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Abstract—Visualization techniques often use color to present categorical differences to a user. When selecting a color palette, the

perceptual qualities of color need careful consideration. Large coherent groups visually suppress smaller groups and are often visually

dominant in images. This paper introduces the concept of class visibility used to quantitatively measure the utility of a color palette to

present coherent categorical structure to the user. We present a color optimization algorithm based on our class visibility metric to

make categorical differences clearly visible to the user. We performed two user experiments on user preference and visual search to

validate our visibility measure over a range of color palettes. The results indicate that visibility is a robust measure, and our color

optimization can increase the effectiveness of categorical data visualizations.

Index Terms—Color design, visualization, visibility, user interface
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1 INTRODUCTION

GRAPHICAL representation of data is an effective techni-
que in assisting a user to recognize patterns, to detect

trends, and to identify relationships hidden in data sets.
Visualizing data is an algorithmic process of mapping data
onto two planar variables (x and y positions on the screen
space) and a limited number of retinal variables, such as
color, size, value, texture, shape, and orientation [2]. Color
is an effective retinal variable for distinguishing groups of
items; a typical visualization task would be to locate a
particular categorical group in the visual display.

Selection of categorical colors is a challenging problem,
and often require insight into aesthetic and perceptual
aspects of color. Unfortunately, many visualization
packages provide little guidance on how to choose proper
categorical colors for a particular visualization technique.
More importantly, without an in-depth understanding of
how color works in categorical data visualization, it is
difficult for the packages to suggest a color palette that
avoids difficulties in detecting coherent categorical groups.

Color appearance changes, depending on the spatial
variations of data items in an image; this is because the
visual sensitivity of the human visual system to spatial
frequencies differs for various hue/saturation and lumi-
nance components of color. Choosing categorical color
without considering these perceptual mechanisms can lead
to misleading interpretation of data. Two problems

generally occur: 1) visually dominant structures locally
suppress small inhomogeneous groups; 2) colors of
different groups are barely discriminable without main-
taining sufficient perceptual distances among them.

These problems motivated us to explore the possibility of
an automated, yet perceptually significant approach that
optimizes the composition of a given categorical color
mapping. Fig. 1a shows a visualization using a ColorBrewer
palette and Fig. 1b its improvement with our optimization
algorithm. In what follows, we present the challenges we
faced and our efforts to solve them.

2 OUR CONTRIBUTIONS

First, we define a perceptually driven metric, called class
visibility, to measure the perceptual intensity of a group. To
address the first challenge, we propose class visibility that
takes the spatial variation of groups into account. We
associate the perceptual intensity of a group with its visual
saliency. While visual saliency is typically used in detecting
regions that pop out from an image, here we utilize visual
saliency to find high spatial-frequency groups visually
suppressed by their surrounding neighborhood. The aim of
this research is to make these groups visible via optimiza-
tion. While the estimation of visual saliency commonly
relies on spatial averages [15], averaged colors do not
correctly label a categorical group; this is particularly true
for “center” image regions (mapped to the narrow retinal
area of the highest visual acuity). To tackle this limitation,
we propose using point saliency to measure the perceptual
intensity of a single class in pixels of the visual display. Class
visibility is then computed by integrating the saliency of
points over the center areas. Further, our class visibility
takes the structural coherence (fine-grained structure versus
large homogeneous structure) of categorical groups into
account, to differentiate between levels of distraction.

Second, we present a visibility-based optimization algo-
rithm, to improve the color of categorical data visualiza-
tions. Our optimization aims to balance the contrast (of both
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luminance and saturation) of the image between small and

large groups. The algorithm improves the composition of a

color palette, using colors that increase the perceptual

intensity of small groups and reduce the visual weight of
large groups. This optimization approach allows us to

improve a color palette chosen by existing tools or artists,

yet not optimized for the given data. We derive a cost

functional that virtually equalizes class visibility scores of

distinct groups. The optimization procedure tackles the
second problem we mentioned by applying discrimination

constraints, which allow categorical colors (of low spatial

frequencies) to keep perceptually distinguishable distances

from each other. We explicitly control the dimensions of

saturation and luminance, while simultaneously preserving
the hue of categorical colors. This enables us to preclude the

possibility that optimized categorical colors significantly

differ from the user’s preferred colors. Furthermore, local

optima of our cost metric are likely to capture categorical
color candidates that match the user’s preference.

Lastly, we performed user experiments to subjectively
assess our approach in terms of user preference and visual

search performance. We measured the preference of

participants for the source image as well as the two

optimized images. In the visual search task, we measured
task performance when searching for a particular class. The

results show that our approach greatly improves the

effectiveness of categorical colors, and most users prefer

the optimized color palette.

3 BACKGROUND AND RELATED WORK

The study of how to use color effectively in visualizations

has commanded considerable research effort. This section

reviews previous studies and neurological background
underlying our optimization scheme.

3.1 Color Selection in Visualization

3.1.1 Principles of Effective Color Palettes

Trumbo [30] introduced order and separation as basic

principles when selecting colors to visualize statistical

variables. Order requires that colors chosen to present an

ordered statistical variable should be perceived as preser-
ving that order. Separation requires that colors chosen to

present the differences of a variable should be clearly

perceived as different. We focus on separation by

considering the spatial coherence of categorical groups
and the contribution of the local neighborhood.

