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The extracellular environment is a complex entity comprising of the extracellular matrix
(ECM) and regulatory molecules. It is highly dynamic and under cell-extrinsic stress,
transmits the stressed organism’s state to each individual ECM-connected cell. microRNAs
(miRNAs) are regulatory molecules involved in virtually all the processes in the cell,
especially under stress. In this review, we analyse how miRNA expression is regulated
downstream of various signal transduction pathways induced by changes in the extracellular
environment. In particular, we focus on the muscular dystrophy-associated cell adhesion
molecule dystroglycan capable of signal transduction. Then we show how exactly the
same miRNAs feedback to regulate the extracellular environment. The ultimate goal of
this bi-directional signal transduction process is to change cell behavior under cell-extrinsic
stress in order to respond to it accordingly.
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Each individual organism in its lifetime has to cope with multi-
ple kinds of stress that occur when body’s homeostasis is shifted
from its optimal state. Development, puberty, changing environ-
mental conditions, injuries, diseases, and aging – all influence
the organism as a whole no matter which cell or system was the
first to encounter the stressor. Organism’s systemic reaction to
stress is achieved because cells are not isolated from each other.
Rather, they communicate through direct cell–cell contacts or via
the extracellular matrix (ECM).

In this review, in the beginning we introduce the ECM and
the cell-extrinsic stress-induced signaling molecules. We define
the extracellular environment, focusing on how it can encode
for stress signals. We then discuss how a cell can read the
encoded signals, focusing on cell adhesion molecule dystro-
glycan (Dg) capable of outside-in signal transduction. In the
last two parts of the review, we show how a cell can change
levels of intracellular microRNAs (miRNAs) in response to out-
side stress signals, and how these miRNAs can then modulate
the cell behavior by targeting components of the extracellular
environment.

ECM AS A RESERVOIR FOR CELL-EXTRINSIC
STRESS-INDUCED SIGNALING MOLECULES
The ECM is composed of three major types of structural
components: insoluble collagen fibers, viscous proteoglycans,
and soluble multiadhesive proteins. Examples of multiadhe-
sive proteins are laminin and fibronectin that connect col-
lagens and proteoglycans to the cell receptors. Metabolic
enzymes responsible for the restructuring of the ECM, like
matrix metalloproteinases (MMPs) and tissue inhibitors of met-
alloproteinases (TIMPs), can be deposited outside the cell
(Yu and Woessner, 2000; Yu et al., 2000) and thus can be

considered as the fourth, enzymatic, component of the ECM
(Table 1).

The three-dimensional net of ECM components acts as a
reservoir and a scaffold for a diversity of regulatory molecules:
cytokines (including various growth factors and interleukins),
hormones, and extracellular miRNAs. These molecules consti-
tute the cell-extrinsic stress-induced signaling components, as
they warn different cells of the organism about changes in the
environmental conditions such as injuries, pathogens, and other
external stressors that endanger the organism’s homeostasis and
welfare.

THE EXTRACELLULAR ENVIRONMENT
Extracellular environment can be defined as a combination of the
ECM and the extracellular regulatory molecules. Specific compo-
sition of the ECM of each ECM-connected cell defines the types
of regulatory molecules found in close proximity to the cell. For
example, different types of cytokines can be bound to different
types of ECM proteins, contributing to where the cytokine exerts
its function in mediating a specific cell fate or activity, as we now
discuss.

COLLAGEN-BINDING CYTOKINES
Procollagen of type IIB is synthesized and deposited into the ECM
by differentiated chondrocytes. Immature chondrogenic progen-
itors synthesize the other splice variant of procollagen – type IIA
that has an additional cysteine-rich domain. This domain was
shown to bind growth factors, such as transforming growth factor-
β1 (TGF-β1), bone morphogenetic proteins bone morphogenetic
protein-2 (BMP-2) and BMP-4 (Zhu et al., 1999; Larraín et al.,
2000). Hence, the type of ECM procollagen defines the presence
of differentiation factors and thus cell’s responsiveness to them.

www.frontiersin.org December 2013 | Volume 4 | Article 305 | 1

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/journal/10.3389/fgene.2013.00305/abstract
http://community.frontiersin.org/people/EvgeniiaEdeleva/108478
http://www.frontiersin.org/people/u/34845
mailto:halyna.shcherbata@ mpibpc.mpg.de
http://www.frontiersin.org/
http://www.frontiersin.org/Epigenomics_and_Epigenetics/archive


“fgene-04-00305” — 2013/12/31 — 16:24 — page 2 — #2

Edeleva and Shcherbata microRNA-guided cell-ECM conversation under stress

Table 1 |The components of the extracellular environment, cellular sensory apparatus, and miRNAs, mentioned in the review.

