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Abstract 

This study was performed with three goals in mind: (1) to develop an efficient method to detect 

oscillating genes in the genome of Nicotiana attenuata, (2) to estimate the influence of light on 

the expression of these genes, and (3) to test the assumption that the circadian clock is organ 

specific.  

Three different datasets were used to analyze the gene expression in two organisms, 

tissues and conditions. The datasets contain time-series with 6 to 13 time-points sampled in a 4 

hour interval over two days. Based on the original data new time-series were generated by 

randomly selecting one of the three biological replicates at each time point. Two pre-developed 

algorithms (ARSER and HAYSTACK) were used to detect rhythmically expressed genes. These 

genes were classified into different ZT/CT groups according to their molecular peaking time. By 

comparing ZT/CT groups of a given gene under different conditions or in various tissues, 

changes in gene expression could be determined.  

First of all, the results of this research show that a randomization step with replicated 

microarray data is essential to detect oscillating genes with a low number of false positives. The 

results suggest that on average 13.4% of the analyzed genes seem to be regulated by the 

circadian clock. Furthermore, the molecular peaking time changes depending on the prevailing 

conditions. When plants transferred to different photocycles, they synchronize their gene 

expression with the environment in anticipation of dawn and dusk. On the other hand, each cell 

contains an individual endogenous oscillator and the assumption that the plant clock is organ-

specific could be confirmed. Moreover, it has been found, that the rhythm of oscillating genes 

persists under constant light conditions, but the period is shortened and with increasing time 

the waveform broadens until finally the rhythm gradually damps out.       
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1. Introduction 

In the year 1492 Christopher Columbus discovered the “New World” and during his 

second landfall at Bariay, Cuba he sent men to investigate the country. Their mission was 

to find the Emperor of China, but instead of a palace they found a native Taino village and 

were the first to observe the smoking of tobacco. It didn’t take long that the whole crew 

got used to this new habit. Beside exotic comestibles and objects Columbus also brought 

the tobacco plant to Europe and following the 

natural behavior of skepticism towards new 

things it took some time until the public 

accepted it. Jean Nicot, a French doctor and an 

ambassador for his country in Lisbon, 

attributed a healing character to the plant, 

which give rise to the culture of snuffing and 

the plant’s future popularity throughout 

Europe. He could observe, that treating 

wounds with tobacco leaves promotes the healing and also headaches could be eased. 

Excited by the effect of the plant and by knowing that the Queen of France, Catherine de 

Medici, suffers from chronic migraine headaches Nicot sent her some tobacco seeds. 

Catherine de Medici became convinced that tobacco had healing properties and by 

receiving instructions from Nicot she got used to the habit of snuffing. Because of its 

preventative role of the plant the Queen and Nicot made it publicly respectable in France. 

From now on members of the French court used the tobacco powder to stave off various 

illnesses and it’s likely that many users developed addictions to it. In recognition of Nicot’s 

role in popularizing the plant, the French botanist Jacques Dalechamps named it herba 

nicotiana in the year 1586. In 1828 German chemists from Heidelberg were able to isolate 

the active alkaloid in the tobacco plant leaves for the first time and named it nicotine. The 

genus Nicotiana contains many different species which differ in morphology and dispersal. 

One of these species domiciled in the southwest of the USA was named Nicotiana 

Figure 1.1: Stamp issued in 1961 the 400th 
anniversary of the introduction of tobacco 
into France [25]. 



13 
 

attenuata by John Torrey because of their long and elongated leaves and flowers. The 

Latin word “attenuata” means “thin or weak”. It’s an annual herb and occupies a special 

ecological niche. N. attenuata prefers a post-fire environment with its nitrogen-rich soil. A 

dormant seed bank is established during post-fire period. The plants synchronize their 

germination from the seed bank with the post-fire environment. Stimulants in wood 

smoke give the signal for the germination of the seeds. Forest fires do not follow any 

known rule and as a result the appearance of N. attenuata is hard to predict.  

 

1.1 Motivation 

At the first glance the annual herb Nicotiana attenuata may not appear 

extraordinary. It is a common plant exceeding a meter in maximum height that is easily 

recognized by its glandular foliage and white, tubular flowers. The plant does not impose 

by its ordinary appearance, that’s for sure, but its elaborated responses to predation and 

its exceptional habitat justify a detailed investigation.                                                                                            

It is assumed that a remarkable part of plant defense is regulated by the circadian clock. 

For Arabidopsis thaliana the molecular basis of circadian rhythms is known but although 

oscillator mechanisms are conserved through evolution, actual clock components do not 

seem to be [53]. To figure out the single components of a network it is necessary to 

research on a large number of genes simultaneously. Microarray technology allows to 

monitor the expression of hundreds or thousands of genes in a single reaction quickly and 

in an efficient manner. Thus with the help of microarrays we should be able to gain some 

new information about the global patterns of diurnally oscillating genes in Nicotiana 

attenuata.    
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1.2 Aims 

The genome of Nicotiana attenuata was recently annotated and the aim of this 

work is to precisely define the genomic landscape. The annotation of a genome is not the 

satisfactory ending of a long row of experiments but the beginning of a much bigger 

scientific challenge.  

“Denn ein Buch zu lesen, das in einer Sprache geschrieben ist, deren Alphabet man zwar 

kennt, aber dessen Worte und deren Bedeutung man noch nicht ergründen bzw. gelernt 

hat, ist unmöglich.“1            (Jan Walburg) 

Therefore, now it is essential to find the connections, regulatory mechanisms and 

functions of the “words” (genes). It is not possible to unveil all the functions of a whole 

genome of an organism in one master thesis, thus the author will concentrate to unravel 

circadian regulated genes and to estimate the influence of light on the gene expression of 

rhythmically expressed genes. The work also encompasses the analysis of different plant 

tissues to test the assumption that the circadian clock is organ specific. On a rudimentary 

and purely technical level the impact of replicates and randomization techniques onto the 

significance of the results will be examined.     

 

 

 

 

 

 

 

 

 

1For reading a book that is written in a language of which one knows the alphabet, but whose words and       
meaning one does not fathom or have learnt yet, is impossible. [translation, WW] 
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2. Theoretical principles 

2.1 Circadian Clock 

The plant circadian clock and its specific components were investigated predominantly in 

Arabidopsis thaliana. The examination of internal biological rhythms and their underlying 

concepts is done by the scientists in chronobiology. In this field of science various species 

and different levels of biology, starting with the elucidation of molecular mechanism in 

protazoa up to the complex study of psychological phenomena in humans are considered. 

The constant interdisciplinary exchange of information between the scientists is unique in 

natural sciences. The popularity arose over time and once again it was a Frenchman who 

gave the necessary impulse. In 1729, the opening of Mimosa leaves during the morning 

and its closure with the beginning of the night attracted the attention of the Astronomer 

Jean Jacques d'Ortous de Mairan [13]. It seems to be obvious, that this rhythm was 

associated and influenced by the prevalent light conditions. To test this theory he exposed 

a Mimosa plant to a dark cupboard and observed that the leaf movement persisted. This 

was the first experimental evidence that the internal rhythm controls diurnal rhythm in 

plants without external stimuli. Nevertheless there were different opinions on the origin of 

these internal rhythms. Some scientists believed that a yet unknown variable in the 

environment that is correlated with time of day might be instrumental in eliciting 

biological periodicity. The other assumption was that the rhythm is generated within the 

cells of the plant. In the year 1793 the German philosopher, mathematician and physical 

experimentalist Georg Christoph Lichtenberg postulated the theory of an internal clock in 

humans and pointed out, that such a mechanism assumed internal clock-like structures 

[46]. Not everybody agreed to this idea and  a lot of research time was spend to hunt for 

the unknown correlate of the earth's axial rotation (factor 'X') that drove daily cycles [13]. 

If the scientists had better interpreted the observations of the Swiss botany Augustin de 

Candolle from 1832 they could have saved themselves the effort. He noted that the daily 

rhythm of leaf movements of Mimosa plants housed in continuous illumination had a cycle 

length up to 2 h shorter than the exact 24 h periodicity seen in natural daylight [73]. As a 
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side- effect the plant is desynchronized of the daily light/dark cycle in nature. This proved 

that the organism regulates the periodical opening and closure of the leaves itself. At the 

beginning of the twentieth century the experiments from Anthonia Kleinhoonte [43] and 

Erwin Bünning [7] confirmed the assumption and closed the controversy on the search of 

factor 'X'.            

The initial research in the field of chronobiology was fully dominated by the studies on the 

'sleep movement' of plants. If the analysis had been done for humans the observations of 

de Candolle would have been confirmed earlier. As happened by the experiments of the 

German biologist and behavioral physiologist Jürgen Aschoff. From 1967 to 1979, as a 

director at the Max Planck Institute for Behavioral Physiology in Seewiesen, he 

investigated the influence of external stimuli on the endogenous circadian system in 

humans. Within a few test series he verified the observations by de Candolle. In the 

following years the institute became the mecca of chronobiology. 

 

2.2 What is a circadian rhythm? 

The denotation “circadian” was mentioned for the first time by Franz Halberg in the 

year 1959. The term comes from the Latin circa, meaning “around” or “approximately” 

and diem or dies, meaning “day”. It should emphasize that 'about a day' rather than 

precisely 24 h is the true hallmark of these periodicities [13]. So, one always speaks of a 

circadian rhythm, if the period length is between 22 and 25 hours. For shorter periods the 

term 'ultradian' is used and in the case of longer periods one speaks about 'infradian' 

rhythms. Processes are defined as outputs of the circadian clock rather than mere 

responses to environmental cues if they meet the following criteria. First, circadian 

rhythms persist with approximately (but never exactly) 24-hour periodicity after an 

organism is transferred from an environment that varies according to the time of day 

(entraining conditions) to a constant environment (free-running conditions). Second, the 

time of onset of these rhythms can be reset by appropriate environmental cues, such as 

changes in light or temperature levels. Finally, circadian rhythms are temperature 
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compensated; that is, they occur with approximately the same periodicity across a wide 

range of temperatures [28]. Most biological processes show a Q10-value of 2-3, that means 

that the reaction velocity is doubled/tripled at a temperature change of 10°C [39]. In 

contrast, the circadian clock of Arabidopsis thaliana has a Q10-value of 1.0- 1.1 over a 

range of 20°C [74]. Physiological experiments performed in a variety of model organisms, 

including plants, animals, fungi, and cyanobacteria, revealed fundamental commonalities 

between the circadian systems of these diverse species [28]. 

 

2.3 How are circadian rhythms generated? 

By taking advantage of the physical theory of oscillators, Aschoff was able to 

predict the behavior of circadian systems and he declaimed the idea of a natural biological 

oscillator. The first very simplified model which assumes that the input signals entrain the 

core oscillator which generates the rhythmic activity of the internal clock is shown in 

Figure 2.1 A. However, this linear progression is an oversimplification, because many 

components of the input pathways are themselves outputs of the clock and rhythmic 

outputs from the clock may feed back to affect the functioning of the core oscillator [21]. 

Figure 2.1 B takes this consideration into account. While concentrating on the model it is 

pertinent to ask why circadian clocks appear to have converged on such complex 

architectures. The answer is simple: the complexity provides the clock with stability and 

protection against stochastic perturbations [21]. Additionally every single gene has its own 

specific time point when it reaches its maximal expression in the course of the day. The 

complex structure of the clock ensures the required flexibility to coordinate the different 

cellular- mediated processes. The circadian system is highly adaptable and dynamic. 

Exogenous signals influence and even more importantly synchronize the internal clock 

with the surrounding environment. Such influencing variables like light or temperature 

cycles were called 'Zeitgeber' by Aschoff for the first time and the term was accepted in 

the English- speaking scientific community. 
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Figure 2.1: Schematic representation of circadian clock structures                                                                                             
A) Simple model consisting of input signal, oscillator and rhythmic output B) Elaborated clock model taking 
into account additionally multiple oscillators and outputs which feed back into the central oscillator. Arrows 
are positive arms and perpendicular lines represent negative arms of the pathway [21] 

By circadian convention, the time of onset of a signal that resets the clock is defined as 

Zeitgeber time 0, abbreviated ZT0 [28]. This definition is especially used for time scales 

under light/dark cycles (LD conditions). Whereas under constant light conditions the term 

'circadian time', abbreviated CT, is commonly used [82]. ZT0 indicates the time point when 

light is turned on and ZT12 when light is turned off. CT0 in contrast marks the subjective 

dawn and CT12 the subjective dusk. Why is the term 'subjective' used? Under constant 

light conditions no external time cues exist and therefore it could only be a subjective time 

point [82]. The influence of the Zeitgeber signal on the phase of the rhythm varies with the 

time of day. Depending on which time point the signal is given a phase shift is possible as 

well as cells become desynchronized. There is also the possibility that nothing changes 

[65].          

    

2.4 How are circadian rhythms determined? 

The output of the circadian clock often takes the form of sinusoidal waves that can 

be described by mathematical terms such as period, phase and amplitude [28]. Figure 2.2 

shows an idealized clock output in light/dark cycles with important parameters 

highlighted.  
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Figure 2.2: Parameters of circadian rhythm                                                                    
An idealized circadian rhythm is depicted. The difference in the level between peak and trough values is the 
amplitude of the rhythm. The timing of a reference point in the cycle (e.g., the peak) relative to a fixed event 
(e.g., beginning of the night phase) is the phase. The time interval between phase reference points (e.g., two 
peaks) is called the period. [http://bioinformatics.cau.edu.cn/ARSER/ismb2010_rdyang.pdf] 

There are many different methods to calculate the parameters which are necessary to 

model circadian rhythms. The most challenging part is the determination of the accurate 

period. It has to be taken into account that the expression of genes is a continuous 

process, which is transformed into a discrete time series during the experimental 

procedure. This results in an unavoidable loss of information and the reconstruction is a 

big challenge. In the field of information theory the number of necessary sampling points 

could be calculated to perfectly reconstruct the original function. The theorems state a lot 

of sample- rate criterions and therefore in practice the perfect reconstruction is replaced 

by mathematical approximations, because under different circumstances or conditions 

these criterions are not satisfied. Nevertheless the ideas, especially the one that always 

equidistant sample rates are used influenced the sampling methods in time- series 

experiments.    

In the field of chronobiology, microarray experiments with an equidistant interval of time 

points are commonly used. Circadian microarray experiments are usually designed to 

collect data every 4 h over a course of 48 h, generating expression profiles with 12 or 13 
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time-points [86]. Figure 2.3 shows a schematic design of such a typical microarray 

experiment. 

 

The number of data points is limited due to budget constraints and working time. 

Therefore the sampling rate is relative low and it increases the difficulties to generate 

statistically significant results. Furthermore most of the commonly used methods are not 

feasible for such short time-series.       

Two of the oldest and multiple applied methods are the Fisher's G-test and the COSOPT 

algorithms. COSOPT is time-domain algorithm which matches gene expression profiles to a 

predefined selection of 101 cosine curves of varying phases. The quality of the pairs is 

specified by a multiple-measures corrected β (MMC-β) value. A very small MMC-β value 

indicates a nearly perfect match between the curve and the experimental data. All genes 

with a threshold value smaller or equal to 0.05 are classified as rhythmically expressed. 