Our optimization approach follows three additional
principles provided by Zeileis et al. [37]; “colors should
not be unappealing,” “colors should cooperate with each
other,” and “colors should work everywhere.”

3.1.2 Algorithms for Color Palettes

Many approaches have been proposed to realize order and
separation for univariate color palettes [21], [23]. They were
designed to select colors with uniform contrast by
sampling along a smooth and continuous path in a
perceptual color space such as CIE L�a�b� or CIE L�u�v�

[7] (in short, Lab or Luv).

3.1.3 Predefined Color Palettes

ColorBrewer.org [13], [34] is a widely used tool for selecting
customized color palettes. A drawback to such tools is that
the spatial coherence and the spatial context of categorical
groups are not considered in the selection process. Many
users can easily select their favorite colors, but they need
guidance to improve the local contrast of categorical
groups; this motivated our study into the possibility of an
automated enhancement of categorical color mapping for
casual users.

3.1.4 Rule-Based Systems

Rule-based systems offer better choices by incorporating
well-established rules used by professional designers and
basic psychophysical properties of color [1], [32]. In
particular, Bergman and collaborators incorporated the
varying sensitivity of the human visual system in spatial
variations, as a rule to restrict the choice of predefined color
palettes for mapping continuous variables (see Section 3.2
for further discussion). They classify categorical groups to
be of either low or high spatial frequency, by examining the
difference between the input and its low-pass filtered
image. However, this simple metric can be limited in the
dichotomy between low and high spatial frequencies; we
made the experience that many real data sets contain a
mixture of coarse and finer spatial structures.

Our algorithm improves such a metric with a structured
finer-scale analysis. Our visibility analysis allows us to
locally distinguish the perceptual intensities of coarse and
finer spatial structures, enabling more context-dependent
categorical data visualization.
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Fig. 1. While the categorical colors of the input (a) are easily distinguishable in the large color bar, their mapping onto the complex structure produces
a limited visibility of categorical differences. Our visibility optimization (b) significantly improves the visibility of categorical differences in contrast to
(a). Note that an enhancement of global contrast does not necessarily achieve such a result (c). The three visualizations present the distribution of
eight vegetation classes, induced by climate change in North America.



3.1.5 Perceptually Optimized Color Palettes

Study of the perceptual qualities of color in graphical data
representations has captivated less interest amongst re-
searchers in the visualization community. One of the basic
findings of previous studies is that perceptually well-
separated colors significantly reduce time required for
searching visual targets in visual displays [8], [17],
[35]—the results of our experiments on visual search
empirically support this. Linear separation [8] or isolumi-
nant colors in Luv were often used [14], [17]. These
strategies are based solely on separating colors in Luv.
On the contrary, our method considers the spatial
coherence and spatial characteristics of categorical groups
in a visualization.

3.2 Effect of Structure on Color Appearance

Visual sensitivity to spatial frequencies (or size) differs for
both hue/saturation and luminance components of color
(e.g., see [1], [6], [9], [27], [33]).

The hue mechanism of the human visual system is tuned
to lower spatial frequencies, implying that hue and
saturation are adequate for conveying large-scale spatial
variation. As the target being viewed decreases in size, color
appearance changes dramatically. For instance, as seen in
Fig. 1a, the colors of the large uniform boxes are easily
perceived as distinct, but small targets on the map become
nearly indistinguishable, whereas the same colors are used
to label them. This phenomenon is called “spreading”
(e.g., see [9], [27]), and refers to the blending of a color
stimuli with its surrounding colors. As a consequence, color
discrimination is likely to be weak for small stimuli. Here,
the contrast in saturation needs to be sufficiently increased
to reliably label groups. Our optimization tries to increase
the contrast for small regions and reduce it for larger
regions via the saturation component; this allows us to
produce images with balanced colors, according to the
associated size of the categorical group.

On the other hand, the luminance mechanism is tuned to
higher spatial frequencies. When high frequencies are not
visually aggregated into clusters, they are usually invisible
[18]. Hence, their luminance contrast needs to be increased
to make labels distinguishable; discrimination via color
becomes weaker in this case. Our optimization takes this
into account. The enhancement of contrast in luminance
and saturation channels improves the visibility of inhomo-
geneous small groups.

3.3 Feature-Driven Attention Model

The reflexive bottom-up capture of visual features has been
proposed, to operate as a two-stage process in the “feature
integration theory” [16], [25], [29]. In the first stage,
preattentive primitives, e.g., color and lightness, are
detected and separately encoded into feature maps. This
stage is rapidly performed in parallel, without conscious
attention directed to particular items. In contrast, the second
stage is a slow serial conjunctive search to integrate the
feature maps into a single topographical saliency map, which
is largely mediated by focused attention [29].

