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Abstract: This contribution is concerned with control of systems of population balances, which
are frequently used for modeling of particulate processes like granulation or crystallization. Using
the model of a pellet coating processes it will be shown that discrepancy based control can be
successfully applied for control of systems of population balances. Here, the main idea is to
choose a system output being a generalized measure for the distance between the particle size
distribution and its desired steady state, which allows a direct Lyapunov design.

1. INTRODUCTION

Systems of population balance equations are frequently
used in models of particulate processes as for example
fluidized bed spray granulation, drum granulation, spray
drying and crystallization. They are used to describe the
behavior of a certain particle property (e.g. liquid content,
particle size, porosity). Due to the vast range of indi-
vidual processes (e.g. particle breakage, particle growth,
agglomeration, nucleation) the population balance model
may be a simple linear first order hyperbolic partial dif-
ferential equation or a system of nonlinear partial integro-
differential equations. Hence, control design for this type
of processes is challenging. In order to simplify the control
design procedure the discrepancy based control has been
proposed in [4, 5, 8]. Although this design has been suc-
cessfully applied to different particulate processes [4, 5, §]
rigorous proof of stability in a Lo or L. norm for a
concrete process model is still a challenge.

In this contribution the discrepancy based control will be
applied to a pellet coating processes, which is often used
for production of drugs, fertilizers, foods and detergents.
Here, the pellets are coated in a fluidized bed process,
where a bed of particles is fluidized, while simultaneously
injecting a solid matter solution. Due to high process
air temperature, the fluid evaporates and the remaining
solid material contributes to growth of already existing
particles. As product particles should have a certain size
an additional product classification is required. This can
achieved by internal classification using an air sifter with
countercurrent flow as depicted in Fig. 1. For a film coating
processes the Wurster apparatus is the most common
configuration. Here, a Wurster tube is located in the center
of the process chamber and the solution is injected by a
bottom-spray nozzle. A corresponding process model for
the pellet coating in a Wurster fluidized bed process has
been proposed by Hampel et. al. [2].
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Fig. 1. Scheme of the Wurster fluidized bed process

2. PELLET COATING IN A WURSTER FLUIDIZED
BED PROCESS

As has been described, the pellet coating process can be re-
alized in a continuous fluidized bed spray granulator with
internal product classification as depicted in Fig. 1. Here,
the granulator consists of a granulation chamber, where
the particle population is fluidized through an air stream.
The solution V. is injected from the granulator bottom
in the middle of the Wurster coater, which separates the
inner high velocity zone from the outer low velocity zone.
Due to this separation the apparatus can be decomposed
into two functional zones

e the spraying zone, i.e. the inner high velocity zone,
where the solution is supplied to the particles,

e the drying zone, i.e. the outer low velocity zone, where
the particles are dried.

This configuration allows under certain operating condi-
tions the suppression of particle breakage and agglomera-
tion, which are highly undesired in a coating process [3].

For the modeling of the particulate phase the aforemen-
tioned decomposition can be reflected by introducing two
particle size distributions nq(L,t) and na(L,t) for the
spraying and the drying zone, where L € [0,00) is the
characteristic particle diameter and ¢ > 0 is the time.
The volumetric ratio between spraying and drying zone
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is represented by introducing a parameter «. The particle
growth in the spraying zone associated to the layering
process can been described using a surface-proportional
growth law [1].
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Due to fluidization intense particle mixing occurs, which
results in particle transport between the two compart-
ments. The associated exchange rates from compartment
one to two Nz and from two to one ny; can be character-
ized by their residence time 7 and 79, which can in turn
be related to the relative size of the compartments.
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N2 = —N1 (2)
T1
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N21 = —N2 (3)
T2

The product particles are continuously removed through
an air sifter with countercurrent flow. Due to the particle
size specific sinking velocity large particles pass the air
sifter while small particles are reblown into the granulation
chamber. The associated non-ideal separation function T’
shown in Fig. 2 depends on the critical separation diameter
L1, which can be directly influenced by the air mass flow
rate.
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Fig. 2. Non-ideal separation function 7" due to classifying
product removal

It is assumed that product particles are removed from
both compartments equally, where the drain is equal to
the inverse residence time 73

1

7'711’1:) = —T(L)nl (5)
73
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T.L27p = fT(L)’I’LQ (6)
73

In order to allow a continuous operation nuclei of a
predefined size distribution are added. Here, it is assumed
that the nuclei size distribution is a normal distribution
with mean diameter L.
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Fig. 3. Nuclei size distribution n,,.(L)

The particle fluxes due to external nuclei hence are

hl,nuc - aKnnuc(L) (8)
hl,nuc = (1 - O‘)Knnuc(L) (9)
(10)

where K is the inlet rate. To describe the process, a pop-
ulation balance model for each particle size distribution
has been proposed recently in [2]. Fig. 4 illustrates the
coupling of the two population balance models.
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Fig. 4. Coupling of the population balances

For numerical simulation the model equations are semi-
discretized with the finite volume method (1st order up-
wind flux discretization) with 150 grid points. The model
parameters used are given in Table 1.

For a continuous process operation the particle size dis-
tributions nq(L,t) and ng(L,t) should be stabilized. This
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1 0.1s

T2 9.9s

73 1800s

a 0.01

15 0.5

Ve 201 mm®
a 0.05

Lo 0.3mm
K 60+

Table 1. Plant parameters

can be achieved using for example the critical separation
diameter L as a control handle. The main problems here
are the non-affinity of the control and the growth related
integral term in the population balance equation, which
results in a nonlinear partial integro-differential equation.
Both problems can be however solved applying discrep-
ancy based control design, which relies on the theory of
stability in the sense of Lyapunov with respect to two
generalized distance measures, the discrepancies.

