
Contents

1 Model-based screening algorithm for the identi�cation of periodic �uctuations in
time series (MoPS) 2

1.1 Description of the overall strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Preprocessing and Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 De�nition of periodic and non-periodic test functions . . . . . . . . . . . . . . . . . . . . 4

1.4 Kernel representation of the estimation problem. . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Parametrization of and screening for periodic genes . . . . . . . . . . . . . . . . . . . . . 7

2 Application of MoPS to cell cycle cDTA data 11

2.1 Data exploration and quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 High precision estimates of mRNA synthesis rates and half lifes . . . . . . . . . . . . . . 11

2.3 Signi�cance of MoPS periodicity scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Estimation of the global parameters cell-cycle length and variation . . . . . . . . . . . . 17

2.5 Estimation of gene-speci�c parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Quanti�cation of absolute mRNA abundance . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Cyclins and histones peak timing de�ne cell-cycle stages . . . . . . . . . . . . . . . . . . 20

2.8 mRNA synthesis of non-periodic genes during the cell cycle . . . . . . . . . . . . . . . . 25

2.9 Validation of MoPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9.1 Comparison with other cell-cycle expression studies . . . . . . . . . . . . . . . . . 25

2.9.2 Benchmark on identi�cation of bona-�de cell-cycle genes . . . . . . . . . . . . . . 25

2.9.3 Robustness of peak time assignment . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.10 Regulation of periodic mRNA synthesis timing by TFs . . . . . . . . . . . . . . . . . . . 28

3 Dynamic RNA turnover model and screen for periodic �uctuations in RNA degra-
dation 31

3.1 A model for mRNA synthesis and degradation . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Model speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Detection of genes with variable degradation rate . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Sensitivity and speci�city of the Variable Degradation Score in simulated data . . . . . 33

3.5 The time shift of degradation vs synthesis determines the e�ciency of regulation . . . . 34

4 Modeling of mRNA synthesis and degradation in cDTA cell cycle data 36

4.1 Improvement of variable degradation model over constant degradation model . . . . . . 36

4.2 Transcription regulation by degradation rate peaks subsequent to synthesis rate peaks . 36

4.3 Correlation between the periodicity score and the variable degradation score . . . . . . . 40

1



5 Supplementary Tables 42

References 44

1 Model-based screening algorithm for the identi�cation of pe-
riodic �uctuations in time series (MoPS)

1.1 Description of the overall strategy

The MoPS algorithm is designed to recognize periodic behavior in a observation time series g =
(g(t1), g(t2), ..., g(tK)), having in mind the application to gene expression time series in our cell cycle
data. We will use a likelihood ratio statistic to decide whether a time series displays periodic �uctu-
ations or not. To that end, we will de�ne a family of test functions F , which consists of functions
that we believe to exhaustively represent time courses of periodically expressed genes. On the other
hand, we will de�ne a set of non-periodic test functions, F , that we believe to represent all typical
time courses of genes that are not periodic, e.g. constant genes, or genes that show temporal drift
(monotonically increasing/decreasing genes). Given a time course measurement g, and a continuous
function f , let L(f ; g) denote the likelihood of f , given the observations on g. We determine the
maximum likelihood �t fg ∈ F respectively fg ∈ F for the likelihood function speci�ed in Section 1.2.
Our test statistic, termed periodicity score, becomes

log
L(fg; g)

L(fg; g)
(1)

The larger the periodicity score, the more likely g shows periodic �uctuations.
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Figure 1: MoPS periodic and non-periodic test-functions. Illustration of the statistical test used in
MoPS to determine periodicity in time series data.

1.2 Preprocessing and Error Model

The raw total and labeled mRNA level measurements were corrected for 4-thiouridine labeling bias as
described in [9]. The cDTA protocol uses spike-in control RNAs of S.pombe as an internal standard to
normalize total mRNA arrays (resp. labeled mRNA arrays) between time points. We multiplicatively
rescaled all total measurements such that the sum of all total gene expression levels at time zero equals
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6 ·104, a recent estimate of the number of transcripts per S.cerevisiae cell [13]. Be aware that all results
in this manuscript do not depend on this choice, the rescaling merely facilitates the interpretation of
the data in terms of absolute transcript numbers. The true ratio between the (mean) labeled expression
measurements and the (mean) total expression measurements of all genes cannot be obtained from our
measurements. This normalization factor was derived from the mean transcript half life in S.cerevisiae

in wild type conditions, and it was chosen as in [12].

It has been pointed out by [2] that erratic deviations in lowly abundant genes (whose measurements
have a high coe�cient of variation) might cause good periodic �ts and hence false periodic gene
calls if one assume constant errors (constant variance of measuerements) across the whole range of
gene expression. We account for this by using a heteroscedastic error model. Let g(tk, i) denote
the (normalized) measurement of gene g, g ∈ G, at time tk, k = 1, ..,K, in replicate i ∈ I. Let
g = (g(tk, i); k = 1, ...,K, i ∈ I). The likelihood function L(f ; g) measures the goodness-of-�t by
which a continuous function f approximates g at the measurement time points t1, ..., tK . Our likelihood
function itself is standard, we assume independence of observations, and, as usual for gene expression
measurements, Gaussian errors on the logarithmic values of g,

L(f ; g) =
∏
i∈I

K∏
k=1

1√
2πσg,tk

exp

(
− (log g(tk, i)− log f(tk))2

2σ2
g,tk

)
(2)

For each gene g ∈ G, we measured each time course (labeld or total RNA) in two replicates, namely
g = (g(tk, i)). Denote by Θg the full parameter set (speci�ed in Section 3.2) which characterizes the
approximation functions for g. Our target function is the negative log likelihood l(Θg; g),

l(Θg; g) =
∑
i∈I

K∑
k=1

(log g(tk, i)− log ĝ(tk; Θg))
2

2 · σ2
g,tk

(3)

where ĝ(tk; Θg) is the approximation function for g. Our loss function combines the idea of measuring
similarity by correlation with the automatic penalization of genes whose seemingly periodic variation
is in the range of their measurement error. Note that in Equation (3), σ2

g,tk
is used to describe the

variance for the total mRNA levels. These quantities still need to be de�ned. In our application, given
merely 2 replicate measurements per gene and time point, we face the challenge that the number of
observations is not su�cient to estimate the variances σ2

g,tk
meaningfully from the 2 replicates alone.

Therefore, we use a maximum-a-posteriori approach to regularize the gene-wise empirical variance by
an estimate of the overall, intensity-dependent variance of a microarray. For the estimation of σ2

g,tk
, we

let log ḡ(tk) be the mean of the replicates log g(tk, i), i ∈ I. We assume that the replicate measurements
log g(tk, i) are i.i.d. samples from a Gaussian distribution,

log g(tk, i) ∼ N (log g(tk, i); log ḡ(tk), σ2
g,tk,

) , i ∈ I

For each time point, we calculate a global, intensity-dependent estimate of the variance by �tting a
loess curve mtk(.) [1] to the point set (ḡ(tk), var(g(tk, i); i ∈ I)), g ∈ G. Here, var(g(tk, i); i ∈ I)
denotes the empirical variance.

We assume a Gamma prior on σ2
g,tk

, given by

σg,tk ∼ Γ (σg,tk , k = k(ḡ(tk)), θ = θ(ḡ(tk))) ∝ (σg,tk)k−1 exp(−σg,tk
θ

) (4)

(where γ(k) is the Gamma function). The shape parameter k and the scale parameter θ are chosen
such that the expectation value of Γ(σ; k, θ) equals m(log ḡ(tk)), and its variance equals a parameter
ν which is set to the mean of the squared residuals of the loess �t. This is achieved by letting
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k =
m(log ḡ(tk))2

ν
, θ =

ν

m(log ḡ(tk))
(5)

The regularized standard deviation is taken as the maximum a posteriori estimate

σregg,tk
= arg max

σg,tk

[∏
i∈I
N (log g(tk, i); log ḡ(tk), σ2

g,tk,
) · Γ (σg,tk , k = k(ḡ(tk)), θ = θ(ḡ(tk)))

]
. (6)

To safely guard against biases in the low intensity range, we additionally assume a minimum level for
σregg,tk

, given by the 25% quantile of the respective residuals distribution.