The neuronal mechanisms of early vision provide us
with important insights when detecting and enhancing the
utility of categorical colors. Unlike large homogeneous

structures, fine structures are visible only if their screen
region stands out from its local surroundings. Substantial
neurological evidence show that these findings result from
the organization of the neural hardware, called the “center-
surround [10], [20], [25], [28], [36]. The peripheral retinal
zone (surround) suppresses neuronal activation in narrow
receptive fields of the highest spatial acuity (center).

Typically, the computational model of the center-
surround difference has been realized using the subtraction
of multiscale image pyramids [15], [19]. In general, the
center-surround difference is useful in the analysis of a
complex scene, to detect salient spots that are likely to
persist prior to the later recognition stage of visual
objects [22].

While most previous studies used the center-surround
difference to find salient spots that attract the user’s
attention in a complex scene, our approach utilizes saliency
to quantify how many visual stimuli are visible against
surrounding distractors, and to improve the effectiveness of
categorical color encoding. This approach is likely to result
in enhanced local contrast of invisible stimuli, which will
also facilitate an improved discrimination among catego-
rical colors.

4 CLASS VISIBILITY

This section describes the concept of class visibility and an
algorithm to compute class visibility levels of categorical
data. Given labeled data points, a mapping of these data
points to screen-space positions, and their associated
labels to color, we compute the visual saliency of each
point against its surrounds in the image (which we call
point saliency). Then, we integrate the point saliency of
each class over neighboring regions of different center
scales, to estimate the visibility of individual classes
without losing categorical differences. Fig. 2 shows the
overview of our framework.

4.1 Preliminary Definitions

Let D � Z2 be the screen space. We define D ¼ f1; . . . ;
Wg � f1; . . . ; Hg, where W and H are the dimensions of the
screen window. Let A be the set of data points A � D with
A ¼

�
a1; . . . ; aN

�
where ai is the screen position of each

point. We assume that each data point has a unique screen
position with i 6¼ j) ai 6¼ aj 8i; j 2 f1; . . . ; Ng; we do not
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Fig. 2. Overview of our visibility optimization approach.



allow an overlay of different data points on the same pixel.
Additionally, let B ¼

�
b 2 Djb 62 A

�
be the set of back-

ground (unoccupied) pixels in the screen space.
We assume that each point is uniquely labeled as

belonging to a particular class. Let � be an external source
that labels data points by using a priori semantic informa-
tion. Let �ðAÞ ¼

�
c1; . . . ; cM

�
be the set of M classes. The

background pixels are assigned to a single class label
�ðBÞ ¼

�
c0
�

. Thus, each point p 2 D is assigned to one of
the M þ 1 classes, where cp is the associated class label. Let
C : �ðDÞ !

�
C0; C1; . . . ; CM

�
be a color mapping function.

To visualize the classes in the screen space, the set of unique
class labels �ðDÞ is mapped to a set of M þ 1 unique colors.
We denote Cp as the associated color of a data point p 2 D.

4.2 Point Saliency

Point saliency at a particular screen position represents how
much a data point’s color stands out from the local
surround at that position. We formally define the point
saliency as follows:

Definition 4.1 (Point Saliency). Given a point p 2 D, the
point saliency Sp of p is the single-scale difference between Cp

and the mean color of the neighboring surround N p of p with

Sp ¼ �E Cp;
1

jN pj
X

q2N p

Cq

0
@

1
A; ð1Þ

where �E denotes a color distance metric, to measure the
difference between two colors (see Section 4.3). We explain how
to determine the scale N p in Section 4.4.

Our point saliency is similar to center-surround differ-
ences. The center is defined for a single point/pixel, which
means that the point saliency at pixel p directly maps to
one of the classes at p. This definition allows us to weight
the contribution of a single categorical color to the
visibility of the categorical groups whose labels cannot
be averaged spatially.

In contrast, conventional center-surround differences
define center by averaging colors over narrow spatial
regions [15]. Thus, the resulting color of each pixel does
not represent a single class; the resulting color is likely to
lose its categorical distinction. Hence, the conventional
definition cannot be directly applied when estimating the
visibility of individual classes.

4.3 Measurement of Color Distance

Point saliency requires us to measure the perceptual
distance �E between two colors. Many attempts have been
made in the past to establish metrics to measure perceptual
color distance. One fundamental option is the CIE 1976
metric [7], based on the perceptually uniform CIE Lab space.
Lab space was developed as a color space that allows users
to determine color differences. Given a white-point refer-
ence, an euclidean distance between two Lab colors
represents a device-independent difference between the
two Lab colors to the human eye.

As already alluded to, we keep initial hue values
constant during the optimization (Section 5). To exclude
the hue component from the optimization, it is more
convenient to represent the distance in terms of CIE

L�C�H� (in short, LCH) that is compatible with Lab
space—C� (chroma) and H� (hue) are calculated by taking
the radius and angle in the plane of two chromacity
components a� and b�. We define the distance �Eðx; yÞ
between two color values in LCH space x ¼ ½L�x; rx; �x�

>

and y ¼ ½L�y; ry; �y�
> as

�Eðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�L�Þ2 þ ð�a�Þ2 þ ð�b�Þ2

q
; ð2Þ

where

�L� ¼ L�x � L�y
�a� ¼ rx cos �x � ry cos �y

�b� ¼ rx sin �x � ry sin �y:

ð3Þ

4.4 Scales of Center and Surround

Class visibility is derived by integrating point saliency over
a narrow region of the highest visual acuity in the retina
(fovea region). We call such a region view to distinguish it
from the traditional term “center.” The view is formally
defined as follows:

Definition 4.2 (View). The view �p is a ball with radius �
centered at p 2 D

�p ¼ fq 2 Aj kp� qk � �g: ð4Þ

�, which is fixed over the entire image, controls the extent of the
highest spatial acuity in an image.

