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Abstract

Network robustness is a crucial property of the plant immune signaling network because pathogens are under a strong
selection pressure to perturb plant network components to dampen plant immune responses. Nevertheless, modulation of
network robustness is an area of network biology that has rarely been explored. While two modes of plant immunity,
Effector-Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI), extensively share signaling machinery, the network
output is much more robust against perturbations during ETI than PTI, suggesting modulation of network robustness. Here,
we report a molecular mechanism underlying the modulation of the network robustness in Arabidopsis thaliana. The
salicylic acid (SA) signaling sector regulates a major portion of the plant immune response and is important in immunity
against biotrophic and hemibiotrophic pathogens. In Arabidopsis, SA signaling was required for the proper regulation of the
vast majority of SA-responsive genes during PTI. However, during ETI, regulation of most SA-responsive genes, including the
canonical SA marker gene PR1, could be controlled by SA-independent mechanisms as well as by SA. The activation of the
two immune-related MAPKs, MPK3 and MPK6, persisted for several hours during ETI but less than one hour during PTI.
Sustained MAPK activation was sufficient to confer SA-independent regulation of most SA-responsive genes. Furthermore,
the MPK3 and SA signaling sectors were compensatory to each other for inhibition of bacterial growth as well as for PR1
expression during ETI. These results indicate that the duration of the MAPK activation is a critical determinant for
modulation of robustness of the immune signaling network. Our findings with the plant immune signaling network imply
that the robustness level of a biological network can be modulated by the activities of network components.
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Introduction

How network properties, such as robustness against network

perturbations, emerge from biological networks has been a central

question in systems biology [1,2]. Possible modulation of network

robustness in a biologically relevant context and mechanisms

underlying the modulation are areas of study that have rarely been

explored.

Innate immunity, in which defense responses are induced

through signaling events initiated by recognition of pathogen

attack, composes a major part of plant immunity [3]. PAMP/

Pattern-Triggered Immunity (PTI) and Effector-Triggered Immu-

nity (ETI) are modes of plant innate immunity defined by the way

pathogens are detected [4,5]. PTI is triggered by recognition of

microbe/pathogen-associated molecular patterns (MAMPs/

PAMPs) by the cognate pattern-recognition receptors (PRRs),

which are typically receptor-like kinases or receptor-like proteins

[6]. For example, Arabidopsis thaliana FLS2 is the PRR for flg22, an

elicitor-active epitope of flagellin from Gram-negative bacteria [7].

While most non-adapted pathogens cannot overcome PTI,

adapted pathogens deliver effectors into the plant cell that

manipulate plant cell functions to facilitate their infection by, for

instance, interfering with PTI signaling [8,9]. ETI is triggered by

specific recognition of effectors by resistance (R) proteins, which

are often nucleotide-binding leucine-rich repeat (NB-LRR) pro-

teins [10]. For example, the Arabidopsis intracellular NB-LRR R

proteins RPS2 and RPM1 indirectly recognize perturbations of

the PTI signaling component RIN4 by the effectors AvrRpt2 and

AvrRpm1/AvrB, respectively, of a Gram-negative bacterial

pathogen, Pseudomonas syringae [3]. In addition to proteinaceous

effectors, some P. syringae strains deliver coronatine, which is a
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jasmonic isoleucine mimic, in order to suppress plant immunity

[11]. Recently, it was shown that coronatine suppresses immune

responses dependent on salicylic acid (SA) as well as independent

of SA [12,13]. Thus, there are evolutionary arms races between

hosts and pathogens. Pathogens evolve much faster than hosts,

rapidly changing effector repertoires, thereby changing points of

attack in host immune networks. As hosts cannot match the speed

of pathogen evolution, it is important that hosts develop robust

immune networks that remain functional in the face of effector

attack. Mechanisms underlying network robustness are thus a

critical aspect of immunity.

SA is a signal molecule controlling a major portion of immunity

against biotrophic and hemibiotrophic pathogens, including P.

syringae [14]. SID2 encodes a key enzyme for SA biosynthesis in

response to pathogen infection [15]. In Arabidopsis sid2 mutants,

pathogen-induced SA accumulation is almost undetectable [14].

Hundreds of genes are transcriptionally regulated by SA signaling,

mediated mainly by a positive regulator of SA signaling, NPR1

[14]. PR1 is one SA-inducible gene used as a canonical SA marker

[14].

Arabidopsis has 20 mitogen-activated protein kinases (MAPKs)

[16], and four of them, MPK3, MPK4, MPK6 and MPK11, have

been described as immune signaling components [17]. MPK3 and

MPK6 are associated with immune responses, such as reactive

oxygen species (ROS) production, ET production/signaling,

phytoalexin production and cell death [17]. For instance, ethylene

production is positively controlled by dual regulation of enzymes

(ACS) synthesizing the ethylene precursor 1-amino-cyclopropane-

1-carboxylic acid. MPK6 stabilizes ACS2 and ACS6 by their

phosphorylation, and MPK3 and MPK6 control gene expression

through a transcription factor, WRKY33, which is activated by

the MAPKs [18,19]. The same cascade is required for production

of a phytoalexin, camalexin, by controlling expression of a

biosynthetic gene, PAD3 [20]. A double mutant deficient in

MPK3 and MPK6 is embryonic lethal but the single mutants are

viable, suggesting functional redundancy between them in

development [21]. MPK3 phosphorylates the bZIP type tran-

scription factor VIP1 whose phosphorylation is required for its

nuclear translocation [22]. Transient over-expression of VIP1 led

to weak induction of PR1 in Arabidopsis protoplasts although

involvement of SA in this PR1 induction is not known [23].

The overall spectra of induced defense responses are overlap-

ping between PTI and ETI whereas the kinetics and intensity of

the responses seem different [4,24]. In Arabidopsis, knocking out the

hub genes of four major signaling sectors abolished 80% of flg22-

triggered PTI (flg22-PTI) and AvrRpt2-triggered ETI (AvrRpt2-

ETI), indicating extensively shared signaling network machinery

between PTI and ETI [25]. Relationships among these signaling

sectors are part compensatory and part synergistic in flg22-PTI

but are predominantly compensatory in AvrRpt2-ETI, which

explains a high level of robustness in the ETI level against network

perturbations [25]. Single mutations (dde2, ein2, pad4 and sid2)

weakly but significantly compromised flg22-PTI but not AvrRpt2-

ETI while the quadruple mutation largely abolished both. These

observations demonstrated differences in the robustness of the

highly overlapping signaling networks during the two modes of

plant immunity. However, the molecular mechanism controlling

modulation of the network robustness is not known.