The big advantage of the algorithm is its efficiency for short time- series, but it's noise-

sensitive and model-dependent. The alternative is a frequency-domain algorithm like the 

Fisher's G-test. This test generates a periodogram of experimental time-series and tests 

the significance of the dominant frequency [86]. Classification takes place according to the 

g-statistics. A high value leads to a rejection of the null-hypothesis, which assumes a 

random event. This method is model-independent, but performed worse on short time-

series. A lot of other techniques for determining rhythmically expressed genes were 

developed like in Hughes et al. [34], Luang and Li [50], Lu et al. [48], Wichert et al. [84] and 

Figure 2.3: Schematic representation of a circadian microarray experiment                                                                   
In the beginning of the experiment the plants are entrained in light/dark cycles. After several days they are 
transformed to constant light conditions and samples are collected every 4 hours. 
[http://bioinformatics.cau.edu.cn/ARSER/ismb2010_rdyang.pdf]   
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Zhao et al. [90]. These algorithms are only slight variations of the described methods and 

will therefore not be further explained. Recently, Yang and Su [86] introduced an algorithm 

named ARSER, which combines time domain and frequency domain analysis. ARSER is 

optimized for time- series with 12-13 time- points. The algorithm predicts the periodicity 

of a gene expression profile by employing autoregressive spectral estimation. In the next 

step harmonic regression is used to model the rhythmic pattern. ARSER performed best on 

periodic and non-periodic. For that reason the algorithm was chosen for the analysis and is 

described more precisely in chapter 3.4.1 later on.  

 

2.5 Circadian internal synchronization and desynchronization 

The system of endogenous circadian oscillators has been investigated in organisms 

ranging from unicellular algae to man [57]. Nevertheless it is still a matter of debate 

whether one master oscillator controls all circadian phenomena or several Zeitgebers are 

responsible to synchronize each circadian rhythm [33]. Now considerable evidences 

indicat the existence of a multioscillator system which generates the different rhythms 

autonomously in a single organism [57]. All living organisms are organized temporally to 

insure that there is “internal synchronization” between the myriad biochemical and 

physiological systems in the body [78, 81]. Internal synchronization demands that within 

an organism there must be only one oscillator or “clock” on which all endogenous 

circadian rhythms are passively dependent, or, if there is more than one oscillator, then 

the various oscillators must be normally synchronized with one another [57]. Thus the 

only way to proof that circadian rhythms are regulated by different autonomous 

oscillators is to demonstrate desynchronization of the rhythms under constant external 

conditions. In the absence of external cues the rhythms are said to be “free-running”, 

meaning that no synchronization by any cyclic change in the physical environment occurs, 

with a period close to but not exactly 24 hours [81]. This period of an endogenous rhythm 

when light and temperature are held constant was called “natural period” by Pittendrigh 

and Bruce [61]. However, if the rhythms are controlled by the same oscillator, the periods 
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have to be identical. The term “internal desynchronization” is used to describe a state 

where different oscillating variables within an organism demonstrate different periods 

and therefore constantly changing phase relationships [57]. It has to be mentioned that a 

lack of internal desynchronization does not necessarily deny the existence of a 

multioscillator system [33]. Roenneberg and Morse [67] were one of the first who could 

proof the existence of more than one oscillator within a single cell. They investigated 

three different rhythms in Gonyaulax and under certain experimental conditions these 

rhythms run independently. Indicating that each rhythm must be controlled by its own 

distinct oscillator [67]. In plants multiple circadian rhythms occur in many species and 

Hennessey and Field [31] could show that they have different free-running periods, 

indicating anatomically distinct oscillators. The transfer from light/dark cycles to constant 

light condition may lead to “transients”, so that the phase is not reset immediately but 

comes to a stable position after several cycles [29]. It should be referred to “transient 

internal desynchronization” if the internal desynchronization is observed between two 

stable synchronized states [57]. The time depends on the organism and may be related to 

the relative complexity of the organisms [29]. If two or more rhythmic variables are shown 

to free-run with different frequencies for a sufficient length of time the term “steady-state 

internal desynchronization” is used [57]. Roenneberg and Morse further suggest that 

chloroplasts, which evolved from an endosymbiotic cyanobacterium, had contributed 

their own oscillator to the circadian systems of eukaryotic cells. It could be observed that 

not only the gene expression in the nuclear genome but also in the chloroplast genome is 

circadian regulated. Roenneberg and Morse formed their assumption based on the 

experiments in the giant alga Acetabularia, which demonstrated that the chloroplast 

photosynthetic rhythm persist even in an enucleated cell [67]. In contrast, Matsuo et al 

[53] provided direct evidence that the circadian period of chloroplast gene expression 

rhythms is determined by the nucleus-encoded circadian oscillator. However, they could 

not exclude the possibility of the existence of a chloroplast specific clock.  
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3. Material and Methods 

3.1 Microarray experiments 

Three different datasets were used to analyze the gene expression in two organisms, 

tissues and conditions. To analyze the gene expression in Arabidopsis thaliana we used the 

diurnal time-series of 3 biological replicates generated by Bläsing et al. [5]. They harvested 

plants every 4 hours at 6 time-points beginning with the end of the night. The details are 

listed in the appendix. To investigate the influence of elongated day length on the 

oscillating genes the dataset from Kim et al. [42] was used. In their experiments N. 

attenuata plants were grown in 16 h light/8 h dark cycle. The data were collected every 4 h 

and lead to a time series gene expression data set with 6 time-points. To examine local 

effects, different tissues of three biological replicates were collected. The details are also 

listed in the appendix. The last dataset contained gene expression data from N. attenuate 

grown under light/dark rhythm and constant light conditions. The design is shown in figure 

3.1. 

 
Figure 3.1: Design of the microarray experiment for Nicotiana attenuata under LD and LL conditions               

A) Plants were grown in a 12/12 h light/dark cycles and harvested every 4 h for two days B) Plants were 

entrained under day/night rhythm for 5 weeks and then exposed to constant light conditions. Sampling was 

started at 28 h after constant light exposure.  

One part of plants was grown in 12 h light and 12 h dark cycles and harvested every 4 

hours over two days, which leads to a time- series of 13 time- points. The rest of plants 

were first entrained in a 12 h light and 12 h dark cycles for 5 weeks and exposed to the 

constant light conditions. The sampling was started at 28 hours after transferring plants 

and the same rate was used as for plants grown under LD conditions. 
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3.2 Normalization 

The present data emerged from a number of microarray experiments and to 

compare the different probes a normalization method had to be applied. This step is 

necessary to reduce the bias which could distort the results. Before the real normalization 

process is performed the dataset had to be checked for possible errors. Potential sources 

of such errors are the preparation of mRNA, fluorescent labeling, hybridization procedure 

or scanning of the array, Victor et al. [83]. In the field of explorative data analysis the 

results of microarray experiments are visualized by boxplots, histograms or quantile- 

quantile- plots. The graphics provide the first overview so that conclusions about the 

variance and distribution of the data can be drawn. Outliers are any data not included in 

the box, and were plotted with a small circle. The highlighted boxes in the diagram 

visualize the area which contains 50% of the average data. The spacing between the 

bottom and top of the box indicates the degree of dispersion in the data, because the 

length of the box corresponds to the interquartile range. Therefore the first and third 

quartiles are marked by the upper and lower band respectively. Additionally the horizontal 

line inside the box marks the second quartile, the median. That means 50% of the data are 

above the band and 50% below. From the position of the median conclusions about the 

skewness in the data can be drawn.  

Until now no “gold standard” exists. In the literature various techniques were tested and 

their shortcomings listed, Boes et al.[6]. Especially at the beginning of microarray 

technology the use of so- called 'housekeeping' genes was one of the favorite methods. 

The assumption of this method is that there are some genes which keep their expression 

constant over time and are independent of external stimuli. The genes are hybridized as 

zero stock checks. This kind of normalization technique calls for excellent knowledge about 

the gene expression of the currently investigated organism. Only in rare cases the 

necessary information is available and verified. Besides the whole circumstances are under 

consideration, because it cannot be ruled out that the selected genes change their 

expression under special conditions. The average intensity of the control genes is 
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calculated and that followed a subtraction of this value from all other values in the original 

dataset. As the number of 'housekeeping' genes is low compared to the whole amount of 

genes on a chip the intensity of all genes is increasingly used to avoid incorrect scaling. The 

use of ‘housekeeping’ genes is based on the assumption that the majority of examined 

genes are not relevant as far as this investigation is concerned and therefore only a small 

number of genes decisively change their expression. Different measures of location are 

applied. In most cases the 0.75- quantile of all genes is taken and every expression value is 

divided by this value. Another popular value is the second quartile, the median. In this 

work the 0.75 quantile normalization was used and the data was log2- transformed.  

 

3.3 Simulated time series 

We used a randomization procedure to combine the expression value of the pooled 

biological replicates to new time-series. The underlying assumption was that the 

amplification of the pooling effect reduces the number of expression profiles incorrectly 

classified as periodic (false positives). For the experimental data we are not able to know 

which genes are true (expression profiles correctly classified as periodic) and false 

positives and the literature does not provide this information for other plant species as 

well. To test our methodology we generated artificial time series data with known 

numbers of true and false positives. Each time-series contains expression values of 30000 

genes and consists of an alternating ratio of periodic and non-periodic expression profiles. 

For Arabidopsis a number between 6% and 15% of circadian regulated genes within 

microarray time course data is estimated [56]. Therefore we decided to generate datasets 

with ratios of 5%, 10% and 15% of periodic time-series data. Stationary and non-stationary 

models were used to simulate periodic patterns as proposed by Yang and Su [86]. The 

stationary model is defined by 

𝑥𝑡 = 𝑆𝑆𝑆 ∙ 2𝑐𝑐𝑐 �2𝜋
𝜏
𝑡 − 𝜑� + 𝜀𝑡    (1) 

 

and the non-stationary is defined by 
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𝑥𝑡 = 500 ∙ 𝑒−0.01𝑡 + 𝑆𝑆𝑆 ∙ 100 ∙ 𝑒−0.01𝑡 ∙ 𝑐𝑐𝑐 �2𝜋
𝜏
𝑡 − 𝜑� + 𝜀𝑡    (2) 

 

where SNR is signal-to-noise ratio; τ is period; ϕ is phase; and εt is (µ=0, σ=1) normally 

distributed noise terms. Additionally, a combined model of cosine and sinus functions 

described by Wichert et al. [84] was used to generate another periodic expression profile 

 

𝑥𝑡 = 𝑐𝑐𝑐 �2𝜋
𝜏
𝑡� + 𝑠𝑠𝑠 �2𝜋

𝜏
𝑡� + 𝜀𝑡     (3) 

As common procedure we used normally distributed white noise to simulate non-periodic 

time series. Based on the results of Futschik and Herzel [20] we also included 

autoregressive (AR) processes of order one as a model for non-periodic expression 

profiles. An overview of the datasets is given in table 1. 

Table 1: Overview of simulated datasets given the exact number of periodic and non-periodic patterns as 

well as the absolute number of expression profiles for the different models 

model dataset1 dataset2 dataset3 

Stationary 1500 1000 500 

Non-Stationary 1500 1000 500 

Combined 1500 1000 500 

White noise 12750 13500 14250 

AR 12750 13500 14250 

Periodic  4500 15% 3000 10% 1500 5% 

Non-periodic 25500 85% 27000 90% 28500 95% 

 

For each dataset we generated 3 time-series which should perform as biological replicates. 

The expression values of these time-series were randomly combined to generate 30 time-

series consisting of 30000 genes with 12 time-points over a range of two days. The details 

of this randomization procedure are described later on. 
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3.4 Detection of rhythmically expressed genes 

3.4.1 ARSER 

We used the ARSER algorithm from Yang und Su [86] to detect the oscillating genes 

within the time course series. The algorithm combines time- domain and frequency- 

domain analyses to address such rhythmically expressed genes based on their expression 

profiles within microarray data. Via harmonic regression the algorithm is able to model the 

rhythm using four parameters: period (duration of one complete cycle), the mean level 

(the mid-value of the time-series), the amplitude (half the distance from the peak to the 

trough of the fitted cosine, indicating the predictable rise and fall around the mean level) 

and the phase (the location in time of the peak of the curve). These values and other 

analytical results like statistic validation are returned in an output file from the algorithm 

[]. 

The algorithm is optimized for time course series with 12-13 data points over a range of 48 

hour. ARSER performs a data preprocessing strategy called detrending that removes any 

linear trend from the time-series so that we can obtain a stationary process to search for 

cycles. Detrending is carried out by ordinary least squares (OLS) [86]. This step removes a 

long time trend from a time course series to prevent a distortion of the results. A time 

Figure 3.2 : Schematic representation of the ARSER algorithm and a case study.                                                           

A) Analysis flowchart. First, data pre-processing by linear trend removal (detrending), then period 

detection by searching peaks from the AR spectrum. With the periods derived from the AR spectrum, 

harmonic regression is carried out to model circadian rhythms by fitting the detrended time-series with 

trigonometric functions. B) An example of rhythmicity analysis by ARSER [86]. 
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course series is called stationary if statistical properties stays constant over time. 

Afterwards autoregressive (AR) spectral analysis is carried out to search for circadian 

rhythms and to determine the period. With the periods obtained from AR spectral 

analysis, ARSER employs harmonic regression to model the cyclic components in time-

series. Finally, when analyzing microarray data, false discovery rate (FDR) q-values were 

calculated for multiple comparisons [86]. A schematic overview of the methodology is 

shown in figure 3.2. 

The most important step is the determination of the accurate period length, because the 

period can differ from the assumed length of 24 hours. The algorithm takes a range from 

20 to 28 h into account. The AR spectral analysis calculates the power spectral 

density of the time-series in the frequency domain. If there are cycles of circadian period 

length in the time-series, the AR spectral density curve (equation 2) will show peaks at 

each associated frequency [86]. At the beginning an AR model of order p is generated to fit 

the time-series using the following equation: 

     (1) 

where εt is white noise and αi are model parameters with αip≠ 0 for an order p process. AR 

coefficients are generally estimated by three methods: Yule-Walker method, maximum 

likelihood estimation and Burg algorithm [86]. To fit the model to the experimental data 

the order p is set to 24/∆ and the coefficients are calculated using all three methods 

mentioned above and following equation: 

                                   (2) 

where σ²ε is the variance of white noise; αk are parameters defined in Equation (1). All 

periods within the spectrum were selected. The determined period of the time- series 

serves as an input for the following harmonic regression: 
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                                        (3) 

where xt is the observed value at time t, μ is the mean level of the time- series; βi is the 

amplitude of the waveform; ϕi is the phase, or location of peaks relative to time zero; εt 

are residuals that are unrelated to the fitted cycles; and t are the sampling time- points. 

For spectral analyses the period is always predefined and equation 3 can be simplified to a 

multiple linear regression model: 

                           (4) 

where pi=βi cos ϕi  and qi=-βi sinϕi  . The unknown parameters pi, qi and μ can be estimated 

by OLS method. Then the amplitude βi and phase ϕi are obtained by  βi=√pi²+qi² and tanϕi 

=-qi/pi .To validate the results different statistical properties were calculated. The 

correlation coefficient is calculated to find the cosine curve which fits best to the 

expression profiles. Thereby various cosine curves with different parameters were 

matched to the experimental data. The function with the highest correlation coefficient 

was selected. The results were statistically validated by calculating the p-value. In this 

regard the p- value indicates the probability that a randomly chosen expression profile has 

a correlation coefficient higher than a predefined threshold value. Small p- values mean 

it’s unlikely that randomly chosen expression profiles receive a correlation coefficient 

higher than the threshold and lead to a rejection of the null hypothesis [82]. By doing so 

it’s ensured that the error rate stays as low as possible. Typically, data from microarray 

experiments provide information about many genes simultaneously. By analyzing the data 

one faces the problem of multiple testing and the need to adjust the p- value. There are 

different methods to do so and here the method from Storey and Tibshirani [76] was used. 