1.3 De�nition of periodic and non-periodic test functions

De�nition of periodic test functions. Commonly, a gene g is called periodically expressed with
period λ′ ∈ (0,∞) and phase ϕ ∈ [0, 2π] if its expression (in one cell) can be approximated, up to
linear rescaling, by a cosine function

f(t) = cos(2π · t
λ′
− ϕ) (7)

The phase ϕ describes the time at which g assumes its maximum expression divided by the cell cycle
length; ϕ will therefore be also called the relative peak time. Accordingly, we call ϕ

2π ·λ
′ the (absolute)

peak time of g.

We wish to be less restrictive with respect to the shape of the periodic function. We use a slightly
more general de�nition of a periodic gene. Let 〈x〉 the remainder x modulo 2π, i.e. the smallest
non-negative number such that x = 〈x〉 + 2πz for some integer z. Let ψ : [0, 2π] → [0, 2π] be a
monotonically increasing bijection of the unit interval. We consider a gene periodically expressed with
period λ′, phase ϕ and shape ψ if its expression can be approximated, up to linear rescaling, by a
function f = f(t; λ′, ϕ, ψ),

f(t; λ′, ϕ, ψ) = cos(ψ

〈
2π · t

λ′

〉
− ϕ) (8)

Note that �xing ψ to the identity function yields the original notion of a periodic gene (Equation 7).

We are measuring the population average of a large number of cells. Not all cells proliferate at exactly
the same speed. We assume that the cell cycle period length in the sample is not constant for individual
cells in the sample, it is distributed according to a random variable λ′ = λ′(λ, σ) with mean period
length λ and a standard deviation of σ. The measured expression of a periodic gene within our sample
population will therefore resemble, up to linear rescaling, a function

γ(t; λ, ϕ, ψ, σ) =

∫
f(t; λ′, ϕ, ψ) dλ′(λ, σ) (9)

We �nally arrive at the de�nition of the family of periodic test functions, given by

F = { a · γ(t; ϕ,ψ, λ, σ2) + b |
ϕ ∈ [0, 2π), ψ : [0, 2π]→ [0, 2π] a monotonically increasing bijection, (10)

λ ∈ (0,∞), σ2 ∈ (0,∞), a, b ∈ R}

Choice of period length distribution. We tested three di�erent classes of period length distri-
butions for λ′. We scaled the parameters of the respective distributions such that they all have an
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expectation value of λ and a variance of σ2. First, we chose a Gaussian distribution that has been
cropped to the interval [20, 200],

λ′ ∼ U[20,200] ∗ N (mean = λ, variance = σ2) , (11)

The cropping was necessary to avoid negative cell cycle times. Secondly, we chose a log-normal distri-
bution

λ′ ∼ LN (logmean = lnλ− τ/2, logsigma =
√
τ) , (12)

with τ = ln(σ2/λ2 + 1) and thirdly, we selected a Gamma distribution

λ′ ∼ Gamma(shape =
λ2

σ2
, scale =

σ2

λ
) (13)

It turns out that the the mean and standard deviation of the cell cycle length distribution λ′ are
enough to determine the dampening of the test function γ(t; λ, ϕ, ψ, σ) up to irrelevant �uctuations.
No matter which of the above distribution classes we chose, the results were almost identical (Fig. S2),
so we decided to use the log-normal distribution henceforth.

De�nition of non-periodic test functions. Our goal is to discriminate periodic genes from non-
periodic genes. To avoid false positive periodicity calls, the complementary set of non-periodic test
functions should exhaustively cover time courses that a non-periodic gene can assume. Most often, a
non-periodic gene has constant expression over time. Alternatively, due to continuous changes in the
experimental conditions, non-periodic genes may show a constant drift, i.e., they are monotonically
increasing or decreasing. There might also be genes that have one extraordinarily high / low peak at
exactly one time point (in particular at t = 0). This might be due to a failure of the measurement,
or due to synchronization at the beginning of the time course. We therefore de�ne a family of non-
periodic prototype test functions, consisting of the constant null function τ0, a linearly increasing

function τ+, a linearly decreasing function τ−, and the delta functions δ+
k (t) =

{
1 if t = tk

0 else
and

δ−k (t) =

{
−1 if t = tk

0 else
, k = 1, ...,K. We de�ne the family F of non-periodic functions as the set of

all a�ne-linear transforms of the prototype test functions.

1.4 Kernel representation of the estimation problem.

Parameter estimation by MoPS can be cast as a regularized kernel regression problem. Given a gene
expression measurement time course g = (g(t1), ..., g(tK)), our objective is the reconstruction of what
we call a 'wobblet' w = w(t), the expression time course of that gene in a single cell along one cell
cycle as it would be obtained by error-free measurements. Here, t ∈ [0, 1] denotes the time relative
to the cell cycle length. Cell synchronization at the start of the experiment may be imperfect, and
the time λ′ for proceding through the cell cycle may di�er slightly for each cell from the mean cell
cycle time λ. Thus for each time t, we are observing a speci�c mixture of cells in di�erent 'individual'
relative cell cycle times s. Let k = k(s, t) denote a so-called kernel function describing the individual
cell cycle time distribution (the density function of s) at observation time t. Given the wobblet w and
the kernel k, the predicted time course γ = γ(t) of the cell mixture is given by

γ(t) =

∫ 1

0

w(s) · k(s, t) · ds (14)

For an illustration, see Figure S3. Using γ, the measurements vector g is approximated by an a�ne
transform of (γ(t1), ..., γ(tK)) via linear regression, i.e., g ∼ a ·(γ(t1), ..., γ(tK))+b for suitable a, b ∈ R.
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Figure 2: Dampening of a sine wave oscillation due to synchrony loss. Shown are the dampened
curves γ(t; λ, ϕ, ψ, σ) of a sine wave (ϕ = 0, ψ = id) resulting from three di�erent cell cycle length
distributions λ′ = λ′(λ, σ), all of which have the same mean (λ = 62.5min) and standard deviation
(σ = 7min). The values for mean and standard deviation match the situation in our application. The
shapes of the cell cycle length distributions λ′ were chosen as a [0,∞) truncated Gaussian (circles), a
log-normal distribution (green dots), and a Gamma distribution (red dots).
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This approach is common for parametric periodicity screens [6, 5]. Various methods di�er in the way
the functions w(s) and are parametrized and inferred. [6] propose a Fourier base of degree 3 for
modeling of the wobblets, and [5] compute wobblets as an L1(Lasso)-regularized approximation using
a Symlet wavelet base of degree 5. We model wobblets by time-shifted cosine functions for which
the x-axis is stretched or compressed di�erently at di�erent time points (see Figure 1 in the main
text and Supplements 1.5 for a precise de�nition). Hartemink et al. explicitly construct the kernel
function k(s, t) from FACS measurements of �uorescently labeled cells at a given time t which allow
the estimation of the density function k(s, t). This is of particular advantage if the synchronization
at the start of the time course is weak. We do not have access to similar data for our experiments,
however we use a stringent synchronization and assume that cells are perfectly synchronized at t=0.
[6] assume that the inverse of the individual, single cell period lengths follows a normal distribution,
which ultimately determines k(s, t). Their parametrization of w and k allows a convenient reduction
of the inference problem to a simple linear regression. This is not possible for our wobblets, but
it gives us the freedom to derive our kernel k(s, t) from the slightly more realistic assumption that
single cell period lengths follow a log-normal distribution (see Supplements 10). Because a wobblet is
estimated from all available measurements of a 200 min time course, its peak time can potentially be
resolved at a higher resolution than our sampling rate (5 min), and it is likely more precise than the
time of maximum raw or kernel-smoothed expression. Wobblets therefore capture periodic expression
characteristics robustly and can be used to group periodic genes.