While the majority of previous studies [15] used an
empirical size to indicate the center, we determine the size
of the center in a manner dependent on the viewing angle.
This strategy reduces manual adjustment to gain better
performance. We use the visual angle of 2 degree to the
display, which corresponds to the angle from the pupil to
the rod-free fovea region [9]. The radius of the center � can
be easily calculated in terms of pixels, a given resolution
and the size of a screen. Likewise, we specify the visual
angle for the surround as used in (1). We use a visual angle
of 10 degree, which approximates suppressive zones found
in neurophysiological studies (8-10 degree) [26]. Fig. 3
illustrates the concept of the view and surround.

In practice, it is more convenient to handle diverse
viewing conditions; for example, an observer is located
slightly closer or further from the screen. We handle this
with multiple levels of the center and surround. We use two
scales for the center and three for the surround—in our
implementation, 1 and 2 degree for the center and 5, 10, and
20 degree for the surround—resulting in six pairs of center-
surround scales. Our design benefits from its grounding in
the typical viewing scenarios of applications, because
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Fig. 3. The visual angles of the view and surround.



typical multiscale representations do not pinpoint exactly
which of the scales dominates the subsequent processing.

4.5 Class Visibility

Our class visibility is a measure of how color and the spatial
distribution of each class affect its perceptual intensity to
the human visual system. We estimate the class visibility of a
point by weighting its point saliency with its structural
weight. The structural weight at the point is computed by
the contribution of neighboring points. Unlike the conven-
tional filtering approach, we only collect the contribution of
points whose labels are the same as the center point. By
precluding the contribution of points of different labels, we
can avoid losing categorical differences, while effectively
approximating the spatial integration of the center areas.
We formally define class visibility as follows:

Definition 4.3 (Class Visibility). The visibility Vp of the class
cm at a pixel p 2 D with cp ¼ cm is

Vp ¼ wpSp; ð5Þ

where wp is a structural weight of p that measures the
contribution of cp to the visibility of cm in �p.

In our implementation, wp is simply the fraction (or
number) of data points inside �p that belong to the same
group as the data point at p. Our weighted metric
effectively captures the difficulty of a user to observe a
specific class at narrow local regions. For instance, imagine
a region around a couple of green points in which the
majority of the points are red (see Fig. 4a for an illustration).
In this case, an observer might not easily notice the
presence of the green points, because homogeneously
distributed red points are spread around the green points,
and distract the observer. Such difficulties can be reflected

by small structural weights. One could improve this
definition by using a better metric such as “visual clutter”
[3] to consider the shape of the data distribution. Our
attempts to employ visual clutter have not yielded great
improvements, however.

Finally, we need a representative measure of each class
through the whole image beyond a single point or view.
Since class visibility is defined for each point, we average
the class visibility for all the points in the image whose
labels are identical. We call it mean class visibility, and its
formal definition is as follows:

Definition 4.4 (Mean Class Visibility). Let cm 2 �ðDÞ be a
group of data points. The mean class visibility V m of cm is

defined as

V m ¼ 1

jcmj
X
p2cm

Vp; ð6Þ

where jcmj is the number of its data points.

Fig. 5 shows example images obtained with our
visibility analysis for an input image (Fig. 5a) and an
optimized output image (Fig. 5d); our optimization
attempts to equalize the visibilities of different classes
(detailed in Section 5). In Figs. 5b and 5e, the point saliency
of small-size classes appears relatively high in comparison
with the large classes. However, it is observed that the
small classes are not actually clearly visible in Fig. 5a or at
least similarly visible to the large classes in Fig. 5d.
Structural weighting with Fig. 5g captures such trends;
overall, the visibility of the small classes is estimated lower
than the larger classes (Fig. 5c) or at least similar to the
larger classes (Fig. 5f), respectively.

5 COLOR OPTIMIZATION

This section describes our algorithm for perceptually
optimizing a given color palette, based on our class
visibility metric.

5.1 Cost Functional

The objective of our optimization is to virtually equalize the
visibility of all classes. Our optimization makes almost
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Fig. 5. The analysis and optimization of an example input image (a). The overall visibility of all the classes was significantly improved in the output
image (d). The output was obtained with the color optimization procedure. The point saliency, class visibility, and structural weight images are shown
aside for each input and output color image. Note that the intermediate images are normalized into ½0; 1� (black: 0, white: 1).

Fig. 4. Example of data points with weak visibility given the used colors
((a) see the green point) and its improvement in visibility (b).



invisible classes (particularly those with a small number of
data points) pop out from the surround, while keeping
visually dominant classes visible.

