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Abstract: Balanced truncation (BT) is a well established model reduction technique for linear
ordinary differential equations. If the original dynamics are described by an instationary PDE,
then BT is usually applied to the large-scale linear system resulting from a spatial semi-
discretization using finite elements/volumes/differences. We will discuss this approach as well
as a variant of BT based on balancing the solution of the linear-quadratic Gaussian (LQG)
algebraic Riccati equations, called LQG BT, allowing the reduction of unstable systems and
yielding a stabilizing feedback controller as a by-product. The error between reduced-order
model and original system is split into discretization and model reduction components. We
discuss the resulting error bounds and ways how to exploit this in order to adaptively choose
the reduced system order. Numerical examples support our findings.
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1. INTRODUCTION

We consider control problems for parabolic partial differ-
ential equations of the form

Ox =V (a(§)-VX) +b(£).Vx + c(§)x = Bpe(§)u(t), (1)

with (t,€) € Q :=[0,T] x Q, Q C RY, together with initial
and boundary conditions

a(§)x + B(§)0nx = Bue(§u(t), €€ 0Q,t€0,T] )
X(ng) = X0(£)7 §eq,

We call (1)—-(2) a parabolic control system. Examples
include the control and optimization of instationary
heat equations, instationary convection-diffusion equa-
tions, and linear reaction-diffusion equations. Here, x(¢, )
represents the state of the system, while u(t) € R™ denotes
controls or more general, input parameters. We assume
throughout that u € Lo(0,7;R™). We allow T' = oo.
Furthermore, we assume that for fixed ¢t € (0,7, x(¢t) € V,
where V is a dense subspace of the state space X which is
assumed to be a Hilbert space (X = Ly(2) for standard
parabolic control systems). For analysis and numerical
solution, we assume that V and X induce a Gelfand triple
Y Cc X C V', where V' is the dual space of V. In general,
we understand (2) in a weak sense so that solutions satisfy
x € Ly(0,T;V) and 0yx € Lo(0,T;X). The subspace V
will vary depending on the boundary conditions and ge-
ometry of 2; a classical example for homogeneous Dirichlet
boundaries (8 = 0) and point control (By. = 0; if By, = 0,
we speak of a boundary control problem) is V = H}(Q),
see, e.g., Banks and Kunisch (1984); Rosen and Wang
(1995), where this particular setting is detailed. Further-
more, throughout we assume the coefficient functions in
(1)=(2) are such that a unique weak solution exists for
any feasible input function v and any xo € X. For a
comprehensive treatment of control problems in this and
more abstract settings see, e.g., Bensoussan et al. (2007);
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Curtain and Zwart (1995); Lasiecka and Triggiani (2000);
Troltzsch (2010).

In system and control theory, usually (1)—(2) is combined
with an output equation

y(t) = C()x(,€),

where C(€) : X — RP is a linear operator. This equation
takes into account that in practise, usually only limited
information about the state is accessible for control design.
If, for example, x is continuous in 2, then C'(£) might just
pick p values of the state at the positions &1, . .., &,. We will
make use of (3) throughout this paper. On the other hand,
we will not take into account control or state constraints
which are usually present in optimization problems (see,
e.g., Troltzsch (2010)) as these will not influence the model
reduction procedure. But note that the model reduction
approach discussed here can be very helpful when solving
control- or state-constrained optimization problems with
standard quadratic or nonlinear programming techniques
as the dimension of the mathematical programs resulting
from a full discretization of the PDE constrained optimiza-
tion might be way too large to be treatable with standard
optimization software.

e, telo,T1], (3)

When solving parabolic control problems numerically, one
usual approach is to first semi-discretize (1)—(3) in space,
using, e.g., finite difference or finite element methods,
and then to apply modern control synthesis techniques
like linear-quadratic regulator/Gaussian design or robust
control techniques like Hs-/H-control, see, e.g., Banks
and Kunisch (1984); Benner (2004); Burns and Hulsing
(2001); Morris (1996); Morris and Navasca (2005). A major
problem posed by these approaches is that the resulting
controller is a finite-dimensional control system of at least
the order of the semi-discretized plant model. For 2- and 3-
D problems, this ranges from several thousands to millions
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of state-space variables—a controller order that can not
be implemented in control engineering practice. Moreover,
using classical computational methods to compute such a
controller might pose its own challenge despite the fact
that there has been significant progress in solving large-
scale control problems, see, e.g., Benner (2004); Morris
and Navasca (2005).