The representation of γ in Equation (9) can be transformed into a kernel representation. This has
practical consequences for the parameter learning strategies. Denote by ρ(r;λ, σ2) the density function
of λ′.

γ(t; λ, ϕ, ψ, σ) =

∫
R
f(t; λ′, ϕ, ψ) dλ′(λ, σ2)

=

∫
R
cos(ψ

〈
2π · t

λ′

〉
− ϕ) dλ′(λ, σ2)

=

∫
R
cos(ψ

〈
2π · t

r

〉
− ϕ) · ρ(r;λ, σ2) dr

s= t
r=

∫
R
cos(ψ 〈2π · s〉 − ϕ) · ρ(

t

s
;λ, σ2) · ts−2 ds

=

∫ 1

0

w(s;ϕ,ψ) · k(s, t;λ, σ) ds (15)

for w(s;ϕ,ψ) = cos(ψ 〈2π · s〉 − ϕ) and the kernel k(s, t;λ, σ) =
∑∞
j=0 ρ( t

s+j ;λ, σ2) · ts−2. Thus, γ

has a kernel representation as de�ned in Equation (14). For practical reasons, it is convenient that
we also achieve a separation of the parameter inference problem. The wobblet w only depends on
the gene-speci�c parameters peak time ϕ and the shape ψ, whereas the kernel k only depends on the
global parameters mean cell cycle length λ and synchrony loss σ2.

1.5 Parametrization of and screening for periodic genes

Maximum likelihood estimation in F . The in�nite family of periodic test functions F is param-
eterized by the tuple (a, b, λ, ϕ, ψ, σ2) (Equation (10)). Given a time series g, our task is to �nd the
maximum likelihood estimate fg = argminγ∈F l(g, γ). We need to explain how we perform maximum
likelihood search in F . To that end, we construct a �nite set of �prototype� functions G, whose a�ne
hull Ḡ = {aγ + b | γ ∈ G, a, b ∈ R} is assumed to lie su�ciently dense in F . An approximation of the

7



Figure 3: Wobblets kernel representation. The test function γ = γ(t, ϕ, ψ, λ, σ) is given as the con-
volution γ = w ∗ k of a wobblet w = w(s;ϕ,ψ) with with a kernel function k = k(s, t;λ, σ). In our
example here, we chose ϕ = 0, ψ = id, λ = 62.5min and σ = 7min. For each time point t, the function
dt(s) = k(s, t;λ, σ) is the cell cycle phase distribution of the individual cells in a population at time t.
The functions dt(s) for t = 5, 10, 15, ..., 200min are shown as a colored lines in the box visualizing the
kernel function k. At t = 0, dt(s) is sharply peaked, the cell population is perfectly synchronized. With
increasing t, dt(s) approaches the constant function, i.e., our population contains an even mixture of
cell cycle times.
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maximum likelihood estimate in F is then given by

fg = argminγ∈F l(γ; g) ≈ argminγ∈Ḡl(γ; g)

= argminγ∈G
[
argmin(a,b)l(aγ + b; g)

]
l2 = arg max (16)

The minimization problem for (a, b), given γ, can be solved analytically by a weighted linear regression,
using the error model in (Equation (3)):

g(tk) ∼ γ(tk) , with weights σ−2
g,k , k = 1, ...,K (17)

The slope of the regression line determines a, and the intercept determines b. The minimization
over γ ∈ G is done by exhaustive search. The set G is de�ned as G ={ψ(t; λ, ϕ, ψ, σ2) | λ, ϕ, ψ, σ2

taken independently from a representative grid}. The grid Gλ for λ runs from 30min to 90min in
steps of 2.5min. The grid Gσ2 for the variance σ2 runs from 1min2 to 15min2 by steps of 1min2,
and the grid Gϕ for the peak time ϕ runs from 0 to 2π · 39

4 in 40 equidistant steps. ψ runs through
a representative set of piecewise linear, monotonically increasing functions that are parametrized by
a vector y = (y1, ..., yr−1) in the following way: Let r = 4, and let tj = j/r, j = 0, ..., r. De�ne
ψ(t; y) as the piecewise linear function which linearly interpolates the points (tj , yj), j = 0, ..., r (set
(t0, y0) = (0, 0) and (tr, yr) = (1, 1)). Formally,

ψ(t; y) = r · [(t− tj−1) · yj−1 + (tj − t) · yj ] if t ∈ [tj−1, tj ]

The values y1, ..., yr−1 are chosen from a �nite grid

Gψ = {(y1, ..., yr−1) | yj ∈ {
0

d
,

1

d
, ...,

d

d
}; y1 ≤ y2 ≤ ... ≤ yr−1} ,

for a given grid density d (we chose d = 5). In this way, a function f ∈ F is completely characterized
by the tuple

(ϕ, y = (y1, ..., yr−1), λ, σ2, a, b) ∈ G = Gϕ × Gψ × Gλ × Gσ2 × R× R

With our choice of r = 4, these are in total 7 parameters.

Note however, that the parameters are redundant: Assume that r is an even number. Let ψ =
ψ(.; (0, y, 1)) be parametrized by a vector y ∈ Gψ as described above. De�ne y′ = (y′1, ..., y

′
r−1) by

y′j =

{
yj+r/2 − yr/2 if j = 1, ..., r2 − 1

yj−r/s − yr/2 + 1 if j = r
2 , ..., r − 1

(check that y′ ∈ Gψ). By elementary calculations, it can

be shown that

f(t; λ, ϕ, ψ(.; (0, y, 1))) = −f(t+
λ

2
; λ, ϕ+ π, ψ(.; (0, y′, 1))

I.e., a phase shift by λ
2 can be described by a re-parametrization of the shape parameters, and by

switching the sign. In other words, the parameter tuples (ϕ, y, λ, σ2, a, b) and (ϕ + π, y′, λ, σ2,−a, b)
describe identical test functions. Therefore, we only need to screen for ϕ values between 0 and π. In
order to assign the correct peak time afterward, we simply need to check the sign of a in the linear
regression. If a ≥ 0, we keep the parameter set (ϕ, y, λ, σ2, a, b). If a is negative, the corresponding set
(ϕ+ π, y′, λ, σ2,−a, b) is the one with the correct peak time.

Maximum likelihood estimation in F̄ . Since F̄ is the a�ne hull of a �nite set of prototype
functions, we proceed as in (Equation (16)). The maximum likelihood estimate in F̄ can be calculated
exactly as

f̄g = argminγ∈F̄ l(γ; g)T

= argminγ∈prototypes
[
argmin(a,b)l(aγ + b; g)

]
(18)
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Initial screen for periodic genes. The set P̃ of periodic genes is de�ned as the set of genes g for

which the (log) likelihood ratio statistic log
L(fg ; g)

L(fg ; g)
exceeds some threshold value tmin. Genes that are

not in P̃ are considered non-periodic. Assuming a fraction of 1/10 of periodic genes among all genes,
tmin is determined by requiring that our criterion for periodicity have a false discovery rate of α = 0.05
(see 2.3). In this way, we identify genes that are periodically expressed with high con�dence and can
estimate the mean cell-cycle length and variation for each time series.

Re�ned screening to determine gene-speci�c parameters.