The most important fact is that their approach discriminates explicitly between the 

concept of FDR and false positive rate. The false positive rate refers to the probability of 

not significant results falsely classified as significant, whereas the FDR states that 
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significant features are truly not significant. For example, a false positive rate of 5% means 

that on average 5% of the truly null features in the study will be called significant. A FDR of 

5% means that among all features called significant, 5% of these are truly null on average 

[76]. Valid conclusions about the false positive rate and the FDR can be made by stating 

the feature specific p- and q- values. Whereas the p- value is a measure of significance in 

terms of the false positive rate, the q- value is a measure in terms of the FDR [76]. A p- 

value of 0.05 accords to a false positive rate of 5% and doesn’t tell much about the content 

of the features actually called significant. Better to use the q- value which provides a 

measure among the features called significant. The FDR is a sensible measure of the 

balance between the number of true positives and false positives. The ARSER algorithm 

calculates the q- value, as well as the p- value, for every gene within a dataset. Genes with 

a q- value below 0.05 are classified as rhythmically expressed ones.   

  

3.4.2 Haystack 

HAYSTACK is designed to find periodic patterns in any large-scale dataset 

representing at least three data points. The Web version is available at 

http://haystack.mocklerlab.org/. This algorithm compares the experimentally recorded 

gene expression profiles with predefined cycling patterns and groups genes whose 

expression profiles match the same or similar patterns. Different cutoffs are used to detect 

circadian oscillation. The most important parameter is the correlation coefficient. The 

higher the value the higher the degree of correlation between the experimental data and 

the different models. A coefficient of +1 indicates perfect positive correlation. Another 

cutoff value which is taken into account is the fold change. This value describes how much 

the initial value differs from the finale one. To achieve statistical significance the p- value is 

also calculated. Periodic patterns within the random datasets were identified using default 

parameters except that a fold cutoff of 1.0 instead of 2.0 was applied. In the case of time 

course series the most biologically relevant information are whether a transcript cycles 

and if so, the timing or phase of its maximum expression over the day. The common 
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algorithms which use the same principle search for significant cross-correlations with sine 

or cosine waves. What is special about HAYSTACK is its possibility to search for at least six 

different patterns, including “asymmetric”, “rigid”, “spike”, “cosine”, “sine”, and “box-like” 

patterns. The most successful models in identifying rhythmically expressed genes are 

“cosine” and “spike”. This means that these patterns show the highest correlation 

coefficient. A set of model profiles was downloaded from the HAYSTACK web site 

mentioned above. This dataset included all the patterns listed earlier except the 

“asymmetric” one. Each periodic pattern contained 24 samples so that a total of 120 time-

series were available. Each series possessed 12 time-points that represent two circadian 

cycles obtained at 4 h sampling intervals.  

 

3.5 Estimation of molecular peaking time 

To estimate the peak time of cycling genes the method proposed by Ueda et al. 

[82] modified for our requirements. Ueda et al. used an algorithm like COSOPT. 24-h 

period cosine curves with different peak times at 10-min intervals are predefined as test 

patterns. COSOPT calculates the correlation coefficient between the 12-point time course 

of each gene and the test patterns. The best-fitted cosine curve was selected and they 

defined the molecular peak time for each cycling gene as the peak time of that curve. We 

instead used the parameters returned by ARSER to model the rhythm for every gene which 

was classified as rhythmically expressed. This modeling step leads automatically to the 

best fitting curve for the expression profile of each gene which seems to be circadian 

regulated. Afterwards the maximum, in this case called ‘peak time’, of the curve was 

calculated and assigned to the gene. 

 

3.6 Determination of ZT-, CT- and similarity groups 

The genes which are classified as rhythmically expressed often vary a lot 

concerning the parameter values. There is the possibility to cluster the expression profiles 

based on their pattern. This method leads to a number of classes with different sizes and 
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comparisons between the groups are difficult. Such a grouping is not helpful to compare 

expression profiles from genes under different conditions. It would be preferable to use an 

equidistant scale to group the genes like it was proposed by Ueda et al. for LL conditions. 

Here the genes are divided into various CT groups based on their molecular peaking time. 

The parameters returned from the ARSER algorithm were used to model the expression 

profile of every gene which was classified as rhythmically expressed. Based on these 

functions the molecular peaking time was estimated. The genes were divided into 24 CT 

groups with fixed boarders. CT0 contains genes with a peaking time between 23.5 and 0.5. 

Genes with a peaking time in the interval (0.5, 1.5] were grouped to CT1 and so on. The 

upper limit belonged to the currently regarded group and the lower limit to the previous 

group. For example a gene that showed maximal expression at 0.5 belonged to CT0. 

Kerwin et al. [41]  referred to this method in their paper about single time-point analysis 

and were able to achieve good results to uncover natural variations concerning the 

function of the circadian clock in A. thaliana. By convention, a similar equidistant scale is 

used to group genes under LD conditions. There are 24 zeitgeber times (ZT) hours per day 

and lights on (6 a.m.) and off (6 p.m.) are designated ZT 0 and 12 [32]. The same borders 

were used as for the CT group determination, so ZT0 contains genes with a peaking time 

between 23.5 and 0.5 and so on. Once again the upper limit belonged to the currently 

regarded group and the lower limit to the previous group.    

 

3.7 Cluster analysis 

Based on the proposed principle from Ernst et al. [18] we developed an algorithm 

for clustering short time series expression data. The algorithm works by assigning genes to 

a predefined set of model profiles that take into account that genes can be assigned to 

specific time bins based upon coincidence of peak expression within a circadian period. 24 

CT groups were defined as explained in the previous section. Each group had a single peak 

of expression per day. We used the artificially created datasets for the LD conditions to 

define the parameters of the profiles. The genes of these time course series were already 
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classified as rhythmically expressed ones or not and if so assigned to the right CT group. 

Therefore we calculated the median of the phase, amplitude and period of every CT group. 

We randomly selected an artificial dataset to determine the parameter values and to 

design the model profiles for the time bins. The profiles form the basis for the clustering 

process and were mapped to the expression values by calculating the correlation 

coefficient c(profile, gene expression values). The algorithm always returns the three CT 

groups with the highest correlation coefficient for every gene. We assumed that a high 

correlation between the model profiles and the expression values indicates a periodic 

pattern within the time course. To distinguish between rhythmically expressed genes and 

such which only matched loosely to the profiles we set a threshold of 0.9 for the 

correlation coefficient. 
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4. Results 

4.1 Normalization 

In the field of explorative data analysis the results of microarray experiments are visualized 

by boxplots, histograms or quantile- quantile- plots. The graphics provide the first 

overview so that conclusions about the variance and distribution of the data can be 

drawn. Figure 4.1 shows the boxplots of logarithmic but not normalized expression values 

from three examples in a single time-point (ZT4) under LD (A) and constant light (LL) (B) 

conditions. From the position of the median conclusions about the skewness in the data 

can be drawn. The boxplot reveals that 

the distribution of the replicates is 

skewed to the right. To allow 

comparison among replicates the data 

has to be normalized. In most cases the 

0.75- quantile of all genes is taken and 

every expression value is divided by 

this value. Another popular value is the 

second quartile, the median. In this 

work the 0.75 quantile normalization 

was used and the data was log2- 

transformed. The effect of the 

normalization procedure on the distribution in the data demonstrates in Figure 4.2. Once 

again the boxplots of the logarithmized expression values from three replicates in a single 

time-point (ZT4) under LD (A) and LL (B) conditions are shown, but now the values were 

also normalized. Identifiable by the fact that the upper band of the boxes are at the same 

height. Differences between the three replicates are also highlighted by normalization. The 

distribution of the outliners is also interesting to note. For replicate 1 the outliners were 

highly concentrated and were closely interrelated. In contrast replicate 2 and 3 had a 

broad spectrum of outliners. 

Figure 4.1: Representative boxplots for ZT4                       
A) boxplots of logarithmized but not normalized 
expression values from three under LD condition B) 
boxplots of logarithmized but not normalized expression 
values from three under LL condition 
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4.2 Experimental microarray data  

To unveil the diurnal rhythm of N. attenuata transcripts, we used kinetic microarray 

in which three biological replicates were available.  Leaf samples were collected every 4 h 

for two days to extract RNA and subsequent were used for microarray analysis. The 

individual plants do not deliver enough material for a whole time course, therefore the 

samples were pooled. This method combines the material from different individuals in a 

pooled sample before labeling and hybridization are done [40]. So the biological replicates 

are more or less randomly generated from the whole RNA pool. Each replicate was 

hybridized on different array to reduce the bias technical replicates. Every plant has its 

own genetic characteristics although they all belong to the same species and are inbred 

lines. The boxplot of the unnormalized data (Figure 4.1) illustrates the differences among 

biological replicates. Especially the distribution and amount of outliers differ a lot. The 

applied 0.75-quantile normalization reduced the noise and allows a comparison among 

the replicates. The microarray data was analyzed with ARSER, an algorithm that combines 

time- domain and frequency- domain analysis to detect periodicity in gene expression 

profiles and is described more precisely in chapter 3.4.1. ARSER returns four parameters to 

describe the rhythmic patterns: period, phase, amplitude and mean level, and measures 

Figure 4.2: Representative boxplots for ZT4                                    
A) boxplots of logarithmized and normalized expression 
values from three under LD condition B) boxplots of 
logarithmized and normalized expression values from three 
under LL condition 
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the multiple testing significance by FDR q-value [86]. All genes with a q-value below 0.05 

were classified as oscillating genes and selected for further analysis. The absolute and 

relative frequency of oscillating genes varies a lot between the replicates as can be seen in 

Figure 4.3. For replicates 2 and 3 from plants grown in 12 h light and 12 h dark cycles 

nearly the same amount of rhythmically expressed genes was predicted, whereas ARSER 

detects almost twice as much oscillating genes for the first replicate (Figure 4.3A). The 

relative frequency of rhythmic patterns in gene expression profiles of plants grown under 

diurnal light conditions alternates between 28% and 66%. Although the data was 

normalized a large variance between the replicates could be observed under LD 

conditions. The situation becomes even clearer when we focus on the data from LL 

conditions (Figure 4.3B). Replicate 2 differed dramatically from the other two replicates. 

Even more surprising was that the number of oscillating genes in replicate 2 was higher 

than the numbers for replicate 2 and 3 in LD conditions. The number of rhythmically 

expressed genes in LL conditions was fewer than that in LD conditions.  

 
Figure 4.3 Absolute and relative frequency of oscillating genes 

A) Absolute (dark-blue) and relative (light-blue) frequency of oscillating genes for three biological replicates 

(replicate 1-3) under LD condition. B) Absolute (dark-blue) and relative (light-blue) frequency of oscillating 

genes for three biological replicates (replicate 1-3) under constant light condition.  The number of 

rhythmically expressed genes was predicted by ARSER with a stringency threshold (q-value) set to 0.05. 
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For Arabidopsis microarray time course data a number between 6% and 15% of circadian 

regulated genes is predicted [56]. Therefore the results of replicate 1 and 3 which indicate 

a relative frequency of 12% and 4% respectively seems to be the most reliable. 

Nevertheless the second replicate may not just be ignored especially because the 

expression values of the replicates 2 and 3 in constant light condition differ that much as 

one can see in the boxplots (Figure 4.2). The returned parameters from the ARSER 

algorithm were used to model the rhythmic expression profiles of the oscillating genes and 

the maximum of the curve was calculated. Based on the peaking time the rhythmically 

expressed genes were assigned to various ZT groups for LD condition and CT groups for LL 

condition. The whole procedure is described in chapter 3.5 and 3.6. Figure 4.4 shows the 

CT group distribution of the three biological replicates (relative frequency). 

 
Figure 4.4 ZT (A) and CT (B) group distribution for both light conditions 

A) Relative number of genes per CT interval for three biological replicates under LD condition B) Relative 

number of genes per CT interval for three biological replicates under LL condition 

 

Each replicate shows a specific distribution pattern and the overlap is really small for both 

light conditions. Most of the genes of replicate 1 were assigned to ZT1 and ZT2 that means 

the majority of genes reached their maximal expression right after dawn, whereas most of 

the genes of replicate 2 peaked around midday (ZT6). In contrast, most of the genes of 

replicate 3 reached their maximal expression in the middle of the night.  
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If we concentrate on the LL condition data we could observe a similar effect. As can be 

seen in Figure 4.3B the highest number of oscillating genes was predicted for the second 

replicate and over 50% of the genes were assigned to CT21. Such a huge amount could not 

be observed for any other replicate or conditions. This explains why the CT group 

distribution of the other two replicates was not immediately ascertainable. Therefore 

Figure 4.5 shows the distribution of replicate 1 and 3 in more detail. From it, we see that 

the replicates have nearly an opposite 

distribution pattern. Most of the genes 

of replicate 1 were assigned to CT1, 

whereas the oscillating genes of 

replicate 3 mostly peaked at dusk. To 

sum it up, on the basis of the 

presented data we can say that the 

gene expression profiles of the three 

replicates seems to vary a lot and as a 

result the number of predicted 

oscillating genes as well as the ZT-/CT- group distribution differs significantly between the 

three replicates. Nevertheless it is interesting to know, whether the lists of rhythmically 

expressed genes for each replicate had some genes in common. The Venn diagram (figure 

4.6) shows, that the predicted oscillating genes of the replicates overlap remarkably. The 

number of oscillating genes was reduced as more replicates are taken into account. An 

obvious assumption is that the replicates reduce noise and the impact of biological 

variation. So the genes which were consistently identified as rhythmically expressed seem 

to be the most reliable ones. Based on these results we decided not to use the gene 

expression profiles of the replicates but to combine randomly the expression values to 

new time-series. The procedure is described in the next chapter.      

Figure 4.5 CT group distribution of replicate 1 and 3 under 
constant light condition. 
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Figure 4.6 Area-proportional Venn diagrams address the absolute number of oscillating genes of three 

replicates and under two different light conditions 

A) The microarray data of three biological replicates (LD condition) were analyzed by ARSER (FDR q<0.05). A 

total of 17956 genes were identified by ARSER for replicate 1 (rep1), while only 9272 and 7808 genes were 

found for replicate 2 (rep2) and 3 (rep3) respectively. B) The microarray data of three biological replicates (LL 

condition) were analyzed by ARSER (FDR q<0.05). A total of 12934 genes were identified by ARSER for 

replicate 2, while only 3333 and 1152 genes were found for replicate 1 and 3 respectively. Venn diagram was 

generated by BioVenn tool [35].   

 

4.3 Randomization    

The analysis of three biological replicates revealed that the expression values vary a 

lot and as a result the number of predicted oscillating genes as well as the ZT-/CT- group 

distribution differs significantly between the three replicates. Normally replicates are 

necessary to reduce noise and to control the impact of biological variation. Not least the 

costs limit the number of replicates but also the tissue consuming procedure of sampling. 

