
Optimal Control for Allen-Cahn Equations
Enhanced by Model Predictive Control

Peter Benner ∗ Martin Stoll ∗∗

∗Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, Germany (e-mail: benner@mpi-magdeburg.mpg.de).

∗∗Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, Germany (e-mail: stollm@mpi-magdeburg.mpg.de)

Abstract
The Allen-Cahn equation is a simple model of a nonlinear reaction-diffusion process. It is often
used to model interface motion in time, e.g. phase separation in alloys. It has applications in
many areas including material sciences, biology, geology, as well as image processing. We will
consider a simple scalar Allen-Cahn equation subject to distributed control. Here, the nonlinear
reaction term is obtained from using the standard double-well potential, leading to a cubic
nonlinearity. We will describe a nonlinear feedback control strategy based on the concept of
Model Predictive Control (MPC). We also show how to obtain the open-loop trajectory and
control using numerical techniques for PDE-constrained optimization. The feedback control
scheme is then applied to the spatially semi-discretized nonlinear optimal control problem.
For the prediction and control step within the MPC scheme, we apply a linear-quadratic
regulator/Gaussian design problem. The arising computational challenge consisting in solving
the associated large-scale algebraic Riccati equations has already been shown in the literature
to be feasible using reasonably fine discretizations.

Keywords: Allen-Cahn equation, model-based control, model-predictive control, LQG control,
Riccati equations, numerical algorithms

1. INTRODUCTION

The Allen-Cahn equation was introduced in Allen and
Cahn (1979) to model the motion of antiphase boundaries
in crystalline solids. It has since found widespread appli-
cation in imaging (Kay and Tomasi (2007); Sarbu (2010)),
material science (Deckelnick et al. (2005); Allen and Cahn
(1979)), and biology (Malvasi et al. (2011)).

In the following we consider the minimization of an objec-
tive function given by

J(y, u) =
1

2

∫
Qref

(y − yref)
2 +

β

2

∫
Q

u2 (1)

where Q = [0, T ] × Ω is a space-time cylinder with Ω a
two or three-dimensional domain of sufficient regularity.
Here y is the state, yref is the desired reference state, and
Qref = [0, T ]×Ωref with Ωref ⊂ Ω is the observation space.
The control u is linked to the state via the controlled Allen-
Cahn equation

εyt = ε4y − ε−1Ψ′(y) + u (2)

with ε > 0. The boundary conditions for this problem are
of Neumann type, i.e., ∂y

∂n = 0, and the initial condition

is given by y(0, x) = y0. The potential function Ψ plays a
crucial role and for the sake of simplifying the development
of a nonlinear feedback control concept, we choose the well-
known double well potential defined by Ψ(y) = 1

4 (1−y2)2.
Other nonsmooth potential functions that may have better
properties regarding the modeling of physical properties
will be discussed in future work.

For the existence of solutions to the problems similar to
the one given above we refer the interested reader to
Farshbaf-Shaker (2011); Colli and Sprekels (2012). We
simply assume here that all derivatives are well defined
and the necessary functions are sufficiently smooth.

Our approach to solve the above given optimization prob-
lem follows the optimize-then-discretize procedure (see
Hinze et al. (2009) for an introduction to this field).
For this, we state in Section 2 the nonlinear, infinite-
dimensional first order conditions and solve these using
a Newton technique. The corresponding Newton system
is then discretized using a finite element discretization,
which in turn results in the solution of a large, sparse,
and structured linear system that needs to be solved at
every step of the Newton scheme. In order to correct for
unwanted disturbances and modeling errors in a practical
application of the optimized control, it is necessary to have
a feedback mechanism to compensate for deviations from
the optimized trajectory. For this, we suggest a Model
Predictive Control (MPC) scheme (for which we assume
the reader to be familiar with the basic concept) based on a
Linear-Quadratic Gaussian (LGQ) design as suggested for
general nonlinear reaction-diffusion systems in Benner and
Hein (2013). This approach will be reviewed in Section 3.
Numerical results for the whole design process including
the feedback control will be reported in a future extended
version of this discussion paper; first results obtained with
the open-loop control computed using the optimization
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procedure from Section 2 are contained in Section 4. We
discuss our findings and open problems in Section 5.