We estimate two gene-independent parameters, the mean cell cycle length λ and the variance σ2 of
the cell cycle length distribution in the initial screen from high-con�dence periodic genes. For �xed λ,
σ2, let hg,λ,σ2 = âg · γ(t; λ, ϕ̂g, ψ̂g, σ

2) + b̂g be the maximum likelihood approximation of g under the
constraint that λg = λ and σ2

g = σ2, i.e.,

(âg, b̂g, ϕ̂g, ψ̂g) = argmin(ag,bg,ϕg,ψg)l(ag · γ(t; λ, ϕg, ψg, σ
2) + bg; g) (19)

To determine the most likely global parameters λ̂, σ̂2, we solve

(λ̂, σ̂2) = argmin(λ,σ2)

∑
g∈P̃

l(hg,λ,σ2 ; g) (20)

Note that the sum in Equation (20) is taken only over the initially de�ned periodic genes, because
these are the candidates that are informative for the estimation of the global cell cycle parameters.

A gene g is called periodic, if

log
L(hg,λ̂,σ̂2 ; g)

L(fg; g)
> tmin (21)

The set of all periodic genes is denoted by P . Genes that are de�ned as signi�cant periodic in the
re�ned screen are implicitly also signi�cant periodic in the initial screen (P̃ ⊆ P ), since L(hg; g) ≥
L(hg,λ̂,σ̂2 ; g).

Accounting for replicate experiments. Our cell cycle experiment was done in two biological
replicate time series, we do not only have one, but two time series, (g(r)(tk))k=1,...,K , r ∈ R =
{1, 2}, for each gene g . We noticed that there are slight di�erences in the cell cycle length, thus we

estimate two global parameter sets λ(r), (σ(r))2, r = 1, 2. The gene-speci�c parameters a
(r)
g , b

(r)
g are

estimated separately for each experiment, because it is not unlikely that there are slight di�erences
in the magnitude of regulation due to slightly changed environmental conditions. The parameters ϕ̂g,

ψ̂g that determine the shape of the test function however are assumed to be common to all replicates.
Finally, our screening procedure for periodic genes can be stated:

De�nition of the Periodicity score and screen for periodic genes.

• Input: Expression time series measurements g(r) = (g(r)(tk))k=1,...,K , g ∈ G, r ∈ R.

• For g ∈ G, r ∈ R, estimate the maximum likelihood �t of g(r) in F resp. F ,

h(r)
g = argminγ∈G l(γ; g(r)) ∈ F , f̄ (r)

g = argminγ∈F l(γ, g
(r)) ∈ F

• Initital screen: determine a threshold tmin, and �nd all periodic genes P̃ (r) in replicate r ∈ R,

P̃ (r) = {g ∈ G | logL(h
(r)
g ; g(r))

L(f
(r)

g ; g(r))
> tmin}

10



• For each replicate r ∈ R, calculate the global parameters λ̂(r), (σ̂(r))2 by

(λ̂(r), (σ̂(r))2) = argmin(λtoidentify,σ2)

∑
g∈P̃ (r)

l(h
(r)
g,λ,σ2 , g

(r)) , (22)

where h
(r)
g,λ,σ2 is the maximum likelihood approximation of g(r) in G under the constraints λ

(r)
g =

λ, (σ(r))2 = (σ(r))2 (see Equation (19)).

• Re�ned screening: for each gene g ∈ G, calculate ϕ̂g, ψ̂g, a(r)
g , b

(r)
g , r ∈ R by

(ϕ̂g, ψ̂g, a
(r)
g , b(r)g ; r ∈ R) = argmin

(ϕg,ψg,a
(r)
g ,b

(r)
g ; r∈R)

∑
r∈R

l(a(r)
g · γ(t; λ̂(r), ϕg, ψg, σ̂

2) + b(r)g ; g(r))

(23)

Let f
(r)
g = â

(r)
g · γ(t; λ̂(r), ϕ̂g, ψ̂g, (σ̂

(r))2) + b̂
(r)
g .

• De�ne the periodicity score T (g) as

T (g) =
∑
r∈R

log
L(f

(r)
g ; g(r))

L(f̄
(r)
g ; g(r))

(24)

• De�ne the set P of periodic genes, P = {g ∈ G | T (g) > |R| · tmin}.

• Output: The set P of periodic genes, and a set of parameters {λ̂(r), (σ̂(r))2, ϕ̂g, ψ̂g, a
(r)
g , b

(r)
g ; g ∈

G, r ∈ R}.

2 Application of MoPS to cell cycle cDTA data

2.1 Data exploration and quality control

Before performing high-level analyses, we did elementary quality checks. First, we calculated the
relative deviation from the mean for all genes and all replicate samples (Figure 4 left plot). 95%
percent of the replicate measurements have a relative deviation smaller than 0.4. The right plot in
Figure 4 shows a scatterplot of a representative sample (labeled RNA, 50 min after synchronization).

Second, we visualized the pairwise correlations between the total respectively labeled measurements
between all time points and between replicates. It turns out that the agreement between replicate
measurements of corresponding time points is excellent. The mean correlation is 0.97 (min=0.93,
max=0.99). The 3 periods of the cell cycle show as 3 diagonal regions of high correlation (Figure 5).

Third, we did a principal component analysis of the (total RNA) microarray measurements. Each time
point is represented by its projection onto the two largets principal components. The periodicity of
approximately 60min is evident. Further, the dampening of the oscillations make the later time points
move closer to the center, which creates a spiral (Figure 6).

2.2 High precision estimates of mRNA synthesis rates and half lifes

We use all labeled and total measurements to calculate a high precision estimate of (steady-state)
mRNA synthesis rates and half lifes. To achieve this, we simply ignore the time at which the sample
was taken, and treat all samples as replicates. By doing so, we obtain 82 replicate measurements of
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Replicate measurement timepoints
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Figure 4: Comparison of replicate measurements. The histogram on the left shows the relative deviation
from the mean for all measurements (labeled and total, all genes). As a representative example, the
scatterplot on the right shows a comparison of the log labeled expression levels for all genes 50 minutes
after synchronization in the two independent time series.

total and labeled mRNA expression respectively. We use this large number of samples to calculate
high accuracy steady-state synthesis rates and half lifes with the statistical framework described in[12].
These estimates are provided as supplementary tables (Supplementary Table 4 and Supplementary
Table 5). A comparison of our new estimates to the estimates from[12] shows an excellent agreement
(Figure 7).

2.3 Signi�cance of MoPS periodicity scores

MoPS computes a periodicity score for each gene and thus allows ranking of all genes according to
their likelihood ratio to be periodically expressed respectively constantly expressed. However, there is
no obvious way to assign signi�cance to this score. We want to make use of existing knowledge derived
from published studies about periodically expressed genes. To do this, we de�ne a positive set and a
negative set. The positive set comprises the top 200 periodic genes from Cyclebase [3] and the negative
set consists of genes that have never been classi�ed as cell-cycle regulated in any cell-cycle expression
study considered [11, 4, 10]. The empirical distribution f of all MoPS scores is �tted by a mixture of
the empirical distributions f+and f−scores of the positive respectively the negative set,

f ≈ µ · f+ + (1− µ) · f− ,

where the mixture coe�cient µ ∈ [0, 1] estimates the fraction of periodic genes among all genes (see
main Figure 8). Fitting of µ was done be minimization of the Kolmogoro�-Smirnov statistic. µ, f+

and f− were then used to calculate the false discovery rate FDR(c) as a function of the cuto� value c
by

FDR(c) =
(1− µ) ·

∫∞
c
f−(t)dt∫∞

c
f(t)dt
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Figure 7: Comparison of cDTA derived genome-wide synthesis rates and half-lifes.
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Figure 10: Initial screening for periodic genes. In an inital screen a periodicity score and characteristic
parameters for each gene are estimated and used to determine the mean cell-cycle length and its
variation in the population of synchronized cells.

2.4 Estimation of the global parameters cell-cycle length and variation

In an initial screen we �t periodic test-functions that represent di�erent combinations of cell-cycle
length (l), cell-cycle length variation in the population (sv) and phase (f) to each expression pro�le.
Using a strict periodicity score cuto� (FDR < 5%, scores with best �tting l, sv for each gene) this results
in a set of periodic genes for each dataset with associated loss for all examined l, sv combinations. The
globally best �tting l and sv are then estimated by minimizing the overall loss for each combination
over all genes (see Figure 10 and Section 1.5). The distribution of estimated gene-speci�c l and sv
agree well within each dataset and between datasets. l values range from 55 to 65 minutes and sv are
mostly estimated to be in the range of 4 to 8 minutes.