Here we report a molecular mechanism that affects the

robustness of the plant immune signaling network. Although

Arabidopsis MPK3 and MPK6 are activated during both PTI and

ETI, the duration of the activation was much longer during ETI

than PTI. Only sustained activation of the MAPKs supported

expression of a majority of SA-responsive genes in the absence of

SA. The roles of MPK3 and SA signaling during AvrRpt2-ETI

were compensatory, contributing to network robustness against

perturbations during ETI. Our findings demonstrate that a

biologically important differential network property, robustness,

can emerge from duration of the activity of a network component.

Results

Most SA-responsive genes were properly regulated in the
absence of SA during ETI

We previously reported that ETI is more robust against network

perturbations than PTI due to a higher level of network

compensation [25]. We hypothesized that this compensation

occurred at the level of gene regulation. To test this hypothesis, we

examined expression of a canonical SA marker gene, PR1, during

ETI. Transcriptional induction of PR1 was completely dependent

on SID2, which is a key SA biosynthetic enzyme, and hence

completely dependent on SA signaling during PTI [26]. We found

that PR1 induction was only partially dependent on SID2 and

NPR1 at a late time point of 24 hours post inoculation (hpi) with

ETI-triggering P. syringae pv. tomato DC3000 (Pto) strains expressing

the effectors AvrRpt2 (Pto AvrRpt2) or AvrRpm1 (Pto AvrRpm1)

(Figure 1A and Figure S1). While AvrRpt2 and AvrRpm1 are

recognized by the CC-type NB-LRR proteins RPS2 and RPM1,

AvrRps4 is recognized by the TIR-type NB-LRR protein RPS4

[3]. We also observed SID2- and NPR1-independent PR1

induction during AvrRps4-triggered ETI although induction levels

were lower compared to AvrRpt2- and AvrRpm1-ETI (Figure S1).

In contrast, PR1 induction was completely dependent on SID2 in

the case of the non-ETI triggering Pto strain carrying an empty

vector (Pto EV). Inoculation of the ETI-triggering strains at a high

dose can trigger a form of programmed cell death called a

hypersensitive response (HR) [3]. The inoculation dose used in this

experiment was relatively low (OD600 = 0.001), and we did not

observe a macroscopic HR within 24 hpi. To test the possibility

that the SA level increased independently of SID2 during ETI, we

measured the SA level in these tissues. The increased SA

accumulation was completely dependent on SID2 in all conditions

Author Summary

Robustness of a network is defined by how consistently it
performs upon removal of some of its components. It is a
common strategy for plant pathogens to attack compo-
nents of the plant immune signaling network in an
attempt to dampen plant immunity. Therefore, it is crucial
for the plant immune signaling network to have a high
level of robustness. We previously reported that the
robustness level of the plant immune signaling network
is higher during Effector-Triggered Immunity (ETI) than
Pattern-Triggered Immunity (PTI). Here we discovered a
molecular switch that determines two robustness levels
during ETI and PTI. Salicylic acid (SA) is a major plant
immune signal molecule that regulates many immune-
related genes. SA-independent alternative mechanisms
also regulated the majority of SA-responsive genes during
ETI but not PTI. One of the SA-independent mechanisms
was mediated by prolonged activation of MAP kinases
(MAPKs). MAPK activation was prolonged during ETI but
transient during PTI. Thus, the duration of MAPK activation
switches the robustness level of the plant immune
signaling network. Our findings imply that the robustness
level of a biological network can be modulated by
activities of its components.

Dual Regulation by Extended MAPK Activation and SA
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(Figure 1B). These results indicate that some SA-independent

mechanism(s) can activate PR1 during ETI. At an earlier time

point of 6 hpi, only SA-dependent PR1 induction was observed

with all three strains (Figure 1A), suggesting that this SA-

independent mechanism(s) during ETI requires more than 6 hours

to be effective.

SA-independent mechanism(s) for PR1 induction during ETI

prompted us to investigate the possibility that other SA-responsive

genes can also be transcriptionally regulated in an SA-independent

manner during ETI. For this purpose, mRNA profiles were

analyzed using a whole genome DNA microarray. Leaves of wild

type (Col) or sid2 plants were inoculated with water (mock), Pto hrcC,

Pto EV, or Pto AvrRpt2, and were collected at 24 hpi for mRNA

profiling. The Pto hrcC strain is deficient in the type III secretion

system used to transport effectors into plant cells. It elicits the PTI

response by presenting various MAMPs [11]. Among 2828 genes

that were significantly up- or down-regulated (with q values,0.01

and more than 2-fold changes) in both Pto EV and Pto AvrRpt2

infection in Col, regulation of 187 genes showed strong SID2-

dependence in Pto EV infection (Figure 2A and Table S1). These

genes are designated SA-responsive genes hereafter. Remarkably,

regulation of most SA-responsive genes, including PR1, at 24 hpi

with Pto AvrRpt2 is largely SID2-independent although SA

contributes to their full expression, indicating that SA-independent

signaling mechanism(s) can regulate most SA-responsive genes

during AvrRpt2-ETI. The SID2-dependency of gene regulation

after Pto hrcC inoculation was similar to that after Pto EV

inoculation, although the overall extent of up- or down-regulation

was lower, and distinct from that after Pto AvrRpt2 inoculation

(Figure S2 and Table S2). Thus, initiation of ETI appears to be the

key for activation of this SA-independent mechanism(s).