Despite the low number of only three or even a single replicate for the most experiments 

the complete expected value range should be covered. Considering such a small number 

of measuring points outliers have a big impact on the results and may generate a 

distribution far from the real pattern. For instance, if we consider the CT group distribution 

of the three biological replicates (Figure 4.4 and 4.5) as an example, we can see that the 
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patterns vary greatly and completely different conclusions can be drawn. If we are forced 

to analyze only one of the replicates the result would barely reflect the general pattern. It 

would be biased by to many individual characteristics. To avoid such a misleading result we 

decided not to analyze the biological replicates themselves but to combine randomly the 

expression values to new time-series. 

 
Figure 4.7 Schematic design of the randomization process                                                                                         
For every time-point and every gene we randomly selected one of the expression values of the three 
biological replicates. In the schema each replicate (rep1, rep2, rep3) has its own color to facilitate the 
assignment of the expression values from the new generated time series to the initial values. In principle for 
every gene an expression value is randomly selected in each time-point and these values were combined to 
form the new time-series.   

 

The microarray time course data consists of 13 time- points, representing 48 h of 

observation obtained at 4 h sampling intervals for both light conditions (LD and LL). For 

every time-point and every gene we randomly selected one of the expression values of the 

three biological replicates. Figure 4.7 illustrates the procedure. In the schema each 

biological replicate has its own color to make it easier to follow the randomization step. 
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Replicate 1 (rep1) is highlighted in blue, replicate 2 (rep2) in green and the third replicate 

(rep3) in orange. Each expression value has an equal probability of selection and the time-

points are treated independently of one another. Out of 61646 probes only 4 are shown as 

examples. For each gene an expression value was randomly selected from the three 

biological replicates per time-point and the values are combined to a new time series. The 

procedure was repeated 30 times for LD and LL condition data and we created 30 different 

time course series consisting of 13 time- points within a 4 h interval over a range of two 

days. The new time-series data was analyzed by ARSER with stringency threshold (q-value) 

set to 0.05. For each time-series the algorithm returned a list of predicted oscillating 

genes. When we compared the absolute number of oscillating genes it was notable that 

for all 30 time-series nearly the same number was predicted (Figure 4.8). 

 
Figure 4.8 Absolute number of oscillating genes for LD and LL condition 

The expression values of three biological replicates were used to generate 30 new time-series called 

“random1” to “random30” respectively. The time course series consist of 13 time- points within a 4 h 

interval over a range of two days. They were analyzed by ARSER (FDR q-value<0.05) and the number of 

oscillating genes determined. 

 

Figure 4.3 shows the absolute and relative number of predicted oscillating genes for three 

biological replicates and they vary widely. The random combination of the replicates leads 
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to a more balanced pattern. We could not detect any outliers except the time- series called 

“random11” and we also kept this time-series in the dataset.   

This result leads to the question whether all lists of oscillating genes contain the same 

genes. To test this we determined the number of genes identified in 30 out of 30 time-

series. The overlap of all time-series was only 30.2 % (LD) and 4 % (LL) respectively. Based 

on Figure 4.8 this result was surprising, indicating that the lists contain a high number of 

false positives. In the next step we gradually reduced the stringency threshold and 

determined the number of genes identified if we compare the lists of 29, 28,…, 1 time-

series (Figure 4.9). 

 
Figure 4.9 Absolut frequency of the average number of rhythmically expressed genes plot against decreasing 

number of compared time-series.                                                                                                                                 

Two organisms, algorithms and conditions were tested. The blue, red and green curves visualize the results 

from the ARSER algorithm whereas the purple curve shows the result from the HAYSTACK algorithm. The 

genome of N.attenuata was analyzed by both algorithms and under light/dark as well as constant light 

conditions (blue, red, pruple curve). Arabidopsis was analyzed only with ARSER under LD conditions (green 

curve)  

 

The more lists were used to calculate the overlap the less genes were identified as 

rhythmically expressed ones. We used different combinations of the lists to determine the 

average number of genes in the overlap. For instance, if the number of compared time-

series is 5 then 5 lists out of 30 were randomly selected and checked to which extend the 

list entries overlap. This operation was repeated 30 times and the average of the overlap 



43 
 

calculated. So for each number of compared time-series 30 randomly chosen 

combinations have been considered. The average value for the overlap was entered in the 

diagram. At the beginning the curve falls sharply and approaches a remaining value after a 

number of about 20 compared datasets. 31.7% (LD condition) and 3.7% (LL condition) of 

the genes were identified as circadian in at least 20 of the 30 time series and we decided 

to choose these lists of common genes for further analysis, hereafter called LD_20 and 

LL_20. We first noticed the effect for our randomized time- series for N. attenuata. To 

demonstrate that the observed effect is common in microarray data analysis and not a 

result of the chosen algorithm we analyzed the randomized LD time-series with the 

HAYSTACK algorithm as well. As can be seen in Figure 4.9 the resulting (purple) graph 

shows the same characteristics. In order to prevent that it is an organism specific effect we 

generated 'shuffled' time course series for Arabidopsis on the basis of the experimental 

data of Bläsing et al. and analyzed the data also by ARSER. The resulting (green) curve 

shows a similar progression.  

 
Figure 4.10 Compared performance of ARSER and HAYSTACK                                                                                                 

A) Absolute frequency of the average values of genes classified as rhythmically expressed ones from ARSER,  

HAYSTACK and the overlap of both B) Area-proportional Venn diagram addresses the predictive power of 

ARSER and HAYSTACK algorithm. The detected genes had to show a periodic expression profile in at least 20 

out of 30 investigated time-series. A total of 8515 genes were identified by ARSER and only 3599 genes were 

found by HAYSTACK. Venn diagram was generated by BioVenn tool [35] 
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Figure 4.9 also shows that ARSER predicts more rhythmically expressed genes. Therefore 

we decided to use this algorithm for further analysis. To validate the results we compared 

the performance from ARSER and HAYSTACK in more detail (Figure 4.10).  

Both algorithms are based on the assumption that periodic patterns within expression 

profiles could not always be described with sine or cosine waves. Besides the fact that 

ARSER uses a laboriously procedure to identify the period, whereas Haystack assumes a 

predefined period of 24 hours. A further difference between both algorithms lies in the 

choice of their stringency thresholds. HAYSTACK considered a p-value<0.05 and ARSER a q-

value<0.05. 

Of all 26814 genes on the array ARSER classified on average 11724 genes as rhythmically 

expressed and HAYSTACK 4436. 95% of the cycling transcripts identified by HAYSTACK were 

also found by ARSER (Figure 4.10 A). In addition the gene lists ARSER_LD20 and 

HAYSTACK_LD20 were compared. ARSER_LD20 contained 8515 genes and HAYSTACK_LD20 

3599. The overlap of both algorithms contained 3508 genes. So ARSER again detected 96% 

of the rhythmically expressed genes identified by HAYSTACK (Figure 4.10 B).       

5007 transcripts were uniquely 

identified as rhythmic by ARSER. 

We examined these genes to 

check whether their expression 

profiles showed really a periodic 

pattern and found that the 

majority shows a spike or rigid 

waveform. To give some 

representative examples Figure 

4.11 shows the average Z scaled 

phase group expression of ZT0, 

ZT4, ZT12, and ZT20. The rhythm 

and peaking time within the 

Figure 4.11 Phase group expression 

The average Z scaled phase group expression of ZT0, ZT4, ZT12 

and ZT20 
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profiles were obvious. HAYSTACK seems to be more stringent, but Figure 4.11 shows that 

the algorithm may lose some important genes during the filtering steps. An adjustment of 

the cutoff values (correlation, fold, p-value and background cutoff) could lead to an 

optimization of the reported results, but such an analysis should not be part of this work.      

 

4.4 Simulated data 

The results of the randomized time-series leads to the hypothesis that genes which 

are identified as rhythmically expressed in at least 20 out of 30 time-series possess a high 

probability to be true positives. To test this hypothesis we generated simulated data with a 

known number of true and false positives, because for experimental data these values are 

unidentified. It should be proven that the arrangement to classify a gene as rhythmically 

expressed if it was identified in at least 20 out of 30 time-series reduces the number of 

expression profiles incorrectly classified as periodic. Each simulated dataset consist of 30 

time series and 30000 genes with 12 time-points over a range of two days. The datasets 

mainly differ in the ratio of periodic and non-periodic profiles ranging from 5% to 15%. 

Stationary and non-stationary models were used to simulate periodic patterns as well as a 

combined model of sine and cosine functions. We used normally distributed white noise 

and AR processes of order one to simulate non-periodic time series. The simulated data 

were analyzed by ARSER and HAYSTACK to prevent algorithm specific effects. The resulting 

lists of genes classified as rhythmically expressed ones were compared and the overlap 

between an increasing number of lists calculated. For example the list with name 

“overlap_22” consists of a set of genes which are identified as oscillating in at least 22 out 

of 30 datasets. A confusion matrix, which contains the predicted and actual classifications 

(Kohavi and Provost [44]), was set up for each list of overlaps. The four fundamental 

members of the matrix are: true positives (expression profiles correctly classified as 

periodic), false negatives (expression profiles incorrectly classified as non-periodic), false 

positives (expression profiles incorrectly classified as periodic) and true negatives 

(expression profiles correctly classified as non-periodic). To evaluate the performance of 
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our randomization methodology we used different measures like accuracy, precision, 

sensitivity and specificity. These measures are defined by using the elements of the matrix 

and were calculated using the following terms 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇
(𝑇𝑇+𝐹𝐹)

     (1) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇
(𝑇𝑇+𝐹𝐹)

     (2) 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑇𝑇+𝑇𝑇)
(𝑇𝑇+𝐹𝐹+𝑇𝑇+𝐹𝐹)

                      (3) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇
(𝑇𝑇+𝐹𝐹)

                        (4) 

where TP is the number of true positives; FN is the number of false negatives; TN is the 

number of true negatives; and FP is the number of false positives. In this case sensitivity, 

also called the true positive rate, provides information about the proportion of time series 

which were correctly classified as period patterns. For our simulated data the sensitivity 

decreases with an increasing number of compared lists (Figure 4.12). 

 
Figure 4.12 Performance evaluation measures for three datasets                                                                                                          

Sensitivity and specificity for identifying periodic signals from three different datasets, whereas dataset1 

consists of 4500 periodic and 25500 non-periodic, dataset2 of 3000 periodic and 27000 non-periodic and 

dataset3 of 1500 periodic and 28500 non-periodic expression profiles 
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This effect can be observed for all three datasets. The lower the percentage of periodic 

expression profiles, the smaller becomes the value. The smallest number of periodic 

signals can be found within the third dataset and a sensitivity of about 33% is reported. As 

important as the proportion of true positives is the proportion of true negatives measured 

by the true negative rate, called specificity (Figure 4.12). In this case a specificity of 1 

means that no expression profile was incorrectly classified as periodic. For all compositions 

this value is reached when a gene is identified as rhythmically expressed in at least 8 of the 

30 datasets. Here it is the quite opposite way compared to sensitivity. The specificity is 

higher for compositions with a smaller amount of periodic patterns. Based on this 

measures a gene could be classified as rhythmically expressed when it is identified in at 

least 8 datasets. 

  
Figure 4.13 Performance evaluation measures for three compositions                                                                                                          

Accuracy and precision for detecting rhythmic expression profiles within three different datasets, whereas 

dataset1 consists of 4500 periodic and 25500 non-periodic, dataset2 of 3000 periodic and 27000 non-

periodic and dataset3 of 1500 periodic and 28500 non-periodic expression profiles 

 

To confirm this assumption we also calculated the accuracy and precision. A high accuracy 

means that the number of genes correctly classified as periodic or non-periodic is close to 

the true value. Slightly different information is given by the precision value. This means 
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that more relevant than irrelevant results are returned. Both measures ascend with an 

increasing number of compared lists (Figure 4.13). 

Especially the precision increases dramatically if the overlap is calculated between several 

lists, indicating that each added list reduces the number of irrelevant results. This 

assumption is verified by Figure 4.14. The number of false positives decreased dramatically 

as more gene sets are taken into account whereas the number of true positives stays 

nearly the same. If we take all measures of performance into account “overlap_20” reports 

the most reliable set of rhythmically expressed genes. The results were confirmed by 

HAYSTACK (data not shown). We did the same analysis using the HAYSTACK algorithm and 

the results for the performance evaluation measures were similar. Here, too, it could be 

shown that the number of false positives decreases as more lists were taken into account 

to calculate the overlap.    

 
Figure 4.14 Absolute number of true and false positives for different ratios of periodic expression profiles 

within simulated time series 

Number of true and false positives for different gene sets and amounts of periodic patterns, whereas 

composition1 consists of 4500 periodic and 25500 non-periodic, composition2 of 3000 periodic and 27000 

non-periodic and composition3 of 1500 periodic and 28500 non-periodic expression profiles. The gene sets 

are named “overlap_x” which means that all these genes were identified as circadian by at least x out of 30 

datasets. 
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We used the list of genes which were at least in 20 out of 30 datasets classified as 

rhythmically expressed to compare sensitivity, specificity, accuracy and precision between 

the average and randomization procedure (Figure 4.15). The average is often used when 

multiple replicates are available to infer the probable state of an average sample in the 

population. For each time-point the raw expression values of the replicates are averaged 

into a mean for every single gene. Following this procedure the values are normalized and 

logarithmized. To generate the randomized time-series we created 3 time-series which 

should perform as biological replicates as described in chapter3.3. Now the average was 

calculated of these time-series and analyzed by ARSER. 

 
Figure 4.15 Performance evaluation measures for two data generation methods                                                                        
Sensitivity, specificity, accuracy and precision for identifying periodic signals from three different datasets, 
whereas composition1 consists of 4500 periodic and 25500 non-periodic, composition2 of 3000 periodic and 
27000 non-periodic and composition3 of 1500 periodic and 28500 non-periodic expression profiles.  

 

The shuffled data lead to better results concerning specificity, accuracy and especially 

precision. Independent of the proportion of periodic signals the precision is always 100% 

for the random data. In contrast, the averaging procedure leads to decreasing precision as 

the ratio of non-periodic patterns is bigger. That means using the average expression value 

increases the probability to return irrelevant results. As mentioned above the sensitivity of 

the random data is very low for the third dataset, but for the first and second dataset the 
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randomization procedure outcompetes the average method in all performance measures. 

Although the average method returns always a higher number of true positives it also 

includes more false positives.    

 

4.5 Different intervals for ZT and CT group determination 

As mentioned in chapter 3.6 the proposed method from Ueda et al. [82] to 

determine the ZT and CT groups may lead to some distortion. We tested different intervals 

to analyze whether it is possible to avoid or reduce such falsifications. The analysis was 

done for the experimental microarray data of dark/light cycle as well as for the LL 

conditions. To take into account biological variation we used the three biological replicates 

for the analysis and determined the absolute frequency of genes per ZT/ CT group. We 

only considered genes which had the same ZT/ CT group in every replicate. At first we 

shifted the borders of the time bins and compared the results (Figure 4.16). Ueda et al. 

defined the borders of CT0 as (0, 1] and of CT1 as (1, 2] and so on. The same definitions 

were given for the ZT groups [82]. We used a shift of 0.5. ZT0 now contains genes with a 

peaking time in the interval (23.5, 0.5]. Genes with a peaking time between 0.5 and 1.5 

were grouped to ZT1 and so on. The upper limit belonged to the currently regarded group 

and the lower limit to the previous group. For example a gene that showed maximal 

expression at 0.5 belonged to ZT0. 