2.5 Estimation of gene-speci�c parameters

A second screening is then performed using the dataset-speci�c global parameters l and sv together
with a re�ned set of periodic test-functions which are constructed from a exhaustive combination of
the gene-speci�c parameters (see Section 1.5 and Figure 1 B, main text). Expression time courses of
all genes are �tted to those periodic test-functions, separately for each dataset. This re�nes the initial
screening by estimating gene-speci�c characteristic parameters. (Figure 12, Section 1.5). The derived
characteristic expression time courses, the timing of peak expression and periodicity score are highly
correlated between replicates (see Figure 14).

Total and labeled mRNA time courses show a high correlation in periodicity scores (see 15). It
is evident that genes with periodic labeled mRNA levels also exhibit periodic total mRNA levels.
The calculation of a periodicity score cuto� separately for each dataset, results in 58 genes that are
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Figure 11: Cell-cycle length and variation distributions estimated in initial screen. For each time
series, MoPS is used to estimate the best-�tting cell-cycle length and variation for each gene, which
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density at a cell-cycle length of 60-63 min and variation of 5-8 min.
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Figure 14: Correlation of timing of peak expression between replicates. Estimated phases of genes
that are signi�cant periodic are compared in Total (left) and Labeled (right). The pearson correlation
coe�cient of 0.97 and 0.95 for labeled and total respectively shows the excellent agreement.

signi�cantly periodic in only one dataset but not in the other (25 genes only periodic in labeled, 33
genes only periodic in total). Visual inspection of their pro�les, shows that the disagreement stems
mainly from poor correlation among replicates or atypical expression pro�les due to synchronization.

Since the periodicity scores of labeled and total datasets are highly similar for genes with positive
scores (see Figure 15), we averaged the scores and estimated one cuto� to obtain one set of cell-
cycle regulated genes. Controling the false dicovery rate at 20%, we derive a cuto� of 0.78, which
results in 479 signi�cantly cell-cycle regulated genes. For each gene, the best �tting 1 min resolution
characteristic time course and its peak timing are averaged in total and labeled replicate time series.
Examples of MoPS derived characteristic pro�les are shown in Figure 16 and Figure 17.

2.6 Quanti�cation of absolute mRNA abundance

The mean expression and amplitude is estimated for all 479 periodic genes by �tting their MoPS
estimated characteristic time course to absolute mRNA concentrations. The minimzation problem is
solved with linear regression (see section 1.5). This extends the MoPS estimated time courses by adding
information about the absolute mRNA levels (Figure 18). Mean expression levels of non-periodic genes
are determined by using the mean expression in the time course of the �rst cell cycle. We observe a
very high correlation of absolute mean mRNA levels in replicates of total and labeled datasets (Figure
19).

2.7 Cyclins and histones peak timing de�ne cell-cycle stages

The estimated median cell-cycle length of all four datasets of 62.5 min can now be used to �nd the
boundaries of each cell cycle stage (G1,S,G2,M). We use the total mRNA peak timing of cyclins and
histones which have a well de�ned cell-cycle speci�c timing of activity (see Table 1 and Figure 22).
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Figure 15: Comparison of individual periodicity scores for total and labeled mRNA. Genes that are
presumably non-periodic scatter randomly around the origin, whereas genes having a high score in
one of the fractions tend to have also a high score in the other fraction, hence they scatter around the
main diagonal.

0 50 100 150 200

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0 50 100 150 200

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

0 50 100 150 200

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 50 100 150 200

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

14 54

52 35

ex
pr

es
si

on

ex
pr

es
si

on
ex

pr
es

si
on

ex
pr

es
si

on

time [min]

time [min] time [min]

time [min]

YAR003W YBR092C

YPL242C YFR028C

Figure 16: Examples of MoPS �ts to total and labeled experimental time courses of selected genes.
Total (black) and Labeled (red) time courses (dotted lines) are shown together with the MoPS �tted
characteristic time course (solid lines). Here only genes are shown that have the same timing of peak
expression in total and labeled (green line). Note that the �tted curves are scaled to L2-norm 1.
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Figure 17: Examples of MoPS �ts to total and labeled experimental time courses of selected genes.
Total (black) and Labeled (red) time courses (dotted lines) are shown together with the MoPS �tted
characteristic time course (solid lines). Shown are genes that show labeled mRNA level peaks that
precede total mRNA level as estimated from MoPS (green lines). Note that the �tted curves are scaled
to L2-norm 1.

Gene known phase estimated phase

CLB6,CLB5,CLN1 late G1 15 min (mean)
CLB3 onset of G2 26 min

Histones S 29.5 min (mean)
CLB1 onset of M 5.5 min

Table 1: Genes used to assign cell-cycle phases to cDTA cell cycle datasets. Cyclin and histone genes
have well de�ned timing of maximal activity. This information is combined with the MoPS estimated
phase of peak total mRNA expression to determine the phases G1,S,G2,M of the cell-cycle.
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Figure 18: Examples of �tted absolute expression time courses and corresponding raw measurements.
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Figure 19: Correlation of estimated absolute mean expression of 479 periodic genes between replicates.
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Figure 20: Correlation of mean and amplitude of 479 periodic genes in labeled and total datasets.
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Figure 21: Comparison of mean expression level of 479 periodic (red) and all S.cerevisiae genes (blue)
in labeled and total data.
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Figure 22: Total mRNA pro�les of cyclins and histones. Six cyclins with well-de�ned cell-cycle stage
speci�c abundance are used to estimate the boundaries of G1,G2 and M phase (left panel). Histone
genes (right panel) that show peak timing from 27-32 minutes are used to determine S-phase.

2.8 mRNA synthesis of non-periodic genes during the cell cycle

We investigated the global �uctuation of transcription during the cell cycle. We performed another
periodicity screen on labeled data, now using only constant functions as non-periodic test-functions.
Among the reliable genes (genes above a certain minimum expression level), we keep the 500 genes
with the lowest periodicity scores, i.e., the genes that are most constantly expressed. By averaging and
visualizing their normalized (mean expression 1) labeled expression pro�les we obtain a lower bound for
the global �uctuations in mRNA synthesis (Figure 23). Apart from a global increase in transcription
shortly after synchronization, we cannot observe strong global changes in mRNA synthesis.

2.9 Validation of MoPS

2.9.1 Comparison with other cell-cycle expression studies

Despite the existence of many genome-wide cell-cycle expression studies, there is no consensus set
of �true� cell-cycle regulated genes. Using di�erent experimental conditions and screening methods
300-1500 cell-cycle genes have been reported in S.cerevisiae. Our set of signi�cantly periodic genes can
be compared to other studies by visualising the overlap in identi�ed periodic genes (Figure 24). Three
studies are chosen for comparison: Spellman et al. [11] as the pioneering cell-cycle Microarray study;
Granovskaia et al. [4] as the most recent study; Cyclebase [3] as a meta-study that combines several
studies. Only 246 genes are found to be cell-cycle regulated by all studies, while there are 523 genes
that are only identi�ed in one study.

