼ 30% dip at x0 ∼ 1, which cannot

be reproduced by the function G
(0)
4 . Therefore

the parameter c4 alone cannot provide an approx-
imation with precision better than a 30% for the
function F4 (such accuracy can be achieved for
c4 ≃ 50). However, Equation (24) provides a five-
parameter (a3,4, α3,4, b3,4, β3,4 and c3,4) function
family that can be used for fitting functions F3,4.
The numerical least-square fits resulted in the fol-
lowing sets of parameters

α3 = 0.606, a3 = 0.443,
β3 = 1.481, b3 = 0.54,

c3 = 0.319 ;
(26)

and

α4 = 0.461, a4 = 0.726,
β4 = 1.457, b4 = 0.382,

c4 = 6.62 ,
(27)

which gave a < 1% precision for the entire range
of x0, as shown in Figures 5 and 6.

The parameterizations for the functions F1, F2,
F3, F4 given by Equations (19) and (24), with
corresponding parameters from Equations (21–22)
and (26–27), allow us to describe the IC spectra,
Equations (11) and (14), with a precision better
than 1%. Note that this value corresponds to the
maximum deviation of the approximate formulae
from the precise value; in the case of a broad dis-
tribution of electrons, the accuracies obviously will
be significantly better.

The obtained above approximations describe
the IC spectra for two different, isotropic and
mono-directional angular distributions of target
photons. The former scenario with an involvement
of CMBR is often realized in different objects like
SNRs, PWNe, and Clusters of Galaxies. However,
in many other cases the background photon field
can be approximated as a grey-body (or a super-
position of a several grey-body components) emis-
sion. In this case the energy, ω∗, at which the
spectral energy distribution (i.e., νFν) of target
photons achieves the maximum, allows to define
the temperature of the grey-body emission:

T = 0.255ω∗ . (28)
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The energy density of the target photon field, w∗,
allows then to obtain the corresponding dilution
coefficient:

κ = 360
~
3w∗

m3
ec

5

(

ω∗

mec2

)

−4

. (29)

The approximation of a mono-directional pho-
ton field is applicable when the source of the target
photons is compact, namely in the IC production
region the value of (1− cos θ) should not vary sig-
nificantly for the photons coming from different
regions of the source. Then in the IC production
site, the target photon field is typically diluted by
a factor

κ =
∆Ω

4π
, (30)

where ∆Ω ≪ 1 is the solid angle of the target
photons’ source, as seen from the IC production
region. In case the source of target photons is a
star, Equation (30) can be expressed through the
radius, R∗, of the star and distance, R, between
the IC emitter and the star (the condition ∆Ω ≪ 1
is realized if R ≫ R∗):

κ =

(

R∗

2R

)2

. (31)

3. The rate of IC losses

IC energy losses of a particle in a Planckian
photon field can be expressed as

Ėani/iso =
m3

ec
3κE2

π2~3 ×
∞
∫

0

dω0
ω2

0

eω0/T
−1

zmax
∫

0

dz z
dνani/iso

dω dNph dt ,
(32)

where zmax is b
1+b or bθ

1+bθ
for isotropic and mono-

directional photon fields, respectively. Formally,
the integration lower limit is not equal to 0, how-
ever the contribution to the integral from the re-
gion of small z is negligible. Therefore we formally
set the lower limit to 0.

The structure of Equation (32) allows us to de-
termine the dependence of the energy-loss rate on
the electron energy and photon field temperature.
Namely, if the IC scattering proceeds with a fixed

interaction angle, one obtains

Ėani =
r20m

3
ec

4κ

2π~3(E(1−cos θ))2

∞
∫

0

dbθ
bθ

ebθ/tθ−1
×

bθ
(1+bθ )
∫

0

dz z
[

1 + z2

2(1−z) −
2z

bθ(1−z) +
2z2

b2θ(1−z)2

]

=
2r20m

3
ec

4κT 2

π~3
Fani (tθ) .