Activation of MPK3 and MPK6 was sustained in ETI but
transient in non-ETI

We hypothesized that a kinetic difference in activation of

network components is responsible for activation of SA-

independent mechanism(s). A prior study suggested that the

duration of MPK3 and MPK6 activation is longer during ETI

than non-ETI [27]. We compared the duration of MAPK

activation in ETI and PTI. When wild-type seedlings in a liquid

medium were treated with the PTI inducer flg22, activation of the

MAPKs was observed after 10 min and returned to the basal level

within one hour (Figure 3A), confirming previous observations

[28]. The possibility that flg22 was rapidly degraded in the liquid

culture was excluded since the MAPKs were activated similarly

when fresh seedlings were placed in the liquid medium containing

flg22 that had been incubated with other seedlings for 3 hours

(Figure 3A). Thus, MAPK activation is truly transient after flg22

treatment. We employed transgenic seedlings carrying an estra-

diol-inducible AvrRpt2 transgene (XVE-AvrRpt2) to measure MAPK

activation during ETI in the absence of PTI. The MAPKs were

activated by three hours and remained active for at least 7 hours

after estradiol treatment (Figure 3B). This sustained MAPK

activation was ETI-specific as no such activation was observed in

the rps2 mutant background, which lacks the corresponding

receptor (Figure 3C). PR1 induction during AvrRpt2-ETI was

independent of SA in XVE-AvrRpt2 transgenic seedlings (Figure

S3), which is consistent with the results obtained using adult leaves

inoculated with a Pto strain expressing AvrRpt2 (Figure 1). Similar

trends in MAPK activation duration were observed when adult

leaves were inoculated with Pto strains: sustained activation of the

MAPKs was observed with Pto AvrRpt2 in a manner dependent

on the R gene RPS2, but not with the strains that do not trigger

ETI (Figure 4). While the amounts of activated MPK3 and MPK6

were similar during AvrRpt2-ETI triggered in XVE-AvrRpt2

transgenic plants (Figure 3), there was more activated MPK3

than activated MPK6 during AvrRpt2-ETI triggered by Pto

AvrRpt2 (Figures 4, S4 and S5), suggesting that MPK3 plays a

major role during AvrRpt2-ETI in bacterial infection. We also

observed sustained MAPK activation during AvrRps4-ETI

although levels of activation were weaker compared to AvrRpt2-

ETI (Figure S4). Since there are 20 MAPKs in Arabidopsis [16], we

determined the identities of the activated MAPKs. Indeed, the

activated MAPKs during AvrRpt2- and AvrRps4-ETI were

MPK3 and MPK6 (Figure S4). Previously, Beckers et al (2009)

Figure 1. SA-independent regulation of PR1 during ETI. (A) The
PR1 expression level in leaves at 6 or 24 hpi with Pto strains
(OD600 = 0.001) or mock was determined by qRT-PCR. Bars represent
means and standard errors of two biological replicates calculated using
a mixed linear model. The vertical axis shows the log2 expression level
relative to Actin2 (At2g18780). (B) The free SA levels in leaf samples
corresponding to those in (A) were determined. Bars represent means
and standard errors of two biological replicates calculated using a
mixed linear model. The SA level is shown on a log10 scale. Asterisks
indicate significant differences from mock (P,0.01, two-tailed t-tests).
doi:10.1371/journal.pgen.1004015.g001

Dual Regulation by Extended MAPK Activation and SA
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Figure 2. Sustained MAPK activation supports transcriptional regulation of a majority of SA-responsive genes without SA. (A). A
heatmap of the SA-responsive genes. Leaves were collected at 24 hpi with the indicated Pto strains (OD600 = 0.001) or mock. Independently, leaves of
DEX-MKK4DD plants were collected at 24 hpi with 2 mM DEX or mock and subjected to mRNA profiling analysis using a whole genome DNA
microarray. SA-responsive genes were selected for reproducible SID2-dependent responsiveness to the Pto strains as described in Experimental
Procedures. The log2 ratios compared to mock for 187 SA-responsive genes were subjected to agglomerative hierarchical clustering analysis. The log2

ratio of DEX/mock for the DEX-MKK4DD sid2 plant (MKK4DD/sid2) samples was weighted by a factor of 0.5 to reduce its effects on the clustering
pattern. The log2 ratios used were averaged from three independent experiments. Green indicates negative values, red indicates positive values and
black indicates zero: see the color scale. The arrow indicates the position of PR1. Means and standard errors of (B) Cluster I, 85 genes; (C) Cluster II, 20
genes; (D) Cluster III, 25 genes are shown.
doi:10.1371/journal.pgen.1004015.g002

Dual Regulation by Extended MAPK Activation and SA
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reported that an SA analog, benzo(1,2,3,)thiadiazole-7-carbothioic

acid S-methyl ester (BTH), induced priming of MPK3 activation

by inducing expression of MPK3 [29]. In contrast, sustained

activation of MPK3 during AvrRpt2-ETI was independent of SA

(Figure S5). The sustained activation was not due to an increased

amount of MPK3 as we did not observe obvious changes in the

MPK3 protein level during AvrRpt2-ETI (Figure 3). Taken

together, our data show that sustained activation of the MAPKs is

SA-independent and occurs during ETI but not during non-ETI

responses.

Sustained activation of MPK3 and MPK6 is sufficient for
PR1 induction in the absence of SA

To test if sustained activation of MPK3 and MPK6 can induce

PR1 in an SA-independent manner, transgenic plants expressing

constitutively active forms of MKK4 (MKK4DD) or MKK5

(MKK5DD) under the control of a dexamethasone (DEX)-

inducible promoter were employed (DEX-MKK4DD and DEX-

MKK5DD). MKK4 and MKK5 are MAP kinase kinases, whose

activated forms phosphorylate and activate MPK3 and MPK6

[17]. DEX-induced expression of MKK4DD or MKK5DD leads

to sustained activation of MPK3 and MPK6 (Figure S6) [30].

Induction of PR1 was observed 9 hours after DEX treatment

(Figure 5A), suggesting that sustained activation of MPK3 and

MPK6 is sufficient for induction of PR1. Induction of FRK1 is

thought to be a good marker for activation of MPK3 and MPK6

[31] and was observed 3 hours after DEX treatment while PR1

was not (Figure 5B). FRK1 was strongly induced 30 minutes after

flg22 treatment [32], and the induction did not require SA

accumulation (Figure S7). Thus, although transient MAPK

Figure 3. MAPK activation is sustained in ETI but transient in PTI. (A) MAPK activation during flg22-PTI. Seedlings were treated with 10 nM
flg22 for the indicated times in a liquid medium. For the 10 min* sample, fresh seedlings were treated with the flg22-containing liquid medium used
for the 3 h sample, revealing that flg22 was not degraded in the 3 h sample. (B,C) MAPK activation during AvrRpt2-ETI. Seedlings of the transgenic
lines that carry the estradiol-inducible AvrRpt2 transgene in wild-type (B) or rps2 (C) background (XVE-AvrRpt2/WT or rps2) were treated with 20 nM
estradiol for the indicated times in a liquid medium. Activated MAPKs, MPK3 and MPK6 were detected by immunoblot using anti-p44/42 MAPK, anti-
AtMPK3 and anti-AtMPK6 antibody, respectively. Ponceau S stained blots are shown for loading controls. Experiments were conducted three times
with similar results. (D) The AvrRpt2 mRNA levels in seedlings treated with 20 nM estradiol for the indicated times were determined by qRT-PCR. Bars
represent means and standard errors of two biological replicates calculated using a mixed linear model. The vertical axis shows the log2 expression
level relative to Actin2 (At2g18780). Asterisks indicate significant differences from the untreated controls (P,0.01, two-tailed t-tests).
doi:10.1371/journal.pgen.1004015.g003
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activation of MPK3 and MPK6 is sufficient for FRK1 induction,

sustained MAPK activation is necessary and sufficient for SA-

independent PR1 induction. The sustained activation of MPK3

and MPK6 by DEX-induced MKK4DD or MKK5DD did not

increase the level of SA (Figure 6A). Furthermore, a wild-type-like

PR1 induction 24 hours after DEX treatment was observed in

plants deficient in SID2 or NPR1 (Figure 6B). Since PR1 induction

was not observed in a DEX-inducible ß-glucuronidase (GUS, an

arbitrary reporter gene) line after DEX treatment, PR1 induction

was not caused by the DEX-inducible system or DEX but by

induced expression of MKK4DD or MKK5DD. Although MPK4

was activated as well as MPK3 and MPK6 during PTI and ETI

(Figure 4; [17]), expression of MKK4DD or MKK5DD does not

lead to strong activation of MPK4 [30]. Therefore, it is unlikely

that MPK4 plays a role. We conclude that sustained activation of

MPK3 and/or MPK6 causes PR1 induction in an SA-independent

manner.