2. OPTIMIZATION OF THE ALLEN-CAHN SYSTEM

For solving the optimization problem related to (1)–(2), we
follow the formal Lagrange approach (see Tröltzsch (2010);
Ito and Kunisch (2008)) and form the Lagrangian

L(y, u, p) = J(y, u)+ (3)∫
Q

p
(
yt −4y − ε−2y(y2 − 1)− ε−1u

)
,

employing the homogeneous Neumann boundary condi-
tions and considering the simplified situation Ωref = Ω.
The first order conditions for this problem can be obtained
using the Fréchet derivative of L. We thus obtain

Ly = (y − yref)− pt −4p−
1

ε2
(3y2 − 1)p = 0, (4)

Lu = βu+
1

ε
p = 0, (5)

Lp = yt −4y − ε−2y(y2 − 1) + ε−1u = 0. (6)

A Lagrange-Newton or SQP (sequential quadratic pro-
gramming) approach (see, e.g., Nocedal and Wright
(2006)) now solves these nonlinear equations using a New-
ton scheme. We formalize this by writing (4) to (6) as
G(x) = 0, which we approximately solve using an iteration
based on

G′(x̄)s = −G(x̄),

where x̄ is the previous iterate in the Newton step and
s = x − x̄ represents the difference between the new and
previous approximation to the solution. The differentiation
of (4) to (6) results in the following Newton system

sy −
1

ε2
(6ȳ)p̄sy 0 −(sp)t −4sp −

1

ε2
(3ȳ2 − 1)

0 βsu
1

ε
sp

(sy)t −4sp −
1

ε2
(3ȳ2 − 1)

1

ε
su 0


︸ ︷︷ ︸

=: G′(x̄)s.

(7)

Note that this can be formulated such that we solve for
the updated approximation x = [yT , uT , pT ]T rather than
the step. This is done by considering the structure of the
right hand side −G(x̄) and the explicit computation of
the new right hand side G′(x̄)x̄ − G(x̄). At this stage we
discretize (7) using finite elements in space and an implicit
Euler scheme in time. Performing an all-at-once approach,
i.e., we solve for all time-steps simultaneously, we obtain
a linear system of the following form: τMy 0 −KT

0 βτMu ε−1τN
−KT ε−1τN 0


︸ ︷︷ ︸

[
y
u
p

]
= b.

=: A

(8)

Here K represents a one-shot discretization of the PDE-
constraint, i.e.,

K =


L0

−M L1

. . .
. . .
−M LNt



where Li = M + τK − M
1
ε2

(3ȳ(ti)
2−1). Here M and

K are the mass and stiffness matrix, respectively. The
matrixMf is a mass-like matrix whose entries are obtained
when the test functions are integrated against the function

f . Furthermore, My = blkdiag(M1− 1
ε2

(6ȳ(ti))p̄(ti))∀i and
Mu = N = blkdiag(M, . . . ,M). Our discretization here
follows an approach presented in Hinze et al. (2008); Stoll
and Wathen (2013), which follows the paradigm that the
discretize-then-optimize and the optimize-then-discretize
approach coincide. More details on the derivation of all-
at-once methods can be found in Stoll and Wathen (2010).

As we now need to solve the linear system (8) at every
step of the Newton iteration, the iterative scheme to carry
out the approximation of the solution has to be efficient.
Due to the size of A, the use of direct solvers (Duff et al.
(1989)) is out of the question. We therefore employ a
Krylov subspace method, namely the bi-conjugate gradi-
ent method (bicg) introduced in Fletcher (1976). Other
methods (see, e.g., Saad (2003)) are of course possible.
Without additional acceleration by a preconditioner P, the
Krylov method typically converges very slowly. We now
have to design the preconditioner P in such a way that it
is cheap to apply but still resembles the matrix A as much
as possible. Note that the all-at-once approach combined
with a preconditioning technique is performed in a matrix-
free way as we never form the matrix A explicitly and only
use its multiplication with a vector. The choice of a non-
symmetric solver is due to the fact that the preconditioner
P can become indefinite, which is not possible to use
within symmetric solvers such as cg or minres.

Motivated by a result proposed by Murphy et al. (2000)
we want to approximate the (1, 1) block

A =

[
τMy 0

0 βτMu

]
and the Schur-complement

S = τ−1KM−1
y KT +

τ

β
NM−1

u N T

well, as a good clustering of the eigenvalues typically leads
to rapid convergence of the iterative solver. The block A is
easily approximated as we are dealing with lumped mass
matrices obtained by using the trapezoidal rule with Q1
elements within the finite element discretization. We can
therefore simply invert the matrix A in our preconditioner.
The construction of efficient Schur-complement approxi-
mations is typically more complicated and much of the
research on preconditioners for PDE-constrained optimiza-
tion has focused on this topic; see Pearson and Wathen
(2012); Pearson et al. (2012); Kollmann and Zulehner
(2012).