(33)
Based on the asymptotic behavior of the function
Fani

Fani(u) =

{

π4

45u
2 = 2.16u2,

π2

12 log(u) = 0.822 log(u),

u ≪ 1

u ≫ 1
,

(34)
we suggest the following approximate presentation
for the function Fani

G
(0)
ani(u) =

cani u log(1 + 2.16u/cani)

1 + cani u/0.822
. (35)

Least square fitting for the parameter cani results
in cani = 6.13, for which Equation (35) provides
accuracy of an order of 1% (see Figure 7).

Similarly, if IC cooling proceeds with isotropized
scattering angles, the energy loss rate is

Ėiso =
r20m

3
ec

4κ
8π~3E2

∞
∫

0

db b
eb/t−1

×

b
(1+b)
∫

0

dz z
[

1 + z2

2(1−z) +
z

b(1−z)−

2z2

b2(1−z)2 − z3

2b(1−z)2 − 2z
b(1−z) log b(1−z)

z

]

=
2r20m

3
ec

4κT 2

π~3
Fiso(t) .

(36)

The asymptotic behavior of function Fiso is similar
to Equation (34):

Fiso(u) =

{

π4

135u
2 = 0.722u2,

π2

12 log(u) = 0.822 log(u),

u ≪ 1

u ≫ 1
,

(37)
Therefore, we can use a function similar to Equa-
tion (35):

G
(0)
iso (u) =

cisou log(1 + 0.722u/ciso)

1 + cisou/0.822
. (38)

Least square fitting for this function renders a
value of ciso = 4.62, for which Equation (38) pro-
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vides a ∼ 5% precision (see Figure 7). This ap-
proximation can be improved by using the correc-
tion function defined by Equation (20). In partic-
ular, a set of the parameters

αiso = 0.682, aiso = −0.362,
βiso = 1.281, biso = 0.826,

ciso = 5.68
(39)

provide a ∼ 1% precision (see Figure 7). A
similar expression (although less optimized, with
an accuracy of 3%) was originally presented in
Bosch-Ramon & Khangulyan (2009).

The obtained Equation (35) for Fani and Equa-
tions (38 – 39) for Fiso allow a precise descrip-
tion of the energy losses with formulae Equa-
tions (33) and (36), which correspond to the case
of electron-photon interactions at a specific an-
gle and angle averaged, respectively. It is im-
portant to note that the latter can be realized
also in the cases when the target photons are
mono-directional in the source frame. For exam-
ple, if particles are isotropized by the source mag-
netic field, the production of the IC emission to-
wards the observer proceeds at a specific interac-
tion angle, since relativistic particles emit within
a narrow cone towards the direction of their mo-
tion. However, if IC cooling time exceeds particle
isotropization timescale, each particle can inter-
act with photons at an arbitrary angle, therefore
particle losses are effectively determined by the
interaction with an isotropic photon field, i.e., by
Equation (36).

The particle cooling described by Equation (33)
can be realized, for example, in the so-called
Compton-drag scenarios, i.e. when the tempera-
ture of the emitting particles is very small and the
bulk motion component is dominant. In particu-
lar, this may be relevant to the pulsar-wind zone
for pulsars located in systems with bright stars
(see, e.g., Khangulyan et al. 2007, 2011). Also a
similar situation can arise if IC cooling time is
shorter than isotropization time-scale.

Often it is convenient to characterize the energy
losses through the cooling-time:

tic =
E

Ė
=

π~3

2r20m
3
ec

4κT 2

E

Fani/iso

(

tθ/·
) . (40)

In the Thomson limit, for the case of an isotropic

photon field, this expression gives:

tic =

(

4cE

3

π2κT 4m3
ec

3

15~3
8πr20
3

)−1

, (41)

where the middle term corresponds to the ratio of
energy density of the black-body photon distribu-
tion to mec

2.

It was suggested in Aharonian et al. (2006) and
further generalized by Bosch-Ramon & Khangulyan
(2009) that, in the case of an isotropic photon field,
IC cooling time in the Klein-Nishina limit can be
described by a simple function:

tic ≈ 5× 10−17T−2.3E0.7s , (42)

where we transformed the numerical coefficient
from Equation (13) in Bosch-Ramon & Khangulyan
(2009) to the units used in this paper, and adopted
a dilution coefficient to be 1. The comparison of
Equations (40) and (42) shows that the latter im-
plies that function Fiso has been approximated
as Fiso ≃ 0.4t0.3, which provides an accuracy of
< 30% for 5 < t < 103.