We tested whether mpk3 and mpk6 single mutations had effects

on PR1 induction by MKK4DD or MKK5DD expression. PR1

induction was unaffected in mpk6 but strongly reduced in mpk3

plants (Figure S8A). MKK4DD induction was also strongly reduced

in mpk3 plants (Figure S8B), so the reduction of PR1 induction in

DEX-MKK4DD/mpk3 may be due to reduction of MKK4DD

expression. MKK5DD induction in DEX-MKK5DD/mpk3 was

reduced compared to DEX-MKK5DD/Col yet 10 times higher

than MKK4DD induction in DEX-MKK4DD/mpk3 while PR1

induction was similarly compromised in both plant lines. Thus,

these results suggest that MPK3 is required for SA-independent

PR1 induction conferred by forced MKK5 activation while MPK6

is dispensable.

Sustained activation of MPK3 and MPK6 supported
transcriptional regulation of most SA-responsive genes

We tested whether sustained activation of MPK3 and/or

MPK6 also regulates other SA-responsive genes. Leaves of the

DEX-MKK4DD transgenic lines in wild type (Col) or sid2

backgrounds were treated with DEX or mock control and were

collected for mRNA profiling at 24 hours after treatment. The

transcriptomic changes caused by DEX treatment were very

similar between Col and sid2 (Figure S9 and Table S3), indicating

that gene regulation by sustained activation of the MAPKs is

mostly independent of SA. Therefore, only the mRNA profile

from the DEX-MKK4DD sid2 line was included in the following

analysis. The heatmap in Figure 2A shows that a majority of the

SA-responsive genes responded in the DEX-treated DEX-

MKK4DD sid2 line similarly to sid2 plants during AvrRpt2-ETI:

most up-regulated or down-regulated SA-responsive genes in sid2

during AvrRpt2-ETI were up-regulated or down-regulated,

respectively, in the DEX-treated DEX-MKK4DD sid2 line. This

suggests that sustained activation of the MAPKs regulates a

majority of SA-responsive genes in an SA-independent manner

during AvrRpt2-ETI.

Figure 4. MAPK activation is sustained in ETI but transient in non-ETI conditions. Leaves of Col (A, B) and rpm1 rps2 (C) plants were
infiltrated with Pto hrcC, Pto EV, Pto AvrRpt2 (OD600 = 0.01) or water (mock) and samples were collected at the indicated time points. Activated MAPKs
were detected by immunoblot using anti-p44/42 MAPK antibody. Ponceau S stained blots are shown for loading controls. Experiments were
conducted three times, yielding similar results.
doi:10.1371/journal.pgen.1004015.g004

Dual Regulation by Extended MAPK Activation and SA
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Three gene clusters were selected for further analysis (Clusters

I–III in Figure 2A). The expression level changes of genes in each

cluster were averaged and shown in Figure 2B–D. Clusters I and

III include genes up- or down-regulated, respectively, in a SID2-

independent manner during AvrRpt2-ETI and by sustained

activation of the MAPKs. Thus, these genes appear to be

regulated by sustained activation of the MAPKs during ETI.

Cluster II includes genes that were up-regulated in a largely SID2-

independent manner during ETI but not up-regulated by

sustained activation of the MAPKs. Thus, up-regulation of the

Cluster II genes during ETI is supported by a mechanism(s) other

than the mechanism mediated by the MAPKs. When the GO

terms associated with the clusters were examined, Cluster I, but

none of the other clusters, was enriched with genes related to

biological stresses (response to biotic stimulus, P = 2.861025;

response to other organism, P = 1.161024; multi-organism pro-

cess, P = 5.961024). The results imply that genes induced by both

SA and the MAPKs are important for biological stress responses.

Figure 5. Sustained MAPK activation is sufficient for PR1
induction. The PR1 (A) or FRK1 (B) expression levels in DEX-MKK4DD
(MKK4DD) or -MKK5DD (MKK5DD) at the indicated times after treatment
with 2 mM DEX were determined by qRT-PCR. Bars represent means and
standard errors of three biological replicates calculated using a mixed
linear model. The vertical axis shows the log2 expression level relative to
Actin2 (At2g18780). Asterisks indicate significant differences from
untreated samples (0 h) (P,0.01, two-tailed t-tests).
doi:10.1371/journal.pgen.1004015.g005

Figure 6. SA signaling is not involved in PR1 induction by
sustained MAPK activation. (A) The free SA levels in leaves of wild-
type (Col) or DEX-GUS (GUS), -MKK4DD (MKK4DD) or -MKK5DD
(MKK5DD) plants 9 hours after treatment with 2 mM DEX (DEX) or
mock. For the Col (flg22) sample, leaves of Col plants were infiltrated
with 1 mM flg22 or mock, and the result is shown as a positive control
for induced SA accumulation. Bars represent means and standard errors
of four biological replicates calculated using a mixed linear model. The
SA level is shown on a log10 scale. (B) The PR1 expression levels in leaves
of the plant lines carrying the DEX-GUS (GUS), -MKK4DD (MKK4DD) or
-MKK5DD (MKK5DD) transgenes in wild-type (Col), sid2 or npr1
backgrounds 24 hours after treatment with 2 mM DEX (DEX) or mock
were determined by qRT-PCR. Bars represent means and standard errors
of two biological replicates calculated using a mixed linear model. The
vertical axis shows the log2 expression level relative to Actin2
(At2g18780). Asterisks indicate significant differences from mock
(P,0.01, two-tailed t-tests).
doi:10.1371/journal.pgen.1004015.g006

Dual Regulation by Extended MAPK Activation and SA
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The regulatory trends for the clusters were confirmed by qRT-

PCR analysis of one gene from each cluster (Figure S10).