One remedy for all the abovementioned problems is model
reduction. The idea is to replace the infinite-dimensional
parabolic control system (1)—(3) by a finite-dimensional
linear time-invariant system

t>0, (0)=a°
t>0,

(4)

of order r, ie., &(t) € R", and matrices A, B,C of
appropriate sizes, so that

(1) the same inputs u € Ly(0,T;R™) used in (1)—(2) can
be applied to (4), and

(2) the outputs produced by (1)—(3) and (4) are “close”
to each other for all admissible input functions u—
ideally, they satisfy

||y - g”Lz((LT;Rm) < THu”Lz((LT;]RP) (5)
for a given error tolerance 7 > 0.

(In the following, Lo-norms will be simply denoted by || . ||
— the concrete space will be clear from the context.)

We will consider system-theoretic methods for model re-
duction of stable and unstable systems based on balanc-
ing. (See Antoulas (2005); Benner et al. (2005); Obinata
and Anderson (2001) for introductions to these methods.)
These approaches have the advantage of providing error
bounds that are helpful in achieving (5). One model reduc-
tion approach often used in PDE-constrained optimization
is proper orthogonal decomposition (POD), also known as
Karhunen-Loéve decomposition, see, e.g., Hinze and Volk-
wein (2005); Kunisch and Volkwein (2001). For linear PDE
problems this approach turns out to be just an approxima-
tion to balanced truncation (Willcox and Peraire (2002))
and is thus inferior with respect to accuracy. As we will
see, the computational complexity of balanced truncation
is similar to that of POD so that balanced truncation
appears to be preferable for model reduction of linear PDE
control and optimisation problems.

The remainder of the paper is organised as follows. In
Section 2, we will discuss some theoretical results from
Curtain (2003); Glover et al. (1988) regarding balancing-
related model reduction for infinite-dimensional systems.
These are applicable to parabolic control systems un-
der certain assumptions. Unfortunately, computationally
the suggested techniques of computing the reduced-order
model directly from the infinite-dimensional system are
not feasible in general. Thus, we discuss the combination
of spatial semi-discretization (by finite element /differences
methods) and finite-dimensional balanced truncation in
Section 3. Here we employ techniques discussed for large-
scale, finite-dimensional systems as discussed, e.g., in Ben-
ner (2004, 2009); Benner et al. (2008). The computational
efficiency is demonstrated by numerical examples in Sec-
tion 4. Conclusions and outlook are given in Section 5.
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2. ABSTRACT BALANCED TRUNCATION

For the abstract setting, we will assume a linear time-
invariant system in the following form:
o { x = Ax + Bu,

v Cx x(0)=xp€ X,  (6)

with linear operators
A:dom(A)cxX—-X, B:U—->X, C: X)),

where the state space X, the control space U and the
observation or output space ) are assumed to be Hilbert
spaces. The parabolic control system (1)—(3) defined in the
Introduction is an example for this setting, where we have
used 4 = R™ in (1) and Y = R? in (3). Hence we use
u, y rather than u,y there to indicate that our inputs and
outputs are not distributed functions in this setting. The
latter assumptions will be used mostly in the applications
considered later.

We will employ the following assumptions, where we refer
to Curtain and Zwart (1995); Glover et al. (1988) for
details on the functional analytic setting and terminology:

A) A generates a strongly continuous (Cy) semigroup T'(¢)
on X,

B) (A,B) is exponentially stabilizable, i.e., there exists
F : dom(A) — U such that A + BF generates an
exponentially stable Cp-semigroup S(t); in case this is
true for F = 0, we call A (exponentially) stable.

C) (A,C) is exponentially detectable, i.e., (A*, C*) is
exponentially stabilizable;

D) B, C are finite-rank and bounded.

