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Abstract: Forests contain a majority of the aboveground carbon (C) found in ecosystems, 

and understanding biomass lost from disturbance is essential to improve our C-cycle 

knowledge. Our study region in the Wisconsin and Minnesota Laurentian Forest had a 

strong decline in Normalized Difference Vegetation Index (NDVI) from 1982 to 2007, 

observed with the National Ocean and Atmospheric Administration’s (NOAA) series of 

Advanced Very High Resolution Radiometer (AVHRR). To understand the potential role 

of disturbances in the terrestrial C-cycle, we developed an algorithm to map forest 

disturbances from either harvest or insect outbreak for Landsat time-series stacks. We 

merged two image analysis approaches into one algorithm to monitor forest change that 

included: (1) multiple disturbance index thresholds to capture clear-cut harvest; and (2) a 
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spectral trajectory-based image analysis with multiple confidence interval thresholds to 

map insect outbreak. We produced 20 maps and evaluated classification accuracy with  

air-photos and insect air-survey data to understand the performance of our algorithm. We 

achieved overall accuracies ranging from 65% to 75%, with an average accuracy of 72%. 

The producer’s and user’s accuracy ranged from a maximum of 32% to 70% for insect 

disturbance, 60% to 76% for insect mortality and 82% to 88% for harvested forest, which 

was the dominant disturbance agent. Forest disturbances accounted for 22% of total 

forested area (7349 km
2
). Our algorithm provides a basic approach to map disturbance 

history where large impacts to forest stands have occurred and highlights the limited 

spectral sensitivity of Landsat time-series to outbreaks of defoliating insects. We found that 

only harvest and insect mortality events can be mapped with adequate accuracy with a  

non-annual Landsat time-series. This limited our land cover understanding of NDVI 

decline drivers. We demonstrate that to capture more subtle disturbances with spectral 

trajectories, future observations must be temporally dense to distinguish between type and 

frequency in heterogeneous landscapes.  

Keywords: Landsat; AVHRR; forest; disturbance; mortality; insect; harvest; US; 

classification; decision tree  

 

1. Introduction 

Understanding forest carbon (C) dynamics at the management scale is critical, because forests 

contain ~90% of aboveground terrestrial C stocks [1]. Prior studies have found North American forests 

to be a large C sink that offsets global anthropogenic C emissions [2–4]. Due to changes in forest 

disturbance rates and other processes that can reduce forest productivity, the long-term strength of this 

C sink is uncertain [5]. Monitoring and understanding disturbance dynamics at the landscape scale that 

can alter forest C is important so that future management activities can optimize C sequestration [6,7].  

In this study, we focused on the northern forests of Wisconsin and Minnesota (Laurentian Forest) 

that experienced a substantial decline in productivity from 1982 to 2007. This decline was observed at 

8-km resolution by the Global Inventory Modeling and Mapping Studies (GIMMS) Normalized 

Difference Vegetation Index (NDVI) data version “g”, derived from the National Ocean and 

Atmospheric Administration’s (NOAA) series of Advanced Very High-Resolution Radiometers 

(AVHRRs) [8]. We assumed that NDVI was a surrogate for photosynthetic capacity and a measure of 

vegetation health or vitality [9]. NDVI is related to the structural properties of plants, including Leaf 

Area Index (LAI), Absorbed Photosynthetically Active Radiation (APAR) and leaf biomass [10]. 

Widespread AVHRR NDVI declines have been reported further north in the Canadian boreal forest 

and have been associated with disturbances from fire, insect outbreak and changes in climate [11–16]. 

However, these boreal forests have limited human access and have not had a decline in NDVI 

throughout the 1982 to 2007 AVHRR record of measurements. 

Landsat is one of our best means to understand long-term land cover change and its impact on 

regional vegetation productivity. Many anthropogenic land cover changes occur at less than a 250-m 
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resolution [17]. The Landsat series of instruments at a 30-m resolution provide a critical tool to 

understand forest changes relevant to the C-cycle from harvest [18], wildfire [19,20] and insect 

outbreaks [21] by extending observational studies to areas that have poor records [22]. North American 

studies have used the decadal epoch of Landsat data, GeoCover or the Global Land Survey (GLS) [23] 

to quantify forest disturbances [24,25], while others have used dense Landsat time-series stack (LTSS) 

data focused on specific regions to evaluate change vectors to understand forest disturbance  

dynamics [20,26–29]. These LTSS data with ecosystem models could be used to monitor the 

productivity of forests pre- and post-disturbance [30].  

Due to the ease of extraction, many remote sensing studies using Landsat have focused on fire 

disturbance and logging [20,31–35]. Given the difficulty of discriminating background populations 

from outbreak events, few have classified insect, pest and pathogen events in Landsat data [21,36]. 

Widespread insect infestations have occurred in North America over the past 30+ years, which have 

potentially large impacts on standing C stocks [37,38]. Extracting disturbance information from 

satellite records with more advanced algorithms has already shown promise [21,39] and could help 

resolve disturbance processes for C-cycle models. 

Many existing remote sensing studies of forest disturbance using Landsat time-series stacks (LTSS) 

lack causal information that is critical for C-cycle models to quantify C-cycle dynamics [18,27,29]. For 

example, an algorithm developed by Huang et al. 2010 [29] has been implemented wall-to-wall for the 

continental US and has been shown to be very effective at mapping clear cut harvest, but has also been 

noted to have difficulty in complex heterogeneous landscapes [40]. This algorithm uses the concept of 

normalized values for pixels based on the mean and standard deviation of known forest pixels from the 

same scene and uses multiple images to improve the forest/non-forest classification. Another 

algorithm, LandTrendr, by Kennedy et al. 2010 [27] uses an automated trajectory-based image 

analysis and allows users to automatically identify and segment different pixel trends in land cover 

change through time.  

