arXiv:1206.0111v1 [cs.Al] 1 Jun 2012

OpenGM: A C++ Library for Discrete Graphical Models

Bjoern Andres* BANDRES@SEAS.HARVARD.EDU
Thorsten Beier* THORSTEN.BEIER@IWR.UNI-HEIDELBERG.DE
Jorg H. Kappes* KAPPES@QMATH.UNI-HEIDELBERG.DE

HCI, University of Heidelberg, Speyerer Str. 6, 69126 Heidelberg, Germany
http://hci.iwr.uni-heidelberg.de/opengm2

Abstract

OpenGM is a C++ template library for defining discrete graphical models and performing
inference on these models, using a wide range of state-of-the-art algorithms. No restrictions
are imposed on the factor graph to allow for higher-order factors and arbitrary neighbor-
hood structures. Large models with repetitive structure are handled efficiently because
(i) functions that occur repeatedly need to be stored only once, and (ii) distinct functions
can be implemented differently, using different encodings alongside each other in the same
model. Several parametric functions (e.g. metrics), sparse and dense value tables are pro-
vided and so is an interface for custom C++ code. Algorithms are separated by design
from the representation of graphical models and are easily exchangeable. OpenGM, its
algorithms, HDF5 file format and command line tools are modular and extendible.

Keywords: Graphical Model, Combinatorial Optimization, Inference, C++

1. Introduction and Related Work

Graphical models have become a standard tool in machine learning, and inference (marginal
and MAP estimation) is the central problem, cf. Nowozin and Lampert (2011).

These models can be defined rigorously as models of functions that factorize w.r.t. an
associative and commutative operation, cf. Werner (2008). The C++ library OpenGM is
based on this general definition that allows for a unified treatment of accumulative opera-
tions on such functions, including optimization, summation (marginalization), conjunction
and disjunction. It provides a variety of inference algorithms' beyond message passing
(Fig. 1). It can deal efficiently with large scale problems, since (i) functions that occur
repeatedly need to be stored only once and (ii) when functions require different parametric
or non-parametric encodings, multiple encodings can be used alongside each other, in the
same model. No restrictions are imposed on the factor graph and the operations of the
model, and the file format handles user extensions automatically. Furthermore, OpenGM
is a template library in which elementary data types can be chosen to maximize efficiency.

Existing libraries do not have all of these properties. MRF-lib (Szeliski et al., 2008)
is restricted to the min-sum semi-ring and second-order grid graphs. While it is highly
efficient on these models, it is also specialized to these and not easily extendible. In contrast,

*. Authors contributed equally.
1. Not all algorithms can be used with each semi-ring.

http://hci.iwr.uni-heidelberg.de/opengm2

B. ANDRES, T. BEIER, J. H. KAPPES

Message passing Graph cut Search Sampling LP /ILP
Loopy BP a-expansion ICM Gibbs Dual decomposition
TRBP af-swap LazyFlipper Swendsen-Wang Branch & cut
TRW-S QPBO LOC A*

Figure 1: Algorithms provided by OpenGM: Loopy BP (Pearl, 1988; Kschischang et al., 2001),
TRBP (Wainwright and Jordan, 2008), TRW-S (Kolmogorov, 2006), a-expansion, aS-swap (Boykov
et al., 2001), QPBO (Rother et al., 2007), ICM (Besag, 1986), Lazy Flipper (Andres et al., 2010),
LOC (Jung et al., 2009), Swendsen-Wang sampling (Barbu and Zhu, 2005), Dualdecomposition
(subgradient and bundle-methods) (Kappes et al., 2012; Komodakis et al., 2011), native LP and
Branch & cut using IBM ILOG Cplex, A* (Bergtholdt et al., 2010).

libDAI (Mooij, 2010) supports max-product and sum-product semi-rings which are hard-
coded. The main drawback of libDAT is that it supports only dense value tables to encode
functions which becomes prohibitive for models with many labels and higher-order factors.
Similar to libDAI, FastInf (Jaimovich et al., 2010) focuses on message passing and does
not impose any restrictions on the factor graph. In contrast to libDAI, it supports shared
functions and different function types in a so-called relational model that is similar in
spirit to the design of OpenGM. However, FastInf supports only sum-product semi-rings
and, unlike OpenGM, has no generic template abstraction of semi-rings. The recently
published library grante (Nowozin, 2012) provides shared functions and different function
types. Furthermore, it comes with a set of learning methods. Unlike OpenGM, it is not
template based, limited in its inference methods and published under a proprietary license.

The generality of OpenGM comes at the cost of performance. And yet, OpenGM is only
slightly slower than libDAI when running loopy belief propagation on a grid graph. The
highly optimized code of MRF-LIB is twice as fast for general second-order factors and 20
times as fast for standard metrics.

OpenGM is modular and extendible. The graphical model data structure, inference
algorithms and different encodings of functions interoperate through well-defined interfaces.