Compensatory relationships between the MAPKs and SA
signaling confer robustness to AvrRpt2-ETI

We investigated if compensation between MPK3/MPK6 and

SA signaling could be detected in the PR1 expression level during

ETI. Leaves of wild type (Col), mpk3, mpk6, sid2, mpk3 sid2 and

mpk6 sid2 plants were inoculated with Pto AvrRpt2 or Pto

AvrRpm1, and PR1 expression levels were determined 24 hpi

(Figure 7A). While PR1 expression was compromised in sid2 but

not in mpk3 or mpk6 during AvrRpt2-ETI, it was compromised in

mpk3 sid2 more than in sid2 (blue bar), suggesting compensation

between MPK3 and SID2 on PR1 expression during AvrRpt2-ETI.

To quantify the level of compensation between MPK3 and SID2 on

PR1 expression, a signaling allocation analysis was applied [25]. In

this analysis, the effects of the genes and their interactions were

estimated for contribution to the PR1 expression level after

inoculation. We estimated the individual contribution of MPK3 on

the PR1 expression level as the difference in expression levels

between sid2 and mpk3 sid2, that of SID2 as the difference in PR1

expression levels between mpk3 and mpk3 sid2 and their combined

contribution as the difference in PR1 expression levels between the

wild type and mpk3 sid2. The value of the genetic interaction

between MPK3 and SID2 was calculated by subtracting the sum of

the individual contributions of MPK3 and SID2 from their

combined contribution. Their combined contribution in the wild

type was less than the sum of the individual contributions of SA

and MPK3, which is signified by the negative interaction between

them. We previously defined this less-than-additive combined

contribution as compensation [25]. Such compensation was

observed for AvrRpt2-ETI (Figure 7B, top). Thus, signaling

mediated by MPK3 and SA is compensatory on PR1 expression

during AvrRpt2-ETI. No significant effects of MPK6 or the

interaction (MPK6:SID2) on PR1 expression were detected during

AvrRpt2-ETI (Figure 7A and B). No significant effects of MPK3,

MPK6 or their interactions (MPK3:SID2 and MPK6:SID2) on PR1

expression (Figure 7A and B, red bar) or resistance (Figure S11)

were detected during AvrRpm1-ETI, suggesting a divergence in

the mechanisms that modulate network robustness between

different cases of ETI.

A similar trend was observed with the effects of MPK3 and

MPK6 on bacterial resistance in AvrRpt2-ETI (Figure 7C).

AvrRpt2-ETI is defined as the difference in in planta growth of

Pto EV and Pto AvrRpt2 on a log10-scale [25]. The compensation

between MPK3 and SID2 was clear from the signaling allocation

analysis, as both had positive effects and their interaction was

negative (Figure 7D, left). We did not detect significant effects of

MPK6 or the interaction (MPK6:SID2), although we observed a

similar pattern to the case of MPK3 (Figure 7D, right). Thus,

compensation of SA signaling by a signaling mechanism involving

MPK3 exists in inhibition of bacterial growth, as well as in PR1

expression, during AvrRpt2-ETI.

Lethality of the double mutants mpk3 mpk6 [21] does not allow

us to determine combined contributions of MPK3 and MPK6 to

compensation of SA signaling during ETI. It is possible that

MPK6 is not a major factor in SA signaling compensation during

ETI and that a signaling mechanism(s) other than that involving

MPK3 or MPK6 is important during AvrRpm1-ETI. Nonetheless,

these results clearly demonstrate that at least during AvrRpt2-ETI,

SA signaling can be compensated by MPK3-mediated signaling in

regulation of SA-responsive gene expression and that this

compensation increases the robustness of the network output.

This allows immunity to be maintained even if the major network

sector, SA signaling, is compromised.

Discussion

In this study, we identified a mechanism that can increase the

robustness of the plant immune signaling network during

AvrRpt2-ETI. Our results demonstrate that (1) MPK3 and

MPK6 are activated in a sustained manner during ETI and in a

transient manner during non-ETI; (2) Transient MAPK activation

during non-ETI such as PTI does not contribute to SA-

independent regulation of the SA-responsive genes; (3) Sustained

MAPK activation activates an SA-independent alternative mech-

anism that regulates the SA-responsive genes; (4) SA-independent

alternative mechanisms which regulate the SA-responsive genes

were activated during AvrRpt2-ETI; (5) SA signaling compensa-

tion by the signaling sector involving MPK3 contributes to

increased robustness against network perturbations during

AvrRpt2-ETI (Figure 8).

Factor(s) controlling differential activation duration of
the MAPKs

A prior study implied that the duration of MPK3 and MPK6

activation is longer during ETI compared to during non-ETI upon

P. syringae infection [27]. However, it did not rule out the possibility

that the effector AvrRpt2 caused sustained MAPK activation

through a mechanism independent of recognition of AvrRpt2 via

RPS2. We clearly demonstrated that sustained MAPK activation

occurs when ETI is triggered (Figures 3 and 4). The duration of

MPK3 and/or MPK6 activation is the determinant for activation

of the SA-independent alternative mechanism to regulate the SA-

responsive genes: only sustained MAPK activation results in

activation of the alternative mechanism. One potential cause of

the differential activation duration is rapid turnover of PTI

receptors, PRRs. FLS2 is rapidly degraded and disappears within

one hour upon exposure to flg22 [33,34]. Although turnover rates

of other PRRs are not known, if many PRRs turn over rapidly

upon activation, this could explain transient activation of the

MAPKs by Pto hrcC (Figure 4), which presents multiple MAMPs

[11]. The turnover rates of R proteins, the ETI receptors, upon

their activation are largely unknown. Whether turnover rate is

involved or not, this hypothesis that the duration of MAPK

activation and, consequently, the robustness of the network can be

tuned to each receptor is attractive because it would enable

network robustness to be evolutionarily adapted according to what

pathogen-derived signals are recognized by the receptors. Another

potential but not mutually exclusive cause of the differential

activation duration is involvement of protein phosphatases that

dephosphorylate and inactivate the MAPKs: activation of the

MAPKs may be negatively regulated by a phosphatase(s) during

non-ETI responses while the phosphatase may be inactivated

during ETI, resulting in the sustained activation of the MAPKs.

Multiple types of such phosphatases including MAPK phospha-

tases are known in Arabidopsis [35]. Differential regulation of these

phosphatases during ETI and non-ETI responses may explain the

differential duration of MAPK activation.