These algorithms do not attempt to define forest disturbance type, and this information is needed to 

account for different C-cycle processes. Clear cut harvest has a much different C-cycle pathway than 

insect-induced mortality. Harvest removes above ground biomass and transports it from the region to 

be used in building materials, pulp and paper, etc.; this results in a net C sink from biomass export; 

whereas insect-induced mortality would result in high levels of standing dead biomass that could 

decompose and respire to the atmosphere for many years into the future [1]. This difference in the C 

pathway can change a region from a net sink to a net source, and the disturbance type should be 

considered when attempting to model regional C-cycle dynamics. Considering the large extent and 

duration of the AVHRR NDVI decline, we sought to understand causal factors. The Laurentian Forest 

region provides a unique opportunity to test an algorithm that maps different disturbances through 

time. Developing and testing an algorithm’s performance on a Landsat time-series where historical 

disturbances have occurred could improve our understanding of C-cycle dynamics by providing the 

location, time, type and extent of disturbance. This information is critical to reduce our C-cycle  

model uncertainties. 

To investigate declines in forest productivity and evaluate Landsat disturbance classification 

performance in the Laurentian Forest, we developed a series of questions. First, were the long-term 

declines in forest productivity an error or real? Second, can an image classification algorithm be used 
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on Landsat time-series data to extract forest disturbances reliably for a region with heterogeneous 

canopy cover? Third, what dominant disturbance agent caused the NDVI decline at the coarse scale? 

Here, we attempt to extract causal information by combining available in situ data with a  

semi-annual LTSS classification algorithm, and we evaluate the accuracy of our algorithm by 

dominant disturbance types within path/rows that have different rates and types of disturbance. Our 

objective was to develop a simple, efficient and effective tool to distinguish between clear cut harvests 

and insect disturbance in the Laurentian Forest. We sought to evaluate with ancillary data if using a 

LTSS algorithm can enhance our understanding of forest disturbance dynamics.  

2. Data and Methods 

We use two of the longest satellite records available to understand long-term declines in forest 

productivity. By coupling multi-resolution data, our intent was to understand scale differences in 

observations. We attempt to define the type of event and temporal nature of the trend from a few 

proven spectral indices with simple threshold and trajectory techniques [21,41]. Our classification 

approach relies on growing season time-series analysis to extract disturbed area through time in an 

attempt to understand declines in forest productivity. Our approach provides a systematic manner to 

distinguish between clear cut harvest and insect outbreak, while resolving why a multi-decade 

AVHRR NDVI decline can occur in a forested landscape.  

2.1. Study Area  

Our study region, the Laurentian Forest, is a mix of deciduous and evergreen stands with many 

lowland bogs and wetlands. Numerous disturbance events from insect outbreaks and salvage logging 

have been reported in this region over previous decades that could have possibly been observed at the 

8-km NDVI pixel scale [42–44]. Reinikainen et al. 2012 [45] suggested that larger harvest patch sizes 

have increased the openness of the landscape in this region. This could have altered vegetation productivity 

observed by coarse-resolution AVHRR. Due to the complex nature of multiple land cover disturbance 

events reported by other studies [42–44], we have attempted to understand and quantify these 

dynamics at the Landsat 30-m scale on a semi-annual basis.  

We used NDVI data derived from GIMMS version “g” [8], because a consistent inter-calibrated 

record is needed to calculate anomalies that contain changes in the photosynthetic capacity of 

vegetation. These data are maximum values composited [46] to 8 km by 8 km, have been processed to 

account for orbital drift, minimize cloud cover and compensate for sensor degradation and the effects 

of stratospheric volcanic aerosols [8,47,48]. NDVI was calculated from AVHRR Channel 1  

(0.58–0.68 μm) and Channel 2 (0.72–1.10 μm) as: 

                                                 (1) 

Our AVHRR anomaly map was calculated as the mean growing season (May to September)  

per-pixel value per-year with a least squares linear fit applied from 1982 to 2007. We selected the 

Laurentian Forest for further study, because it met two criteria: (1) it is a contiguous region greater 

than 2000 km
2
 with a negative NDVI trend stronger than −0.05 at a 98% confidence interval from 

1992 to 2005 in GIMMS 3g NDVI data and a 1982 to 2007 negative trend in GIMMS g NDVI data [24]; 
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and (2) semi-annual LTSS, high-resolution aerial photo validation data and aerial field survey data of 

annual disturbances from 1996 through 2006 exist. Previous work by Slayback et al., 2003 [49], 

established that robust trends in AVHRR NDVI exist with significance levels greater than 90%.  

Neigh et al. 2008 [24] also found that robust changes in AVHRR NDVI at significance levels greater 

than 98% could be associated with forest disturbances. Figure 1 displays the distribution of 8-km 

GIMMS AVHRR NDVI g pixels with a negative trend stronger than −0.05 between 1982 and 2007 

overlaid upon one date of Landsat images used in classifications. Additional independent disturbance 

data are overlaid, including annual aerial insect disturbance survey’s from 1996 to 2006, fire 

disturbance data from monitoring trends in burning severity (MTBS) from 1984 to 2007 [50] and aerial 

photo high resolution sites used for classification evaluation.  

Figure 1. Global Inventory Modeling and Mapping Studies (GIMMS) Normalized 

Difference Vegetation Index (NDVI) negative trends indicated with black quadrangles 

overlaid upon one date of Landsat false-color composite images (4,3,2, red, green, blue). 

Insect disturbance from aerial survey data is overlaid in green (damage) and orange 

(mortality). Red open polygons indicate the monitoring trends in burning severity (MTBS) 

burned area, and yellow open polygons indicate validation data locations.  
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2.2. Landsat Data  

Landsat 5 data were acquired from the United States Geological Survey (USGS) global 

visualization viewer [51] for four path/rows covering the same extent as the AVHRR negative 

anomaly. We selected 11 to 13 images per path/row for analysis, all with less than 20% cloud cover, 

spanning from 1984 to 2006. We avoided using Landsat 7 ETM+ imagery, so that we would not need 

to contend with the scan line correction (SLC) problem. Our process could have used Landsat 7 data 

images if no data values are treated as a cloud mask from the outset. Each image followed a processing 

procedure with four primary parts. First, the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) time-series surface reflectance calculation was performed. Second, a cloud screen 

was applied, masking all pixels that could not be used for change detection. Third, spectral indices 

were generated by NDVI, Tasseled Cap and a Disturbance Index (DI’). The fourth and final step was 

disturbance dynamic characterization based on the index threshold, and the remaining pixels were 

subsequently processed by spectral trajectory.  