One possible approach is to define a cost functional for
each data point and to minimize differences among the
class visibility levels in its local surrounds. Although such a
local optimization might find optimal colors for each point,
this is infeasible for categorical data visualization, because
the color of a particular class should be consistent through
the whole image.

To preserve the color of a particular class throughout the
image, we define the variable to optimize in the global
scope. Let X be the vector to be optimized. Given a set of
categorical colors, X is defined as

X ¼ ½L0; . . . ; LM; r0; . . . ; rM �>; ð7Þ

where Lk and rk are the lightness and chroma of Ck in LCH
space. Note that hue values (�) will stay constant during the
optimization. Also, note that X includes the color C0 of
background points, which often plays a key role in the
detectability of main colors against a colored background
(see Fig. 8 for an example).

Our cost functional for class visibility equalization is a
mean-squared sum over the differences from all mean class
visibilities to a single target constant (T ; see Section 5.2 for
details), which is defined as follow:

Definition 5.1 (Cost Functional). Let cm 2 �ðDÞ be a group of
data points, and let V m be the mean visibility of a class cm. The
cost is

EðXÞ ¼ 1

M

XM
m¼0

ðV mðXÞ � T Þ2: ð8Þ

The minimization of this cost will virtually equalize class
visibility levels, taking the spatial characteristics of the
image into account, and thus, improving the visibility of
structures less visible to the user.

5.2 Target Visibility

Our optimization equalizes the scores of class visibility to a
single level T . One plausible way to choose such a target
level is to use the mean over all V m. Prior to optimization,
we initially analyze the input image, and use the average
value of the class visibility as the target visibility T . This
target value is kept constant throughout the optimization
process. Such a T improves the visibility of groups that are
hard to detect, while visually dominant groups, such as
large homogeneous classes, show a decrease. Such changes
make the effects of categorical colors more balanced in their
perceptual intensities.

Another alternative is to use the maximum among all
V ms. We may encounter hard-to-optimize visualizations
when a mean visibility is used as a target visibility. For
example, when dim or indistinguishable colors are used, all
the classes in an image may exhibit a very low visibility.
Then, the optimization with mean-target visibility causes all
classes to stay at low visibility levels. Such difficulties can
be surmounted by enforcing globally higher visibility levels
(i.e., using the maximum or even higher).

In what follows, the target visibility that uses the mean
visibility is denoted as Tmean and those with the maximum

visibility are denoted as Tmax. In our user study (Section 6),
we compare the effects of Tmean and Tmax in terms of
preference and task performance.

5.3 Bounding Constraints

The domain of the cost functional (8) is unbounded, and
accordingly, the optimized parameters can be located
outside the set of physically meaningful color values. We
avoid this problem by applying the barrier function, for
each color channel y, given as

g½ymin;ymax�ðyÞ ¼ e�ðy�yminÞ þ e�ðymax�yÞ; ð9Þ

where ½ymin, ymax� is the acceptable range of y.
For instance, each channel of an RGB color should lie

within ½0; 1�, in normalized scale. To facilitate this, we
convert the resulting LCH color to RGB and evaluate the
barrier functions at every iteration step of the optimization.
We also clamp the range of luminance and chroma within
½0; 1� in the normalized scale. When very dark or desatu-
rated colors are not preferred, we can avoid them by more
tightly bounding the luminance and chroma (e.g., ½0:1; 1�).

All those constraints are summarized in a single
cost functional

BðXÞ ¼ 1

M

XM
m¼0

ðgðRmÞ þ gðGmÞ þ gðBmÞ þ gðLmÞ þ gðrmÞÞ;

ð10Þ

where Rm, Gm, Bm, Lm, and rm are red, green, blue,
luminance, and chroma values of Cm, respectively.

5.4 Color Discrimination Constraints

One additional important constraint is discrimination
between colors that are perceptually close. The color of
classes should be perceived as different by the user. To
apply this constraint, we use a similar form of the barrier
function, which defines a repulsive force term between all
possible pairs of class colors, RðX). Given MðM þ 1Þ=2

pairs of class colors, RðX) can be formulated as

RðXÞ ¼ 2

MðM þ 1Þ
X
i;j

eJ��Eði;jÞ; ð11Þ

where i and j indicate the color pair selected from all the
classes. J is a particular constant used to control the amount
of the repulsive force. We scale J along with the just
noticeable difference (JND) of Lab color.

In theory, when a pairwise color distance is greater than
JND (known as 2.3 in Lab), this should produce distinguish-
able colors. However, the hue problem of the CIE76 metric
(bluish colors have higher detection thresholds) does not
guarantee a sufficiently noticeable difference. We tried to
find a general value, yet there seemed to be no such a rule.
Our rule of thumb is maintaining color distances at
moderately higher JND (3-7 JND in our examples). Larger
J is generally preferable for better distinguishing colors.
However, when too many classes are defined, colors are not
likely to move during the optimization, due to the strong
repulsion force. In such cases, we may decrease J to enable
the colors to move in the optimization.
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5.5 Optimization

An appropriate method of optimizing the cost functional (8)
with the set of constraints (10) and (11) is to iteratively
minimize

F ðXÞ ¼ EðXÞ þ �fBðXÞ þRðXÞg ð12Þ

and schedule the weight parameter � to move toward
infinity. As � approaches infinity, our constraints will
behave like hard constraints. This is a costly process,
however. In practice, we found that a fixed � value of 10
produces satisfactory results anyway. Since the resulting
soft constraints do not completely rule out the possibility of
obtaining infeasible color values, we project again each
color value into the feasible region after optimization.