 

Figure 4.16 Absolute frequency of genes per ZT group under LD condition                                                                                                          
A) Genes are assigned to ZT groups with an equidistant 1h interval B) Same interval of 1h but now the 
boarders are shifted  
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The Figure 4.16 indicates that the shift didn’t change the ZT group distribution so much. 

The total number of genes per ZT group was a little bit higher for the interval with the 

shifted borders. The pattern of ZT group distribution stayed the same. 

The next step was to duplicate the interval, because a reduction of the interval would be 

inappropriate. The new groups didn’t met the definition of a ZT/CT group any longer and 

so we renamed the groups from “group0” (Gr0) to “group11” (Gr11). Gr0 contained genes 

with a peaking time between 0 and 2, Gr1 between 2 and 4 and so on. As expected more 

and more genes belonged to the same, new defined groups. The total number of genes 

per group was increased and the pattern of the distribution nearly stayed the same 

compared to the 1h interval (Figure 4.17 A). We tried to improve the disposition by yet 

another extension of the interval to an equidistant 4h interval (Figure 4.17 B). The 4h 

interval changed the ZT group distribution so that four out of six groups nearly contained 

the same number of genes. The previous observed pattern was not so obvious in this case. 

Although the extension of the interval increases the number of genes taken into account 

the borders are still fixed. 

 

Additionally the extension considered the neighborhood only in one direction. Therefore 

we decided that it would be better to determine the ZT/CT groups of the genes by using 

the 1 h interval.  

 

Figure 4.17 Absolute frequency of genes  per group under LD condition                                                                                                          

A) Genes are assigned to groups with an equidistant 2h interval B) Genes are assigned to groups with an 

elongated interval of 4h 
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4.5 Cluster analysis 

The ARSER algorithm was developed to handle time course series with the 

common number of 12 to 13 time-points. We used the Arabidopsis dataset provided by 

the website http://bioinfo.cau.edu.cn/BioClock/ to analyze the impact of a decreasing 

number of available measure points on the amount of genes classified as rhythmically 

expressed (Figure 4.18). 

 
Figure 4.18  Absolute number of oscillating genes according to the number of time points in time series                                   

Time-series with an increasing number of time-points, starting with 4, were used as inputs for the ARSER 

algorithm and the absolute frequency of the average value of detected oscillating genes estimated.  

 

As shown in the diagram above ARSER can be applied only to time course series with at 

least eight time-points. To investigate the expression of circadian regulated genes in 

different tissues the dataset from Kim et al. [42] was used. The time series within this 

dataset contained only six time-points thus it was not possible to analyze the data with 

ARSER. Therefore, the oscillating genes and especially the ZT groups had to be determined 

with another method. Based on the proposed principle from Ernst et al. [18] model 

profiles were used to apply clustering. The most important step was to design profiles for 

each ZT group as exactly as possible. It was assumed that a high correlation between the 

model profiles and the experimentally achieved time course series indicates the existence 

of a periodic pattern within the expression profiles automatically. Therefore, the better the 

model profiles the more accurately genes are classified as rhythmically expressed and 
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assigned to the right ZT group. Based on the ZT group determination for the artificially 

created datasets described in chapter 3.7 the median of phase, amplitude and period was 

estimated for every ZT group. These parameters were used to design specific model 

profiles for the time bins. We randomly selected a dataset from the LD condition to 

determine the parameter values and to design the model profiles. The profiles form the 

basis for the clustering process and were mapped to the expression values by calculating 

the correlation coefficient. To verify our profiles we calculated the correlation coefficient 

between the ZT group specific profiles and the median ZT phase group expression. 

Although individual genes within a ZT group displayed some variations each group had a 

single peak of expression per day. All genes within one group were very tight around the 

median across the time course. This demonstrates that analyses of the median expression 

patterns of the different ZT groups are sufficient to estimate the behavior of all genes 

within one group.  

 
Figure 4.19 Performance evaluation measures for two data generation methods                                                                        
Sensitivity, specificity, accuracy and precision for identifying periodic signals from three different datasets, 
whereas composition1 consists of 4500 periodic and 25500 non-periodic, composition2 of 3000 periodic and 
27000 non-periodic and composition3 of 1500 periodic and 28500 non-periodic expression profiles.  
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So we mapped the model profile designed for ZT0 to the median expression profile of ZT0, 

ZT1, ..., ZT23 and calculated the correlation coefficient. This analysis was done for every 

model profile. In Figure 4.19 the correlation coefficients of the profiles are plotted against 

the ZT group. The resulting profile specific curves are illustrated in rainbow colors. 

We were only interested in positive correlations for which reason the negative part of the 

curves is darkened in the diagram. Figure 4.19 shows that adjacent ZT groups had nearly 

the same correlation coefficient and therefore an exact determination of the ZT group 

seems to be impossible. The time bins could only be estimated with an accuracy of ±1. 

However, this precision of ±1 hour is remarkable, because the data was achieved from a 

4h sampling interval. With common methods it is difficult to receive such a good 

resolution. Because of the limitation in accuracy the algorithm returned the ZT groups 

with the three highest correlation coefficients. Based on Figure 4.19 it is obvious that a 

threshold below 0.7 or above 0.9 for the correlation coefficient would be not successful. 

For this analysis we assumed high values for the correlation coefficient and therefore a 

threshold of 0.95 would also be appropriate.  

We tested different thresholds for the other artificial datasets and the results are 

displayed in Figure 4.20. In Figure 4.20 A the total amount of genes which were mapped to 

one of the model profiles is shown in blue. As expected the number increases with a 

decreasing threshold for the correlation coefficient. Nevertheless the number of 

rhythmically expressed genes thus the amount of genes which was assigned to a model 

profile, is much smaller than the result of the analysis with ARSER. The ZT group 

determination was already done for every single dataset as mentioned earlier. This 

classification was used as a reference to test the accuracy of the new method. The 

absolute amount of genes which were mapped to the wrong ZT group is shown in red 

whereas genes with the right ZT group are illustrated in green. The green bars were 

analyzed in more detail in Figure 4.20 B. As mentioned above for every gene three ZT 

groups were reported and if one of these groups was the right one the classification was 

correct. Figure 4.20 B shows the exact amount of genes on the different positions. In more 
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than 90% of the cases the right ZT group was reported within the first two positions. If the 

correct ZT group was solely returned on the second position the correlation coefficient of 

the first and second place were very similar. Only in some exceptions the third position 

occupied the right ZT group. In these rare cases the correlation coefficients of all three 

places were very similar. A correlation coefficient of 0.9 was chosen for the classification 

of the dataset from Kim et al.    

 
Figure 4.20 Performance of the clustering algorithm                                                                                                                

A) The blue bars show the absolute frequency of assigned genes from the algorithm for different correlation 

coefficient  thresholds. The absolute frequency of genes which were assigned to the wrong ZT group with 

various correlation coefficients as threshold is shown in red. Green indicates the absolute frequency of genes 

assigned to the correct ZT group also for different thresholds. B) The algorithm always returns the three ZT 

groups with the highest correlation coefficient for every gene. The green bars indicate the absolute 

frequency of genes assigned to the correct ZT group with different thresholds. Gray shows the absolute 

frequency of genes placed at the various positions as part of the whole assigned number. The ZT group at 

first place shows the highest correlation coefficient. 

 

4.7 Comparison LD 12:12 and LD 16:8 

Plants benefit greatly from a circadian clock that adjusts their overall metabolism 

in anticipation of the highly predictable arrival of sunrise and sunset [37]. By exact 

adaption on prevailing conditions an advantage concerning the plants fitness arises and 

these organisms automatically have a selective advantage [16]. Thus, to achieve an 

optimum performance the activation of genes which are involved in light dependent 

pathways has to be accurately timed. A desynchronization of the natural day/night cycle 
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results in higher costs for the plants. Based on the results from Daan et al. [16] for 

mammalian the model of two separate circadian oscillators (morning and evening 

oscillator) that drive activity was taken up. The “morning oscillator” (M) is accelerated by 

light and synchronized to dawn, whereas the “evening oscillator” (E) is decelerated by 

light and synchronized to dusk [30]. Todd et al. [55] were able to show that this model also 

works for plants. Most of the genes were expressed at a specific time of day and this time- 

point could be influenced by external stimuli. Most of the organisms show two activity 

bouts during the day, one in the morning and one in the evening [1]. In Arabidopsis most 

of the circadian genes peak right before dusk and dawn respectively. Todd et al. [56] 

compared the gene expression of plants grown under long-day as well as short-day 

conditions. Genes from the long-day plants reached their maximal expression later and in 

doing so, they were responding to the changed light conditions and elongation of day-

length. To test whether this is also true for N.attenuata we compared the gene expression 

of plants grown under light- dark cycles with 12 h light and 16 h light respectively. The 

time course series from Kim et al. [42] were used to analyze genes under elongated day-

length condition. ARSER cannot be used to analyze time-series with only 6 time-points 

therefore we edited the data. To receive time- series with 12 time-points in a 4 h interval 

we simply duplicated the data and concatenated the time-series to a two day time course. 

In the next step, the randomization procedure (chapter 4.3) was applied to these time-

series to generate 30 new time-series. As a reference set we used the LD_20 list 

introduced in chapter 4.2. LD_20 contains genes identified in at least 20 out of 30 

randomized time-series of plants grown under 12 h light and 12 h dark condition. The 

gene names of the dataset from Kim et al. and the LD_20 list were compared and we 

collected those which occur in both. The concatenated time-series of these genes from 

the Kim dataset were analyzed by ARSER to check whether these genes were also 

rhythmically expressed in the different tissues. In the next step the ZT groups were 

determined by calculating the molecular peaking time as described in chapter 3.5 as well 

as by applying cluster analysis described in the former chapter. The clustering worked with 
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only 6 time-points. Figure 4.21 illustrates the results of the comparison between 

molecular peaking time method and cluster analysis to determine ZT groups. 

 

 

Figure 4.21 Comparison of molecular peaking time method and cluster analysis to determine ZT groups                   

A) relative frequency of genes which received the same ZT group from both methods B) ZT group 

distribution achieved by both methods for the genes in common       

However the absolute amount of rhythmically expressed genes depends on the method. 

The ARSER algorithm detects on average twice as much genes as the clustering algorithm. 

Based on this result we decided to use the gene lists returned from ARSER.  

The gene expression profile varies between the individual time-series, leading to a 

different ZT group determination for one gene. To compare the ZT groups of both light 

conditions it was necessary to assign every gene a single ZT group. To achieve such a 

classification across all datasets the mode (the number that is repeated more often than 
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any other) was used. We decided to use this parameter, because it is easy to determine 

and less influenced by outliner. Figure 4.22C shows the resulting ZT group distribution for 

both light conditions. It is notable that most of the genes under LD 12:12 condition are 

assigned to ZT groups 3, 5, 8, 18 and 21. The elongation of day-length seems to shift the 

distribution slightly and now groups 11, 14, 18 and 23 contained the highest number of 

genes.  

 
Figure 4.22 Comparison of the gene expression in longday and 12h light/12h dark cycles                                         

A) Time shift topology graph plots percent of genes ZT group shifted per time bin (y-axis) by the reference ZT 

group (x-axis). Percent of genes was calculated as the number of genes with a given time shift per ZT group 

divided by the total number of genes within that ZT group. A positive ZT group shift reflects a later ZT group 

than the reference condition and a negative one reflects an earlier ZT group than the reference condition. LD 

12:12 was taken as reference. B) Relative values of rhythmically expressed genes with the same time shift 

compared different conditions. ZT group classification under LD 12:12 condition was taken as a reference set. 

Difference was calculated by substituting the longday values from LD 12:12 values within an interval from -12 

to 12 in which ZT0 was set as 0 C) Relative number of genes per ZT interval for both light conditions  

 

On the whole, the amount of genes per ZT group is much more balanced under LD 16:8 

condition and also the variance is lower. In the next step we analyzed the behavior of the 

genes within ZT groups. To compare both conditions the ZT group determination under LD 
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12:12 condition was used as a reference set and the difference between LD 12:12 and LD 

16:8 was calculated. The difference was estimated within an interval from -12 to 12 in 

which ZT0 was defined as central point. Figure 4.22B shows that most of the genes peaked 

with a delay of 1 or 2 hours under long-day condition. A time shift of 5 or more hours in 

either direction was hard to find. Interestingly, about 11% of the genes kept their ZT 

group. The surface diagram represented in Figure 4.22A visualizes the three-dimensional 

data in a 2D format. The colors correspond to the relative frequency of genes ZT group 

shifted per time bin (y-axis) by the reference ZT group (x-axis). As can be seen from the 

diagram two hotspots have emerged within the ZT groups. The first one relates in 

principle to the morning genes, while the second one spans the ZT groups of the evening 

genes. Most of the time shifts occurred within the 

ZT groups 15 to 20 correlating with the shifted 

time of dusk. Therefore, the evening genes under 

long-day condition reached their maximal 

expression 1 or 2 hours later. That is what we were 

expecting. The plants react to the elongated day 

length with a delayed activation of the evening 

genes. In contrast the expression of the morning 

genes is slightly advanced in anticipation of dawn. 

Such an adaption enables the plant to use the full 

capacity of day-light and as a consequence the 

plants fitness arises. However, a large part of the 

morning genes showed a delayed expression. This 

might be due to the fact that oscillators are 

coupled. Thus, the gene expression is synchronized 

by internal signals and the rhythm of these genes 

should persist under LL condition. To test this hypothesis, we generated an area-

proportional Venn diagram (Figure 4.23). The morning gene group contained genes of 

Figure 4.23 Area-proportional Venn 
diagram addresses the morning and 
evening genes and the genes of the LL_20 
list. A total of 1034 genes were listed in 
LL_20. 703 morning and 725 evening 
genes could be identified. Within the 
morning genes 433 showed a delayed 
expression. Venn diagram was generated 
by BioVenn tool [35] 
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ZT22, ZT23, ZT0, ZT1 and ZT2. For the evening group we selected the genes with ZT10 to 

ZT14. The diagram shows that only a small part of morning and evening genes kept their 

diurnal rhythm in LL. Likewise, only a small number of the delayed morning genes could be 

found in LL_20. 