We provide a schematic of our approach in Figure 2, with the Landsat day of year (DOY) 

acquisition from our selected four path/rows within the AVHRR negative trend anomaly in Figure 3. A 

majority of the Landsat images we selected for analysis were peak growing season (Julian Days 175 to 

245, late June through early September), with only two images in our analysis from early June. One 

disadvantage of tracking trends in disturbance for this region is the lack of dense Landsat growing 

season data. This potentially reduces our ability to capture disturbance events and trends.  

Figure 2. Illustration of annual Landsat classification used to understand disturbances on 

forest productivity trends. NLCD, National Land Cover Database; LEDAPS, Landsat 

Ecosystem Disturbance Adaptive Processing System; DI’, Disturbance Index. 

 



Remote Sens. 2014, 6 2788 

 

 

Figure 3. Landsat day of year (DOY) acquisitions by path and row. We used AVHRR data 

to select peak growing season images with minimum cloud cover. 

 

Image processing included a number of steps to extract temporal indices that were relevant to our 

objectives. We used the LEDAPS algorithm for the calculation of surface reflectance to minimize the 

impacts of atmospheric, solar zenith angle and sensor degradation artifacts that can impair the quality 

of long-term analysis of spectral indices [25]. Cloud screening is critical to dense time-series analysis 

of Landsat, because abrupt changes in surface reflectance can obscure major land surface changes. All 

subsequent threshold values use surface reflectance scaled by multiplying times ten thousand.  

We generated three primary spectral indices to evaluate the optical properties of logging and  

insect disturbance throughout the Laurentian Forest: NDVI, the Tasseled Cap of brightness, greenness  

and wetness and a disturbance index, which has been used to identify forest disturbances in  

other regions [39].  

NDVI [9] from Landsat was calculated as: 

                                                            (2) 

 

The Tasseled Cap used coefficients from Crist and Cicone, 1984 [52], which were implemented for 

Landsat 5 surface reflectance data. Transforming images to Tasseled Cap space aided in image 

normalization, because weighted components are sensor specific and not scene dependent [53]. In our 

analysis, the third component “wetness” is considered a measure of the soil moisture content of the 

target and is orthogonal to “brightness” and “greenness”, which is a similar approach to principle 

component analysis. We use these orthogonal components to discriminate specific properties of 

targets. The disturbance index (DI’) is based upon the concept that a different spectral response of a 

stand replacing disturbance will occur with a higher reflectance of brightness and a lower reflectance 

of greenness and wetness [54].  

We calculated DI’ as follows: 

                        (3) 
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It has been noted by Hais et al., 2008 [39], that forest stands impacted by pine beetle are better 

detected using indices that enhance the SWIR “wetness” and that using DI’ can enhance the spectral 

response of insect forest disturbances. Forest stands impacted by pine beetle have been detected using 

indices that employ reflectance information from the 1.55–1.75 µm and 2.1–2.3µm Landsat Thematic 

Mapper bands, and using a normalized disturbance index can better differentiate insect forest 

disturbances from logging [39]. 

2.2.1. Landsat Forest Mask 

We delineated forest from agriculture through simple threshold values through the image stack on 

brightness, NDVI and the National Land Cover Database [55], applying a similar approach as  

Vieira et al., 2003 [56]. The mean brightness of the image time-series in forested National Land Cover 

Database (NLCD) pixels was used as a threshold to remove young bright stands of forest less than 

three years old and agriculture, which typically has a higher soil reflectance. We applied an NDVI 

threshold of less than 0.45 to remove sparsely vegetated areas in the 2001 NLCD forested classes. We 

applied these thresholds, because the NLCD does not account for changes in forest cover. In addition, 

we used agriculture and wetland classes from NLCD to exclude these areas from our analysis. 

2.2.2. Landsat Cloud Masking  

We employed an automated cloud and cloud-shadow detection method for Landsat data that largely 

avoided post-classification manual corrections for cloud and cloud-shadow artifacts. We build upon 

concepts developed in the prior automatic cloud cover assessment (ACCA) algorithm [57] to improve 

the discrimination of cloud and shadow on a per-pixel basis [58]. Instead of relying on information 

from a single date of imagery, clouds were identified as deviations from the mean Tasseled Cap 

brightness and thermal band values through time for each Landsat pixel. Pixels where the brightness 

value was more than two standard deviations above the long-term mean and the temperature more than 

one standard deviation below were identified as cloud tops. The solar zenith angle was then used to 

determine the direction to the cloud shadow. Pixels in the direction of the cloud shadow that 

experienced a drop in brightness of more than one standard deviation relative to the long-term mean 

were identified as cloud shadow. As the distance to shadow can vary as a function of cloud height and 

cloud height is inherently related to the temperature of the cloud, a simple relationship between 

minimum cloud temperature and distance to shadow was developed to limit the number of pixels that 

were searched for cloud shadows. A final filter was applied to each 3 × 3 moving pixel window, where 

the center pixel would only be classified as cloud or cloud shadow if more than half of the nine pixels 

in the sample window were also classified as cloud or shadow to reduce spurious per-pixel errors. We 

also buffered defined cloud and shadow with a 5 × 5 moving pixel window to account for  

edge artifacts.  

2.2.3. Landsat Disturbance Classification  

Hierarchical thresholds of our decision tree at each junction in the classification were defined with 

the following equations. 
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                 (4) 

where ∆DI' is equal to a change in normalized disturbance subtracted from one year (DI'y) to the next 

available image in the stack (DI'y + 1) on a per-pixel basis.  