4. Interaction rate

Another important characteristic of Compton
scattering are the interaction rates:

Ṅani =

m3
ec

4κ
π2~3

∞
∫

0

dω0
ω2

0

eω0/T
−1

(1− cos θ) σ (bθ) ,
(43)

and

Ṅiso =

m3
ec

4κ
π2~3

∞
∫

0

dω0
ω2

0

eω0/T
−1

1
∫

−1

d cos θ
2 (1− cos θ) σ (bθ) ,

(44)
for the scattering at a fixed interaction angle, and
for the angle averaged interactions, respectively.
Here σ is the Lorentz-invariant cross section for
Compton scattering (see e.g. Berestetskii et al.
1971):

σ(x) =
2πr20
x ×

[

(

1− 4
x − 8

x2

)

log(1 + x) + 1
2 + 8

x − 1
2(1+x)2

]

.

(45)
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For the case of fixed scattering angle, the inter-
action rate can be expanded as

Ṅani =
r20m

3
ec

4κ

4π~3E3(1−cosθ)2
×

∞
∫

0

dbθ
bθ

ebθ/tθ−1

[(

1− 4
bθ

− 8
bθ2

)

log(1 + bθ)+

1
2 + 8

bθ
− 1

2(1+bθ)2

]

=
2r20m

3
ec

4κT 2

π~3E
Fn,ani (tθ) .

(46)
The integral term in Equation (46) has the follow-
ing asymptotic behavior3:

Fn,ani(u) =

{

4
3ζ(3)u = 1.6 u,

π2

12 log(u) = 0.822 log(u),

u ≪ 1

u ≫ 1
,

(47)
therefore in the zeroth-order approximations this
function can be presented in the form:

G
(0)
n,ani(u) = 0.822 log (1 + 1.95u) . (48)

Like in the previous cases, one can improve this
approximate formula by the correction function
given in Equation (20). In Figure 8, we show

G
(0)
n,ani(u)×g(u) for the following parameter values:

αn,ani = 0.885, an,ani = 1.05,
βn,ani = 1.213, bn,ani = 2.46

(49)

It can be seen that this approximation provides a
precision at the level of 1%.

If the photon field is isotropic, the interaction
rate can be expressed as

Ṅiso =
r20m

3
ec

4κ
16π~3E3

∞
∫

0

db
eb/t−1

×

b
∫

0

dx
[

(

1− 4
x − 8

x2

)

log(1 + x) + 1
2 + 8

x − 1
2(1+x)2

]

=
2r20m

3
ec

4κT 2

π~3E
Fn,iso (t) .

(50)
Here the integral term has properties similar to
Equation (47):

Fn,iso(u) =

{

2
3ζ(3)u = 0.801 u,

π2

12 log(u) = 0.822 u,

u ≪ 1

u ≫ 1
,

(51)

3Here ζ denotes the Riemann Zeta-function.

Thus, in the zeroth-order approximation this func-
tion can be presented as

G
(0)
n,iso(u) = 0.822 log (1 + 0.97u) . (52)

This approximation provides relatively poor pre-
cision (at the level of < 30%). However, adopting
the correction function given in Equation (20), one
achieves a much higher precision (better than 1%,
see Figure 8) with the following set of parameters:

αn,iso = 0.88, an,iso = 0.829,
βn,iso = 1.135, bn,iso = 1.27 .

(53)

Combining Equations (32), (43) and (44) one
can determine the temperature-dependence of the
emitted photon mean energy:

z̄ani/iso =
1

E

Ėani/iso

Ṅani/iso

=
Fani/iso(u)

Fn,ani/iso(u)
(54)

In the case of a mono-directional photon field the
argument of the function in the above equation is
u = 2ET (1 − cos θ); in the case of an isotropic
photon field u = 4ET .