2.9.2 Benchmark on identi�cation of bona-�de cell-cycle genes

We validated our periodicity screening using a framework proposed by de Lichtenberg et al. [2]. They
developed their own periodicity screening method and applied it to 6 di�erent cell cycle expression
data sets. The resulting 6 ranked lists plus a combined reference list of periodically expressed genes
are accessible from the Cyclebase repository [3]. We compared our ranking of periodic genes to these
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Figure 23: Labeled expression pro�les of the 500 most constantly expressed genes. The black line shows
the mean value, red and yellow ranges correspond to the 95% and 75% quantiles of the distribution.
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Figure 25: Benchmark of MoPS. Shown are ROC-like curves, one for each ranked list of bona-�de cell-
cycle genes. Three di�erent benchmark sets of cell-cycle regulated genes are used as a gold standard
for validation. The number of top n genes of a ranked list (x-axis) is plotted versus the fraction of
the benchmark set which is contained in the top n genes, respectively. (A) The gold standard set B1
consists of 113 genes identi�ed in small-scale experiments. (B) Benchmark set B2 consists of 352 genes
identi�ed in two independent Chromatin IP (ChIP) studies. These genes were found to be bound
by known cell-cycle associated transcription factors. (C) Benchmark set B3 consists of 518 genes
annotated in MIPS [8] as `cell cycle' or `DNA processing'.

7 lists using the benchmark scheme as in [2]. The ranked lists were retrieved from www.cyclebase.org
[3]. These lists correspond to di�erent cell-cycle microarray datasets that have been normalized in
the same manner and are ranked according to periodicity by the method of Lichtenberg et al. [2].
Additionally, it contains a ranked list that was derived by combining all datasets. Three di�erent
benchmark sets were used as a gold standard to assess the quality of a gene list by a receiver operating
characteristic (ROC) analysis: set B1 - A total of 113 genes previously identi�ed as periodically
expressed in small-scale experiments. Set B2 � 352 genes whose promoters were bound (P-value below
0.01) by at least one of nine known cell cycle transcription factors in two independent Chromatin IP
studies. Set B3 � 518 genes annotated in MIPS [8] as `cell cycle and DNA processing'. A comparison
of our ranked list with the other lists was performed as proposed in [2]. In all 7 cases and for all 3
benchmark sets, the de Lichtenberg method has been proven to perform better or at least as good than
competing methods [2, 7]. Our ranking, when included in the ROC analysis, performs comparably to
the Lichtenberg method in all 3 benchmark scenarios (Figure 25). Out of the top 200 periodic genes
from the combined ranking, we �nd 152 to be signi�cantly periodic with our approach applied to our
dataset. Visual inspection shows that the 48 genes that we did not classify as periodic in our dataset,
indeed exhibit predominantly periodic pro�les in labeled and total but show low correlation between
replicates or show deranged pro�les in the �rst 30 minutes after synchronization.

2.9.3 Robustness of peak time assignment

We follow the validation approach as described by Guo et al [5]. to estimate the robustness of peak
time assignment to experimental noise. We added varying amounts of gaussian noise to the measured
time course of a gene and extract the peak timing of expression. We then compare the perturbed
estimates with the original peak times. As in [5], we select the top 100 genes ranked by our periodicity
score for benchmarking. For varying levels of noise, we generate 10 perturbed time courses for each
gene, estimate the peak time with MoPS and compute the usigned timing di�erences to the original
estimates. The level of noise that is added at every time point is taken from a normal distribution
(mean =0, sd = noise.level * error). The error is estimated from the calculated variation in our
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Figure 26: Violin plot showing peak time variation in simulated perturbed expression measurements.
Each violin shows the distribution of unsigned di�erences between peak timing estimated from original
and perturbed time courses (labeled data).

experimental replicate time series (see Section 1.2). We use four di�erent levels of noise: 0.5 (more
precise than actual measurements), 1, 1.2 and 1.5. The median peak time deviation was in the range
of 1-2.5 min, con�rming the accuracy of our wobblet estimates.

2.10 Regulation of periodic mRNA synthesis timing by TFs

We used XXmotif and TOMTOM together with ChIP-chip derived TF - target associations to identify
TFs that regulate cell-cycle regulated mRNA expression (see Methods, main text). A total of 32 TFs
have been found with this approach. The complete list and information on the number of associated
periodic genes is given in the Supplementary Materials.

We investigated the labeled time courses of cell-cycle genes that are regulated by the same TF(s).
Several combinations of TFs are found in our analyses that are speci�c to a subset of our 479 periodic
genes. The labeled expression pro�les are highly similar within these subsets and show a coherent
timing of peak expression (Figure 29).
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Figure 27: Clusterplots of MoPS time courses �tted to 20 randomly perturbed expression pro�les of
four selected genes. Shown are �tted time courses estimated from expression measurements that have
been perturbed with noise level 1 (left panel) and 1.5 (right panel).
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Figure 28: Labeled expression time courses of 47 targets of the cell-cycle transcription factor FKH2.
FKH2 total mRNA peaks at the beginning of M-phase (black line). One group of periodic targets
show labeled expression peaks approx. 10 minutes after FKH2 peak expression (blue), a second group
comprises genes that show labeled peak expression when FKH2 levels are low (red).
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Figure 29: Periodic genes that are regulated by common TF(s). Each panel shows labeled expression
time-courses of genes that are regulated by a common set of TFs. The lower two panels show genes
that are regulated by only one cell cycle TF.
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3 Dynamic RNA turnover model and screen for periodic �uc-
tuations in RNA degradation

3.1 A model for mRNA synthesis and degradation

Let T (t) respectively L(t) denote the time-dependent total respectively labeled mRNA amount of a
certain transcript at time t. We assume that the mRNA population of a gene is synthesized with a
time-dependent synthesis rate µ = µ(t). We further assume that mRNA decays exponentially at a
time-dependent rate δ = δ(t). The amount of degraded mRNA molecules during the time interval dt
can be expressed as δ(t)T (t). The synthesis rate function µ(t), the decay rate function δ(t) and the
initial mRNA level T (0) determine the total expression T (t) and its labeled expression L(t) by the
di�erential equation

dT (t)

dt
= µ(t)− δ(t)T (t). (25)

Note that in [9], [12], we needed to account for an increase in the cell number with time. Here, we only
follow the �rst cell cycle of the experiment, because the �uctuations in later cell cycles are attenuated
too much to be informative for degradation estimation. Without loss, we may therefore assume a
constant cell number, which simpli�es our calculations considerably. Furthermore, we do not model
cell growth, since we follow a synchronized population of cells for one cell cycle, therefore the growth
rate α = 0. Equation (25) can be solved e�ciently for arbitrary, su�ciently smooth functions µ and
δ using a numerical ODE solver. Assuming piecewise linear functions for µ and piecewise constant
functions for δ, it is even possible to derive the analytical solution to Equation (25).

We start labeling at time point t0 and set

Θg(t, t0) :=

∫ t

t0

δ(ξ)dξ (26)

The slope of the piecewise linear function for µ changes at time pointsmi with i = 0, ..., k. The piecewise
constant degradation rate δ changes at di with i = 0, ..., n. We set H := {hi | i = 0, ..., k + n} =
{mi | i = 0, ..., k}

⋃
{di | i = 0, ..., n}with hi ≤ hi+1 for all i. On each interval [a, b] (a = hi,b = hi+1)

we can calculate

φ(a, b) =

∫ b

a

[
µa +

µb − µa

mb −ma
· (ξ −ma)

]
eαξ+Θ(ξ,0)dξ .