              (5) 

where logging disturbance (∆Ld) is equal to a change in the normalized disturbance index (∆DI')  

greater than an adjusted range of logging DI’ threshold values (Lth). The range of Lth values to  

produce multiple maps was determined from a subset of the image stack and a subset of the air-photo 

training data. The date of disturbance is labeled as the date post decline from one year to the next in the 

Landsat stack.  

We defined insect disturbance with a trajectory approach applying the following equation:  

                                                        (6) 

where (∆Id) is a change in insect disturbance for a five-year time span. First, to reduce computation 

time, the change in DI' over a five year time span (∆DI'5 yrs) was defined as <−750. A linear regression 

was then fit to each pixel meeting this criterion. Pixels were classified as insect disturbed if the slope 

over this five-year period (          ) was less than −150 with a significance (        below an 

ensemble threshold (   ) ranging from 0.01, 0.05, 0.1 and 0.15 increments. The date of disturbance is 

labeled as the last year in the decline sequence. Note that a limitation exists with this method, as pixels 

with less than 3 values per 5 year interval are not computed. These pixels could be contaminated by 

clouds or cloud shadow. This method was applied incrementally for each Landsat stack (i.e., 1984 to 

1988, 1985 to 1989, 2002 to 2006). We established the change in slope values by using ancillary insect 

air-survey data as training. 

Without a salvage logging class, many cleared sites were defined initially as insect outbreak. To 

capture salvage logging, we applied the following equation to pixels classified as insect outbreak:  

                 
   

 
      (7) 

where the salvage logged (∆Ldslvg) has a decline half as great as the prescribed logging threshold. All 

salvage logging classed pixels were later reclassified as logged for classification evaluation purposes. 

Our approach is simple and straight forward and enables many LTSSs to be processed on a standard 

desktop workstation. The splits in the decision tree first rely on a per-pixel change in a prescribed 

threshold value; if no change is detected, then the spectral trajectory approach is applied.  

2.2.4. Running Landsat Classifications 

We ran our classification with multiple decision tree splits producing 20 iterations by varying 

thresholds of ∆DI’ (−9000 = moderate intensity to −5000 = low intensity, with increments of 1000) for 

observed spectral logging signatures, and p (0.01, 0.05, 0.1 and 0.15) for systematic forest insect 

decline. This process alters tree splits of change and no-change and potentially alters mapping 

accuracy. Our basic assumption with this algorithm is that clear cut harvest will have a rapid change in 

DI’ from one image to the next, and insect disturbance will have a more gradual spectral change.  
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We then compared all 20 maps to our high-resolution (<2 m) air-photo dataset to provide an 

optimized accuracy assessment. This produced 80 classifications (20 iterations times four Landsat 

stacks) for error assessment with all classification ensembles sieved to 90 m to reduce speckle in 

classified outputs. We believe this approach justified decision tree splits statistically with validation 

data as opposed to introducing analyst biases and provided information about the sensitivity of the 

algorithm to clear cuts and insect outbreak. This approach represents a substantial difference in prior 

methods, as it provides error bounds or uncertainty of classification accuracy not discussed in other 

forest disturbance mapping assessments.  

2.2.5. Independent Classification Evaluation Data 

LTSS studies are often restricted in their ability to have a comprehensive independent evaluation 

dataset, and past studies have used the Landsat data itself with analyst interpretation to validate their 

classification [25,29,59]. This limitation is imposed, because of the lack of a dense annual time-series 

in other remote sensing products. To alleviate this, we used a combination of historical aerial 

interpreted photographs with disturbance maps from land management agencies. Change or 

disturbance-based classifications require time-series reference data to define change areas through auto 

segmentation, or they are manually digitized by experienced image analysts [25,29,60]. We collected 

aerial photography from the National Historical Air Photo Archive (NHAP) for the early 1980s and the 

National Agriculture Imagery Program (NAIP) for the early 1990s and 2000s to evaluate the forest 

harvest and insect disturbances that we detected with our classification. A subset of one NHAP/NAIP 

image stack was used for training to establish a range of thresholds. We provide dates and image 

center coordinates in Table 1. Raw data were orthorectified using Geomatica’s OrthoEngine, with 

camera calibration information derived from the USGS to remove terrain spatial error artifacts that 

could be introduced in automated per-pixel validation cross comparisons [61]. Five sites were selected 

with air-photo stacks ranging from 4 to 7 images per site; air-photos were less than 2-m in resolution 

and were panchromatic and false color near-infrared. Air-photo stack sites were constrained by the 

availability of growing season multiple overlapping photos available in archives. Early and late images 

were used to evaluate forest/non-forest (logged conditions). The Landsat disturbance classification was 

evaluated with high-resolution air-photos, and if a partial disturbance was found within a Landsat 

pixel, it was considered disturbed. If mixed disturbance agents existed within a Landsat pixel, the 

analyst selected the dominant agent.  

2.2.6. Ancillary Data 

Additional datasets were also used when assessing time-series-related classification products. 

Monitoring trends in burn severity data [62] were used as an independent source to confirm negligible 

fire activity in the study region. Monitoring trends in burn severity is a multi-year project designed to 

map burn severity perimeters at 30 × 30 m for fires larger than 1000 acres across the United States 

from 1984 through 2010. These data are based upon Landsat Thematic Mapper data and use the 

normalized burn ratio. The normalized burn ratio index has been found to be a useful indicator to 

define the spatial distribution of burn severity and has been actively used in a number of long-term 

studies [63,64].  
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Table 1. Five locations of air photo stack classification evaluation data listed sequentially 

by Landsat WRS 2 path/row and the collection date of the photo stack bounds that are 

displayed in yellow in Figure 1. 

Center DD+   Spatial Spec.   