Obviously, the approximate formulae found for
functions Fani, Fiso, Fn,ani, and Fn,iso (see Equa-
tions (35), (38), (39), (48), (49), (52), (53)) allow
derivation of high-precision analytical formulae for
z̄. However, the 1-parameter freedom in Equa-
tions (35) and (38) allows a significant simplifi-
cation of the expressions. Namely, in the case of
a mono-directional photon field, the mean energy
can be approximated as

z̄ani =
G

(0)
ani

G
(0)
n,ani

(55)

with cz,ani ≃ 4.26 in G
(0)
ani that minimizes the devi-

ation of the approximation function from the pre-
cise expression. As seen in Figure 9 the error re-
mains below 3%. Rounding the coefficients to one
non-zero digit (i.e., keeping the precision at the
level of 10%), one obtains:

z̄ani =
tθ

tθ + 0.2

log(1 + tθ/2)

log(1 + 2tθ)
. (56)

Similarly, for the case of an isotropic photon
field, the approximated formula for the fraction of
the mean energy,

z̄iso =
G

(0)
iso

G
(0)
n,iso

, (57)
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results in a 5% precision (see Figure 9) for the

value of cz,iso = 2.9 in G
(0)
iso . Rounding the coeffi-

cients to one non-zero digit one obtains:

z̄iso =
t

t+ 0.3

log(1 + t/4)

log(1 + t)
. (58)

The mean photon energy characterizes the typ-
ical energy band of upscattered photons in which
an electron loses its energy via IC process. Note
that in many cases is more demanded the inverse
problem, i.e., a reconstruction of the electron en-
ergy on the basis of the observed photon energy
and the temperature of the target photons. In
other words, one needs to solve the transcenden-
tal Equation (58) (or Equation (56)), to obtain t
(or respectively tθ) as a function of ω̄ and T . Us-
ing Equations (56) and (58) one can derive the
following approximate solution:

tθ/· =
v1/2

(

1 + 2v1/2
)

2

√

log(1 + v1/2)

log(1 + v1/2/V0)
, (59)

which allows to obtain the lepton energy with <
10% precision in the entire range of parameters.
One should adopt V0 = 3 and v = 2ω̄T (1− cos θ)
for the case of mono-directional photon field; and
V0 = 4 and v = 4ω̄T for isotropic distribution of
photons.

5. Impact of relativistic motion

The formulae presented in the previous sec-
tions correspond to the reference system, where
the source of photons is at rest (we refer this sys-
tem as K). Since the particle distribution can
be always transformed to this coordinate system,
these formulae can, in principle, cover all the re-
quired calculations. However, under certain con-
ditions it is more convenient to perform calcula-
tions in another coordinate system, K ′ (the phys-
ical quantities measured in this system are marked
with prime, e.g. ω′

0). In case if the target photons
are mono-directional in the reference frame K (in
the relevant region of space), the transformation
of the obtained formulae is straightforward. In-
deed, in this case the photon distribution function
in the 6-dimensional momentum-coordinate phase
space (dN = ρ d3pd3r) has the following form:

ρ(p, r) = δ (np − n0)
c

p2
nph(ω0) , (60)

where np = p/p, ω0 = cp, and n0 is the unit
vector corresponding to the direction of photons
in the system K. Function nph corresponds to
the energy distribution of the target photons, i.e.,
dNph = nphdω0, and in the systemK is Planckian.
The function ρ is a Lorentz invariant (see, e.g.,
Landau & Lifshitz 1975), i.e., ρ(p, r) = ρ′(p′, r′),
and it can be shown that, in this specific case, the
function nph is an invariant as well:

n′

ph(ω
′

0) = nph (ω0) . (61)

Here target photon energies ω0 and ω′

0 are related
via the Lorentz transformation: ω0 = D∗ω

′

0, where

D∗ =
[

Γ (1− (v0/c) cosχ)
]

−1
is the Doppler fac-

tor between the source of blackbody photons (ref-
erence system K) and the gamma-ray production
region (reference system K ′) moving with relative
velocity v0, that makes an angle χ to the photon

momentum (the variable Γ =
(

1− (v0/c)
2
)

−1/2

denotes the bulk Lorentz factor). Since function
nph(ω0) in Equation (61) is determined by Equa-
tion (4), one can see that in the moving coordinate
system K ′ the Planckian distribution of photons
is preserved, but the temperature of the photon
field is corrected for the bulk motion:

T ′ = D−1
∗

T , (62)

and an additional dilution factor is applied:

κ′ = D
2
∗
. (63)