As a first step, a preconditioner ignoring the second term
in S has proven to be effective for related problems (Rees
et al. (2010)) when rather large values of the regularization

parameter β are used, i.e., Ŝ1 = τ−1KM−1
y KT . We discuss

this preconditioner here as its successors improving the pa-
rameter robustness typically are of a similar form. During
the iterative process the action of Ŝ−1

1 = τ−1K−TMyK−1

would, due to the block-triangular structure of K, require
the solution of the diagonal blocks of K representing the
discrete Allen-Cahn block. As this is already not feasible
for small mesh-sizes, we use a multigrid scheme of algebraic
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type to approximate the inverse of the diagonal blocks
of K. This means that only approximate solves with a
discretized PDE are needed in the process of obtaining the
solution to the control problem. Extensions of this precon-
ditioner to improve on the robustness with respect to the
crucial parameters are often of the form Ŝ2 = τ−1(K +

M̂)M−1
y (K+ M̂)T , where M̂ represents a block-diagonal

perturbation of the discretize time-dependent PDE that
is designed in such a way to also match the previously
ignored second term in S (see Pearson et al. (2012)).

3. A MODEL PREDICTIVE CONTROL APPROACH

For applying an efficient feedback control strategy, we
assume that the necessary control force can be applied
in a subdomain Ωu of Ω. The control system for deriving
the feedback controller will be derived for the deviation
from the optimized state yopt and control uopt computed
using the approach in the previous section. Note that
yopt may deviate from yref , but the controller derived
here is meant to keep the system as close as possible to
the optimized state only. If the optimization leads to a
trajectory too far from the desired state, it is unlikely that
one can get closer with a feedback control strategy. So the
quality of the eventual trajectory is basically determined
by the open-loop control/optimization, and the feedback
controller presented here is meant to ensure that this
optimized trajectory is then realized in praxis.

Assuming that controlling the magnitude of the control
signal suffices, we use the separation of variables ap-
proach for u(x, t) = b̃(x)v(t). Now using a spatial semi-
discretization based on the same finite element mesh used
for the optimization scheme derived in the previous sec-
tion, we obtain the following finite-dimensional optimal
control problem, using y, yopt, and u to denote the result-
ing vector quantities (e.g., for linear nodal elements, the
state and control approximations in the nodes of the finite
element mesh):

J(y,u) =
1

2

∫ T

0

(y(t)− yopt(t))
TMref(y(t)− yopt(t)) dt

+
β

2

∫ T

0

v(t)T v(t) dt (9)

+
1

2
(y(T )− yopt(T ))TR(y(T )− yopt(T ))

subject to

M ẏ(t) = Sy − ε−2F (y) + ε−1Bv, (10)

where M and S represent the mass and negative stiffness
matrix, respectively, obtained from the spatial discretiza-
tion of (2). The control operator matrix B is obtained
by the FEM ansatz when testing against b, Mref is the
mass matrices obtained by the FEM discretization on
the observation domain Ωref , and the penalization term
for the deviation from the end state yopt(T ) involving a
positive definite R is introduced to guarantee stabilization
properties of the MPC approach (Ito and Kunisch (2001)).

In order to model the unknown disturbances, we add noise
terms to the state equation (Fws(t)), the observed state
(wref), and the initial conditions on each new time horizon
in our MPC scheme (w0), all assumed to be independent
Gaussian white noise processes with covariance matrices

Ws,Wref ,W0, respectively. Our MPC ansatz then consists
in solving in each prediction step a linear-quadratic control
problem using a Gaussian design, leading to a (local) LQG
controller. The scheme, based on a given time grid

0 = t0 < t1 < . . . < TN = T,

and user-defined prediction and control horizons Tp and
Tc � Tp is then as follows:

(1) Prediction and optimization step on [ti, ti +Tp]:
linearize (10) around the optimized trajectory yopt to
obtain SF = F ′(y(ti)). Defining the deviation from
the optimal trajectory and control as z(t) = y(t) −
yopt(t), ũ(t) := v(t) − vopt(t) (with vopt(t) obtained
from the separation of variables approach applied to
uopt(x, t)), A := S−ε−2SF , we obtain the linear state
equation

Mż(t) =Az(t) + ε−1Bũ(t) + Fws(t),

Denoting the discrete observation operator i.e. the
restriction to Ωref , by C, we solve the algebraic
Riccati equation (ARE)

0 =MTXA+ATXM + CTMrefC

− 1

βε2
MTXBBTXM (11)

for its unique symmetric positive semidefinite solution
X? and compute the feedback (gain) matrix

K = − 1

βε
BTX?M.