Path Row Lat Lon Air Photo ID Date Res. Res. Ortho Source 

025028 45.9033 −91.0890 NC1NHAP810479086 06/06/88 2 m CIR Y GloVis * 

   N10NAPPW05469064 05/07/92 1 m B/W Pan Y GloVis * 

   N10NAPPW10405076 04/22/98 1 m B/W Pan Y GloVis * 

   Sawyer County, WI 09/16/04 1 m True Color Y wisc-view t 

   Sawyer County, WI 08/03/06 1 m True Color Y wisc-view t 

025029 43.9375 −90.0622 NC1NHAP800299096 10/28/80 2 m CIR Y GloVis * 

   NC1NHAP020337057 06/03/86 2 m CIR Y GloVis * 

   N10NAPPW05439155 05/06/92 1 m B/W Pan Y GloVis * 

   N10NAPPW10423007 04/27/98 1 m B/W Pan Y GloVis * 

   Juneau County, WI 09/01/05 1 m True Color Y wisc-view t 

   Juneau County, WI 06/01/06 1 m True Color Y wisc-view t 

   Juneau County, WI 09/20/08 1 m True Color Y wisc-view t 

026028 46.2083 −91.5217 NC1NHAP020435130 06/06/88 2 m CIR Y GloVis * 

   N10NAPPW05487025 05/05/92 2 m B/W Pan Y GloVis * 

   N10NAPPW10407136 04/22/98 2 m B/W Pan Y GloVis * 

 43.9670 −90.0584 NC1NHAP020435130 06/06/88 2 m CIR Y GloVis * 

   N10NAPPW02691570 05/05/92 2 m B/W Pan Y GloVis * 

   Bayfield, WI 09/01/05 1 m True Color Y wisc-view t 

027028 46.4165 −93.1877 NC1NHAP840067163 04/17/84 2 m CIR Y GloVis * 

   NP0NAPP003135084 04/21/91 2 m B/W Pan Y GloVis * 

   N1NAPPW08876068 06/01/97 2 m B/W Pan Y GloVis * 

   Aitkin County, MN 09/01/03 1 m True Color Y wisc-view t 

+ Center latitude and longitude calculated from earliest air photo corner bounding coordinates in decimal degrees;  

* United States Geological Survey (USGS) global visualization server (GloVis) [51]. We orthorectified air photos using the PCI 

Geomatica OrthoEngine using camera model information; t WisconsinView [62] corrected National Agriculture Imagery Program 

(NAIP) data for terrain and camera angle displacement; accuracy: ± 5 m when compared to mosaicked digital orthophoto quadrangle; the 

imagery is a subset from a histogram-balanced mosaic.  

Due to the limited time record of aerial photography and potentially subtle multi-year insect 

disturbance, we used the Wisconsin and Minnesota insect disturbance database. These data were 

produced by the Forest Health Protection, United States Department of Agriculture (USDA) Forest 

Service [65], which has mapped annual insect outbreaks from 1996 to 2006 for our study region. These 

data are derived from aerial surveys in which interpreters hand-delineate outbreak areas in conjunction 

with site visits on the ground to confirm accuracy. The primary disadvantage of these data is that they 

are subjective, with accuracy depending upon the competence of the sketch mapper and the conditions 

under which the data were obtained [66,67]. These uncertainties limit the ability of these data to be 

useful in per-pixel assessment of insect disturbance. The assumption that the reference image used in 

photo-interpretation is 100% correct is rarely valid [68–70]. We evaluated the ability of LTSS data to 

capture these disturbances. We also collected forest species data from the USDA Forest Service Forest 
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Inventory and Analysis (FIA) program to understand which cover-types experienced a decline  

in productivity.  

Our intent was to identify substantial forest ecosystem C-cycle disturbance events with Landsat 

time-series data and relate these events to trends in NDVI at the 8-km scale. Acquiring ancillary data 

provided the means to understand major disturbance events that Landsat may not be able to detect. We 

had no intent to classify specific insect outbreak types with Landsat, and this falls beyond the scope of 

this study. We also acknowledge the limitations of our Landsat stacks to detect defoliation events.  

2.2.7. Landsat Classification Evaluation Procedure  

We applied three main considerations when developing our classification evaluation sampling 

strategy, which included: (1) sampling units; (2) design; and (3) sampling size [71,72]. When 

considering the sampling unit for classification evaluation, a subset area within an image is often 

preferred. We applied two-stage cluster sampling, the original sample area of the air-photo and a  

sub-sampling of the original subset area within the air-photo. This is undertaken to reduce the amount 

of reference data required [72]. Congalton, 1988 [73], suggested limiting the cluster sample size from 

10 to 25 pixels to reduce redundancy and over representation of a single class. Sampling units for 

image classification are typically clusters of pixels used as a single sample (e.g., a 3 × 3 pixel block) to 

reduce the effect of registration errors between the reference data and map locations [74–77]. We 

applied this approach to ensure adequate representation of air-photo evaluation data compared to 

classified classes.  

Random stratified sampling has been identified as the most precise and appropriate strategy for 

image classifications that contain rare classes, such as change or disturbance, as it ensures that all 

classes are represented [29,76,78]. Random sample selection provides satisfactory and often the most 

accurate assessment of land cover change classification accuracy [75,78]. Congalton, 2004 [79], 

suggested sample sizes of more than 50 for each class or, as suggested by Chen and Wei, 2009 [74],  

75 to 100 for a large study area or a large number of classes. Small or rare classes need to be carefully 

considered, as class proportions have been found to be more important than levels of spatial 

autocorrelation [69]. We collected more than 100 samples for each path/row and disturbance class to 

ensure an adequate sample to evaluate our classification.  

Classification accuracy is typically assessed from values extracted from a confusion matrix, overall 

accuracy (a combination of both user’s and producer’s accuracies, related to commission and omission 

errors) and Cohen’s kappa coefficient [80–82]. Kappa is often considered a better indicator of 

performance, because it compares all values within the matrix to values expected by chance [83]. We 

used this as a basis to select the most appropriate disturbance classification for change analysis.  