Equations (62) and (63) allow a generalization
of the formulae obtained in the previous sections
for the case of a mono-directional photon field to
a moving system K ′. As it follows from their
derivations, Equations (60) and (61) do not ac-
count for the relativistic effects related to the
transformation of the IC emission from the source
frame to the observer frame (for detail see, e.g.,
Rybicki & Lightman 1979; Jester 2008). Also we
note that the interaction angle, θ, should also be
transformed to the system K ′. The transforma-
tion of the interaction angle can be readily ob-
tained by considering the scalar product of the
4-momenta of electron and the target photon (i.e.,
a Lorentz invariant quantity). Finally, in the case
when the emitting particles are isotropized in the
reference frame K ′, the energy loss rate is de-
scribed by Equation (36) with corrections imposed
by Equations (62) and (63).
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We leave out of the scope of this paper the
transformation of a photon field isotropic in the
system K to the moving system K ′. If looked
from the system K ′, such a photon field is not
isotropic field, therefore the basic equation Equa-
tion (3) is not applicable for description the IC
scattering process. If the bulk Lorentz factor is
large, Γ ≫ 1, the photon field in the K ′ system
appears to be nearly mono-directional, with pho-
tons moving against the bulk velocity. But the en-
ergy distribution of the photons in this case devi-
ates significantly from the Planckian distribution.
We note however that in the case of an isotropic
photon field, the distribution of electrons can be
transformed to the system K and the formulae ob-
tained for the spectrum can be used.

6. Comparison with other approaches

In order to simplify calculations, one may try
to replace the relatively narrow Planckian distri-
bution by the δ-function, or alternatively use a
simplified description of the cross-section, e.g., by
the Heaviside step function (Petruk 2009) or sim-
ply by a δ-function. For the sake of shortness, in
what follows we discuss the δ-functional approxi-
mation for a mono-directional target photon field,
and the step function approximation by Petruk
(2009) for the scattering off isotropic photon field.

The δ-functional approximation for target pho-
tons assumes the following photon field:

dNph

dω0
≃ n∗δ (ω0 − ω∗) . (64)

It is easy to be convinced that for n∗ =
2ζ(3)m3

ec
3κT 3

π2~3

and ω∗ = π4

30ζ(3) T ≃ 2.7T one can reproduce cor-

rectly both the number and energy densities of
the Planckian photon field. However, to a certain
extent, the choice of these parameters is arbitrary.

The substitution of Equation (64) into Equa-
tion (7) results in the following expression:

dNani

dω dt
=

2r2om
3
ec

4κT 2

π~3E2
×

[

z2

2(1− z)
G1,δ (x0) +G2,δ (x0)

]

,

(65)

where

G1,δ (x0) =
n∗~

3π2

κT 2ω∗m3
ec

3
Θ
(ω∗

T
− x0

)

,

(66)

and

G2,δ (x0) =
n∗~

3π2

κT 2ω∗m3
ec

3
Θ
(ω∗

T
− x0

)

×

(

1−
2x0

ω∗/T
+

2x2
0

(ω∗/T )
2

)

.

(67)

Here Θ (x0) is the Heaviside step function.

The comparison of Equations (66) and (12),
and of Equations (67) and (13), allows us to es-
timate the errors introduced by the δ-functional
approximation: (1) the lower energy part of the
spectrum (x0 ≪ 1) can be reproduced quite well
if the selected parameters satisfy the condition
n∗/(T

2ω∗) = κm3
ec

3/(6~3); (2) the accuracy de-
clines significantly for the high energy part (x0 &
1). The δ-function imposes an artificial cutoff at
x0 = ω∗/T . Also the accuracy close to the cut-
off appears to be quite poor. For example, the
accuracy of the term G1,δ can be estimated as

G1,δ/G
(0)
1 which gives a factor of 3 error for x0 = 2

(assuming that ω∗/T > 2, as commonly adopted).

Similarly, it can be shown that for the cross
section averaged over the interaction angle, the
δ-functional approximation gives a similar preci-
sion. It means that although a practical realiza-
tion of the δ-functional approximation is charac-
terized by a similar complexity as the approach
suggested in this paper, the accuracy provided by
the δ-functional approximation is very poor, espe-
cially in the Klein-Nishina regime.