Extracellular environment

ECM components

Structural Enzymatic

Collagen fibers Proteoglycans Multiadhesive proteins Metabolic enzymes

HSPG:

- Perlecan

- Agrin

SLRP:

- Decorin

- Biglycan

- Fibromodulin

- Laminins

- Fibronectin

- MMPs

- TIMPs

Cell-extrinsic stress-induced molecules

Cytokines Hormones Extracellular miRNAs

Growth factors:

- TGFs

- BMPs

- HGF

- PDGF

- VEGF

- FGFs

- EGF

Other:

- TNF-α

- IL-7

- IL-6

Androgen

Ecdysone – Drosophila thyroid

hormone homolog

Drosophila insulin-like peptide

- Packaged into lipid-based carriers

- Bound by RNA-binding proteins

Cellular sensory apparatus

Cell adhesion molecules Cell signaling receptors

- Integrins

- Dystroglycan

- CD44

- Fasciclin II

- Cytokine receptors

- Receptor tyrosine kinases

- TGF-β receptors

- Nuclear receptors

- Receptor phosphotyrosine phosphatases

Outside-in and inside-out messengers: miRNAs

Dependent on the extracellular environment Modulating the extracellular environment

miR-34 family

miR-205

miR-133/miR-1

miR-29 family

dme-miR-252, dme-miR-980, dme-miR-956

miR-21

miR-132

miR-125 family

dme-let-7-Complex

dme-miR-14, dme-miR-8

miR-143/miR-145

miR-133/208/499

miR-34a

miR-205

miR-133

miR-29 family

miR-21

miR-132

miR-125

dme-let-7

dme-miR-14, dme-miR-8

miR-143

miR-133
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Types of collagen deposited by cells also impose spatial con-
straints on the biological activity of platelet-derived and hep-
atocyte growth factors (PDGF and HGF; Somasundaram and
Schuppan, 1996; Schuppan et al., 1998). PDGF and HGF trig-
ger mitosis in mesenchymal cells and hepatocytes respectively.
Thus, the ECM collagenous composition serves as an impor-
tant clue for growth factors binding to the appropriate target cell
types.

FIBRONECTIN-BINDING CYTOKINES
Cell-to-ECM adhesion protein fibronectin can also modulate
effects of various signaling molecules, as for example of vascu-
lar endothelial growth factor (VEGF) that promotes migration
and proliferation of endothelial cells. Fibronectin has separate
cell-binding and VEGF-binding domains, and only when it binds
VEGF and a cell simultaneously, the VEGF stimulation is sig-
nificantly enhanced (Wijelath et al., 2006). Thus, the degree of
endothelial cell response to VEGF can be regulated by the ECM
composition.

Another domain of fibronectin was shown to interact with
tumor necrosis factor-α (TNF-α) – initiator and regulator of
inflammatory reactions. When bound to fibronectin, TNF-α
enhances adhesion of activated immune cells to this glycopro-
tein, suggesting that ECM-bound TNF-α may recruit and direct
immune cells to the sites of inflammation (Hershkoviz et al., 1994).
In addition, interleukin-7 (IL-7) has been shown to modulate
adhesive properties of immune cells in the context of the ECM
composition. IL-7 binding to fibronectin augments adhesion of
resting T-cells to fibronectin (Ariel et al., 1997). Hence, the ECM
environment in which immune reactions take place modulates
effects of cytokines on immune cells.

HSPG-BINDING CYTOKINES
Heparan sulfate proteoglycans (HSPGs) are cell surface and ECM
molecules composed of a protein core to which heparan sul-
fate chains are attached. Sulfate chains can bind basic fibroblast
growth factors (FGF) for storage and protection from proteolytic
degradation (Saksela et al., 1988). Bound FGFs can be released
in bioactive form by partial proteolysis of the protein core or
through digestion of heparan sulfate moieties (Ishai-Michaeli
et al., 1990; Saksela and Rifkin, 1990). However, in order to
interact with their cell receptors basic FGFs have to be bound
by heparan sulfate chains (Rapraeger et al., 1991; Yayon et al.,
1991).

Perlecan and agrin are HSPGs involved in modulation of
FGFs signaling in the processes of bone formation and neurite
outgrowth respectively. Perlecan secreted by chondrocytes local-
izes to the growth plate of the developing long bones; FGF18
bound to perlecan enhances FGF receptor 3 signaling to control
proper cartilage/bone transition zone formation (Chuang et al.,
2010). Agrin in neuronal basal laminae binds FGF2 and prob-
ably enhances FGF2 affinity to its cellular receptor resulting in
enhancement of FGF2 neurite outgrowth stimulation (Kim et al.,
2003).