Equation (25) can then be solved as

T (t)− T (tj) = e−Θ(t,tj)

T (tj) +N
∑
i|t>hi

φ(hi−1, hi) + φ(hmax, t)

 (27)

with hmax = max(hi > t). The total amount of mRNA can therefore be derived using tj = 0
and T (0) = T0. The amount of labeled mRNA at time point tj is obtained from Equation (27) by
L(tj) = T (tj + tlab)− T (tj), where tlab is the length of the labeling interval.
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3.2 Model speci�cation

Given total and labeled time courses T (tk, i) and L(tk, i) of a gene in replicates i ∈ I, our main purpose
is testing for the existence of periodic changes in mRNA degradation. We compare a model with con-
stant decay rate, δ(t) = δ, with a model for regulated decay, in which δ(t) is a cosine function with aver-
age decay level δm, peak time ϕ and amplitude a. The synthesis rate µ(t) is modeled as a piecewise lin-
ear function with 10 min intervals between interpolation points (5 min, µ0), (15 min, µ1), ..., (65 min, µ6).
Additionally, we need to rescale the measured labeled mRNA fractions L(t) by an unknown factor c
in order to match the true fraction of newly synthesized mRNA given the amount of measured total
mRNA. This parameter re�ects the true ratio between the (mean) labeled expression measurements
and the (mean) total expression measurements of all genes at time 0. Given a complete parameter set
Θ for one of the models, the snynthesis and degradation rates are then converted into predctions for
the labeled and total mRNA time corses, T̂ (tk; Θ) and L̂(tk; Θ). Our target l(Θ) function measures
the goodness-of-�t for both time courses, where goodness-of-�t is given by Equation (3). Hence,

`(Θ) =
∑
i∈I

`(Θ;T (tk, i)) +
∑
i∈I

`(Θ;L(tk, i))

=
∑
i∈I

K∑
k=1

(log T (tk, i)− log T̂ (tk; Θ))2

2 · σ2
T,tk,i

+
∑
i∈I

K∑
k=1

(log L(tk)− 1
c · log L̂(tk; Θ))2

2 · σ2
L,tk,i

(28)

where σ2
T,tk,i

and σ2
L,tk,i

are the regularized replicate-, gene- and time-speci�c standard deviations
obtained in Section 1.2.

Thus, the full model M1 assuming constant decay for one gene is parametrized by

ΘM1 = {c, δ, µ0, ..., µk} (29)

and the competing model M2 using a sigmoidal function for the decay is parametrized by

ΘM2
= {c, δm, ϕ, a, µ0, ..., µk} (30)

Both models are �tted using standard Metropolis-Hastings MCMC (we use Gaussian proposal functions
truncated to the positive real values).

3.3 Detection of genes with variable degradation rate

Applying both the constant and the regulated decay model to a gene pro�le, this results in a score for
the constant model ΘM1 and a score for the regulated Model ΘM2 (compare Equation (28)). For each
gene pro�le we compare the �t of the two models by calculating a Variable Degradation Score, VDS,
which is given by the log-likelihoodratio ratio between the two models:

V DS = `(ΘM1
)− `(ΘM2

) (31)

Since constant degradation is a special case of variable degradation with a max/min ratio of 1, the
constant degradation model never scores better than the variable degradation model. Consequently,
the Variable Degradation Score is never negative. It is zero when both models �t equally well, and it
is higher the more the variable degradation model is required to explain the data. By simulations we
determined the sensitivity and speci�city of di�erent Variable Degradation Score cuto�s (main text,
Figure 6D). We concluded that a Variable Degradation Score cuto� of 0.3 ensures su�ciently high
sensitivity and speci�city for genes with a degradation rate amplitude (max/min ratio) of at least 1.5.
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Figure 30: Comparison of total mRNA time courses achieved by a high, constant degradation rate
(left) and a variable, peaked degradation rate (right). The top panel shows the synthesis rate, which
is identical in both scenarios. The middle panel shows the degradation rate, while the lower panel
shows the total mRNA time course resulting from the given synthesis and decay rates. Though the
total mRNA pro�les have a similar shape, peak total mRNA levels are more than 50% higher in the
variable degradation scenario.

3.4 Sensitivity and speci�city of the Variable Degradation Score in simu-

lated data

Our main task is to distinguish pro�les of periodically expressed genes with constant degradation from
those with a �uctuating degradation rate. This task becomes increasingly di�cult with a higher basal
degradation rate, because changes in mRNA synthesis are immediately mirrored in total mRNA levels.

Gene pro�les with a sharply peaking synthesis rate are likely to look very similar when either a
high constant mRNA degradation is assumed or a variable degradation rate peaking shortly after the
synthesis rate (Figure 30).

The sensitivity of the Variable Degradation Score was assessed in a simulation study. The simulated
data contained gene pro�les with either constant or variable degradation rates while having identical,
variable synthesis rates. The synthesis rate time courses were constructed from a sigmoidal curve rising
from 0 transcripts/min to a level between 2 and 20 transcripts/min within a 10min time interval.
Similarly, after reaching its maximum, the synthesis rate curve returned to 0 transcripts/min in a
sigmoidal curve. 10 constant degradation rates were chosen in the range from 0.1min−1 to 0.5min−1.
The variable degradation rates had the same shape as the synthesis rates, but their peak was delayed
15min after the respective synthesis rate peak. The max/min degradation ratio was set to 4, with
a mean degradation rate in the same range as the constant degradation rates. With these arti�cial
synthesis and degradation rate curves, we calculated idealized labeled and total measurements.
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Figure 31: The Variable Degradation Score depends on the magnitude of the degradation rate, but not
on the amplitude of the synthesis rate �uctuations. The VDSs were calcualted for a comprehensive set
of arti�cial genes (see paragraph 3.4). Left: The VDSs of genes with �uctuating degradation rates are
grouped according to their mean (true) degradation rate, and their respective distribution is shown as
a violin plot. For comparison, the lefmost violin represents the VDS distribution of the constant genes.
Among those genes with a �uctuating degradation rate, the average VDS decreases with the mean
degradation rate. Right: The VDSs of genes with �uctuating degradation rates are grouped according
to the amplitude of the synthesis rate �uctuations. For comparison, the lefmost violin represents the
VDS distribution of the constant genes. The VDS does not depend visibly on the synthesis rate fold.

Most importantly, the results revealed that the Variable Degradation Score has su�cient power for
average degradation levels up to 0.3. This corresponds to a half-life of about 2.3min (Figure 31).
Assuming higher degradation rates, periodic pro�les can be explained su�ciently well by adaptation
of the synthesis rate only. The constant degradation model does not �t signi�cantly worse than the
variable degradation model in this case. On the other hand, the sensitivity of the Variable Degradation
Score does not depend on the fold of the synthesis rate �uctuations (Figure 31).

3.5 The time shift of degradation vs synthesis determines the e�ciency of

regulation

To examine the in�uence of the time delay between synthesis and degradation peak time on the ampli-
tude of total mRNA expression, we conducted a simulation. Therefore, the same cosine-shaped synthe-
sis rate was used while shifting the cosine-shaped degradation rate from 0 to 2π (= cellcycle length =
60min). The corresponding total mRNA levels were computed according to Equation (27) and are
shown in Figure 32. Due to the periodicity property of our model, the degradation rate peak shift by
2π corresponds to the results where the degradation rate is not shifted, and thus results for the shift
by 2π are not shown here.

The amplitudes of the total level vary with the shift of the degradation rate from the synthesis rate.
The maximal amplitude in the total level is reached when the degradation rate is shifted by π = 30min.
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Figure 32: Total mRNA time courses retrieved using degradation rates that only di�er in their degra-
dation peak shift relative to the synthesis rate peak. The resulting amplitudes of the total mRNA
levels vary.

Figure 33: Shifting the cosine shaped degradation rate relative to the synthesis rate results in di�erent
amplitudes and peak times of the total mRNA level. Top: Derived amplitudes for the total mRNA
expression level. Bottom: Shift between the peak times of the total mRNA levels and the synthesis
rate. The red rectangle indicates the bars which correspond to the degradation rate shift which is most
similiar to the one we observed for our set of regulated periodic genes (21min).
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Figure 33 shows the resulting amplitudes and peak time delays between the total RNA level and the
synthesis rate for the simulated shifts in degradation rate peak time. For our set of periodic genes with
variable degradation the observed peak time delay between synthesis and degradation rate corresponds
to 21 min. Figure 33 indicates that this delay achieves a good balance between a short peak delay
between the total mRNA and the synthesis rate, while the amplitude of the expression level is relatively
high. This suggests that the time delay between the synthesis rate peak and the degradation rate peak
is crucial for e�ecient transcription regulation.