 

4.8 Comparison leaf LD 16:8 and root LD 16:8                                                                                          

A number of studies had shown that plants have tissue specific clocks [79, 80]. This raises 

the question how the various clocks are synchronized. One of the first answers which 

come in mind is that the rhythm has to be entrained. In principle there are two options: 

entrainment via internal or external stimuli. Central circadian pacemakers and 

communicated rhythmic signals have little influence on plant rhythms [80]. This 

observation leads to the conclusion that environmental cues regulate the variety of 

internal clocks. The most promising candidates for that task are the Zeitgeber light and 

temperature [28]. As aforementioned, Kim et al. [42] used microarray experiments to 

analyze different tissues of N. attenuata. The resulting dataset contained gene expression 

data from the root and leaf tissue. In the year 2008 James et al. [36] proposed the 

regulation of the clocks in the root tissue by a photosynthesis-related signal from the 

shoot. Thus, the plant clock is organ-specific but not organ-autonomous. They analyzed 

different well-known components of the 

internal clock in root and shoot tissue of A. 

thaliana. At first they used the COSOPT 

algorithm to detect rhythmically expressed 

genes in both tissues. 13.7% of the genes 

showed a periodic expression pattern 

within the shoot whereas only 3.2% of the 

genes cycle in the root. We repeated this 

analysis for N. attenuata with the dataset of 

Figure 4.24 Area-proportional Venn diagram 
addresses the absolute number of rhythmically 
expressed genes for leaf and root tissue. Venn 
diagram was generated by BioVenn tool [35]  
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Kim et al. and could confirm the results from James et al. ARSER cannot be used to analyze 

time-series with only 6 time-points (Kim dataset) therefore we edited the data. To receive 

time- series with 12 time-points in a 4 h interval we simply duplicated the data and 

concatenated the time-series to a two day time course. In the next step, the 

randomization procedure (chapter 4.3) was applied to these time-series to generate 30 

new time-series. Afterwards we selected the genes which occur at least in 20 of the 30 

time series (leaf_20, root_20). Leaf_20 contained 5362 genes whereas root_20 

encompasses 3355 genes. The determined percentages significantly exceeded the values 

of James et al., but they investigated plants in LL condition. In the root tissue the relative 

frequency of rhythmically expressed genes was 12.5% and 20% in leaf tissue (Figure 4.24). 

Also the ratio between leaf and root tissue differs with ½ for N. attenuata in contrast to ¼ 

for Arabidopsis. A total of 2085 rhythmically expressed genes overlapped between the 

two tissues. Therefore, more than 50% of the genes rhythmically expressed in the root 

tissue show a recurring rhythm in leafs. It is also remarkably that the oscillating gene 

expression of some genes seems to be organ specific. An amount of 3277 genes were 

rhythmically expressed only in leafs and 1270 only in roots. Afterwards ZT groups were 

determined according to the maximal gene expression of each gene within a day as 

described in chapter 3.6 and 3.7. It was analyzed how this classification differs between 

both tissues. Therefore the difference between the ZT groups for a gene in both tissues 

was calculated whereas the root tissue was taken as reference. To visualize the 

discrepancy, the difference was calculated within an interval of -12 to 12 as described in 

chapter 4.6 and the relative frequencies of the time shifts are plotted in a histogram (over 

all ZT groups, Figure 4.25 B) and surface diagram (within single ZT groups, Figure 4.25 A). 

The distribution of the CT groups was similar in both tissues (Figure 4.25 C). Only the 

absolute amount of genes per ZT group differed. In the light of this diagram, it seems that 

only small changes in the ZT group classification between both tissues occur. Figure 4.25 B 

underlined this impression. Most of the genes show the same peaking time or at least a 

shift of 1 or 2 hours, but all possible shifts within the 1h interval were represented. The 
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surface diagram of Figure 4.25 A shows the time shift for every single ZT group. The 

detected pattern confirmed the assumption that only small changes occur. Genes within 

ZT groups ZT0- ZT7 and ZT12-19 showed predominantly a negative time shift which means 

that the genes peaked earlier in in the leaf tissue than in the root. ZT8-ZT11 showed no 

real trend in one direction. The groups contained genes which peaked earlier in the leaf as 

well as genes which peaked earlier in the root.   

Figure 4.25 Comparison of the gene expression in leaf and root tissue                                                                                 

A) Time shift topology graph plots percent of genes ZT group shifted per time bin (y-axis) by the reference ZT 

group (x-axis). Percent of genes was calculated as the number of genes with a given time shift per ZT group 

divided by the total number of genes within that ZT group. A positive ZT group shift reflects a later ZT group 

than the reference tissue and a negative one reflects an earlier ZT group than the reference tissue. Root 

tissue was taken as reference. B) Relative values of rhythmically expressed genes with the same time shift 

compared different tissues. ZT group classification of root tissue was taken as a reference set. Difference 

was calculated by substituting the leaf values from root values within an interval from -12 to 12 in which ZT0 

was set as 0 C) Absolute number of genes per ZT interval for both tissues  

4.9 Comparison LD and LL conditions 

To determine the number of rhythmically expressed genes in N. attenuata the 

expression profiles under LD and LL conditions were compared. As aforementioned, a 
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gene is classified as rhythmically expressed if the detected rhythm persists under constant 

light conditions. The microarray time course data consists of 13 time- points, representing 

48 h of observation obtained at 4 h sampling intervals for both light conditions (LD and 

LL). It could be shown that the three biological replicates were very different and 

therefore we decided not to analyze the biological replicates themselves but to combine 

randomly the expression values to new time-series. For every time-point and every gene 

we randomly selected one of the expression values of the three biological replicates and 

combined them to a new time series. The procedure was repeated 30 times for LD and LL 

condition data and we created 30 different time course series consisting of 13 time- points 

within a 4 h interval over a range of two days. The time course series were analyzed by 

ARSER to identify rhythmically expressed genes. Figure 4.26A shows comparative the 

absolute and relative frequency of rhythmically expressed genes in LD and LL condition. 

The specified values relate to the average value of the 30 random time-series. 

  

Figure 4.26 Number of rhythmically expressed genes under different light conditions                                                       

A) Absolute (dark-blue) and relative (light-blue) frequency of rhythmically expressed genes under LD and LL 

condition B) Area-proportional Venn diagram addresses the absolute number of oscillating genes under LD 

and LL condition. Here we used the lists of genes detected by ARSER as rhythmically expressed in at least 20 

out of 30 time-series. A total of 8515 genes were identified under LD condition, while only 736 genes were 

found under constant light condition. Venn diagram was generated by BioVenn tool [35].   



64 
 

Additionally the overlap of genes between these two conditions was calculated and is 

depicted in Figure 4.26 B. Here we used the list of genes previously introduced as LD_20 

and LL_20.  As one can see the number of cyclic genes under LD condition is much higher 

than the identified number under constant light. More than half of the genes showed a 

diurnal rhythm. Based on the assumption that circadian rhythms persist in their 24-hour 

periodicity the detected genes under LL conditions have to be the ones with the most 

robust rhythm. On average 13.4% of the N. attenuata transcriptome seems to be 

regulated by the circadian clock. In comparison, Arabidopsis microarray time course data 

predicted a number between 6% and 15% [56]. The percentage rate fluctuates depending 

on the applied method and defined limitations. Thus, the LL_20 list leads to a number of 

only 3%.  

Already the Swiss botanist de Candolle noticed that the free-running period of leaf 

opening and closing was shortened under constant light conditions by approximately 2 

hours. The internal rhythm thus differs significantly from the 24-hour period of the Earth's 

light-dark cycles. He proved that entrainment by environmental cues was not the reason 

for the shortened period, because longer cultivation without external stimuli leads to a full 

desynchronization of the internal rhythm from the exogenous light/dark rhythm.    

Candolle’s findings could be repeated later on by experiments which confirmed the 

existence of oscillations in the absence of environmental cues. The period of genes which 

were rhythmically expressed under LD and LL condition was examined for N. attenuata. 

Figure 4.27 shows the absolute (A) and relative (B) frequency of period shift in hours. The 

shift was calculated using the determined period under LD condition as a reference. A 

difference of -1 means that the detected period under LL condition is shortened by 1 hour 

compared to the period under LD condition. In about half of the cases the period length 

under LL condition is shortened compared to LD condition. Around 30% of the genes 

didn’t change their period at all whereas only 20% of the genes showed an elongated 

period under LL condition.     
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Figure 4.27 Comparison of the period of rhythmically expressed genes under different light conditions. The 

shift was calculated using the period under LD condition as a reference.                          

A) absolute frequency B) relative frequency.       

In the next step we turned our attention to the amplitude of the genes which were 

rhythmically expressed under both conditions. As many of the selected genes had small 

amplitudes the comparison was made only taking into account genes with high 

amplitudes. The results are shown in Figure 4.28 and as one can see the amplitude 

decreased under constant light condition. The smaller the amplitude under LD condition 

the smaller was the difference compared to LL condition.   

 Figure 4.28  Amplitude of rhythmically expressed genes under different light conditions  
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Higher plants are multioscillatory systems, which are synchronized by environmental time 

cues [80]. This phenomenon is known as “internal synchronization” and the fact that the 

rhythms persist in the absence of external cues indicates the existence of a self-sustained 

endogenous oscillator [57, 52]. It was demonstrated, that photo cycles are an effective 

zeitgeber and are able to resynchronize rhythms [57]. If the cycles are shifted a time lag 

occurs until there is a new synchronization [23]. In constant light conditions there are no 

external cues; therefore, a new synchronization is not possible. 

 

Figure 4.29 Comparison of the gene expression under LD (12 h light/12 h dark) and LL conditions                                

A) Time shift topology graph plots absolute number of genes CT group shifted per time bin (y-axis) by the 

reference ZT group (x-axis). A positive CT group shift reflects a later CT group than the reference condition 

and a negative one reflects an earlier CT group than the reference condition. LD condition with 12 h light/12 

h dark was taken as reference. B) Relative values of rhythmically expressed genes with the same time shift 

compared in different conditions. ZT group classification of LD (12:12) was taken as a reference set. 

Difference was calculated by substituting the constant light values from LD (12:12) condition values within 

an interval from -12 to 12 in which CT0 was set as 0 C) Absolute number of genes per ZT/CT interval under 

LD (12:12) compared to LL 

Figure 4.27 and 4.28 show that two important parameters (period, amplitude) had 

changed following the transfer. Now the interesting question arises whether such an 
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alteration had also an influence of the peaking time. To answer this question we 

compared the ZT and CT groups of the genes. At first we determined the ZT group for 

every rhythmically expressed gene under LD condition in all 30 time-series. Depending on 

the time course one gene was assigned to different ZT groups sometimes. To solve this 

problem we calculated the mode of the ZT groups for every single gene. These results 

were used as a reference set. The same steps were done for the genes under constant 

light conditions. Figure 4.29 C shows the ZT and CT group distribution for both light 

conditions. The distribution seems to be similar although the absolute number of genes 

per time bin was higher under LD condition. Finally we compared the ZT and CT groups of 

each gene under both conditions and calculated the difference in hours (Figure 4.29 B). A 

difference of -4 means that the gene showed it’s maximal expression 4 hours earlier under 

constant light condition. Most of the genes had a negative difference. In addition the 

phase shifts of the genes within one CT group was calculated and the results are plotted as 

a surface diagram (Figure 4.29 A). This diagram confirmed the assumption that genes 

reached their maximal expression in the course of a day earlier under constant light 

condition. 

Figure 4.30 Changing parameter values of the first and second day under LL condition                                      

A) Comparison of the period of rhythmically expressed genes. The shift was calculated using the period 

estimated for the genes of the first day in LL condition as a reference. B) Changing amplitude values for the 

first (blue) and second (red) day in LL conditions 

For further comparison, the 48 h time course series under LL condition was disjoint into 

the first and second day. It has to be mentioned that the time-series of the first day is not 
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equal to the first 24 h in constant light condition. The measuring started 28 h after 

transferring the plants from LD to LL condition. To receive time- series with 12 time-points 

in a 4 h interval we simply duplicated the data and concatenated the time-series to a two 

day time course. At first we examined the change of period and amplitude values between 

these both days. The same trend was detectable: period and amplitude values decrease 

over time (Figure 4.30).  

 

Figure 4.31 Comparison of the first and second day under constant light                                                                                     

A) Time shift topology graph plots absolute number of genes CT group shifted per time bin (y-axis) by the 

reference CT group (x-axis). A positive CT group shift reflects a later CT group than the reference condition 

and a negative one reflects an earlier CT group than the reference condition. First day in LL condition was 

taken as reference. B) Relative values of rhythmically expressed genes with the same time shift compared 

the first and second day of the time-series achieved under constant light condition. CT group classification of 

the first day was taken as a reference set. Difference was calculated by substituting the values of the second 

day from the first day within an interval from -12 to 12 in which CT0 was set as 0 C) Absolute number of 

genes per CT interval for the first and second day 

However, damping of oscillation process was not as obvious as in LD to LL comparison, but 

still the effect was notable. Further we investigated whether and how the peaking time of 
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the genes changes and whether a pattern emerged. The distribution of the CT groups for 

the first and second day looks the same (Figure 4.31 C). Once again the difference 

between the CT groups was calculated. The CT groups determined for the genes of the 

first day served as reference set. Most of the genes had a negative shift which means the 

genes peaked on the second day at an earlier stage (Figure 4.31 B). Only in some rare 

cases the genes behaved in the opposite way and the expression of a small group of genes 

didn’t change at all. The time shift for every single CT group was also estimated and 

confirmed the results from Figure 4.29 A (Figure 4.31 A).  
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5.1 Discussion 

Normalization 

We used kinetic microarray technology to examine the expression of different 

genes in one experiment simultaneously. The benefit of such a technology is the possibility 

to discover relationships and dependencies much easier. Commonly, the importance of 

data pre-processing in the data mining process is disobeyed, despite the fact that 

especially the normalization is necessary to correct expression values and to make various 

arrays comparable. The choice of the normalization technique influences the significance 

of the results. The more successful the method, the more reliable are the results. Until 

now, we do not have a “gold standard” and thus we browsed through the literature to 

search for the most adequate method. Finally, we decided to use 0.75- quantile 

normalization technique, because it’s a commonly used method in the field of microarray 

analysis and made it easier to compare our results to other published data. Another 

possibility was to use so-called “housekeeping genes” but we rejected this method. One 

reason was the general inaccuracy of the method, because it cannot be said exactly, 

whether there exist genes which expression is independent of environmental changes. The 

other reason was that we tested manually the known housekeeping genes for N.attenuata 

and we could not exclude the possibility that the gene expression differs according to the 

condition.  

The visualization of the expression values of our replicates in boxplots (Figure 4.1) provides 

a first indication of distribution and variance in the data. To facilitate the interpretation of 

the visualized the data was logarithmized. It was noticeable that the number and 

distribution of outliers varies significantly among the replicates. Additionally it was found 

that the data shows a positive skew. A normal distribution has no skew, is perfectly 

symmetrical and the mean is exactly at the peak. The boxplot indicates that our data is 

skewed to the right as well as the mean is on the right of the peak value. Normalization 

stretches one tail of the distribution and shrinks the other, therefore the skewness is 
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removed (Figure 4.2) [9]. The performed normalization resulted in the desired effect and 

made the replicates comparable. 

 

Experimental data 

To unveil the genome of N. attenuata two time-series with three biological 

replicates were available. Due to the high material consumption, for each time-point 

another plant of the population was sampled. Thus, the time-series were pooled and 

assembled randomly by measurements of various individuals. Due to this “pooling” 

procedure the time-points may be regarded as independent. Hence, the time-series are 

per definition, even if the plants come from an inbred line, no true replicates. A first 

graphical visualization of the experimental data provides an overview of the data 

distribution. One the one hand, the boxplots displayed no large differences among the 

replicates on the other hand, they are only representative for single time-points of the 

time-series. The number of outliers as well as the distribution differs slightly, which is only 

normal, considering the large biological variation even among individuals. This is precisely 

the reason why biological replicates are so important. Even organisms with the same 

genetic constitution are not necessarily 100% identical due to stochastic fluctuations in 

gene expression. It is assumed that every nucleus is not deterministic in its expression 

repertoire and therefore the process of gene expression is not determined completely 

[45]. Furthermore it can be assumed, that no two cells act in the same way due to the 

large number of cells per tissue. Based on these assumptions we first attached no great 

importance to the observed differences among the replicates. The performed 

normalization resulted in the desired effect and made the replicates comparable. 