Small leucine-rich proteoglycans (SLRPs) represent a different
type of proteoglycan-growth factor interactions. The core pro-
teins of SLRPs decorin, biglycan and fibromodulin were shown to

bind to isoforms of TGF-β (Hildebrand et al., 1994), sequestering
TGF-β into the ECM for signaling.

EXTRACELLULAR miRNAs
In addition to cytokines, the extracellular environment also con-
tains hormones and miRNAs. Recent studies have suggested that
these extracellular miRNAs can act as regulatory molecules. miR-
NAs are small non-coding regulatory RNA molecules. In most
cases, they act as negative regulators of protein translation by bind-
ing to the 3′UTRs of the target mRNA molecules, subjecting them
for silencing or degradation (He and Hannon, 2004). miRNAs
are encoded by the genome of each organism. They undergo the
maturation process first in the nucleus and then in the cytoplasm.
Extracellular miRNAs are expressed by a cell but they are secreted
into the extracellular environment to act on other cells. They are
different from intracellular miRNAs, which act on the same cell
that have expressed the miRNA (reviewed in Rayner and Hennessy,
2013).

Components of the ECM and ECM-tethered and free cell-
extrinsic stress-induced signaling molecules (cytokines, hor-
mones, and extracellular miRNAs) together constitute the extra-
cellular environment, surrounding each individual cell (sum-
marized in Table 1). This environment is highly dynamic and
changes in response to different stimuli. The profile of the sig-
naling molecules may be altered or the composition of the ECM
may change, which will also bring a change in the quantity and
distribution of certain ECM-associated signaling molecules. Thus,
the extracellular environment represents the state of the organism,
translated into the language that each individual cell can under-
stand: in the language of cell-extrinsic stress-induced signaling
molecules.

HOW DO EXTRACELLULAR SIGNALS REGULATE miRNA
EXPRESSION
In general, the cell can interpret the extracellular signals because
it has various receptors that enable the ECM-bound cell to
communicate with the outside world by modulating signal trans-
duction. There are two main types of receptors: (1) cell sig-
naling receptors responsible for binding and transducing signals
from cell-extrinsic stress-induced signaling molecules, and (2)
cell adhesion molecules that bind and respond to the ECM
components.

Cell signaling receptors, such as cytokine receptors (CR),
receptor tyrosine kinases (RTK), TGF-β receptors, nuclear recep-
tors (NRs), and receptor phosphotyrosine phosphatases among
others, bind growth factors, interleukins, and other cytokines,
steroid and protein hormones. Each type of receptor activates
specific signaling pathways inside the cell but often pathways
activated by different types of receptors overlap. For example,
the Ras-mitogen-activated protein (MAP) kinase pathway, and
the PI-3 kinase pathway are common to more than one type of
receptor (Figure 1). Since many miRNAs are encoded by their
own genes, the pathways activated by cell signaling receptors
can regulate expression of miRNA-coding genes as well as of
protein-coding genes.

Most prominent cell adhesion molecules are the proteins of
the integrin family that bind to collagen, perlecan, laminin, and
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FIGURE 1 |The cell-extrinsic stress signaling brings about the changes in

the extracellular environment that are read by the cellular sensory

apparatus. The extracellular environment is a complex but organized entity
composed of structural and enzymatic ECM proteins [collagens,
proteoglycans, multiadhesive proteins like laminin and fibronectin (Fn), MMPs
and TIMPs] and cell-extrinsic stress-induced signaling molecules including
cytokines (considering growth factors as a type of cytokine), hormones, and
extracellular miRNAs. The cellular sensory apparatus includes the ECM

receptors and receptors for signaling molecules. Integrins and dystroglycan
(Dg) are the ECM receptors. They do not only connect cell to its matrix but are
also involved in the cell signaling. Multiple receptors for signaling molecules
[including receptor tyrosine kinases (RTK), cytokine receptors (CR), TGF-β
receptors, and nuclear receptors (NR)] transduce changes in the extracellular
environment into the various signaling pathways inside the cell. Extracellular
miRNAs can probably be taken up by the cell via yet unknown mechanism.
NO, nitric oxide, Ago, argonaute.

fibronectin. Intracellular integrin signaling can act either through
modulation of signaling from growth receptors or through direct
activation of intracellular signaling events. Directly activated by
integrins are the MAP kinase pathway, the PI3 kinase (PI3K)
pathway, and the small GTPases of the Rho family (Keely et al.,
1998; Giancotti, 1999; Figure 1). Although integrin signaling has
a potential to regulate miRNA expression profile (Gerson et al.,
2012), we would like to focus here on another cell adhesion
molecule Dg capable of regulating miRNA expression. Dg is a
part of the Dystrophin Glycoprotein Complex, associated with a
group of fatal inherited diseases muscular dystrophies (Campbell,
1995; Cohn, 2005; Goddeeris et al., 2013). No cure exists for these
neuromuscular degenerative diseases, and we believe that better
understanding of Dg role in cell-ECM communication will aid in
the development of future therapeutics.