Decoding of the activation duration information
Switching of downstream signaling by differential duration of

MAPK activation is known in animals and yeast [36–38]. In one

case, it is explained by nuclear translocation of a MAPK that

occurs only after its sustained activation [36]. In this way, sets of

substrates available to the MAPK are distinct between its transient

and sustained activation, which could lead to distinct downstream
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Figure 7. Compensation between MPK3 and SA contributes to the robust ETI levels. (A) The PR1 expression level in leaves of the indicated
genotypes at 24 hpi with Pto AvrRpt2 (blue bars) or AvrRpm1 (red bars) (OD600 = 0.001) was determined by qRT-PCR. Bars represent means and
standard errors of three biological replicates calculated using a mixed linear model. The vertical axis shows the log2 expression level relative to Actin2
(At2g18780). Statistically significant differences are indicated by different letters (P,0.01, two-tailed t-tests). (B) The signaling allocations for the PR1
expression level shown in (A) were estimated for MPK3 and SID2 (upper panel) or MPK6 and SID2 (lower panel). (C) The bacterial counts of Pto EV (left
panel) or AvrRpt2 (right panel) (inoculation dose, OD600 = 0.0001) at 0 or 2 dpi in leaves of the indicated genotypes were measured. Bars represent
means and standard errors of three independent experiments with at least 4 or 12 biological replicates for 0 dpi or 2 dpi, respectively. Statistically
significant differences are indicated by different letters per strain per dpi (P,0.01, two-tailed t-tests). (D) The signaling allocations for AvrRpt2-ETI
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signaling. In plants, it has also been reported that MAPKs are

translocated to the nucleus upon stimulation [39,40]. Investigation

of potential subcellular localization changes of Arabidopsis MPK3

and MPK6 during PTI and ETI will provide insight into this

possibility. Another appealing explanation is involvement of a

feed-forward network motif [41]. For example, activation of a

transcription factor TF-X may mediate the alternative mechanism

regulated by sustained MAPK activation. The activation of TF-X

may require signal Y in addition to active MPK3 and/or MPK6.

Signal Y may be slowly generated as a consequence of the

activation of the MAPKs (e.g., 5 hours). The MAPKs would need

to be activated for a long time to simultaneously have both signal

Y and the active MAPKs to activate TF-X and regulate the SA-

responsive genes. In either scenario, discovery of the signaling

components downstream of the sustained MAPK activation will be

the key to elucidate the mechanism that decodes duration of

MAPK activation. Multiple transcription factors, such as TGAs,

WRKYs, TBF1 and VIP1 [14,22,23,42–44], are involved in

regulation of PR1. These transcription factors may provide a good

starting point for a search for the decoding mechanism.

ETI may provide robustness under perturbation by
coronatine

Pto produces the small molecule coronatine, which is a

molecular mimic of the JA-Ile conjugate and promotes virulence

by suppressing SA signaling [13]. Pto is highly virulent on

Arabidopsis plants while ETI-triggering strains of Pto, such as Pto

AvrRpt2, are much less virulent. Nevertheless, coronatine could

suppress SA signaling. Therefore, SA-independent alternative

mechanism(s) to regulate expression of the SA-responsive genes,

such as that mediated by the MAPKs, may have a substantial role

against perturbation of the immune signaling network by

coronatine. This hypothesis is consistent with our observation

that loss of both MPK3 and SA led to increased susceptibility to

Pto AvrRpt2 (Figure 7).

Can AvrRpt2-ETI overcome suppression effects by other
effectors?

Pto DC3000 possesses type III effectors which directly or

indirectly suppress MAPK activation [45–48]. However, we

observed sustained activation of MPK3 and MPK6 during

AvrRpt2-ETI when AvrRpt2 was delivered from Pto DC3000

(Figure 4). We speculate that the amounts of such MAPK-

inhibiting type III effectors delivered and/or the kinetics of their

delivery are not optimal to effectively suppress MAPK activation

when the type III effectors are delivered from Pto DC3000, which

represents a relatively natural context.

The effector HopAI1 from Pto DC3000 can physically interact

with and inactivate MPK3 and MPK6 by removing the phosphate

group from phosphothreonine via a phosphothreonine lyase

activity [45]. HopAI1 also targets MPK4 and decreases MPK4

activity [48]. Decreased MPK4 activity appears to be monitored

by the NB-LRR protein SUMM2, resulting in triggering ETI.

Overexpression of HopAI1 in wild-type Col-0 plants but not

summ2 mutant plants leads to dwarfism and constitutive activation

of immune responses [48]. However, Pto DC3000 does not trigger

SUMM2-mediated ETI. Consistently, HopAI1 of Pto DC3000 is

disrupted by an insertion in its promoter region [49]. Thus, the

amount of HopAI1 delivered from Pto DC3000 appears insuffi-

cient for effective inhibition of MPK3 and MPK6 activation

during AvrRpt2-ETI.

Another effector, HopF2, from Pto DC3000 can also suppress

activity of MPK3, MPK4 and MPK6 by targeting the upstream

MKK5 and likely other MKKs as well [46,47]. When overex-

pressed in plants, HopF2 interferes with AvrRpt2-ETI by

inhibiting AvrRpt2-mediated RIN4 degradation [50]. Again, the

reason that HopF2 cannot suppress sustained activation of MPK3

and MPK6 triggered by AvrRpt2 when it is delivered from Pto

DC3000 (Figure 4) is likely insufficient HopF2 or inappropriate

timing of its delivery. Delivery of AvrRpt2 may precede that of

HopF2 [50].

Is the low level of robustness required during PTI?
One enigma is why plants need to make the robustness of the

immune signaling network lower during PTI when the network

itself has the capacity to be highly robust. If the network output

during PTI were as robust as during ETI, the chance that ‘‘true’’

pathogens will overcome PTI would be much lower. We speculate

that the lower robustness during PTI is selected through evolution

as trade-offs with other requirements. Many MAMPs are shared

shown in (C, 2 dpi) were estimated for MPK3 and SID2 (left panel) or MPK6 and SID2 (right panel). (B,D) Bars represent means and standard errors
determined using a mixed linear model. Asterisks indicate significant effects or interaction (P,0.01).
doi:10.1371/journal.pgen.1004015.g007

Figure 8. A model of signaling activated by sustained MAPK
activation or SA signaling that regulates the common genes
during AvrRpt2-ETI, resulting in robust immunity. During non-
ETI, such as PTI, MAPK activation is transient. Transient MAPK activation
is not sufficient for regulating the SA-responsive genes. However,
during AvrRpt2-ETI, sustained MAPK activation can regulate the SA-
responsive genes independently of SA. The differential duration of the
MAPK activation can modulate the network property of robustness.
doi:10.1371/journal.pgen.1004015.g008
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among pathogens and benign microbes and provide low quality

information about pathogen attack. It is probably not adaptive for

plants to respond to a MAMP with strong and sustained immune

responses similar to those during ETI since in many cases, plants

encounter benign microbes and ETI-type responses cost fitness. A

strategy apparently selected is to respond weakly first and wait to

intensify the response until further information increases the

probability that a true pathogen is present [24]. In contrast, since

effectors are a hallmark of true pathogens and provide high quality

information, during ETI plants can induce rapid and strong

immune responses with a very low chance of needless fitness costs.