Automated Classification Evaluation 

To ensure that classification output was checked for underrepresented forest change classes and had 

a distributed validation sample, the type of disturbance was broken into five categories: no change, 

logging, insect, salvage logging and unknown. Our sampling design consisted of five disturbed and 

five non-disturbed 90 × 90 m polygons randomly chosen to represent automatic classification 

evaluation. Air-photos were compared to Landsat dates within two prior years to determine initial 
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cover-type and possible change. Stratified sampling was used to delineate ten polygons of cover-type 

changes visually identifiable from air-photos, and ten additional validation polygons were acquired for 

disturbance types not adequately represented. A final analysis of cover-type disturbance and date of 

change was determined from air-photos with associated analyst confidence.  

Manual Classification Evaluation and Statistical Analysis 

We visually identified in air-photos insect outbreaks with information from aerial surveys. As a 

result the visually identified “unknown” polygons were updated to known disturbance classes. 

Classification evaluation polygons were converted to a raster and used to generate a per pixel summary 

of the disturbance class. All possible comparisons between disturbance classes of the classification and 

those identified from air-photos were populated and used to generate validation statistics: producer’s 

error, user’s error, overall error and Cohen’s kappa. 

3. Results  

3.1. Drivers of AVHRR NDVI Declines 

We present the forest cover type for the region in Figure 4 [84]. Note that a majority of the negative 

NDVI trend within our study extent exists in aspen-birch forests, as classified jointly by the USDA 

forest service FIA forest cover type data shown in Figure 4.  

Figure 4. The geographic extent of forest cover types throughout the study region. The 

black open polygon indicates the Landsat image bounds, and yellow quadrangles indicate 

the locations of high-resolution validation data.  

 

We provide a histogram describing the distribution in square kilometers of the NDVI anomaly 

strength by forest cover-type (Figure 5A). Note that 54% of the forest with a negative AVHRR trend 

was located in aspen-birch stands where a forest tent caterpillar outbreak has been rampant; only 9% of 

the forest cover in this region is evergreen. Most of the negative AVHRR NDVI trend (−0.07 ± 0.04) 
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was in the deciduous forest followed by woody wetlands and evergreen forests, with a fair, but not as 

strong, trend (−0.05 ± 0.04) portion existing in croplands (Figure 5B). A small positive anomaly of 

0.01 was primarily found in croplands, although the value of this anomaly is well within the error 

bounds of AVHRR NDVI [85]. We collected our Landsat data during peak growing season months 

using monthly maximum AVHRR data to determine the ideal period. We indicate Landsat acquisitions 

used in our classifications with vertical red lines (Figure 6). Three-year running average NDVI trends 

displayed with bold green lines show variability in between Landsat image acquisitions. These peaks 

or troughs in the running average could indicate events that were missed in the Landsat time-series. 

The standard deviation between the AVHRR pixels sampled was calculated, as well, and displayed in 

the lower portion of the plots. Our assumption is that NDVI values become more divergent with land 

cover disturbance. We found higher standard deviations through the time-series, but could not acquire 

Landsat imagery for all divergent periods. This would imply that our Landsat time-series may be 

missing events that altered NDVI at the coarse scale. 

Figure 5. (A) AVHRR NDVI anomaly histogram stacked by forest species cover type, 

with the inset pie chart showing the proportion of the area by species cover type.  

(B) AVHRR NDVI anomaly stacked by 2001 NLCD types with the inset pie chart 

depicting the proportion of cover types with a statistically significant NDVI trend.  

 

3.2. Trends in Insect Air Surveys 

We have identified the utility of combining remote sensing resources to evaluate insect outbreaks 

that can reduce growth or potentially cause mortality. A number of different species have reached 

outbreak conditions as reported with aerial surveys from 1997 to 2006. These include boring insects 

that can induce mortality. Due to the complex nature of numerous insect types in this region, we do not 

attempt to use Landsat data to distinguish between them.  

The following foliage insects have been reported to have impacted forests within our study area that 

can significantly reduce productivity: eastern spruce budworm (Choristoneura fumiferana), jack pine 

budworm (Choristoneura pinus), large aspen tortrix (Choristoneura conflictana), elm spanworm 
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(Ennomos subsignaria), forest tent caterpillar (Malacosoma disstria), larch sawfly (Pristiphora 

erichsonii), greenstripped mapleworm (Dryocampa rubicund), fall cankerworm (Alsophila pometaria) 

and introduced species of gypsy moth (Lymantria dispar), basswood thrips (Thrips calcaratus) and 

western larch case-bearer (Coleophora laricella). These defoliators’ with repeated years of infestation 

can reduce host species productivity, opening the canopy, producing mixed species multi-cohort  

stands [45]. Alternatively, beetles can then kill hosts by feeding on the phloem (inner bark) and xylem 

(outer sapwood), where nutrients, water and minerals are transported. In this region, the two-lined 

chestnut borer (Agrilus bilineatus) beetle and many other and unknown species exist. 

Figure 6. The growing season, May to September, negative GIMMS AVHRR NDVI g 

trend (the bold green line is the three-year running average) from a sample of pixels 

(indicated in the plot title) in WRS path/row locations with Landsat dates used in the 

classification (red vertical lines). The standard deviation for the sampled pixels is shown at 

the bottom of each plot with black circles. 

 

3.3. Landsat Disturbance Classification  

The ensemble approach removed user interpretation biases that can develop when deciding 

classification threshold values. Typically classifications are optimized through iterations to improve 

mapping accuracy. Our analysis sought to understand the sensitivity of DI’ to harvest and insect 

outbreaks, which is why we provide all of our accuracy evaluation results for all 20 maps in Figure 7. 

This approach allowed quantitative assessment of classification thresholds, while enhancing the 

understanding of commission and omission errors in disturbance type classification. We applied less 

than five threshold values to our classification trees. We could have applied more, although this 

increases the analyst evaluation effort. We performed disturbance evaluation per LTSS path/row and 

air-photo, and then, we aggregated this for the entire study region. Each of the four path/rows had 

different types and rates of disturbance, as we found from ancillary data. The classification ensemble 
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approach across multiple path/rows enabled our sensitivity analysis of the spectral signatures to insect 

mortality and defoliation.  