DYSTROGLYCAN AS A CELL ADHESION MOLECULE
Dystroglycan is a major non-integrin ECM binding receptor.
α- and β-Dgs are translated in mammals from the same mRNA

transcript and are then separated by posttranslational cleavage
and modifications to form a membrane complex with extracel-
lular α-Dg tightly bound to transmembrane β-Dg (Barresi and
Campbell, 2006; Figure 1).

α-Dystroglycan can bind to different ECM proteins: laminin,
agrin, and perlecan in muscle, and neurolexin in brain
(Barresi and Campbell, 2006). Importance of the α-Dg associa-
tion with the ECM is highlighted by the experimental data that
mice with mutation in the gene encoding Dg do not develop into
adults due to improper formation of the early embryonic basement
membrane (Williamson et al., 1997). In Dg-null murine muscle,
α7B integrin receptor subunit is selectively upregulated suggest-
ing that certain types of integrins can partially compensate for the
absence of Dg in basement membrane assembly and maintenance
(Côté et al., 2002).

Transmembrane β-Dg binds inside the cell to dystrophin in
skeletal muscles and to alternative proteins of the dystrophin locus
or to an autosomal homolog of dystrophin, utrophin, in non-
muscle tissues (Barresi and Campbell, 2006). β-Dg also binds the
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adaptor protein growth factor receptor-bound protein 2 (Grb2)
both in muscle and in brain (Yang et al., 1995). Dystrophin local-
izes to the plasma membrane another type of adaptor proteins –
syntrophins with different syntrophin isoforms being expressed in
muscle and neuronal tissues (Bhat et al., 2013).

The interaction partners of Dg and dystrophin, as well as the
Dg–dystrophin signaling are extensively studied in mammalian
muscle cell culture and in muscle tissue, as well as on the Drosophila
muscular dystrophy model (Shcherbata et al., 2007). In the genetic
interaction screen on Drosophila, we identified new muscle spe-
cific partners of Dg and dystrophin, of which some are implicated
in mechanical and stress-induced pathways (Kucherenko et al.,
2011). Loss of Dg or dystrophin in Drosophila resulted in altered
cellular levels of reactive oxygen species, suggesting the function
of these proteins in regulation of homeostasis (Marrone et al.,
2011b). In muscle cell culture, phosphorylation of syntrophins
due to laminin-1 binding to α-Dg was shown to increase the asso-
ciation between syntrophins and Grb2, resulting in the initiation of
Rac1 signaling (Zhou et al., 2006). In skeletal muscle, syntrophins
also bind heterotrimeric G-protein. This binding together with
laminin attachment to Dg complex is necessary for activation
of the PI3K/Akt signaling pathway (Xiong et al., 2009). Inter-
estingly, recent data also links the Dg–dystrophin signaling via
syntrophins to the expression of miRNAs in muscle progenitors.
Syntrophins can localize neuronal nitric oxide synthase (nNOS)
to the muscle cell sarcolemma leading to the production of nitric
oxide as a second messenger that nitrosylates histone deacetylase 2
(HDAC2) influencing expression of certain genes, including miR-
NAs, important for muscle cell differentiation and maintenance
(Cacchiarelli et al., 2010).

The nervous system expression of Dg together with dys-
trophin and syntrophins suggests the role for Dg in the ner-
vous tissue. Importance of the cell-to-ECM adhesion via Dg
in the nervous system is supported by the fact that mice with
astrocytes-specific deletion of Dg show discontinuities in the
pial surface basal lamina (Moore et al., 2002). In the genetic
interaction screen on Drosophila brain, we showed that Dg and
dystrophin interact with proteins involved in actin cytoskeleton
remodeling, which is essential for cell homeostasis (Marrone
et al., 2011a). Moreover, defects in the Dg glycosylation that
disrupt its association with the ECM cause numerous human
diseases, such as muscle-eye-brain disease, Walker–Warburg syn-
drome, forms of congenital muscular dystrophies, symptoms
of which include prominent neurological abnormalities (Cohn,
2005).