Under the given assumptions, the system (A, B, C) has
a transfer function

G=C(I-A)"'Be L.,
which is the Laplace transform of h(¢) := CT(¢)B and
symbol of the Hankel operator

H: L:(0,00;U) — Ly(0,00;Y),
(Hu)(t) :== /0 h(t + 7)u(r) dr.

If, in addition, A is exponentially stable, G is in the Hardy
space H.. In this case, H is compact with countable many
singular values o, j = 1,..., 00, called the Hankel singular
values (HSVs) of G. Moreover, Z;’il o; < oo. The 2-

induced operator norm is the H,, norm; here,

oo
Gl =3 o

Remark 2.1. All results in the following can also be
proved using the weaker assumption that X (A,B,C) is
a Pritchard-Salomon system (Curtain (2003)), allowing
for certain unboundedness of B, C, which is required for
boundary control problems. An even more general setting
is considered in Guiver and Opmeer (2012), where it is only
assumed that the Hankel operator related to 3(A,B, C)
is nuclear. This includes a much larger class of boundary
control problems. We conjecture that all results in this
paper remain true in this setting, though only the BT case
is considered in Guiver and Opmeer (2012).

BT is then based on the following results, where due
to space limitations, we have to leave out some of the
functional analytic details to make all the given statements
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precise, see Glover et al. (1988) and Curtain (2003) for a
full account of the theory.

Definition 2.2. (Glover et al. (1988)). For a transfer func-
tion G € Hy, 3(A,B,C) is a balanced realization of G
if the controllability and observability Gramians, given by
the unique self-adjoint positive semidefinite solutions of
the Lyapunov equations
APz+PA*z+BB*z =0 Vzedom(A") .
A*Qz+ QAz+C*'Cz =0 Vzecdom(A) (7)
are diagonal operators P = Q = diag(c;) =: X.
Theorem 2.3. (Glover et al. (1988)). For G € H, with
balanced realization £(A,B,C) and P = Q = diag(o;),
choose r with o, > 0,41 and partition ¥(A, B, C) accord-
ing to

P, = Q, = diag(oy,...,0.),
so that
A:|:AT*:|7 B:|:Br:|7 C:[Cr*],
* % *

then the reduced-order model 3.(A,, B, C,) is stable with
transfer

IG-Golln. <2 Y oy
J=r+1

For systems that are not exponentially stable, BT is not
applicable in the form presented above. Among other
things, the Hoo-norm is not defined for unstable systems.
An alternative is provided by LQG balancing;:
Definition 2.4. (Curtain (2003)). For a transfer function
G € Ly, 2(A,B,C) is an LQG-balanced realization of G
if the unique self-adjoint, positive semidefinite, stabilizing
solutions of the operator Riccati equations
APz + PA*z - PC*CPz+BB*z = 0 for z € dom(A™) (8)
A*Qz + QAz - QBB*Qz + C*Cz 0 for z € dom(A)

are bounded and diagonal, P = Q = diag(v;) =: I'. Here,

P is stabilizing if A — PC*C generates an exponentially
stable Cy-semigroup.

Abstract LQG BT is then derived similar to BT:
Theorem 2.5. (Curtain (2003)). Given G € L, with
LQG balanced realization 3(A,B,C) and P = Q =
diag(v;), choose r with 7, > 7,41 and partition 3(A, B, C)
according to P, = Q, = diag(v1,...,7r), so that

A |:A'r‘ *}’ B— |:Br:|7 C=][C, x],

* ok *

then the reduced-order model is the LQG balanced sys-
tem ¥,.(A,,B,,C,) with transfer function G, satisfying
function G, satisfying

[N, M] — [N, My} [ 17, <2 e, (9)
j:rzﬂ VI

where G = M™!N and G, = M !N, are normalized left

coprime factorizations, i.e., M, M,., N, N, are all stable

transfer functions.

Of course, none of the model reduction methods described
above can be implemented in practice. In order to apply
this to parabolic control systems. one has to perform a two-
step approach: first, use a high fidelity approximation in
the spatial variables of (1)—(2), then apply the correspond-
ing finite-dimensional model reduction techniques to the
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resulting finite-dimensional systems. We will discuss this
in the next section.