Normalization procedure was followed by the analysis with ARSER, which reveals glaring 

differences among the biological replicates relating to the number of ascertained 

oscillating genes. This becomes particularly obvious if we focus on the second replicate 

under LL condition. The resulting number of rhythmically expressed genes was triply as 

high as for the other two replicates and exceeds even the determined number for 
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replicate 2 and 3 under diurnal light conditions. For A. thaliana the literature reveals a 

value of 2-4% of genes oscillating with a circadian rhythm and 6-15% of genes showing a 

diurnal expression pattern [56, 69]. These data suggest that the results for replicate 2 in LL 

condition contain a high number of false positives. The boxplots didn’t show any serious 

differences among the replicates and a confusion could be excluded within the realms of 

possibilities. By checking the internal standards on the chip a technical error could also be 

excluded as far as possible. In consideration of the fact that no direct cause or error could 

be found for replicate 2 (LL condition) and an exclusion of the replicate would reduce 

statistical significance we decided that this replicate will also be part of further analysis. It 

is an accepted procedure to average the expression values during data preprocessing, but 

this was inappropriate for our purpose. The mean is particularly susceptible to the 

influence of outliers and we could not identify the reason why the number of oscillating 

genes is so different for the replicates under LL conditions. Therefore, a time-series 

generated of mean expression values was not considered, because this time-series would 

not be representative and could lead to strange results. Under LD conditions replicate 1 

stood out above all other replicates and once again we decided not to use an average 

expression profile. There was a risk that the mean value generates a time-series that 

would represent the real gene expression in an inadequate manner. Due to the influence 

of outliers the average time-series could give a false impression of the gene expression. 

The consequence would be that imprecise conclusions are drawn concerning circadian- 

regulated genes. Commonly, it is assumed to infer the probable gene expression profile of 

an average cell in a population from an average time-series. In truth, an averaged cell is 

obtained which per se does not exist [45].  

Although the absolute number of oscillating genes differs widely among the replicates, the 

Venn diagram (Figure 4.6) shows a strong overlap, indicating that the same genes were 

detected. We assumed that the genes in the overlap showed a rhythmic expression profile 

and determined the ZT and CT groups. The subsequent visualization revealed that the 

single replicates show a completely different distribution pattern (Figure 4.2). The ZT 
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group distribution did not only differ by a few hours, but the peaks can be found in 

completely different parts of the day. Thus, entirely different functions could be assigned 

to rhythmically expressed genes of each replicate. Most of the oscillating genes of 

replicate 1 reached their maximal expression shortly after sunrise, indicating a probable 

participation of the genes in the light respond reaction. In the middle of the day (ZT6), 

when the sun is at its maximum, most of the rhythmically expressed genes of replicate 2 

reach their maximum expression. For instance indicating a possible participation in 

photosynthetic process. However, a large part of oscillating genes of replicate 3 peaked in 

the night (ZT 18 and 19). These genes may participate in the diurnal metabolism of starch, 

because it is known that starch is degraded during the night [49, 88]. Detailed knowledge 

about the function of genes could not be obtained because an imprecise gene annotation 

prevented a gene enrichment analysis in the set period of time. It can thus only be 

speculated about the involvement of the genes in metabolic pathways. Here it should be 

pointed out that the replicates, considered individually, allow completely different 

conclusions about the involvement of the circadian clock in metabolic processes. In the CT 

group distribution of the replicates in constant light conditions differences were also 

clearly visible. Due to the significantly higher number of oscillating genes classified within 

replicate 2 a simultaneous representation of the distributions for all replicates does not 

allow a differentiated evaluation. Most of the genes, about 60%, of the second replicate 

were assigned to CT group 21. This enormous peak superimposed the distribution pattern 

of replicate 1 and 3, whereby a separate display was necessary for these two distributions 

(Figure 4.3). These two distributions show a clear overlay, the respective peak (the CT 

group, that is assigned to most of the genes) is exactly 12 h apart. Most of the genes of 

replicate 1 peaked right after subjective dawn (CT1), whereas the genes of the third 

replicate peaked right after subjective dusk (CT13). Metabolic processes, probably 

regulated by the circadian clock, thus seem to be completely divers. It is striking that both 

distributions show a smaller peak at CT 18, suggesting that the internal clock exerts a high 

impact on the genes of this CT group. It must be born in mind that an overlap in the 
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distributions does not automatically mean that the same genes were assigned to this 

group for each replicate. 

In the analysis of biological replicates was found that these are not particularly good for 

accurate analysis of the genome of N.attenuata due to their large variance. Since the 

exact cause for the differences could not be determined, also an exclusion of individual 

replicates was waived. Instead, the generation of new time-series by random selection of 

the expression values of biological replicates was adopted.            

Randomization 

Shedden and Cooper [71] statistically reanalyzed microarray data of gene 

expression in human cells after double-thymidine block synchronization and were able to 

refute the original conclusions. The original microarray data was presented to support the 

existence of oscillating gene expression in human cells. To test whether the level of cyclic 

expression could also be explained by random fluctuations such as biological or technical 

noise they randomized the data. In contrast to our procedure they randomly selected the 

expression values for a given gene across all time-points. In other words, they conducted a 

random permutation test in such a way that any permutation had the same probability to 

occur. Even though the time-points of our time-series were independent of each other, 

due to the pooling, we strived to keep the temporal order. Our aim was not to simulate 

random fluctuations, like Shedden and Cooper intended, but to guarantee that on average 

no systemic differences in covariates emerge. Although our method of randomization 

should be distinguished from common randomization test, similar conclusions were 

reached. The analysis of our random time-series reveals that the absolute number of 

oscillating genes was nearly the same for all time-series and the randomization process 

leads to a more balanced pattern (Figure 4.8). Shedden and Cooper were able to 

demonstrate that the rhythmic gene expression observed in human cells could be 

explained as results of random fluctuations and therefore any attempt to identify 

oscillating genes would be contaminated with a large number of false-positives. Indeed, 
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we found that the lists of genes classified as rhythmically expressed in the various time-

series differ widely in their composition. We calculated the overlap of an increasing 

number of compared datasets and the result showed that the number of oscillating genes 

is rapidly reduced in the intersection of 2~8 datasets (Figure 4.9). To prevent an organism 

or algorithm specific effect we repeated the analysis for another higher plant, A. thaliana, 

and with HAYSTACK, another algorithm to detect rhythmically expressed genes. The result 

was the same indicating that the results of single time-series contain a high number of 

false positives. Therefore, we decided to classify a gene as rhythmically expressed if it is 

identified in at least 20 out of 30 time-series. This threshold was chosen on the basis of 

Figure 4.9. 

Yang and Su [86] compared the performance of their own algorithm (ARSER) with two 

widely-used rhythmicity detection techniques (COSOPT and Fischer’s G-test) and could 

show that their method is considerably more accurate [86]. We analyzed our randomized 

time-series with ARSER as well as HAYSTACK and found that ARSER detects significantly 

more genes and nearly all genes identified by HAYSTACK. This result suggests two possible 

interpretations: first, HAYSTACK is more stringent and the results are more accurate and 

second, ARSER is more sensitive and able to detect even slight periodicities in gene 

expression profiles. Through the detailed analysis of genes detected only by ARSER we 

were able to confirm the second assumption (Figure 4.11).     

Different intervals for ZT/CT group determination 

The main object of this thesis was to investigate the gene expression under 

different conditions. Additionally various tissues should also be examined. To allow 

comparison among the different datasets, it was necessary to find a suitable classification 

of the genes in various groups according to their expression profiles. The literature 

research revealed the opportunity of two main principles: a scale-free clustering based on 

distance metrics or distribution models and an interval scale classification. The advantage 

of a clustering method is the efficient grouping of genes with highly similar expression 



76 
 

profiles. Hence, this classification seems to be very useful to detect functional correlations 

among genes and it is very likely that the returned clusters contain genes with similar 

functions. Such a grouping facilitates for example a reconstruction of a metabolic network. 

Beside this immense advantage the clustering method was inappropriate for our purpose. 

To accurately estimate the gene expression under different conditions and to detect and 

quantify changes an equidistant scale is necessary. We decided to use the ZT/CT group 

definition of Ueda et al. [82] and a 1 h interval to assign genes to different ZT/CT groups 

based on their molecular peaking time. Upon closer examination of the definition, we 

discovered a significant drawback: the borders of the groups are fixed. We assumed that 

this fact could lead to some distortions of the results. Genes, that peak nearly at the same 

time, will be assigned to different ZT/CT groups under various circumstances and 

functional relationships might be lost. However, we could show that a shift of boundaries 

had no effect on the ZT/CT group distribution (Figure 4.16). While samples of the 

microarray experiment were collected in a 4 h interval the chosen equidistant scale has a 

one hour interval, may causing inaccuracies in the assignment. Therefore, we tested 

different intervals ranging from 1 to 4 hours. As expected, the enlargement of range size 

resulted in a higher number of assigned genes per group (Figure 4.17). We expected only a 

slight change of gene expression under different conditions and therefore such large 

intervals would prevent a sophisticated analysis. On the basis of these results and 

considerations we decided to use the ZT/CT group definition of Ueda et al. without any 

changes.               

Simulated data 

As has already been pointed out, we decided to combine the biological replicates in 

a randomized manner to unveil the genome of N.attenuata. The number of oscillating 

genes differs widely among the biological replicates, whereas the results of the 

randomized time-series were balanced (Figure 4.8). Additionally, all time-series showed a 

similar ZT and CT group distribution pattern. We decided not to rely on the results of single 
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time-series, but to classify a gene as rhythmically expressed, if it was identified in at least 

20 out of 30 time-series. This choice was made based on Figure 4.9, which indicates that 

once this number of compared datasets is exceeded, the absolute frequency of oscillating 

genes does not change significantly anymore. To corroborate a belief, simulated data was 

generated. The exact number of circadian-regulated genes is largely unknown for higher 

plants, like A. thaliana and N. attenuata. Therefore it was difficult to confirm our results 

and methodology. In simulations the exact number of periodic and non-periodic patterns 

is known. Hence, we applied different performance evaluation measures. In effect, the 

determination of oscillating genes is a binary classification. There are only two possible 

outcomes: either a gene is rhythmically expressed or not. The accuracy of this 

classification can be estimated by a confusion matrix [44]. We could demonstrate that a 

threshold of 20 led to exclusively correct classifications. Figure 4.12 confirms our 

assumption that an increasing number of compared datasets decreases the number of 

false positives whereas the number of true positives does not change significantly. Starting 

from a threshold of 20 not a single false positive was detected and the intersection 

contained only periodic patterns. In order to prevent that the results were algorithm 

specific we tested the same data with HAYSTACK. These results confirmed the effect 

observed within the results received by ARSER to its full extent. Here also, an increasing 

number of compared datasets led to a decrease in the number of false positives. 

Extrapolated to the experimental data we can conclude that the genes identified as 

rhythmically expressed in at least 20 out of 30 time-series are oscillating genes. An 

oscillating amount of RNA in the course of a day is a commonly accepted evidence to 

classify a gene as circadian-regulated [85]. Thus, we could presume that the genes of 

LD_20 and LL_20 are really influenced by an endogenous clock. Secondly, it is considered 

that the number of oscillating genes within a genome is overestimated due to inaccurate 

models [20]. The results of the simulated data suggest yet a contrary assumption. For each 

examined dataset the sensitivity, thus the true positive rate, never exceeded a value of 

0.66. Therefore, only 2/3 periodic patterns were detected of the overall number. 33% of 
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rhythmic expression profiles remained undetected. Naturally an examination of the results 

received by single time-series displayed a higher number of true positives, however, also 

more false positives were reported. To take these results into account a threshold of 20 

should not be laid down, but should be customized to the specific requirements and aims 

of new experiments. If the focus is on determining the number of oscillating genes as 

error-free as possible a threshold of 14, ideally 20, should be picked. In rare cases, the 

number of true positives exceeds the false positives in a matter of importance and here, a 

threshold between 2 and 6 should be selected. Within this range the number of true 

positives was highest and more genes are considered. Likewise remarkable is the fact that 

a sensitivity of only 0.33 was reported for the third dataset. This dataset contained only 5% 

of periodic patterns. The sensitivity did not change even when the threshold was altered. 

Therefore, the value seems to be independent of the threshold. The relatively small 

number of true positives was due to the sensitivity of the algorithms. ARSER as well as 

HAYSTACK had issues in recognizing the periodic patterns. Another explanation could be 

that the randomization technique limits the number of true positives. The precise reason 

could not be identified. In conclusion, the accuracy of the randomization and classification 

process seems to be independent of the ratio of periodic patterns within the time-series. 

Furthermore, a threshold of 20 always leads to a list of genes without any false positives. 

Nevertheless, due to the sensitivity of the algorithms the number of oscillating genes will 

be underestimated if the overall number of periodic patterns within the time-series is 

small. To solve this optimization problem new algorithms have to be invented to increase 

the overall sensitivity. 

To average the expression values of biological replicates during data preprocessing is a 

commonly accepted procedure in scientific community [40]. Comparisons made between 

the mean and our method (threshold=20) yielded several interesting results, showing that 

our method performed better and provided the more reliable results (Figure 4.15). 

Whereas the sensitivity was nearly the same for both methods, the average method 

reported more false positives. While for our method the specificity stayed constant at 1, 
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indicating that no false positive results were included. For instance, if we focus on the first 

data set a specificity of 0.93 was reported for the average method. At first glance, the 

distinction of 0.07 seems to be less significant, but it proposes that the average method 

detected 1856 false positives, while our method detected non. The significance of the 

differences becomes apparent when the precision of both methods is compared. Our 

method always reached a value of 1 whereas the average method reached a maximum 

value of 0.63. The results indicate that the average method reported almost as much true 

positives as false positives. Our methodology fully delivered relevant records and led to 

the more reliable results. It can therefore be assumed that the procedure to average the 

expression values into a mean provides inaccurate results. Exploring the reasons it is 

pertinent to look at the publication of Levsky and Singer discussing the „myth of the 

average cell“[45]. The main statement of their publication is that there is no average cell. 

Gene expression occurs within single cells and although this assumption is commonly 

accepted in the scientific community it is often disobeyed. Instead, the information comes 

from samples containing millions of cells. On the one hand it is much easier to examine 

large samples than single cells, on the other hand, it is assumed that this mixture of cells 

represents biological variation. What we obtain is not the state of an average cell within a 

population, but an “averaged” cell [45]. Just like the average cell does not exist there is no 

average time-series either. The importance of biological replicates is not up for discussion 

[8, 62, 87], but the use of the average expression profiles ignores the natural variance 

among the individuals. Conclusions drawn from average time-series leads to inadequate 

general statements. Assumptions and networks, based on these conclusions only give a 

distorted picture of reality. Each cell reacts in a non-deterministic manner to the same 

external stimuli and starts an individual transcription program. Correlated transcription in 

individual cells might occur by accident. The same assumption is true at the level of 

organisms. It is quite natural that biological replicates differ in their expression profiles 

and the captured variation should not be destroyed by using the mean. The average 

method leads to time-series which does not exist in nature. Each time-point of a time-
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series is represented by an expression value which does not reflect reality. In the overall 

impression, the randomization technique generates also time-series, as they were not 

recorded in this composition, but the individual time-points represent real values. The 

applied pooling method for each replicate provides the basis for the independence of 

each time-point. Our methodology reinforces the randomization and repeats only this 

effect. The generated time-series were much more in line with real expression profiles, as 

the data of the average method. 