Since (12) is continuously differentiable, the nonlinear
conjugate gradient-based minimization was adopted.
The color of every single pixel can be represented as a
linear combination of X, and thus, we precompute the
linear combination of weights prior to the iteration to save
computational time in the evaluation step. The iteration for
minimization stops when the norm of the gradients is small
enough not to move any more.

An initial color might not reside in the valid extents
given by our constraints, in particular for given luminance
and chroma. To make sure that initial colors are projected
into the valid range, we first run an optimization to
minimize BðXÞ prior to the main optimization of (12).
Since BðXÞ is convex, it can be easily minimized. We stop
the iteration and evaluate T when all colors are within the
valid extents.

Note that (12) may not be convex and, accordingly,
finding a global optimum is difficult. However, we have
observed that local optimal solutions are already visually

plausible in many situations. When runtime performance is
not critical, one could try a global optimization to find a
better solution.

6 USER STUDY

This section reports our user experiments, evaluating our
visibility optimization in terms of user preference and
performance of visual search tasks.

6.1 Methods

6.1.1 Participants and Stimuli

Twelve participants with normal or corrected-to-normal
vision took part in the experiment. One-half of participants
had professional training in visualization (visualization
scientists and cartographers), while the other half had no
experience in working with visualizations.

A 20-inch LCD display with a pixel resolution of 1;920�
1;200 was used for the presentation of the stimuli. The
display was calibrated using test images for faithful color
reproduction [12]. The participants were seated 57 cm from
the display in a lit room.

The experiment covered nine input color palettes chosen
from ColorBrewer [34] and a perceptual color palette
proposed by Healey and collaborators [14].

We used two types of geospatial map to present the
stimuli, the ethnic distribution of the population of the
United States (“us-ethnic”) [31] and the vegetation class
changes induced by climatic change in North America
(“vegetation class change”) [24]. “us-ethnic” presented five
ethnic groups (see Fig. 7a for an example), and “vegetation
class change” presented seven climate groups (see Figs. 6
and 7b). Each group was assigned 20 different permutations
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Fig. 6. Examples of most and least preferred output images used for our user experiment. “Vegetation class change” data were used (M ¼ 7).



of a color palette; for each color palette, we generated 20
different images.

The input resolutions of the “us-ethnic” and “vegetation
class change” maps for optimization were 720� 304 and
464� 248. To compare the effects of different target
visibility, each input map produced two types of optimized
outputs; the average and the maximum of input visibility
(Tmean and Tmax).

6.1.2 Design

The experiment consisted of two parts: a user-preference
test and a visual search test. In the user preference test,
participants were asked to rate their subjective preferences
on a given input and its two optimized images. In the
visual search, participants were asked to find a target
color on a map. The visual search was chosen as a good
task to test detectability and discrimination of different
categorical colors.

In the first experiment, the user preference was rated in a
100-point scale (0: no preference, 100: most preferred). At

the beginning of an experimental session, we briefly
introduced each participant to the experimental procedure,
and the number of classes for each data set. A session
consisted of nine independent trials. We randomly selected
a color palette for each trial from the database. We placed
the three images—one with the original color palette and
the other two with the optimized color palettes—side by
side on the screen. We balanced the placement of image
couples on the screen based on a randomization procedure
to reduce learning effects. We applied no time constraint to
this experiment.

In the visual search experiment, the participants were
asked to find a target color in a color-mapped image. In
each trial, we presented a target color and an image to the
user. We balanced the sequence of images; one at the time, a
single image, among an input or two optimized images,
was randomly selected and presented. Then, we randomly
chose a target color from the image’s categorical color
palette. The participants were instructed to find and click on
the target color. Also, we asked the participants to press a
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Fig. 7. Five source images and their optimized outputs (left: input, middle: Tmean, right: Tmax). Our approach improves the visibility of small classes
significantly, while the visibility of large classes is likely to decrease (the middle column) or to be maintained (the right column). US Land Usage,
World Climate, and Permafrost images are provided through the courtesy of National Center for Earth Resources Observation and Science (US),
FAO-SDRN Agrometeorology Group, and National Snow and Ice Data Center (US), respectively.



button labeled “cannot decide,” when it was not possible to
find the target color; in fact, no participant chose the
“cannot decide” button at any time. After the participant
clicked on the screen, we recorded the corresponding color
and task completion time for each trial.

6.2 Experimental Results and Discussion

6.2.1 User Preference

We collected 324 ratings (¼ 9 palettes �12 participants �
3 types of images) for each input map. Table 1 summarizes
the results of the first experiment. We can see a higher user
preference for our optimized categorical color coding (both
for Tmean and Tmax). As for the target visibility, the outputs
generated with Tmax were more preferable to those with
Tmean. We inspected these images and found that visibility
optimization with Tmean often produces less distinguishable
colors (see Fig. 6), while the visibility optimization using
Tmax tries to keep high contrasts among classes, even for
large classes.