3. COMPUTATIONALLY EFFICIENT BT
3.1 Computational procedure — a sketch

In order to apply (LQG) BT to a parabolic control system,
we apply a spatial discretization by the finite element,
finite volume, or finite differences method (FEM, FVM,
FDM) to (1)-(3) and obtain a finite-dimensional system
on X, C X with dim &X,, = n:
T = Az + Bu,
y = Cu, (10)
where A € R"*", B € R"*™ (C € RP*", with correspond-
ing algebraic Lyapunov equations
AP+ PAT + BBT =0, ATQ+QA+CTC =0, (11)
and algebraic Riccati equations (AREs)
0= AP+ PA"T — PCTCP + BB”,
T T T (12)
0=A"Q+QA-QBB'Q+C"C.
Here, we have ignored the possible occurrence of a mass
matrix M which can be treated in several ways, see Benner
(2004). For now, we assume that A, B also represent
M~'A, M~'B, where, of course, this matrix is never
formed explicitly in numerical computations. Dealing with
M is merely a matter of implementation and using the
right scalar product in the numerical algorithms, and we
refrain from presenting these technical matters here.

z(0) = zo,

So the main computational challenge consists in solving
(11) or (12) efficiently. Note that it suffices to compute
low-rank factors of P,@Q as only these are needed in the
SR implmentation of (LQG) BT: given S € R"P*" R €
R"Q*"™ np ng < nsothat P = STS, Q = RTR, compute
the singular value decmposition (SVD)

v

‘/'2T

and set W = RTVix[Y? v ST, v 2. Then
the (LQG) BT reduced-order model is (4,B,C) =
(WTAV, WTB,CV).

b}

SRT =[U,, U
(U1, Us] s,

(13)

In practice, the existence of low-rank factors of P, () cannot
be assumed, but in many situations, very good low-rank
approximations to P, ) of the above form can be expected
as P, @ are finite-dimensional approximations to the so-
lutions of the operator Lyapunov and Riccati equations
(7) and (8), respectively, and these solution operators
are nuclear or at least compact in many situations. So
for all practical purposes, we compute low-rank approx-
imations to the system Gramians (solutions of (11)) or
LQG Gramians (solutions of (12)). There are now many
methods to perform this computation even for high fidelity
models with n = 10% or more, see, e.g., Benner (2004,
2009); Benner et al. (2008); Morris and Navasca (2005)
and references therein.

Remark 3.1. As a by-product of LQG BT, one can obtain
a reduced-order LQR or LQG controller, using the solu-
tions P,Q of the reduced-order AREs corresponding to
(A,E,C'), which are by-products of some computational
schemes to solve large-scale AREs. The LQR (state feed-
back) controller later used in Example 4.3 is given by
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BTQVT, the LQG controller requires both ARE solutions
and is more complicated to describe; we omit the details.

3.2 Output error bound

In Curtain (2003), it is shown that under rather generic
assumptions for the discretization scheme, the solutions
of (11),(12) converge to those of (7),(8), and that the
reduced-order models thus obtained converge to those
obtained in the abstract setting discussed in the previous
section. From a practical point of view, it may be more
interesting to study the error obtained from the 2-step ap-
proach consisting of spatial semi-discretization and finite-
dimensional (LQG) BT.

Assuming U = R™, Y = RP as indicated before, C €
L(X,RP) bounded, C = Clx,, X, C X, we obtain the
following simple inequalities, separating the discretization
from the model reduction error:

ly — 9l Loc0,7:r7)

<y = vllzoo,5me) + 1y = 9l 20, 75r2)

=[|Cx — Cx||L,0,1rr) + 1y — Ul L0, 7R
<|ICx — Cx||L,0,7:r) + |C2 — Cx|| L, 0,7:m7)

+lly = 9l a0, 7:mr) -

<|[ICll - lIx = 2l o 0,m32) + 1y = Il 0,750)
—~

=i discret. error model reduction error

where ||.|| denotes the induced operator norm in L(X, RP).