Solve the filter ARE (FARE)

0 =AΣMT +MΣAT + FWsF
T

−MΣCTW−1
ref CΣMT (12)

for its unique symmetric positive semidefinite solution
Σ? and compute the estimator gain

L = Σ?C
TW−1

ref .

(2) Implementation step on [ti, ti + Tc]:
Feed the real system on [ti, ti + Tc] with

v(t) = vopt(t)−K(ŷ(t)− yopt(t)),

where the state estimation ŷ(t) is obtained by first
solving the nonlinear system (10) with initial condi-
tion y(ti) + w0(ti) on [ti, ti + Tc] to obtain y(t) and
then the estimator equation

˙̂z(t) = (A− LC)ẑ(t) +Bũ(t) + LCy(t)

for ẑ(t) = ŷ(t)− yopt(t).
(3) Receding Horizon Step:

Update ti+1 = ti + Tc and go to the first step.

Under some technical assumptions, the above scheme
ensures z(t) → 0 for T → ∞ and thus stabilization of
the disturbed state to the desired optimal reference state;
see Ito and Kunisch (2001, 2006); Benner and Hein (2010).
For further details of the implementation of this approach,
we refer to Benner and Hein (2010) and an upcoming
extended version of this note.

4. NUMERICAL EXAMPLE

Here, we present the numerical results obtained by the
open-loop (optimization) procedure described in Section 2
for a model problem. Full numerical tests using the MPC
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(a) Initial observed state (b) Reference state after 50 time-
steps

Figure 1: Initial reference state and reference state at time-
step 50 obtained by evaluating the Allen-Cahn equation
with volume constraints and a double obstacle potential.

(a) Computed Control after 50
time-steps

(b) Computed state after 50
time-steps

Figure 2: Computed control and state at time-step 50
obtained via the Lagrange-Newton method.

approach for compensating deviations from the optimized
trajectory will be provided elsewhere.

The desired state yref is obtained from employing the
Allen-Cahn equation with volume constraints and a non-
smooth obstacle potential to a two-dimensional dumbbell
(shown in Figure 1b). We used ε = 0.05 and time steps of
size 4T = 0.001. For details on the Allen-Cahn equation
with volume constraints we refer to Blank et al. (2011);
Garcke et al. (2008); Taylor and Cahn (1994).

We show the solution obtained for a rather large regular-
ization parameter β = 10−1 in Figure 2. Table 1 shows the
number of SQP iterations as well as the number of bicg
iterations per SQP step. For the linear systems we used
a stopping tolerance of 10−4 for the relative residual and
the SQP method was stopped when the relative change
between two consecutive solutions was less than 10−4. The
control problem was solved for τ = 0.01 over the time
interval [0, 1].

Table 1: Results for the solution
of the control problem showing the
number of bicg iterations for each
SQP step.

DoF SQP bicg

β = 10−1

5 042 223 step 1 15
step 2 18
step 3 20
step 4 20
step 5 20
step 6 20

5. CONCLUSIONS

We have investigated a model predictive control concept
for Allen-Cahn equations. We have presented a numerical
scheme to obtain an open-loop control based on a full
discretization of the formal first-order necessary optimal-
ity system for the associated abstract optimal control
problem. In order to compensate for deviations from the
optimized trajectory when applying the optimal control in
a practical situation, we suggest to use an MPC scheme
based on an LQG design. This requires solving coupled
algebraic Riccati equations which nowadays can be done
efficiently for medium-grain discretizations. Future work
will include the usage of coarse grids and model reduction
to speed-up the MPC step with the aim of facilitating
real-time computations. Another research direction will be
to investigate vector Allen-Cahn equations as well as the
study of different potential functions and problems with
degenerate mobility term, leading to the Cahn-Hilliard
system.
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