A more complicated approach has been sug-
gested by Petruk (2009) for the case of the cross
section averaged over the interaction angle. In this
approach the IC cross section was approximated
by a step function and integrated over the Planck-
ian photon distribution. This approximation, can
be expressed as

dNiso

dω dt
=

2r2om
3
ec

4κT 2

π~3E2
×

[

z2

2(1− z)
G3,p (x0) +G4,p (x0)

]

,

(68)

where

G3,p (x0) =
π2

6
e−

2
3x0−

5
7x

0.7
0 , (69)

and

G4,p (x0) =
π2

6
e−

2
3x0−

5
4x

0.5
0 . (70)
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In Figure 10 we compare the approximation of
Petruk (2009) with precise numerical calculations,
and arrive at a conclusion, similar to the state-
ment of Zdziarski & Pjanka (2013), that for cer-
tain parameters this approximation cannot guar-
anty a precision better than ∼ 50% (we note that
Petruk 2009, did not approximate the cross sec-
tion in the region of the exponential tail, i.e. for
x0 ≫ 1).

Finally, Zdziarski & Pjanka (2013) suggested
an analytical method to describe Equations (2) and (3)
based on the truncation of series, which describe
the functions f−1 and fln. In Figure 11 we
compare precise numerical calculations to the
approximated values, G3,z and G4,z, that were
obtained by substitution of Equations (7), (8),
(14), and (28) from Zdziarski & Pjanka (2013)
(the value of N = 3, as suggested by the au-
thors, was adopted) to Equations (15) and (16).
Since Zdziarski & Pjanka (2013) obtained analyt-
ical expressions for the functions f+1 and f0, the
function G3,z is strictly equal to F3, which can be
seen in Figure 11. The accuracy provided by the
function G4,z is very high, at the level of 0.3%4

(see Figure 11).

The approach by Zdziarski & Pjanka (2013)
can provide an arbitrary precision (simply by in-
creasing of the number the preserved terms in the
series), however, in our view, it also owns a certain
shortcoming. Namely, this approach implies the
usage of special functions (dilogarithm and expo-
nential integral), which may harden the practical
usage.

Another important difference of our approach
is that while in other studies one provides an ap-
proximate description for the cross section, we
suggest an approach for a common description
of all the relevant processes of IC scattering on
the black-body photons: scattering rates, energy
losses, cross sections and mean photon energy.
Also, all the approximations use the same type
of correction function, Equation (20).

4 This accuracy is worse by approximately a factor of 10
than the accuracy of < 2.4×10−4 achieved for the functions
f
−1 and fln (Zdziarski & Pjanka 2013). This discrepancy

is explained by the fact that these functions enter into the
expression for the cross section with different signs, and
the subtraction of these functions results in an overall error
significantly exceeding the accuracy of the individual terms.

7. Summary

In this paper we suggest simple analytical pre-
sentations for calculations of different character-
istics (differential spectra, interaction rates, and
energy losses) of the IC scattering of relativistic
electrons in the radiation field which is described
by Planckian distribution. Two different types of
angular distribution, namely mono-directional and
isotropic distributions of the target radiation field
have been considered.

The obtained parameterizations are character-
ized by a high precision, of an order of 1%, and
cover the entire parameter space allowing an accu-
rate description of the IC scattering in the Thom-
son and Klein-Nishina limits, as well as in the
transition region. The derived formulae preserve
the precise asymptotic behavior and have similar
structures, which simplifies their practical usage
(see Table 1).

The main objective of the obtained approxi-
mate analytical presentations is the fast, but con-
venient and accurate calculations of characteris-
tics of the upscattered IC emission in radiation
fields described by Planckian distribution. At the
same time, the simple forms of these parameter-
izations allow derivation of some useful relations.
In particular, we propose simple formulae which,
for the given temperature of target photons, relate
the mean energy of the electron and up-scattered
photon.
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Table 1

Derived parameterizations

Function Used in Eqs. Approximated description Fit parameters values precision Figure
function variable a α b β c

Representation of Spectra

F1 Eq. (11) G
(0)
1 =

(

π2

6 + x0

)

e−x0 z
1−z

1
2ET (1−cos θ)