We thus obtain the following error bound/estimate for
BT/LQG BT, where the LQG case is more difficult to
describe than the BT case due to the more complicated
structure of the error bound (9) and therefore rather
provides an estimate than a bound:

Corollary 3.2. a) For BT, we get

1y = 9ll 2.0, 7;mr) (14)
<cllx — 2l Lo0.1:2) + 2Nl Lo, rirey D, 05
j=r+1
b) For LQG BT, we have
1y — 91l Ly (0,70 (15)

n
Sellx = @l oo.152) + 2Mull oo rmey Y, —2

WS
j=r+1 i

Now using standard theory for error bounds of semi-
discretizations of parabolic problems under usual smooth-
ness assumptions and coercivity of the associated ellip-
tic bilinear form (e.g., Knabner and Angermann (2000),
Sect. 6.2), we can conclude that the output error in the
Lo-norm is bounded by an exponentially decaying term
depending only on the error in the initial condition, a
factor proportional to h? (with h being the meshsize of
the spatial discretization), and the model reduction error.
Ignoring the error in the initial condition, it is therefore
recommended to balance the discretization and model
reduction errors. Denoting the right hand sides in (14)
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and (15) by d(r), it is reasonable to choose the order r of
the reduced-order model adaptively by solving

5(r) < 7-h?, (16)

with a user-specified tolerance 7 and h the meshsize of the
used spatial grid.

Note that using the computational scheme based on ap-
proximate low-rank factors of the Gramians, we do not
have all n HSVs at hand and need to estimate §(r) using
only those provided by the SVD (13).

Remark 3.3. A different approach to tackle the computa-
tional issues arising in BT applied to infinite-dimensional
systems is proposed in Reis and Wollner (2012). There,
the authors define a computational scheme in infinite
dimensions that allows, e.g., to use adaptive FEM. This
approach is very promising due to its greater flexibility,
but needs to be embedded into a FEM package, while the
approach described here is easier to use in the sense that it
is built upon modules that are readily available in software
packages. Nevertheless, the potentials of both directions
should be explored and compared in the future.

4. NUMERICAL EXAMPLES

In this section, we test the two suggested methods BT and
LQG BT for two test examples from the literature. The
main aim here is to illustrate that reliable reduced-order
models are obtained using BT and LQG BT approaches
that allow on the one hand to compute feedback controllers
and on the other hand, to reconstruct even the state. Due
to space limitations, more sophisticated tests have to be
reported elsewhere.

All computations were done using MATLAB® with IEEE
double precision arithmetic.

In the first example, we compare the model reduction
behavior of BT and LQG BT.

Ezample 4.1. (Leibfritz (2004), Section 3.2.1). In this ex-
ample, the full state-space model results from a semi-
discretized boundary control problem for 2D heat flow
in copper on a rectangular domain. Section 3.2.1. The
control acts on two sides via Robin boundary conditions. A
finite differences discretizations leads to a system of order
n = 4496, with m = 2 inputs. Four sensor locations result
in p = 4. Full details are provided in Leibfritz (2004).

The numerical ranks of the computed Gramians are 68
and 124, respectively, for BT, while for LQG BT both
have rank 210. The computed reduced-order model in both
cases is of order r = 10, based on the grid size h = 0.015,
so that we truncate the HSVs as soon as their estimated
tail sums up to a number smaller than h? (ie., 7 = 1
in (16)). The HSVs for the standard and LQG Gramians
are shown in Fig. 1. Fig. 2 shows that both reduced-order
models match the transfer function of the original system
very well. Clearly, both methods satisfy their estimated
error bounds.

In the next example, we demonstrate that despite its focus
on approximating the input-output map of a system, BT
can also be used to reconstruct the state trajectories.
As in other model reduction methods aiming at state
approximation like POD, one may use the truncation
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Hankel singular values

= LQG-HSV
— BT-HSV

0 50 100 150 200 250
k

Fig. 1. Example 4.1, decay of (LQG) HSVs.