We applied one-way within-subject analysis of variance
(ANOVA) on the preference ratings, to check the statistical
significance of differences between source and optimized
categorical palettes. The differences are statistically sig-
nificant with F ð2; 22Þ ¼ 15:03, p < 0:0001 for “us-ethnic”
and F ð2; 22Þ ¼ 25:05, p < 0:0001 for “vegetation class
change,” which confirms our observation. Tukey’s multi-
ple comparison test confirmed statistically significant
differences for both input-output pairs (p < 0:0001). A
significant difference was found between average and
maximum visibility optimization only for the “vegetation
class change.”

6.2.2 Visual Search

We measured the task performance of the participants
in the visual search experiment in terms of accuracy
(i.e., correct hits on a given color) and task completion
time. Table 2 summarizes our findings. Our optimization
did not lead to significant increases in the mean hit ratios
for the “us-ethnic” map, in comparison to the source maps,
but yielded some improvements (up to 4 percent for
outputs generated with Tmax) with “vegetation class
change” images. Regarding task completion time, while

the outputs optimized with Tmean resulted in an increase of
2.9 second for “us-ethnic” map, both output types for the
“vegetation class change” map led to a decrease in search
time of 0.7 and 0.3 second. Again, we applied one-way
within-subject ANOVA and found no statistical significance
within the accuracy and task completion time.

The results indicate a positive effect from optimization
on the accuracy and task completion time for “vegetation
class change” maps representing a mixture of small and
large classes; yet, we did not find a statistical significance.
The outputs generated with Tmax performed slightly better
than Tmean, which implies that a globally higher contrast is
better in task performance, and often preferred by users.
Nonoptimized input palettes are often already well orga-
nized, and hence, there is little confusion when searching
for a target in many general purpose color palettes.
However, there are situations in which the user must make
a considerable effort to detect a target color. The task
completion timings of the optimized categorical color also
support this observation.

Conversely, optimized outputs for the “us-ethnic” maps
did not elucidate a trend in either the task performance
measure. Tiny-sized classes in the “us-ethnic” map were
much harder to observe in comparison with comparable-
sized classes from the “vegetation class change” map.
Hence, participants still had trouble in searching and
distinguishing categorical colors. Improving the visualiza-
tion of such tiny classes would be interesting future work;
we expect that a higher target visibility for luminance
discrimination would be necessary.

7 RESULTS

This section reports the optimization performance of our
system and presents quality improvements.

7.1 Optimization Performance

The time complexity involved in setting up and solving our
optimization problem (12) is dominated by the number of
classes M and the resolution jDj ¼W �H of the source.
The cost for enforcing constraints is negligible in most cases,
because the constraints are applied on the resulting colors
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TABLE 1
Summary of Mean Preference Ratings

� denotes the standard deviation.

TABLE 2
Summary of Mean Accuracy and Task Completion Time in the Visual Search Experiment

� denotes the standard deviation.



only. Given M and D, the time complexity of the
optimization is OðMjDjÞ.

We measured the performance of our system (Table 3),
implemented on an Intel Core i7 3.07-GHz machine with
NVIDIA GTX 580 and Direct3D 10 API. The repeated
evaluation of the cost function and gradients was signifi-
cantly accelerated by the implementation on the GPU.
These evaluations accounted for most of the computational
cost in computing center-surround differences.

7.2 Quality Improvements

The findings of our user study serve as a basis for the
following discussion on quality improvements. Fig. 6
compares the four top-rated and four worst rated examples
of “vegetation class change” data used in the user
preference test. In Fig. 6a, the visibility of small classes,
which are hard to detect in the input, is significantly
improved, and larger classes become weaker in their
visibility. Meanwhile, different classes are still clearly
distinguishable despite their sizes. Thereby, the visualiza-
tion of small and large classes are well balanced in their
visibility. In our user experiment, most participants
preferred such optimized outputs in comparison with the
original input.

However, we occasionally encountered less preferred
outputs (see Fig. 6b). We inspected these images and it
became apparent that they can be categorized into two
types: those where strong contrast between large classes is
lost in the optimized outcomes, and those where there is
globally low visibility and discrimination in all classes (e.g.,
ColorBrewer Pastel2 #13). We observed good responses in
both cases for Tmax in contrast to Tmean; here, Tmax is trying
to keep the contrast of large classes high but also tries to
increase the visibility of all classes at a global scale.

We further tested our algorithm to examine visibility
improvements on more diverse sets of images. Fig. 7
compares five input images selected within the geographical

visualization domain against the two optimized outputs for
each. The left column presents the original images, the
middle column their optimized images using Tmean, and the
right column their optimized images using Tmax. The first
two examples were generated with US Ethnic and Vegetation
Class Change data. The other three examples (World Climate,
US Land Use, and Permafrost) were generated using the given
predefined color palette—this implies that the initial color
mappings are relatively well tuned for these data sets. Since
the number of colors can range up to 15 in most practical
visualizations, we merged similar classes, grouping them
into less than 15 classes for (c), (d), and (e). The data sets
are placed in the increasing order of classes M. We further
categorized them into four types according to the
spatial characteristics of tiny, small, medium-size, and
large groups.