— — — — — ∼ 10% Figs. 1,2

F1 Eq. (11) G
(0)
1 (x0) × g(x0)

z
1−z

1
2ET (1−cos θ)

0.153 0.857 0.254 1.84 — < 1% Figs. 1,2

F2 Eq. (11) G
(0)
2 =

(

π2

6 + x0

)

e−x0 z
1−z

1
2ET (1−cos θ)

— — — — — ∼ 50% Figs. 1,3

F2 Eq. (11) G
(0)
2 (x0) × g(x0)

z
1−z

1
2ET (1−cos θ)

1.33 0.691 0.534 1.668 — < 1% Figs. 1,3

F3 Eq. (14) G
(0)
3 = π2

6
1+c x0

1+ π2c
6

x0

e−x0 z
1−z

1
4ET — — — — 2.73 ∼ 3% Figs. 4,5

F3 Eq. (14) G
(0)
3 (x0) × g(x0)

z
1−z

1
4ET 0.443 0.606 0.54 1.481 0.319 < 1% Figs. 4,5

F4 Eq. (14) G
(0)
4 = π2

6
1+c x0

1+ π2c
6

x0

e−x0 z
1−z

1
4ET — — — — 47.1 ∼ 30% Figs. 4,6

F4 Eq. (14) G
(0)
4 (x0) × g(x0)

z
1−z

1
4ET 0.726 0.461 0.382 1.457 6.62 < 1% Figs. 4,6

Energy Losses

Fani Eq. (33, 55) G
(0)
ani =

cu log(1+2.16u/c)
1+cu/0.822 2ET (1 − cos θ) — — — — 6.13 ∼ 1% Fig. 7

Fiso Eq. (36, 57) G
(0)
iso = cu log(1+0.722u/c)

1+cu/0.822
4ET — — — — 4.62 ∼ 5% Fig. 7

Fiso Eq. (36) G
(0)
iso (u) × g(u) 4ET −0.362 0.682 0.826 1.281 5.68 ∼ 1% Fig. 7

Interaction Rate

Fn,ani Eq. (46, 55) G
(0)
n,ani = 0.822 log (1 + 1.949u) 2ET (1 − cos θ) — — — — — ∼ 25% Fig. 8

Fn,ani Eq. (46) G
(0)
n,ani (u) × g(u) 2ET (1 − cos θ) 1.05 0.885 2.46 1.213 — ∼ 1% Fig. 8

Fn,iso Eq. (50, 57) G
(0)
n,iso = 0.822 log (1 + 0.97u) 4ET — — — — — ∼ 30% Fig. 8

Fn,iso Eq. (50) G
(0)
n,iso (u) × g(u) 4ET 0.829 0.88 1.27 1.135 — ∼ 1% Fig. 8

Mean Energy of Emitted Photons

z̄ani Eq. (55) G
(0)
ani/G

(0)
n,ani 2ET (1 − cos θ) — — — — 4.26 ∼ 3% Fig. 9

z̄ani Eq. (56) u
u+0.2

log(1+u/2)
log(1+2u) 2ET (1 − cos θ) — — — — — ∼ 8% Fig. 9

z̄iso Eq. (57) G
(0)
iso/G

(0)
n,iso 4ET — — — — 2.9 ∼ 5% Fig. 9

z̄iso Eq. (58) u
u+0.3

log(1+u/4)
log(1+u)

4ET — — — — — ∼ 8% Fig. 9

Energy of Emitting Particle

tθ Eq. (59)
v1/2

(

1+2v1/2
)

2

√

log(1+v1/2)

log(1+v1/2/3)
2ω̄T (1 − cos θ) — — — — — ∼ 10% —

t Eq. (59)
v1/2

(

1+2v1/2
)

2

√

log(1+v1/2)

log(1+v1/2/4)
4ω̄T — — — — — ∼ 10% —

Note.—A typical parametrization consists of a zeroth-order approximation function, G
(0)
···

, multiplied by the correction factor g. The zeroth-order
approximation depends on the variable, which is listed in the fourth column of the table, and in some cases on the parameter c. The correction factor is
given by Equation (20), and depends on the same variable as the zeroth-order approximation, and four parameters (a, α, b and β).
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