Hence, integrins, Dg, and a variety of signaling receptors for
the cell-extrinsic stress-induced signaling molecules constitute the
major cellular sensory apparatus, allowing the cell to read informa-
tion encoded by the extracellular environment (Table 1; Figure 1).
Signaling pathways activated by the cellular sensory apparatus have
a potential to regulate intracellular miRNA expression, examples
of which we discuss in the next section.

miRNAs DEPENDENT ON THE EXTRACELLULAR
ENVIRONMENT
The importance of extracellular environment for regulation of
miRNA expression profile was highlighted in the experiments with

Matrigel. Matrigel is a 3D cell culture medium composed of the
protein mixture secreted by the mouse sarcoma cells, resembling
the basement membrane (Kleinman and Martin, 2005). Human
cancer cells cultured on the Matrigel have a significantly different
miRNA expression profile compared to cells cultured on plas-
tic (Price et al., 2012). Hence, miRNA cellular levels depend on
the composition of the extracellular environment. In the simi-
lar experimental setup, it was shown that p53 expression levels
and nuclear localization are enhanced in human cells cultured on
Matrigel (Li et al., 2003). Taking into account that certain miRNAs
– miR-34 family members and miR-205– can be directly regulated
by p53 (Shi et al., 2008; Piovan et al., 2012), these results again
suggest that cellular miRNA profile can change in response to the
extracellular environmental composition.

miRNA expression profile can be regulated in the ECM-
dependent manner at the transcription level through (a) regula-
tion of epigenetic marks or (b) through regulation of transcription
factors’ activity. Additionally, cellular miRNA expression pro-
file can be altered through direct incorporation of extracellular
miRNAs.

EPIGENETIC MODIFICATIONS
miRNA expression can be regulated through changes in the
chromatin modifications. For example, inhibition of histone
deacetylases (HDACs) was shown to alter miRNA levels in breast
cancer cell line (Scott et al., 2006). Many pathways can lead to
HDACs inhibition. One of the signaling mechanisms via HDAC2
inhibition can be suggested to modulate levels of specific miRNAs
in muscle progenitor cells depending on the extracellular environ-
ment. This pathway involves dystrophin and nNOS localization
to plasma membrane by syntrophins. nNOS causes nitric oxide
production, S-nitrosylation and subsequent inhibition of HDAC2
that directly controls expression of miR-133/miR-1 and miR-29
(Cacchiarelli et al., 2010). Since dystrophin is tightly bound to Dg,
and Dg is an important ECM binding molecule, it can be hypoth-
esized that Dg–dystrophin–syntrophin–nNOS–HDAC2 pathway
can be modulated from the extracellular space in response to
stimuli to alter miRNA levels.

Though this pathway was described on muscle progenitor
cells, it may be important for tuning miRNA expression in non-
muscle tissues as well. Dg, dystrophin and syntrophin isoforms
were shown to be expressed in non-muscle tissues, like in brain,
liver, and kidney (Tinsley et al., 1994; Bhat et al., 2013). More-
over, we have identified on whole-fly Drosophila RNA extracts
a group of Dg and dystrophin-dependent stress-response miR-
NAs. Levels of these miRNAs change under temperature stress in
wild type flies. On the contrary, in flies with no functional Dg
or dystrophin, no change in the expression of these miRNAs is
observed. At least three of such Dg- and dystrophin-dependent
stress-response Drosophila miRNAs –miR-252, miR-980, and miR-
956– depend also on the levels of syntrophin 1 that is a Drosophila
homolog of mammalian syntrophins capable of nNOS localization
(Alessi et al., 2006; Marrone et al., 2012). Since miR-252, miR-980,
and miR-956 are suggested to have a nervous system expression,
the Dg–dystrophin–syntrophin–NOS–HDAC pathway may exist
additionally in non-muscle tissues and contribute to the miRNA
expression changes under stress.
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MODIFICATIONS VIA TRANSCRIPTION FACTORS
The change in the miRNA transcription due to external stim-
ulation can occur because of the modulation of the availability
and activity of certain transcription factors. For example, TGF-β
signaling acts via direct activation of cytosolic Smad transcrip-
tion factors, and miR-29 was shown in human cell culture to
be regulated downstream of TGF-β2 pathway (Luna et al., 2011).
Interestingly, this same miRNA is involved in the muscle cell dif-
ferentiation and maintenance program and, as discussed above,
is controlled by the Dg–dystrophin–syntrophin–nNOS–HDAC2
pathway.

Various immune-response cytokines act via direct activation
of signal transducer and activator of transcription (STAT) factors
where STAT dimer is translocated into the nucleus upon phospho-
rylation by JAK receptors in response to extracellular signaling.
miR-21 – a tumor suppressor miRNA associated with many types
of cancer – has been shown to be regulated by this signaling path-
way since the promoter of the miR-21 gene can be directly bound
by STAT3 transcription factor (Löffler et al., 2007).