Concluding remarks
The signaling sector activated by sustained activation of the

MAPKs during ETI and the SA signaling sector can regulate the

common set of genes. This is one of the mechanisms underlying

robustness of the immunity level against network perturbations

during ETI. This modulation of the network robustness is

controlled by signaling kinetics of a network component. Our

findings imply that properties of biological networks can be

modulated through network component activities.

Materials and Methods

Free SA measurement, MAP kinase assays, bacterial growth

assays and the signaling allocation analysis were performed as

described previously [25,26].

Plant materials and growth conditions
Arabidopsis plants were grown in a controlled environment at

22uC with a 12 h photoperiod and 75% relative humidity.

Arabidopsis thaliana accession Col-0 was the background of all

mutants used in this study. Arabidopsis mpk3-1 (SALK_151594)

[21], mpk6-2 (SALK_073907) [18], npr1-1 [51], rps2 101C [52]

and sid2-2 [15] were previously described. We generated the

double mutants mpk3 sid2 and mpk6 sid2 by standard genetic

crosses. Estradiol-inducible AvrRpt2 transgenic lines [53] and the

DEX-MKK4DD and -MKK5DD transgenic lines [30] were previ-

ously described. We crossed DEX-MKK4DD and -MKK5DD into

the mutant backgrounds mpk3, mpk6, npr1, sid2 and vip1. Primers

and restriction enzymes used for screening of the mutants are listed

in Table S4.

Chemicals
Flg22 peptide was purchased from EZBiolab Inc (Westfield, IN,

USA). Estradiol (E8875) and DEX (D1756) were purchased from

Sigma (Saint Louis, MO, USA).

Quantitative RT-PCR analysis
Pto DC3000 strains (or water for mock) or 2 mM DEX (or 0.1%

ethanol for mock) were infiltrated into leaves of 4-week-old plants.

Leaves were collected at the indicated time points. Total RNA

isolation and qRT-PCR analysis were carried out as described

previously [54,55]. The following models were fit to the relative Ct

value data compared to Actin2 using the lme function in the nlme

package in the R environment: Ctgytr = GYTgyt+Rr+egytr, where GYT,

genotype:treatment:time interaction, and random factors; R,

biological replicate; e, residual; Ctgyr = GYgy+Rr+egytr, where GY,

genotype:treatment interaction; Ctgtr = GTgt+Rr+egtr, where GT,

genotype:time interaction. The mean estimates of the fixed effects

were used as the modeled relative Ct values and visualized as the

relative log2 expression values and compared by two-tailed t-tests.

For the t-tests, the standard errors were calculated using the

variance and covariance values obtained from the model fitting.

Primers used in the study are listed in Table S4.

DNA microarrays
Four-week-old Arabidopsis Col-0 and sid2 leaves were infiltrated

with Pto hrcC, Pto pLAFR (EV), Pto AvrRpt2 or water (mock).

Independently, leaves of four-week-old DEX-MKK4DD plants in

Col-0 or a sid2 background were infiltrated with 2 mM DEX or

0.1% ethanol (mock). Samples were collected at 24 hpi. Total

RNA was extracted as described previously [26] and profiled using

the NimbleGen DNA microarray (A. thaliana Gene Expression

126135K array TAIR9.0) following the manufacturer’s protocol

(Roche Applied Science, Indianapolis, IN, USA). Three indepen-

dent experiments (biological replicates) were performed. The

microarray data were submitted to Gene Expression Omnibus

(Accession, GSE40555). Probe signal values were subjected to the

robust multi-array average (RMA) summarization algorithm [56]

using the standard NimbleGen software to obtain the expression

level values of the transcripts. Among transcripts of a single gene,

those with higher expression values were selected as the

representative transcripts of the genes. The following models were

fit to log2 expression values using the lmFit function in the limma

package in the R environment: Sgyr = GYgyt+Rr+egyr, where S, log2

expression value, GY, genotype:treatment interaction, and random

factors; R, biological replicate; e, residual. The eBayes function in

the limma package was used for variance shrinkage in calculation

of the p-values and the Storey’s q-values were calculated from the

p-values using the qvalue function in the qvalue package. First,

genes whose expression was up-regulated or down-regulated (q

values,0.01 and more than 2 fold change) in both Pto EV and Pto

AvrRpt2-infected Col compared to mock were selected (2828

genes). Second, SID2-dependent genes in Pto EV infection

(inductions/suppression in sid2 are less than 20% compared to

Col) were selected (187 ‘‘SA-responsive’’ genes) for the clustering

analysis. Heatmaps were generated by CLUSTER [57] using

uncentered Pearson correlation and complete linkage, and

visualized by TREEVIEW [57].

Accession numbers
The accession numbers for the Arabidopsis genes discussed in this

article are as follows: Actin2 (At2g18780), Chitinase (At1g02360),

CHS (At5g13930), FRK1 (At2g19190), MKK4 (At1g51660), MKK5

(At3g21220), MPK3 (At3g45640), MPK4 (At4g01370), MPK6

(At2g43790), NPR1 (At1g64280), RPM1 (At3g07040), RPS2

(At4g26090) and SID2 (At1g74710).

Supporting Information

Figure S1 PR1 induction during ETI is largely NPR1-indepen-

dent. The PR1 expression level in leaves inoculated with Pto strains

(OD600 = 0.001) or mock was determined by qRT-PCR at 24 hpi.

Bars represent means and standard errors of two biological

replicates calculated using a mixed linear model. The vertical axis

shows the log2 expression level relative to Actin2 (At2g18780).

Asterisks indicate significant differences from mock (P,0.01, two-

tailed t-tests).

(TIF)

Figure S2 Expression patterns after inoculation with Pto hrcC

and Pto EV are similar while that with Pto AvrRpt2 is distinctive in

terms of SID2-dependency. (A) A heatmap of pathogen-regulated

genes. Leaves were collected at 24 hpi with the indicated Pto

strains (OD600 = 0.001) or mock and mRNA profile analysis was

performed using a NimbleGen Array. Genes whose expression was

up- or down-regulated (q values,0.01 and more than 2 fold
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change) in any samples compared to mock were selected (5361

genes). The log2 ratios compared to mock for the selected genes

were subjected to agglomerative hierarchical clustering analysis.