Our approach through multiple iterations in tree splits had a range in overall accuracy from 65% to 

75%, with an average accuracy of 72%. Producer’s and user’s accuracy ranged from a maximum of 

32% to 70% for insect disturbance, 60% to 76% for insect mortality and 82% to 88% for harvested 

forest, which was the dominant disturbance agent. Kappa varied from 44% to 73% when all the 

path/row evaluation data were combined. 

Figure 7. Accuracy evaluation summary results from all iterations of adjusted 

classification tree splits for each path/row. We selected iteration 7000-015 (DI’ threshold 

of −7000 and p-value of 0.015; the vertical grey shaded portion of the plot) because it had 

the greatest combination of evaluation metrics, including overall accuracy, kappa statistic 

and producer’s and user’s accuracies for all path/rows. 

 

Our automated classification approach revealed widespread disturbance dynamics similar to those 

reported in previous studies [36,42,44,86,87]. We selected the classification iteration with a logging 

threshold of −7000 and a p-value of 0.15 for the fit of DI’ for insect outbreaks to report our final 

results. This iteration had the highest summary evaluation metrics for overall accuracy and kappa for 

all path/rows (Table 2). However, insect disturbance had a higher user’s accuracy (40%) and 

producer’s accuracy (70%) for the classification iteration with a logging threshold of −9000 and a  

p-value of 0.1 for the fit of DI’. We did not select this iteration to report our mapping results, because 

the overall accuracy was 68% and the kappa was 60%.  

Our study region comprised 33,524 km
2
 of forest, with a 1984 to 2006 disturbed area totaling  

7349 km
2
 (21.8% of the forest class). Disturbance due to logging was 4186 km

2
, and insect outbreaks 

totaled 3163 km
2
. We provide a summary of the disturbed area by year in Figure 8. Our approach 

captured the annual amount of insect outbreak disturbance over a multi-decadal period. Peak insect 

disturbance occurred in 2001 and covered 3% percent of the forested area that year. Logging 

disturbance was 44% of the total disturbance from 1993 to 2006. Classification accuracy of forest 

harvest was consistent between Landsat stacks throughout the study region.  

Insect disturbance was 56% of the total disturbance from 1993 to 2006. Classification evaluation 

was performed for each Landsat stack and aggregated for the entire study region. The greatest 

classification accuracy of insect disturbance was 72.1% user’s and 60.8% producer’s in Path 26, Row 28, 
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Sawyer County, where mortality had occurred, leaving a long-term spectral signal that was marked in 

both air-photos and Landsat as compared to other Landsat stacks, where forest tent caterpillar 

defoliation was the dominant agent. This outbreak of jack pine budworm that caused mortality and 

increased forest fragmentation in the early 1990s has been studied thoroughly in the past [44,88,89], 

and insect disturbance has continued to be a problem to forest productivity in this region [90]. Forest 

tent caterpillar did not cause mortality and was identified over an outbreak period from 2000 to 2006 

with aerial surveys. The producer’s and user’s accuracies of 31.9% and 56.3% overall for insect 

disturbance were low due to the difficulty of identifying forest tent caterpillar in air-photo validation 

data; and because of the limited time-series of the air-photo record. Note that one of the air-photo 

validation sites for Path 26, Row 28 corresponds to the area reported by air surveys as insect damage 

and mortality (Figure 1, yellow quadrangle center of map). We also believe Landsat has limited 

viability in capturing defoliating insects when the data is not available on a dense temporal basis. We  

provide accuracy assessment results for Path 26, Row 28 in Figure 9; note that the values reported for 

insect disturbance are higher than the averages for the entire study area for producer’s (32% vs. 63%) 

and user’s (70% vs. 72%) accuracies.  

Table 2. Validation statistics (Iteration 8 of 20), ensemble thresholding for logging  

(∆DI > −7000) and insect outbreak (p < 0.15). 

  Air Photo & Shapefile Reference Data   

    No Change Logging Insect Total Map % 

TM No Change 684 181 91 956 56.1 

Mapped Data Logging 82 530 33 645 37.9 

  Insect 45 0 58 103 6.0 

 Total 811 711 182 1704 0.0 

 % 47.6 41.7 10.7 0 0.0 

       

Producer’s Accuracy 0.84 0.75 0.32   

User’s Accuracy 0.72 0.82 0.56   

Overall accuracy 75%     

Kappa statistic 0.73     

Figure 8. Sum of study region annual area disturbed by insects and logging. 
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Figure 9. Accuracy evaluation summary results for Path 26, Row 28. Results show 

iterations of adjusted classification tree splits.  

 

Insect outbreak invoking mortality in the pine barrens of Path 26, Row 28 during the mid-1990s and 

early 2000s followed by salvage logging produced the largest disturbance event of all four Landsat 

stacks. We verified this classification result with aerial survey data, and this outbreak was driven by 

jack pine budworm in white and red jack pine. This disturbance reoccurred with an outbreak of forest 

tent caterpillar in surrounding aspen-birch stands (Figure 10).  

Figure 10. Example of disturbance classification evaluation and change results for a subset 

area of Path 26, Row 28. (A) The results of the land cover change classification by 

disturbance type. (B) The classified Landsat stack change year. Most of the insect outbreak 

disturbance in this subset was reclassified as salvage logging from the rapid decline in DI’ 

after it was classified as an insect outbreak. (C) A Landsat false color composite of the 

disturbed site showing the extent of the air survey data of jack pine budworm 

(Choristoneura pinus) and forest tent caterpillar (Malacosoma disstria).  
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4. Discussion  

We observed the growth of a forest disturbance at the 30-m scale that invoked a negative AVHRR 

NDVI trend at the 8-km scale. The productivity trend is difficult to determine without a growing 

season monthly time-series of Landsat to understand the spatial heterogeneity of disturbed and 

undisturbed stands at the 8-km scale. Disturbance heterogeneity is compounded because of reoccurring 

events and the growing extent of the disturbed area. We added a salvage logging class after we found 

that many forested pixels classified as insect disturbance were later classified as salvage logged. This 

was necessary because of the dynamic interaction of disturbances in this region. If we did not include a 

disturbance change class, our mapping accuracies for disturbance type would be greatly reduced.  