Many cytokines via Ras-mitogen-activated protein kinase
(MAPK) signaling can activate cAMP-response element bind-
ing protein (CREB), which binds to promoters and regulates
transcription of various genes. The expression of one of the
CREB-activated genes in rat neuronal cells miR-132 is turned
on in response to neurotrophins stimulation (Vo et al., 2005).
Growth factor signaling activates several pathways and kinase
cascades, including MAPK signaling cascade, leading to acti-
vation of transcription factors specific to the cell type and
external stimulus. For example, miR-125 expression is reduced
in human lung cancer cell culture due to epidermal growth
factor (EGF) stimulation, though it is not yet clear which
transcription factors are involved in this response (Wang et al.,
2009).

Many steroid hormones belong to the NR family. Inactive NRs
are cytoplasmic. Upon hormone binding, they translocate into
the nucleus and serve as transcription factors. miRNAs directly
activated by NRs exist. For example, human miR-125b-2 con-
tains a functional androgen-responsive element upstream of its
gene locus (Shi et al., 2007). In Drosophila, miR-125 belongs to
an evolutionary conserved let-7-Complex of three miRNAs, miR-
100, let-7, and miR-125 (Pasquinelli et al., 2000). Ecdysteroid
hormone signaling was shown to upregulate transcription of let-
7-Complex but repress transcription of other Drosophila miRNAs
miR-14 and miR-8 (Varghese and Cohen, 2007; Garbuzov and
Tatar, 2010; Chawla and Sokol, 2012; Jin et al., 2012; Kucherenko
et al., 2012). Such NR-responsive miRNAs can react very fast to
hormone stimulation without multiple intermediate activation
steps required.

DIRECT INPUT FROM THE ECM
In addition to the ECM-dependent modulation of signaling path-
ways that leads to changes in the intracellular miRNA profile,
extracellular miRNAs can be directly incorporated by cells. miR-
NAs can be prominently secreted from certain tissues, transported
via blood by lipid- or protein-carriers and can then be taken up
by recipient cells in different tissues (Rayner and Hennessy, 2013).
For example, in human endothelial cells atheroprotective shear

stress significantly upregulated expression of miR-143/miR-145
cluster. miR-143/miR-145 were then found enriched in exosomes
of endothelial cells, secreted by them and taken up by co-cultured
smooth muscle cells. This prevented smooth muscle cells from de-
differentiation (Hergenreider et al., 2012). Hence, in the organism
miR-143/miR-145 secreted from the endothelial cells in response
to atheroprotective shear stress may travel via blood to the smooth
muscle cells and protect them from malfunction.

miRNAs can be secreted from inflamed tissues, signaling that a
possible threat for the whole organism exists. Analysis of plasma
from patients allowed to suggest that miR-133/208/499 are secreted
from myocardium following acute myocardial infarction (AMI)
and circulate in blood packaged into exosomes or microvesicles
(Corsten et al., 2010; De Rosa et al., 2011; Olivieri et al., 2013).

miRNAs take part in virtually all critical cellular processes
(He and Hannon, 2004), ranging from stem cell division,
maintenance and differentiation (Hatfield et al., 2005; Qi et al.,
2009; Mathieu and Ruohola-Baker, 2013) to aging of the
organism (Inukai and Slack, 2013). We have now summa-
rized some evidence that the constantly tuned and adjusted
miRNA profile of cells is regulated downstream of many
classical ECM-connected pathways, as well as of a newly
discovered ECM-connected Dg–dystrophin–syntrophin–nNOS–
HDAC2 pathway (Figure 2).

ALTERED miRNA PROFILE CHANGES CELL BEHAVIOR
miRNAs differentially expressed in response to ECM-dependent
signaling may have various functions in the cell. Interestingly,
a proportion of those ECM-regulated miRNAs was shown to
feedback to alter the ECM composition or the cellular sensory
apparatus (Figure 2). In this section, we would like to highlight
how each of the introduced in the previous section miRNAs mod-
ulates cell behavior by acting either on the components of the
extracellular environment or on the cell adhesion molecules/cell
signaling receptors (Table 1).