4 Modeling of mRNA synthesis and degradation in cDTA cell
cycle data

Both degradation models were applied to cDTA measurements from S. cerevisiae and time-dependent
synthesis and degradation rates were estimated for each gene. The estimated parameters for ΘM2

(Section
3.2) are listed in Supplemental Tables 3 and 4. Figure 34 shows the �tting results for a gene where
constant mRNA degradation is very likely, as both models resulted in almost the same loss and yielded
similiar results. This indicates, that the regulated model, which was started with the parameter set
the constant model returned, could not improve the �tting accuracy. Furthermore, it can be seen, that
for this gene, the derived degradation rates are both very similar to the wild-type degradation rate
from [12].

Figure 35 shows �tting results for a periodically expressed gene, Ace2, where a regulated mRNA
degradation rate is more likely and explains the measured data better. The �tting results show that
due to the sine-shaped degradation rate the synthesis rate in the regulated model is also adapted
and di�ers from the synthesis rate in the constant model. The degradation rate from the constant
model is higher than the mean variable degradation rate, which is probably due to the fact that high
degradation rates allow to explain mRNA levels only by synthesis rates.

4.1 Improvement of variable degradation model over constant degradation

model

The variable degradation model enables us to explain sharp peaks in total mRNA better than a constant
degradation rate and is thus an improvement over the constant mRNA degradation, as it results in
lower loss values and higher log-likelihood-ratios, respectively. Figure 36 shows for corresponding
constant loss values, how much the variable degradation model improves the �tting results. For small
losses yielded by the constant model the variable degradation model proposes almost no improvement.
But the higher the loss in the constant model, which is achieved due to a bad �tting process, the higher
is the reduction in the loss of the variable degradation model compared to the constant degradation
model. The sine-shaped degradation rate seems to provide a valuable tool to improve the �tting results
and therefore helps to explain those measured gene pro�les better.

4.2 Transcription regulation by degradation rate peaks subsequent to syn-

thesis rate peaks

As described in Section 3.5 the time shift between the synthesis rate peak and the degradation rate
peak is crucial for the regulation of mRNA expression. For those periodically expressed genes predicted
to have a variable degradation rate we compared the peak times of their synthesis and degradation
rates. Although highly correlated, we see a clear delay of the degradation rate peak times compared
to the synthesis peaks of about 21 minutes (Figure 37). Furthermore we used the cell cycle boundaries
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Figure 34: Fitting results for the Hua1 gene for both the constant and the regulated model using
a piecewise linear synthesis rate. The upper panel shows the measured total mRNA level (black)
together with the estimated total levels from the constant (green) and regulated (red) degradation
model. The second panel shows measured and estimated labeled time courses, color coded as above.
Estimated labeled mRNA abundances are multiplied by c = 0.2. The third and the fourth panel
show the estimated decay and synthesis rates for the constant (green) and regulated (red) mRNA
degradation model. Additionally, in panel 3 the wild-type degradation rate from [12] is highlighted as
a dotted blue line.
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Figure 35: Fitting results for the Ace2 gene. The upper panel shows the measured total mRNA
level (black) together with the estimated total levels from the constant (green) and regulated (red)
degradation model. The second panel shows measured and estimated labeled time courses, color
coded as above. The third and the fourth panel show the estimated decay and synthesis rates for the
constant (green) and regulated (red) mRNA degradation model. Additionally, in panel 3 the wild-type
degradation rate from [12] is highlighted as a dotted blue line.
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Figure 36: Loss reduction of variable degradation model over constant degradation model. Logarithmic
constant losses were binned. The violins show the distribution of frequencies of the loss reduction in
the variable degradation model over the constant degradation model for genes whose constant loss
lies in the corresponding bin. White marks on the violin plots indicate the median value for the loss
reduction, the black lines mark the 25/75% inter-quartile range.
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Figure 37: Correlation of degradation rate peak times (x-axis) and synthesis rate peak times (y-axis)
for periodically expressed genes with regulated degradation. For genes where the synthesis peaks at
the end of a cell cycle and the degradation rate peaks at the beginning of the subsequent cell cycle,
the synthesis rates were shifted by -60 minutes. The spearman correlation is 0.71.

as derived from cyclin and histone peak (Section 2.6) and gouped the genes according to the cell
cycle phases in which their synthesis peak times fall into. The degradation rates of the genes in the
corresponding groups peak shortly after the respective cell cycle phases of the synthesis rates (main
Figure 6E).

4.3 Correlation between the periodicity score and the variable degradation

score

As described in the main text, the variable degradation score and the periodicity score are positively
correlated. Figure 38 shows the variable degradation scores (VDS) for genes which are subject to
periodic transcription. The increasing VDS with increasing periodicity leads us to the conclusion that
periodic �uctuations in the mRNA degradations are coupled to periodic transcription.
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Figure 38: Correlation between the periodicity score and the variable degradation score for 2584 genes
with periodicity score > 0. Quartiles of the regulated-degradation score distribution (y-axis) are shown
as a function of the periodicity score (x-axis). The interquartile range (25%-75% quantile is shown in
orange-red, the extreme regions (0%-25% and 75%-100% quantile) are shown in grey, the central black
line is the median line

41



5 Supplementary Tables

Supplementary Table 1

Identi�ed DNA motifs in clusters of co-expressed cell cycle genes in the region 500bp upstream of the
TSS. Transcription factors that are signi�cantly associated with identi�ed motifs. The column �TF
periodic� indicates if the TF is periodically expressed. The column �number of periodic targets� shows
the number of target genes that are periodically expressed.

Available for download as XLSX �le.

Supplementary Table 2

Table of all �tting results for the periodic degradation rates and the corrsponding synthesis rates of all
transcripts for replicate 1. Transcript column: Systematic names for Saccharomyces cerevisiae tran-
scripts. Score column: Variable Degradation Score (VDS) for the corresponding transcript with the
best �tting synthesis and degradation rates. Delta column: Average decay level round which the peri-
odic degradation rate oscillates. Phi column: Peak time point of periodic, cosine-shaped degradation
rate with wave length equals cell cycle time. Mu columns: Piecewise linear modeled synthesis rates in
molecules per minute per cell at the respective time points of 5,15,25,35,45,55, and 65 minutes after
release of cells in G1 phase of the cell cycle.

Available for download as XLSX �le.

Supplementary Table 3

Table of all �tting results for the periodic degradation rates and the corrsponding synthesis rates of all
transcripts for replicate 2. Transcript column: Systematic names for Saccharomyces cerevisiae tran-
scripts. Score column: Variable Degradation Score (VDS) for the corresponding transcript with the
best �tting synthesis and degradation rates. Delta column: Average decay level round which the peri-
odic degradation rate oscillates. Phi column: Peak time point of periodic, cosine-shaped degradation
rate with wave length equals cell cycle time. Mu columns: Piecewise linear modeled synthesis rates in
molecules per minute per cell at the respective time points of 5,15,25,35,45,55, and 65 minutes after
release of cells in G1 phase of the cell cycle.

Available for download as XLSX �le.

Supplementary Table 4

cDTA synthesis rate estimates of all S.cerevisiae genes. The 82 labeled mRNA samples from both time
series are treated as replicates. The columns �median�, �sd�, �mean�, �cv�, �95%-con�dence� correspond
to the median, standard deviation, mean, coe�cient of variation and 95% con�dence interval of the
distribution of estimated synthesis rates, respectively.

Available for download as XLSX �le.
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Supplementary Table 5

cDTA half-life estimates of all S.cerevisiae genes. The 82 total and 82 labeled mRNA samples from
both time series are treated as replicates and are used to determine the half-lifes of all mRNAs. The
columns �median�, �sd�, �mean�, �cv�, �95%-con�dence� correspond to the median, standard deviation,
mean, coe�cient of variation and 95% con�dence interval of the distribution of estimated half-lifes,
respectively.

Available for download as XLSX �le.
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