2. Mathematical Foundation

OpenGM is built on a rigorous definition of the syntax and semantics of a graphical model.
The syntax determines a class of functions that factorize w.r.t. an associative and com-
mutative operation. In a probabilistic model, it determines the conditional independence
assumptions. The semantics specify the operation and one function out of the class of all
function that are consistent with the syntax.

The syntax (Fig. 2a) consists of a factor graph, i.e. a bipartite graph (V, F, E)), a linear
order < in V', a set I whose elements are called function identifiers, and a mapping vy : ¥ — [
that assigns one function identifier to each factor such that only factors that are connected
to the same number of variables can be mapped to the same function identifier.

For any v € V and f € F, the factor f is said to depend on the variable v iff (v, f) € E.
N(f) denotes the set of all variables on which f depends and (v§f)) je{1,..,IN(f)} the sequence

OPENGM: A C++ LIBRARY FOR DISCRETE GRAPHICAL MODELS

|4 (R/K/f”?: le:szzXU3:{0,...,n}::Xv
E
(Pi1790i2780i3:Xv_>Qy g0i4:X3—>Q
F RAWALALES RS
v l l/ l @ 1 X2 — Q such that V(zy,, Ty, Toy) € X3
Qo(xvlawixvs) = ¥ ($U1)90i2($v2)90i3($v3) ’
I e ° ° ° o (T oy)i (s T)
i ia io i3 Pig(Tvg s Log) Pig (Tug s Tog
a. Syntax b. Semantics

Figure 2: A factor graph (V, F, E) describes how a function ¢ decomposes into a product
of functions. In OpenGM, we extend this syntax by a set I of function identifiers and
a mapping v : F' — I that assigns one function identifier to each factor. In the above
example, the factors f4 and f; are mapped to the same function identifier i4, indicating
that the corresponding functions ¢;, (%y,, Ty,) and @;, (2., , Ty,) are identical.

of these variables in ascending order. Similarly, (vj);cq1,..|v|} denotes the sequence of all
variables in ascending order.

Semantics (Fig. 2b) w.r.t. a given syntax consist of one finite set X, # () for each v € V,
a commutative monoid (2, ®,1) and for any ¢ € I for which there exists an f € F with

v(f) =1, one function? ¢; : Xvif) Ko X le(/{/)()|_> 2.
f

The function from X := X, x -+ x X”\V\ to © induced by syntax and semantics is the

function ¢ : X — Q such that V(2y,, ...,z) € X

P(@oys o ay) = () ey <J3v§f)’~-'a$ (1) > : (1)

fer UIN)

W.lLo.g., OpenGM simplifies the syntax and semantics by substituting V' = {0, ..., |V|—
1}, equipped with the natural order, F' = {0,...,|F|—1}, I ={0,...,|I| — 1} and for each
veV,X,={0,...,|X,|—1}. A graphical model is thus completely defined by the number
of variables |V|, the number of labels |X,| of each variable v € V, the edges E of the
factor graph, the number of functions |I|, the assignment of functions to factors v, the
commutative monoid (€2, ®, 1) and one function ¢; for each function identifier i € 1.

Given a graphical model and, instead of just the commutative monoid (€2, ®, 1), a com-
mutative semi-ring (Q, ®, 1,®,0), the problem of computing

Pe@ e BOewn (wvm, ST) (2)
o Nt 1 VOl

is a central problem in machine learning with instances in optimization (R, 4,0, min, c0),
marginalization (RT,-,1,+,0) and constrained satisfaction ({0,1},A,1,V,0).
3. Using and Extending OpenGM

The first step when using OpenGM is to construct a label space that determines the number
of variables and the number of labels of each variable. The next step is to fix the data type

2. The existence of ¢ implies Vf, ' € F :y(f) =~v(f') = Vj € {1,...,deg(f)} : X) = X 1)
J J

3

B. AnDRES, T. BEIER, J. H. KAPPES

of the domain 2, the operation ® and the way functions are encoded, by choosing the
parameters of the graphical model class template as in the example below.

To define a function such as ¢;, (y1,y2), one needs to indicate how many labels y; and yo
have and set the parameters of the function or fill its value table. Once a function has been
added to the model, it can be connected to several factors and thus assigned to different
sets of variables. This procedure is always the same, regardless of the number and type of
classes used to encode functions. Details are described in the users’ section of the manual.

Algorithms for optimization and inference are classes in OpenGM. To run an algorithm,
one instantiates an object of the class, providing a model and optional control parameters,
and calls the member function infer, either without parameters or with one parameter
indicating a visitor (see example). Visitors are a powerful tool for monitoring and controlling
algorithms by code injection. Once an algorithm has terminated, results such as optima
and bounds can be obtained via member functions. Detailed instructions can be found in
the users’ section of the manual.

OpenGM provides interfaces for custom algorithms, custom parametric functions, cus-
tom discrete spaces and custom semi-rings. These interfaces are described in the developers’
section of the manual.