MODULATION OF CELL BEHAVIOR VIA EXTRACELLULAR ENVIRONMENT
The ECM is a remarkably complex still organized entity. Its care-
ful regulation is essential for proper functioning of cells and
subsequently tissues, organs and the whole organism. miRNAs
can regulate the ECM composition. For example, the above dis-
cussed TGF-β2 signaling-dependent miR-29 family members were
shown to play a role in the maintenance of the ECM homeostasis.
Expression of miR-29 members in human cell culture resulted in
significant reduction of the ECM components, such as laminin,
fibronectin, collagen I, collagen IV, and SPRC (secreted protein,
acidic, and rich in cysteine; Villarreal et al., 2011). miR-133, which
is secreted from diseased myocardium following AMI, was shown
in the experiments in rats and in human cell culture to directly
target 3′UTR of the pro-α1 chains of type I collagen, chang-
ing the ECM properties of the recipient tissues (Castoldi et al.,
2012). Interestingly, miR-133 is also one of the miRNAs acti-
vated by the Dg–dystrophin–syntrophin–nNOS–HDAC2 pathway
in muscle progenitor cells, and it is known there to inhibit cell
proliferation via inhibition of the serum response factor, and to
induce cell differentiation via HDAC4 inhibition [as summarized
in (Marrone and Shcherbata, 2011)].
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FIGURE 2 | miRNAs regulated downstream of signaling induced by changes in the extracellular environment (black arrows) influence in turn the ECM

composition and the cellular sensory apparatus, and ultimately the cell behavior (red arrows). Only mammalian miRNAs and pathways are shown.

Fibronectin is a high-molecular weight ECM glycoprotein
that binds integrin receptors modulating their signaling activity
thus playing an important role in cell adhesion, growth, dif-
ferentiation, and migration. Fibronectin mRNA can be targeted
by miRNAs. In human cell culture experiments miR-143 was
shown to directly target the 3′UTR of the fibronectin type III
domain containing protein 3B – molecule that regulates cell motil-
ity. By repressing fibronectin expression, high levels of miR-143
induce invasive and metastatic behavior of liver tumors in mice
(Zhang et al., 2009). It is interesting to note, that miR-143 is one
of the miRNAs found in the extracellular space packaged into
exosomes (Hergenreider et al., 2012). Since miR-143 is an onco-
miRNA, cancer cells may communicate and promote each other’s
metastatic and invasive properties via secretion of this circulating
miRNA.

For proper ECM maintenance, availability and activity of ECM
modulating enzymes MMPs and TIMPs are of utmost signifi-
cance. miRNAs were shown to control their expression. Elevated
levels of the IL-6 dependent oncogenic miR-21 were shown to
inhibit MMP inhibitors, promoting MMP activity, cancer inva-
sion, and metastasis of glioblastoma in mouse model (Gabriely

et al., 2008). Another study on human tissues suggested that miR-
21 induces inhibition of TIMP3, and additionally of programmed
cell death 4 protein, accounting for increased invasiveness and
reduced apoptosis in cholangiocarcinomas (Selaru et al., 2009).

Signaling molecules are a part of the extracellular environ-
ment, and miRNA signaling can target such molecules. For
example, expression of the insulin-like peptide in Drosophila,
secreted by insulin-producing cells in the fly brain and involved
in control of energy homeostasis, is regulated by miR-14. It was
recently reported that miR-14 directly targets in insulin-producing
cells a negative regulator of insulin-like peptide gene expression.
Thus, ecdysteroid-dependent miR-14 provides a link between
steroid hormone signaling and insulin secretion to allow nutrient-
independent insulin-production control (Varghese et al., 2010).
Another Drosophila miRNA miR-8, repressed by ecdysteroid
signaling, is involved in innate immune homeostasis control. It
keeps antimicrobial peptides’ expression by fly innate immune
system organ, fat body, at low basal level. Hence, in pathogen-
free flies miR-8 is suggested to keep immune system from firing
and thus to prevent autoimmune reactions (Choi and Hyun,
2012).
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MODULATION OF CELL BEHAVIOR VIA CELL ADHESION MOLECULES
AND SIGNALING RECEPTORS
As important as the extracellular environment is for cell behavior,
proper cell functioning depends also on appropriate cell-to-ECM
attachment and signaling. miRNAs play a role in regulation of
cell adhesion and signaling as well. For example, it was shown
that silencing of the p53-induced miR-205 in human prostatic cell
line reduces secretion of all laminin-332 subunits and integrin-
β4 – critical cell-to-ECM adhesion molecules in control of tissue
integrity. Hence, loss of miR-205 in prostate cancer results in
basement membrane discontinuities (Guess and Quaranta, 2009;
Gandellini et al., 2012). Another p53-induced miR-34a can directly
target CD44 in human cancer cell lines. CD44 is a glycopro-
tein expressed on cell surfaces and capable of ECM binding,
playing a role in cell migration and adhesion. miR-34a-induced
decrease in CD44 levels was shown to inhibit prostate cancer
regeneration and metastasis (Liu et al., 2011). In another work on
mice, directed delivery of miR-34a to cancer cells with nanovec-
tor resulted in induced apoptosis, decreased proliferation, and
ultimately inhibition of tumor growth (Pramanik et al., 2011).