Overall, the input images had problems in presenting
small classes or in discriminating different classes from
each other. The composition of all categorical palettes was
significantly improved using our optimization algorithm.
The minimization of class visibility differences effectively
improves the visibility of small classes, and the discrimina-
tion constraint ensures that one can distinguish the colors at
a global level. Tiny/small/medium-size classes had higher
contrasts in terms of luminance and saturation, while large
classes had reduced saturation and visibility. This indicates
our algorithm improves data sets of different sizes well.
When utilizing Tmax, large classes are close to their input
colors, while small classes are improved to some extent.
This causes small classes to appear less distinct than those
with Tmean, but it is still very useful for inputs with weak
color cues.

Although our algorithm includes the background color
for optimization, the resulting background color did not
change substantially when using a typical white back-
ground, except for Fig. 7e. Our discrimination constraints
kept the background color far away from any other colors,
to ensure a better discrimination of colors. However, when
the background color is not around the extrema of grayscale
colors (i.e., white or black), inclusion of the background
color is still useful; in such cases, the background color can
be also improved through optimization for better visibility,
similar to the other nonbackground colors.

Fig. 8 shows an example. Here, the inclusion of the
background color into the optimization (c) significantly
improves the overall visibility of all classes (both small and
large classes), in contrast to the result of the optimization
without considering the background color (b). This result
can be explained by “simultaneous contrast” [4], [5], where
the darker background adds complementary colors to
neighboring nonbackground colors.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

TABLE 3
Summary of the Optimization Performance

Fig. 8. The effect of optimization over background color: (a) input image, (b) output image without background color optimization, and (c) output
image with background color optimization. Tmean was used for optimization.



8 DISCUSSION AND LIMITATIONS

The user study and the examples presented in the previous
sections demonstrate that our optimized categorical color
palettes yield good visibility in all classes and, thus, are
preferred by users. One noteworthy aspect is that well-
optimized visibility in all classes does not necessarily
correlate with visually pleasing results. Particularly, max-
imum visibility in the optimization should be carefully
used. Based on our experience, it should only be used
for images that exhibit little contrast over all classes.
Otherwise, we can often encounter exaggerated results that
are visually displeasing.

We have experimented with the two different target
visibilities Tmean and Tmax for optimization, but did not find
a clear conclusion on which strategy is better in general.
Though, one observation is that optimization with Tmean
often results in less distinguishable color for weak input
color cues. One potential solution to this issue would be to
utilize the characteristics of input images such as variance
of categorical colors; according to the variance, we can use
different target visibilities ranging between Tmean and Tmax.

Our visibility analysis was inspired by the antagonistic
organization of the center and surround in the human
visual system. This was useful for detecting weak contrasts
in luminance, yet still limited in detecting of hue/
saturation components (sensitive to lower spatial frequen-
cies). Consideration of the interactions of different color
channels with regard to spatial frequency (or object size),
such as the spatial contrast sensitivity function [9], would
make our system more comprehensive for both chromatic
and luminance channels.

We used fixed hue values throughout the optimization
process. The resulting categorical color palettes match with
the user’s initial color preference or the suggestions made
by visualization packages. However, this weakens the
discrimination of large-scale color cues. The contrast
enhancement of saturation components (via discrimination
constraints) alleviates this problem, but a better solution is
the use of a hue component, as noted in [1]. Considering
hue components in the optimization process without losing
the aesthetic aspect of a color palettes could be the subject of
future research.

Another limitation of our system is grounded in the well-
known limitation of the CIE Lab space. The distance in CIE
Lab space might not be perceptually uniform for relatively
long distances [11], and bluish colors have a higher
threshold to get distinguished from similar neighboring
colors. A simple remedy would be the minimization of the
use of bluish colors or the use of alternative color spaces
such as CIE1994 or CIEDE2000. However, in particular for
CIEDE2000, the computation of gradients to be used in the
optimization might be difficult, because it only guarantees
C0-continuity. A nongradient-based technique might be
used to facilitate optimization.

The use of CIE Lab space does not guarantee the
optimal performance in all display configurations. In
particular, it is well known that high-dynamic-range
(HDR) display does not work well with CIE Lab space.
To the best of our knowledge, studies on HDR perceptual
color space are still ongoing.

Our algorithm is incompatible with a grayscale image as
an input, leading to unpredictable results. This is because
grayscale images have zero chroma values, which means
hue values cannot be defined.

9 CONCLUSIONS AND FUTURE WORK

We presented an automated color optimization algorithm
based on the principles of human visual perception to make
categorical differences clearly visible in a graphical repre-
sentation of categorical data. We introduced the concept of
visibility to quantitatively measure the utility of a color
palette to present coherent structure to the user. Our
measure detects regions in which visibility is inhibited by a
visually dominant structure. We performed a user experi-
ment over a range of general-purpose color palettes and
two real-world data sets. The results indicate that visibility
is a robust measure, and our color optimization can help to
increase the effectiveness of a visual representation.
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