1 typedef SimpleDiscreteSpace<size_t, size_t> Space;
2 Space space(numberOfVariables, numberOfLabels);
3 typedef OPENGM_TYPELIST_2(ExplicitFunction<float>, PottsFunction<float>) Functions;
4 typedef GraphicalModel<float, Adder, Functions, Space> Model;
5 Model gm(space);
6 ExplicitFunction<float> f1(&numberOfLabels, &numberOfLabels + 1);
7 f1(0) = ..; f1(1) = ...; ...
8 Model::Functionldentifier fidl = gm.addFunction(f1);
9 const size_t variablelndex = 0;
10 gm.addFactor(fidl, &variablelndex, &variablelndex + 1);
11 PottsFunction<float> f2(numberOfLabels, numberOfLabels, 0.0f, 0.3f);
12 Model::Functionldentifier fid2 = gm.addFunction(f2);
13 size_t variablelndices[] = {variablelndex, variablelndex + 1};
14 gm.addFactor(fid2, variablelndices, variablelndices + 2);
15 typedef BpUpdateRules<Model, Minimizer> UpdateRules;
16 typedef MessagePassing<Model, Minimizer, UpdateRules, MaxDistance> BeliefPropagation;
17 BeliefPropagation::Parameter parameter(maxNumberOflterations, convergenceBound, damping);
18 BeliefPropagation bp(gm, parameter);
19 MessagePassingVerboseVisitor<BeliefPropagation> visitor;
20 bp.infer(visitor);
21 vector<size_t> labeling(numberOfVariables);
22 bp.arg(labeling);

4. Conclusion

OpenGM is a C++ library for finite graphical models that provides state-of-the-art inference
algorithms. It widens the range of models representable in software by allowing for arbitrary
factor graphs and semi-rings and by handling models with repetitive structure efficiently. It
is fast enough for prototype development even in settings where performance is paramount.
The modularity and extendibility of OpenGM, its command line tools and file format have
the potential to stimulate an exchange of models and algorithms.

OPENGM: A C++ LIBRARY FOR DISCRETE GRAPHICAL MODELS

References

Bjoern Andres, Jorg H. Kappes, Ullrich Kothe, and Fred A. Hamprecht. The Lazy Flipper: MAP
inference in higher-order graphical models by depth-limited exhaustive search. ArXiv e-prints,
2010. URL http://arxiv.org/abs/1009.4102.

Adrian Barbu and Song-Chun Zhu. Generalizing Swendsen-Wang to sampling arbitrary posterior
probabilities. TPMAI 27(8):1239-1253, 2005.

Martin Bergtholdt, Jorg H. Kappes, Stefan Schmidt, and Christoph Schnorr. A study of parts-based
object class detection using complete graphs. IJCV, 87(1-2):93-117, 2010.

Julian Besag. On the statisical analysis of dirty pictures. Journal of the Royal Statistical Society B,
48:259-302, 1986.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph
cuts. TPAMI, 23(11):1222-1239, 2001.

Ariel Jaimovich, Ofer Meshi, ITan McGraw, and Gal Elidan. FastInf: An efficient approximate
inference library. JMLR, 11:1733-1736, 2010.

Kyomin Jung, Pushmeet Kohli, and Devavrat Shah. Local rules for global MAP: When do they
work? In NIPS, 2009.

Jorg H. Kappes, Bogdan Savchynskyy, and Christoph Schnérr. A bundle approach to efficient
MAP-inference by Lagrangian relaxation. In CVPR, 2012. in press.

Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization.
TPAMI, 28(10):1568-1583, 2006.

Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. MRF energy minimization and beyond
via dual decomposition. TPAMI, 33(3):531-552, 2011.

Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. Factor graphs and the sum-
product algorithm. Transactions on Information Theory, 47:498-519, 2001.

Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in
graphical models. JMLR, 11:2169-2173, August 2010.

Sebastian Nowozin. grante 1.0. http://www.nowozin.net/sebastian/grante, 2012.

Sebastian Nowozin and Christoph H. Lampert. Structured learning and prediction in computer
vision. Foundations and Trends in Computer Graphics and Vision, 6(3-4):185-365, 2011.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
Kaufmann, San Francisco, CA, USA, 1988.

Carsten Rother, Vladimir Kolmogorov, Victor Lempitsky, and Martin Szummer. Optimizing binary
MRFs via extended roof duality. In CVPR, 2007.

Rick Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler, Vladimir Kolmogorov, Aseem Agar-
wala, Marshall Tappen, and Carsten Rother. A comparative study of energy minimization meth-
ods for markov random fields with smoothness-based priors. TPMAI, 30(6):1068-1080, 2008.

Martin J. Wainwright and Michael 1. Jordan. Graphical Models, Exponential Families, and Varia-
tional Inference. Now Publishers Inc., Hanover, MA, USA, 2008.

Tom#s Werner. Marginal consistency: Unifying constraint propagation on commutative semirings.
In International Workshop on Preferences and Soft Constraints, 2008.

http://arxiv.org/abs/1009.4102

	1 Introduction and Related Work
	2 Mathematical Foundation
	3 Using and Extending OpenGM
	4 Conclusion