Transfer Functions Absolute Errors

“““““ original model
——LQG BT rom
---BTrom

Magnitude

—LaGBT
10° ~=-LQG BT error bound
---BT error bound
—BT

107

0 g

10 10° 10
Frequency o

10 10° 10
Frequency

Fig. 2. Example 4.1, original and reduced transfer func-
tions (left), absolute errors (right).

matrices to construct global shape functions. For BT,
taking the trial space V used by BT, one can generate
a state approximation by
T
2(t) = Vi) =Y opdn(t),
k=1

where V' = [v1,...,v,.]. Thus, the v are interpreted as
discrete global shape functions, analogous to POD modes.
Therefore, we call them BT modes.

Ezxample 4.2. Again, we use the heat equation on the unit
square as test example. This time, we use point control
in a region 2, C € and homogeneous Dirichlet boundary
conditions. We generate the full model as finite differences
discretization using the modified LYAPACK Penzl (2000)
demo function demoml. We employ h = 1/64 and a
control domain €, = [0.2,0.6] x [0.2,0.25] as well as an
observation domain Qops = [0.2,0.25] x [0.2,0.25].

Using again the adapted criterion (16) with 7 = 1, we
obtain a reduced-order model of dimension r = 6. The
corresponding BT modes are shown in Fig. 3. Like for
Fourier modes, the first modes contain low-frequency,
global information, while the next BT modes resolve finer
scales at higher frequencies.

For comparison purposes, we feed the original (n = 4, 096)
and reduced-order (r = 6) system with the control func-
tion u(t) = 10cos(t). The state simulation is performed
using a semi-implicit Euler scheme where the state is
discretized backward and the control forward in time.
Fig. 4 shows the simulated states at ¢ = 1 for the full and
reduced-order models. In the eyeball norm, no difference
can be detected.

In our last example, we show the performance of a feedback
controller based on the reduced-order model.

Example 4.3. As in the previous example, we use the heat
equation on the unit square with homogeneous Dirichlet
boundaries, point control and observation with the same
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BT mode v, (n=4095)

BT mode v, (1= 4095) BT made v, (n = 4096)

Fig. 3. Example 4.2, computed BT modes (r = 6).

FOM (1= 4096), 1 =1 ROM(1=6),t=1

i
i
i

Fig. 4. Example 4.2, simulated states of the original (left)
and reduced-order (right) model at ¢t = 1 using u(t) =
10 cos(t).

Qu, Qobs as in the previous example. The model is gen-
erated using the LYAPACK demo function demo_rl with
h = 115, leading to a full-order model of size n = 22, 500.
The computed numerical ranks of the system Gramians are
31 and 26, respectively. Using this time (16) with 7 = 50,
we obtain a BT reduced-order model of size r = 6. The
estimated BT error bound is § = 1.7 - 1073.

As a simple controller, we solve the LQR problem for
the full as well as the reduced-order model to obtain a
linear state feedback. The application of the corresponding
feedback gains to the full state in the interval [0,0.2] is
illustrated in Fig. 6, while the resulting errors are shown in
Fig. 5. It should be noted that the relative errors increase
towards the end of the interval as controls and outputs
approach zero rapidly.

Relative Errors

—lu® - u OUAuDII
—Illy® -y OlAIy®Il

0 0.05 01 0.15 0.2
time t

Fig. 5. Example 4.3, relative errors between LQR con-
trols and resulting outputs obtained from full- and
reduced-order models.
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Controls Outputs

—y0®
---y,®

20 1200
1000
40

800
-60
600
-80

-100 200

0.05 01 0.15 02 0.05 01 0.15 02
time t time t

Fig. 6. Example 4.3, simulated states of the original (left)
and reduced-order (right) model at ¢t = 1 using u(t) =
10 cos(t).

5. CONCLUSIONS AND OUTLOOK

We have discussed balancing-related model reduction
methods for parabolic control systems. Both variants, BT
based on balancing the controllability and observabilty
Gramians and LQG BT employing the ARE solutions
obtained from an LQG design, yield reliable reduced-
order models that can be used to approximate the sys-
tem outputs as well as the states of the system and to
compute feedback controllers. Future work will include an
automatized full implementation of these model reduction
concepts in an open FEM package as well as the derivation
of analogous results based on H., balancing Mustafa and
Glover (1991). Moreover, we also plan to extend our results
to parabolic systems containing weak nonlinearities.
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