Cluster analysis 

The dataset from Kim et al. [42] was used to investigate the gene expression within 

different tissues. These time series contained only six time-points. ARSER can be applied 

only to time course series with at least eight time-points (Figure 4.16). Therefore, it was 

necessary to develop another method to determine the number of oscillating genes and 

the ZT groups. We decided to use a method similar to the proposed algorithm for 

clustering short time-series expression data from Ernst et al. [18]. For each ZT group we 

generated a periodic model profile based on the parameters values returned by ARSER for 

the oscillating genes in 12 h light and 12 h dark cycles. Further we calculated the 

correlation coefficient between the model profiles and the experimental data. Each gene 

was assigned to the profile with the highest correlation coefficient. When we tested our 

profiles we realized that an accurate differentiation among neighboring ZT groups is 

nearly impossible due to only small phase shifts in molecular peaking time. The correlation 

coefficients of these groups were very similar. It should, however, been seen in the 

context that a sampling interval of 4 h was used. Such an interval makes it difficult to 

receive a 1 h resolution. Furthermore, the revision of the profiles leads to the conclusion 

that a threshold for the correlation coefficient of at least 0.7 is necessary, to distinguish 

among the various ZT groups. A value below 0.05 would lead to a broad spectrum of 

eligible ZT groups. Likewise, it was clearly evident that a threshold above 0.9 would only 

lead to inadequate results. Expression profiles of genes which belong to the same ZT 
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group are very similar, but still not identical. The reasons for differences found among 

members of the same group are due to biological variations and noise that bias gene 

expression measurements. Consequently, even within one ZT group a correlation 

coefficient of 1 is impossible, but should be above 0.95. Hence, if the correlation 

coefficient is set too high, only a very small amount of genes would be assigned to specific 

ZT groups. We tested our clustering method on the LD 12:12 dataset to define the best 

threshold. As reference we used the ZT group distribution received with the molecular 

peaking time method. As could have been expected, the number of genes assigned to 

model profiles increases with a decreasing threshold. The lower the threshold value, the 

more variance was tolerated. At the same time the number of false positives was 

increased. A threshold for the correlation coefficient of 0.9 leads to the most reliable 

results, simultaneously the absolute number of assigned genes was decreased. We were 

not interested in quantity but rather in quality. Therefore, a threshold of 0.9 was chosen. 

To take into account that the correlation coefficients of neighboring ZT groups are very 

similar the algorithm always returns three ZT groups with the highest coefficient. Using 

the ZT groups determined with molecular peaking time method as reference we could 

show that our clustering algorithm is really sensitive. Therefore, our clustering algorithm is 

able to determine ZT groups with an accuracy of +-1.      

 

Comparison LD 12:12 and LD 16:8 

We investigated the impact of a change of day-length on the phase. The results 

showed that the genes of plants under long-day conditions reached their maximal 

expression at a later time-point, indicating that its phase responds to the time of dusk. In 

adaptation to the diurnal rhythm, the endogenous oscillator shows separate bouts of 

morning and evening activity to synchronize the metabolism with the environment. These 

two feedback loops are intracellularly coupled by cell-cell signaling [75]. The analysis of 

the data of two photo-cycles revealed a difference concerning the responds of morning 

and evening gene expression. As expected, most of the evening genes reached their 
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maximal expression with a delay of 1 to 3 hours. With this result, we could confirm the 

statements from the literature for Arabidopsis [56]. Plants, which are sessile organisms, 

cannot avoid unfavorable environmental conditions, therefore it is important to adapt to 

changes as quickly as possible, in order to achieve optimal profit from the given resources. 

For instance, in this case the plants reacted to the elongated day-length by shifting the 

evening gene expression to the time of dusk, to use the full capacity of daylight. It has 

been proven that a perfect synchronization of metabolism with the environment leads to 

a selective advantage [16]. The plants grow faster due to an enhanced chlorophyll content 

and photosynthetic carbon fixation rate [16]. Therefore, a correctly tuned circadian 

system, increase the fitness of a plant and improve survival. Likewise, we expected an 

advanced gene expression of the morning genes. Surprisingly the molecular peaking time 

of the morning genes was not consistent. In long-day conditions the night is shortened by 

4 h. Therefore, one would expect that the genes of the morning-expressed loop peaked at 

a former time-point, to anticipate the dawn. Some of the morning genes showed exactly 

that kind of respond and reached their maximal expression 1 to 2 h in advance, compared 

to the LD 12:12 conditions. However, the peaking time of some of these genes was 

delayed by 2 to 4 h, indicating that there was no respond to the time of dawn. This 

observation would also indicate that the feedback loop of the morning and evening 

oscillator has a higher impact on the synchronization process then the environmental 

cues. We hypothesized that time-delayed morning genes are synchronized by internal 

signals. To test this assumption we screened our LL_20 list to check whether the morning 

genes were specified here. If the test is positive, one might assume that the expression of 

these genes is controlled by the internal clock. Our result could either confirm or refute 

the hypothesis. The identification of the internal effect is not very specific and 

informative, for which reason results can only be interpreted with difficulty. Based on the 

area-proportional Venn diagram a small number of morning (and also evening) genes 

seems to be regulated by the circadian clock, because they kept their rhythm under LL 

conditions. This general statement is commonly known, but we cannot go into the matter 
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any further. To do so a gene enrichment analysis as well as a detailed investigation of the 

morning and evening genes under LL conditions is necessary. The question, whether the 

coupling of the oscillators or environmental cues are responsible for the observed phase 

shift remains open.  

Comparison leaf LD 16:8 and root LD 16:8     

We examined the gene expression in different tissues to test the assumption that 

the circadian clock is organ-specific. To ensure optimal fitness and adaption to the 

environment an appropriate synchronization of the rhythmic outcome of internal 

oscillators in different organs is crucial [52]. In contrast to animals, plants do not own a 

central nervous system that controls the synchrony of endogenous clocks located in 

different tissues [80]. James et al. [36] could show that the circadian clock in shoots and 

root are synchronized by a photosynthesis-related signal from the shoots. With our 

experiments we could confirm most of their findings, although the results are not really 

comparable due to the different experimental conditions. Nevertheless, our results 

revealed that the internal clocks in the shoot and root tissue show an organ-specific 

behavior (Figure 4.25). For both tissues we determined a different number of oscillating 

genes and the area-proportional Venn diagram (Figure 4.24) shows that there is a large 

number of genes oscillating only in one of the two tissues. The function of these genes 

could not be estimated, but it is likely that they are involved in organ-specific metabolic 

networks. For instance, the genes of the shoot tissue are likely to participate in 

photosynthesis-related processes, light respond reactions or in the mechanisms of leaf 

movement. However, it is conceivable that the genes from the root tissue are involved in 

pathogen defense or in the production of metabolites which are then transported into the 

leaf tissue. Furthermore, the overlap of oscillating genes between both tissues is relative 

small. It has also been noted by James et al. that in roots the circadian clock controls the 

expression of only a restricted set of genes, indicating organ specificity of the clock [36].    
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The observation that the expression of common oscillating genes is delayed by 1-2 

h in the root (Figure 4.25) leads to the suggestion that the internal clocks of the two 

tissues are coupled and not autonomous as it is proposed by James et al. For N. attenuata 

we could not examine whether the oscillators are coupled or not, because for the root 

tissue we had only gene expression data in LD conditions. Though, the only evidence to 

proof that rhythms are controlled by different oscillators is to demonstrate 

desynchronization of the rhythms under constant external conditions [33]. Indeed, James 

et al. could observe that some clock genes lose synchrony in roots and shoots under LL 

conditions [52]. Due to the lack of data we could only show, that the expression of most of 

the genes in the root is delayed compared to the shoots in LD condition. Thus, the gene 

expression seems to be phase shifted in both tissues.     

Comparison LD and LL 

At first we noticed that the average number of oscillating genes in LL conditions is 

much lower than under LD conditions. This result was not surprising, given that the 

endogenous clock is synchronized to the environment mostly by external signals. In LL 

condition one of the most effective Zeitgeber, the light-dark cycle which entrains the 

internal oscillator, is missing. As a consequence of the absence of external stimuli the 

oscillating system demonstrates a free-running period. We could observe that 8% of the 

genes, which were identified in LD conditions as rhythmically expressed, exhibit a 

persistent rhythm in LL conditions with a period close to 22-25 hours. We expected a 

shortened period, because in LL conditions the organisms demonstrate a natural period 

close to 24 h. Nevertheless, higher plants are multioscillatoy systems and in any 

population, and even within an organism, some oscillators will always be inherently faster 

or slower. Additionally Hastings and Sweeney [29] proposed that individuals show 

significant differences in natural period. This is precisely a point we have to take into 

account, because our random time-series were generated based on the expression values 

of three biological replicates. Secondary, each time-point was sampled from a different 
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individual. Thus the expression values of one time-series symbolized a mixed output of 

various oscillators. This effect was even intensified by the applied randomization 

procedure. We could not only detect a shortened period but also a decreasing amplitude. 

With the passage of time under LL condition, the waveform broadens, and the rhythmicity 

of the gene expression gradually damps out. Thereby we could demonstrate that two very 

important parameters of the oscillating process were influenced by the change of photo-

cycles. The oscillators within a plant are intracellularly coupled by cell-cell signaling. 

However, the comparison of gene expression in root and shoot tissue demonstrates that 

at least a phase shift is possible. The various endogenous oscillators of individuals within a 

population are only weakly coupled. Nevertheless, the behavior of the whole population 

depends on the width of natural frequency distribution. If the width of the distribution 

exceeds the strength of coupling the oscillators are unable to synchronize even they start 

in unison. Due to the weak coupling and the lack of external cues, which reset the clock in 

LD condition every day, the oscillators drift out of phase. Incoherence and a cacophony of 

oscillators are the results. Additionally, a short-term effect occurred right after 

transformation from LD to LL. The phase is not reset immediately but comes to its stable 

position only after several cycles. The time which is needed to come back to a stable 

position depends on the organism and its complexity. Sample collection started 28 h after 

the transfer therefore it is safe to conclude that the transient effects are still notable. 

Desynchronization may not necessarily occur in all plants, but the coupling between the 

organisms is too weak and under constant light conditions can therefore be no 

synchronization between the different individuals.  

To summarize the results here are the main findings: We could proof that our 

randomization technique leads to a reliable set of genes which seems to be circadian- 

regulated. The clustering algorithm we developed is capable to analyze time-series with 

only 6 time points, to detect oscillating genes and to assign these genes to the right ZT/CT 

group with an accuracy of ±1. N.attenuata responds with a shift in gene expression so that 

the metabolism is synchronized with the environment. The internal clock in shoots and 
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roots show an organ-specific behavior, but we cannot make any statements whether the 

oscillators are coupled or not. Furthermore, we could show that the oscillation is damped 

in LL conditions and it is very likely that the individual clocks lose synchrony.       

5.2 Outlook 

Based on the results of this work two aims can be framed for the future: Improving the 

computational efficiency of the developed clustering algorithm, and to reconstruct a 

metabolic network of the oscillating genes that seems to be circadian-regulated.  

With the improvement of the algorithm emphasis should be placed on the increase of 

accuracy of ZT/CT group determination by adapting different parameters. Although in this 

study already different thresholds for the correlation coefficient were tested, it is 

probable to improve the accuracy of the result by optimizing this value. However, the 

ZT/CT group determination is much stronger influenced by the choice of representative 

model profiles. So far, these have been selected on a random basis for each CT group. In 

the future, a method should be developed to generate adequate model profiles specific 

for the gene expression of each ZT/CT group. Additionally, consideration could be given to 

use another correlation coefficient.    

A central goal of systems biology is to represent metabolic networks by mathematical 

models. In the near future a current gene annotation will be available for N.attenuata, 

which allows the estimation of the metabolic function of genes identified as rhythmically 

expressed. Systems biology is commonly viewed as a multistep process, whereas the 

whole methodology is built around the virtuous cycle of data mining (Figure 5.1). The 

results of this study enumerate a reliable set of circadian-regulated genes which could be 

used as components to build up the network. Thereby, it is possible to check off the first 

step of systems biology procedure. This first step includes most of the data mining 

process. The next step will be to reconstruct and define the interactions among these 

circadian-regulated genes. The internal clock influences many different metabolic 
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pathways, thus it is very likely that the reconstruction does not lead to one large network, 

but several small ones. To reconstruct the network structure the gene annotation as well 

as knowledge from the literature should be used. Subsequently, the network function 

must be simulated in silico. This simulation should provide information about possible 

weaknesses of the model, thus the model can be optimized later on. To complete one 

cycle of data analysis it is obliged to validate the computed network properties by 

comparison with actual phenotypic observations. Figure summarizes the whole data 

mining process in a flow chart, where the red boxes represent the outstanding steps to 

complete the cycle.         

 

Figure 5.1 Flow chart of the whole data mining process                                                                                 
Displayed are the different steps of the data mining process, where the green boxes highlight the completed 
steps, and the red boxes represent the future work.   
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Appendix 

 

Series GSE30287 

Status   Public on Dec 29, 2011 

Title Tissue specific diurnal rhythm of transcripts and their regulation during 
herbivore attack in Nicotiana attenuate 

Organism Nicotiana attenuate 

Experiment type Expression profiling by array 

Summary Idenfication and characterization of oscillating transcripts after elicitation 
with oral secretions from the sepcialist herbivore, Manduca sexta larvae 

Overall design Source leaves, sink leaves and roots were collected every 4 h for one 
days. 

Contributor(s) Kim S, Gaquerel E, Gulati J, Baldwin IT 

 

Series GSE3461 

Status   Public on Dec 01, 2005 

Title Diurnal gene expression in Arabidopsis thaliana Col-0 rosette leaves 

Organism Arabidopsis thaliana 

Experiment type Expression profiling by array 

Summary How do the transcript levels of leaf-expressed genes change in a normal 
day-night cycle? The interest is in genes that are regulated by the 
circadian clock and the diurnal component (i.e. light, metabolite 
changes). Plants were grown on soil in a 12/12 h light/dark rythm at 20°C 
day and night. 5 weeks after germination the rosettes of the non-

Citation(s) Kim SG, Yon F, Gaquerel E, Gulati J et al. Tissue specific diurnal rhythms of 

metabolites and their regulation during herbivore attack in a native 

tobacco, Nicotiana attenuata. PLoS One 2011;6(10):e26214. 
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flowering plants were harvested, 15 plants per sample. Plants were 
harvested at 6 timepoints every 4 hours beginning with the end of the 
night (still in darkness). 

Overall design 3 biological replicates of the diurnal time series (6 times) were analyzed 
that were separately grown 

Contributor(s) Bläsing OE, Stitt M 

Citation(s) Bläsing OE, Gibon Y, Günther M, Höhne M et al. Sugars an circadian 

regulation make major contributions to the global regulation of diurnal 

gene expression in Arabidopsis. Plant Cell 2005 Dec; 17(12):3257-81. 

 


	AnfangMA
	RestMA
	Appendix