The lack of peak growing season, cloud-free, annual growing season Landsat data dating back to 

1984 is a limitation of this approach in this region, and the temporal density of the archive must be 

considered when applying our approach to classify forest disturbances. Multiple disturbance agents 

were identified, including a wide diversity of insects that reached outbreak populations, causing forest 

damage and mortality. We found insect damage or defoliation to be a widespread disturbance agent 

that cannot be captured with an LTSS disturbance index. We believe time series density has a direct 

impact on our results. The severity of the disturbance must be great enough to impose a multi-year 

change in surface reflectance with the statistical trend change approach. Image compositing and  

other more recent complex approaches by Brooks et al., 2013 [91], to use more multi-temporal  

Landsat data and remove phenology could prove useful in detecting degradation, thinning or insect 

defoliation events.  

Disturbance rates in Path 26, Row 28 were consistent with other studies conducted over the same 

period of time. Radeloff et al., 1998, 2000, 2003 [42,44,87], found with Landsat that jack pine 

budworm through the mid-1990s decimated forest stands where, then, salvage logging took place. We 

found similar results and expanded our disturbance analysis to the surrounding LTSS path/rows where 

a strong long-term negative AVHRR NDVI anomaly existed. We found that prior methods captured 

disturbance dynamics well within this path/row, because of the strong spectral signatures of mortality 

and stand clearance. However, neighboring path/rows do not have this clear insect disturbance 

signature, probably due to the lack of jack pine mortality from budworm outbreak, and the widespread 

agent has been a defoliator, while most of the study region is deciduous forest. This poses additional 

mapping problems when using LTSS to define disturbance agents. One potential solution would be 

implementing multi-temporal high-resolution commercial data to map individual tree crowns. This has 

been successfully done by Wulder et al., 2008 [92], for monitoring mountain pine beetle mortality, but 

the Laurentian Forest region poses new challenges, because of the diversity of insects that can reach 

outbreak levels and the short-term damage signal that is not identifiable in the next growing season in 

deciduous forests. Future studies could utilize an archive of high resolution with LTSS to identify which 

insect outbreak types have discernible multi-temporal signals in LTSS. This has become more of a 

possibility with no-cost access to US commercial high-resolution imagery by US-funded researchers [93].  

The heterogeneous nature of this landscape with evergreen and deciduous forest patches mixed with 

agriculture precludes defining one dominant cause of the decline, and we did not investigate changes 

in agriculture croplands, nor did we evaluate the influence of climate. Most of the AVHRR NDVI 

decline existed in forests. We believe that a progressive increase of the clear cut area at Landsat 
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resolution has reduced the AVHRR NDVI. We did not investigate crop statistics to understand why 

NDVI has declined there and do not believe that the LTSS record is dense enough to capture changes 

in cropland productivity. Croplands did not exhibit strong negative trends as compared to forest 

classes. Additionally, widespread insect defoliation was observed with airborne sketch map surveys, 

but not captured in our disturbance classification, due to the limitations of LTSS density. An increased 

defoliated area could reduce NDVI through the reduction of leaf area and increased background soil 

reflectance, but we found that our algorithm and available Landsat data had limited to no sensitivity to 

these events.  

This region was found to be a source of C, averaging 120 g∙Cm
2
∙yr

‒1
, observed by the WLEF tall 

tower in northern Wisconsin annualized over the years from 1997 to 2004 [94]. We believe that this 

tower is capturing the vegetation productivity decline observed by AVHRR. Once the disturbance rate 

subsides, this region under favorable climate conditions for growth should become a strong regrowth 

sink. Future remote sensing monitoring of disturbance rates could help understand how and when this 

transition occurs.  

5. Conclusions  

We believe negative NDVI trends in the Laurentian Forest observed by 8-km AVHRR are partially 

due from increased rates of disturbance. We initially had three questions when conducting this study 

and they included the following. First, were the long-term declines in forest productivity an error or 

real? From our classification results we believe the long-term AVHRR NDVI declines in the 

Laurentian Forest are associated with disturbances from insect outbreaks that caused defoliation and 

mortality, with salvage logging occurring in a large portion of dead forest stands. A large proportion of 

forest cover change has occurred over the same period of the NDVI decline, which implies that these 

disturbances are contributing to the change in NDVI. Our second question is, can an image 

classification algorithm be used on Landsat time-series data to extract forest disturbances reliably for a 

region with heterogeneous canopy cover? We found that a semi-automated decision tree approach can 

rapidly classify LTSS data for many path/rows, but only insect mortality and harvest have a strong 

enough spectral signal that can be identified when annual gaps in the time-series exist. Other 

approaches that use the full temporal record of Landsat and can exclude phenology may be able to 

detect more subtle events that are missed with this approach. Third, what dominant disturbance agent 

caused the NDVI decline at the coarse scale? We found a combination of disturbances from clear cut 

harvest, insect defoliation and mortality in patches of a heterogeneous landscape and suspect that they 

have reduced the large-scale productivity of the Laurentian Forest. The mixed composition of the land 

cover and change rates makes it difficult to determine one dominant agent, as it appears to be multiple 

disturbances occurring throughout the landscape at an increasing interval. 

Typically, post-disturbance regrowth observed with AVHRR NDVI can take more than five  

years [12], although this can depend on biome, forest type, climate after disturbance and the available 

seed bank for regrowth. We did not find recovery of AVHRR NDVI throughout this region, but we did 

find successive forest disturbance within 30-m resolution Landsat data. AVHRR data provide insight 

to overall vegetation productivity and health for a region, but lack important disturbance dynamics that 

LTSS and in situ data can provide. Our algorithm is the first to our knowledge that tracks forest 
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disturbances from one type to the next with a simple combination of spectral thresholding and 

trajectory analysis. Future studies need to incorporate disturbance dynamics that can be captured with 

dense LTSS data in biogeochemistry simulations to improve forest C accounting uncertainties.  
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