Green indicates negative values, red indicates positive values and

black indicates zero. (B) A normalized heatmap. Expression

changes after inoculation with Pto hrcC, Pto EV and Pto AvrRpt2

were compared using linear regression. Based on the regression

coefficients, the log2 ratios of Pto hrcC and Pto AvrRpt2 samples

were weighted by factors of 1.98 and 0.76, respectively, to

normalize the overall level of induction/suppression among the

treatments.

(TIF)

Figure S3 PR1 induction is independent of SA during AvrRpt2-

ETI. Seedlings of transgenic lines carrying the estradiol-inducible

AvrRpt2 transgene in a sid2 background (XVE-AvrRpt2/sid2) were

treated with different concentrations of estradiol for 24 hours in a

liquid medium. The PR1 expression level was determined by qRT-

PCR. Bars represent means and standard errors of two biological

replicates calculated using a mixed linear model. The vertical axis

shows the log2 expression level relative to Actin2 (At2g18780).

Asterisks indicate significant differences from mock (P,0.01, two-

tailed t-tests).

(TIF)

Figure S4 The MAPKs activated in a sustained manner during

AvrRpt2- and AvrRps4-ETI were MPK3 and MPK6. Leaves of

Col, mpk3 and mpk6 plants were infiltrated with Pto AvrRpt2 (A) or

Pto AvrRps4 (B) (OD600 = 0.01) and samples were collected at the

indicated time points. Activated MAPKs were detected by

immunoblot using anti-p44/42 MAPK antibody. Ponceau S

stained blots are shown for loading controls. Experiments were

conducted twice with similar results.

(TIF)

Figure S5 Sustained MAPK activation is independent of SA.

Leaves of Col and sid2 plants were infiltrated with Pto EV (A) or Pto

AvrRpt2 (B) at an inoculation dose of OD600 = 0.01 and samples

were collected at the indicated time points. Activated MAPKs

were detected by immunoblot using anti-p44/42 MAPK antibody.

Ponceau S stained blots are shown as loading controls.

Experiments were conducted twice with similar results.

(TIF)

Figure S6 Sustained MAPK activation by MKK4DD and

MKK5DD expression. Leaves of DEX-MKK4DD (MKK4DD) or

-MKK5DD (MKK5DD) were treated with 2 mM DEX for the

indicated times and activated MAPKs were detected by immuno-

blot using anti-p44/42 MAPK antibody. Ponceau S stained blots

are shown as loading controls. Experiments were conducted twice

with similar results.

(TIF)

Figure S7 Induction of FRK1 by flg22 does not require SA.

Leaves of Col or sid2 plants were infiltrated with 1 mM flg22 or

water and samples were collected at the indicated time points. The

expression level of FRK1 was determined by qRT-PCR. Bars

represent means and standard errors of at least two biological

replicates calculated using a mixed linear model. The vertical axis

is the log2 expression level relative to Actin2 (At2g18780). Asterisks

indicate significant differences from mock (P,0.01, two-tailed

t-tests).

(TIF)

Figure S8 MPK3 seems to be required for SA-independent PR1

induction conferred by forced MKK5 activation while MPK6 is

dispensable. Leaves of transgenic plants carrying DEX-inducible

MKK4DD (4DD) or MKK5DD (5DD) (Col, mpk3 or mpk6

background) were infiltrated with 2 mM DEX (DEX) or 0.1%

ethanol (mock) and samples were collected at 24 hpi. The

expression levels of PR1 (A) and MKK4 or MKK5 (B) were

determined by qRT-PCR. Bars represent means and standard

errors of two biological replicates calculated using a mixed linear

model. The vertical axis is the log2 expression level relative to

Actin2 (At2g18780). Asterisks indicate significant differences from

mock (P,0.01, two-tailed t-tests).

(TIF)

Figure S9 Expression patterns in DEX-inducible MKK4DD

transgenic plants are very similar in Col and sid2. Leaves of

transgenic plants carrying DEX-inducible MKK4DD in Col or

sid2 backgrounds were infiltrated with 2 mM DEX or 0.1%

ethanol and samples were collected at 24 hpi. mRNA profile

analysis was performed as described in Figure 2. Genes whose

expression was up-regulated or down-regulated (q values,0.01

and more than 4 fold change) in DEX-treated samples compared

to mock were selected (4743 genes). The log2 ratios (DEX/mock)

for the 4743 genes were subjected to agglomerative hierarchical

clustering analysis as in Figure 2. Green indicates negative values,

red indicates positive values and black indicates zero.

(TIF)

Figure S10 Expression patterns of genes representing three

clusters. Leaves of Col or sid2 plants were infiltrated with Pto EV,

Pto AvrRpt2 (OD600 = 0.001) or water (mock) and samples were

collected at 24 hpi. Leaves of transgenic plants carrying DEX-

inducible AtMKK4DD in a sid2 background were infiltrated with

2 mM DEX or 0.1% ethanol and samples were collected at 24 hpi.

The expression levels of PR1 (At2g14610) (A), Chitinase

(At1g02360) (B) and CHS (At5g13930) (C), which represent

Clusters I, II, and III, respectively, were determined by qRT-

PCR. Bars represent means and standard errors of three biological

replicates calculated using a mixed linear model. The vertical axis

is the log2 expression level relative to Actin2 (At2g18780). Asterisks

indicate significant differences from mock (P,0.01, two-tailed

t-tests).

(TIF)

Figure S11 AvrRpm1-ETI. (A) The bacterial counts of Pto EV

(left panel) or AvrRpm1 (right panel) (inoculation dose,

OD600 = 0.0001) at 0 or 2 dpi in leaves of the indicated genotypes

were measured. Bars represent means and standard errors of three

independent experiments with at least 4 or 12 biological replicates

for 0 dpi or 2 dpi, respectively. Statistically significant differences

are indicated by different letters per strain per dpi (P,0.01, two-

tailed t-tests). (B) The signaling allocations for AvrRpm1-ETI

shown in (A, 2 dpi) were estimated for MPK3 and SID2 (left panel)

or MPK6 and SID2 (right panel). Bars represent means and

standard errors determined using a mixed linear model. Asterisks

indicate significant effects or interaction (P,0.01).

(TIF)

Table S1 Expression levels of the SA-responsive 187 genes and

cluster information in Figure 2.

(XLSX)

Table S2 Expression levels of the genes in Figure S2.

(XLSX)

Table S3 Expression levels of the genes in Figure S9.

(XLSX)

Table S4 Primers used in this study.

(DOCX)
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