Proper cell adhesion is important not only for stable differ-
entiated state of the cell as opposed to de-differentiation during
cancerogenesis, but also for the early development and initial
differentiation of the cell. Neuronal differentiation is a good
model for emphasizing the importance of cell adhesion in the
complex process of nervous system development. When neurons
differentiate, they send their axons to defined places and estab-
lish contacts with specific cells and ECM components due to
tightly controlled cell adhesion process. miRNAs fine-tune this
process. For example, in rat cortical neurons miR-132 expression
in response to stimulation with neurotrophins results in neurite
outgrowth (Vo et al., 2005). Ecdysteroid induced miRNA let-7 in

the developing Drosophila brain controls via a cytokine-dependent
transcription factor expression levels of the neural cell adhesion
molecule Fasciclin II, ultimately regulating neurons’ differentia-
tion fate (Kucherenko et al., 2012; discussed in Kucherenko and
Shcherbata, 2013). Interestingly, in the differentiated neuron the
target of let-7 is a negative regulator of ecdysteroid signaling. Thus,
let-7 is involved in the positive feedback loop to enhance its own
expression level.

miR-125 gives an example of a miRNA that regulates expres-
sion of cell signaling receptors. In human cancer cell line, miR-125
members are inhibited due to EGF stimulation (Wang et al., 2009).
Interestingly, miR-125 overexpression results in the reduction of
the transcript and protein levels of the EGF receptors themselves,
significantly reducing cell motility and invasion (Scott et al., 2007).
Hence, miR-125 is also involved in the positive feedback loop
down-regulating its own inhibitor, and leading to inhibition of
certain properties of cancerous cells.

CONCLUDING REMARKS
The extracellular environment is a complex system of ECM
components and signaling molecules. It undergoes constant
rearrangements following different kinds of stress. Cells have
developed a sensitive apparatus to respond to the changes of
the extracellular environment by tuning the expression of genes,
including the miRNA-coding genes. Interestingly, some of those
miRNAs feedback to affect the ECM and cellular sensory appa-
ratus with the ultimate goal being, to change the cell behavior.
This further widens the idea of the “dynamic reciprocation”
between the cell and its extracellular environment under stress
(Bissell et al., 1982).

Although it is the extreme cases of miRNAs influencing cell
behavior (like invasion, metastasis and apoptosis) that are mostly

FIGURE 3 | Proposed model of the miRNAs involvement in the

bi-directional signal transduction between the cell and extracellular

environment under cell-extrinsic stress. Red arrows: cell-extrinsic
stress changes the extracellular environment of cells in the organism.
The ECM composition and the cell-extrinsic stress-induced molecules, as
parts of the altered extracellular environment, signal via the cellular

sensory apparatus to change the miRNA expression profile of cells.
Yellow arrows: altered miRNA levels target the cellular sensory
apparatus and the extracellular environment. Green arrows: this leads to
the changes in cell behavior. The mode of cell behavior is different
dependent on the strength and length of the applied cell-extrinsic
stress.
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studied, we can hypothesize that under mild stress, miRNAs
together with other effector molecules in an affected cell coor-
dinate their work to return the organism to its initial homeostasis.
The stronger and longer the stress is – the harder it is for the cell
to constantly shift back to its initial state. Then, a new altered
homeostasis is obtained. The new homeostasis represents the
stress-induced state of the cell and though in most cases favor-
able, it can sometimes lead to cell transformations resulting in, for
example, cancer. Under extreme levels of stress, a cell may enter
apoptosis or turn into anastasis (Figure 3).

In this review, we focused on the ECM bound cells and on
their reaction toward the cell-extrinsic stress. The general pic-
ture is much more complex. Many cells do not have contacts to
the ECM and organize into three-dimensional structures due to
multiple cell-to-cell contacts. In addition to cell-extrinsic stress,
cell-intrinsic stress, independent from extracellular environmen-
tal signaling, can lead to the changes in cell behavior. In those cases,
the cellular transcriptome, including the miRNA profile, will be
the one to change first. It may then be translated into the changes in
the cell behavior and at the same time into the changes in the ECM
composition and cell adhesion. Both may again change the cellu-
lar transcriptome and miRNA profile, and ultimately fine-tune the
cell behavior.

With the growing field of miRNA research, further studies will
identify new ECM-dependent pathways or will prove that canon-
ical pathways regulate miRNA expression. As miRNAs seem to be
ubiquitous to all cellular processes, for many of them a role in the
regulation of the ECM composition and the cellular sensory appa-
ratus will be attributed. This will firmly consolidate the role of
miRNAs in the bi-directional signal transduction process between
the cell and its exterior.
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