3. STABILITY WITH RESPECT TO TWO
DISCREPANCIES

Most of the control design methodologies for distributed
parameter systems presented in the literature rely on spe-
cial system properties, as for example boundary actuation,
linearity, solvability of the systems equation or at least
the desired error system, i.e. the system in closed loop
operation. Two popular representatives of them are for
example the backstepping approach (e.g. [9]), where the
control input is designed such that it maps the original
system onto a desired stable error system, or the approach
proposed in the works of Bastin et. al. (e.g. [10, 11]),
where stability is proven using the solution derived with
the method of characteristics.

For the presented system of population balance equations
and the population balance models studied in [4, 5, 8]
these approaches are obviously not well suited. However,
as has been shown in previous contributions [4, 5, 8] this
problem is solvable by introducing a generalized stabil-
ity notion, i.e. stability with respect to two generalized
distance measures, the discrepancies. In the following the
most important properties and facts on stability with
respect to two discrepancies are stated in accordance to
[14, 15, 16]. Here, the process ¢(.,t) is a solution of the
distributed parameter system and ¢y = 0 an equilibrium
of the system.

Definition 1. Discrepancy

A discrepancy is a real valued functional p = p[p (.,t),1]
with the following properties

(1) plp,t) > 0
(2) p(0,t) =

)
(3) for an arbltrary process ¢ = ¢(.,t) the discrepancy
p(p(.,t),t) is continuous with respect to ¢.

) introducing a second discrepancy po(¢) with po(p) =
0 and p(0) = 0. Than the discrepancy p(¢(.,t),t) is
continuous at time t = ¢y with respect to pg at pg = 0,
if for every € > 0 and ¢y > 0 there exists a §(g,tp) > 0,
such that from pg < d(e, tg) follows p < e.

(4

According to this definition a discrepancy has not all
properties of a metric, e.g. symmetry d(z,y) = d(y,z)
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or triangular inequality d(z,y) < d(z,z) + d(z,y). In
addition, it has not to satisfy the important property of
definiteness, i.e. a vanishing discrepancy p(¢,t) = 0 does
not automatically imply ¢ = 0.

Definition 2. Stability with respect to two discrepancies p
and po

The equilibrium ¢y = 0 is stable in the sense of Lyapunov
with respect to the two discrepancies p and pg for all t > ¢
if for every £ > 0 and ¢y > 0 there exists a § = d(e,tg) > 0,
such that for every process ¢(.,t) with pg < (e, to) follows
p < ¢ for all t > ty. If in addition lim;_, ., p = 0, than the
equilibrium ¢ is called asymptotically stable in the sense
of Lyapunov with respect to the two discrepancies p and

Po-

In order to establish a relationship between stability with
respect to two discrepancies and the existence of a Lya-
punov functional V' the notions of positivity and positive
definiteness of a functional with respect to a discrepancy
have been introduced.

Definition 3. Positivity with respect to a discrepancy p

The functional V' =V [p, ] is called positive with respect
to the discrepancy p, if V' > 0 and V' [0,¢] = 0 for all ¢
with p(p,t) < oo.

Definition 4. Positive definiteness with respect to a dis-
crepancy p

The functional V' = V [, t] is positive definite with respect
to a discrepancy p, if V> 0 and V' [0,¢] = 0 for all ¢ with
p(p,t) < oo und for every e > 0 there exists a § = d(e) > 0,
such that V' > d(e) for all ¢ with pp,t] > ¢

The following two theorems state the conditions for a func-
tion V' guaranteeing (asymptotical) stability with respect
to two discrepancies.

Theorem 5. [15] The process ¢ with the equilibrium ¢g =
0 is stable with respect to the two discrepancies p and pg
if and only if there exists a functional V' = V[, t] positive
definite with respect to the discrepancy p, continuous at
time t = ¢y with respect to pg at pp = 0 and not increasing
along the process ¢, i.e. V < 0.

Theorem 6. [15] The process ¢ with the equilibrium ¢g =
0 is asymptotically stable with respect to the two discrep-
ancies p and pg if and only if there exists a functional
V = Ve, t] positive definite with respect to the discrep-
ancy p, continuous at time ¢ = ¢y with respect to pg at
po = 0 and not increasing along the process ¢, i.e. V<o,
with tlggo V =0.

It has to be mentioned that stability with respect to two
discrepancies is necessary but in general not sufficient for
stability with respect to a L, norm or L., norm.

4. DISCREPANCY BASED CONTROL DESIGN
CONTROL DESIGN

In the following a stabilizing control is derived for the
pellet coating process in a fluidized bed (11) and (12). The
control input is the critical particle diameter L, which
can be adjusted directly via the air mass flow. In order to
derive a stabilizing controller the above presented stability
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concept is applied. Here, we choose the discrepancy p as

follows
1/ [® 2
p=35 (/ L3(nd—n)dL) .
0

where n = n1+ng and ng = ny,q+ns g is the desired steady
state particle size distribution. Obviously, the above re-
quirements on a discrepancy are met. In order to guarantee
continuity at time ¢t =ty at pg = 0 the second discrepancy
po is simply chosen as follows

(13)

po = p(t=0). (14)

The associated error is
e= / L3 (ng —n)dL. (15)

0

According to Theorem 6 existence of an appropriate func-
tional V is sufficient to guarantee asymptotic stability with
respect to the two discrepancies p and pg. For this purpose
the following candidate Lyapunov functional is introduced

V;(/OOOLB(ndn)dL)Q.

In order to achieve stability in the sense described above
the control variable has to be chosen such that the time
derivative of V' along the system trajectories (11) and (12)
is negative definite for all times and vanishs only for V' = 0.
Calculating the time derivative V' yields

(16)

V= —e/ L? (—G%"Ll —np+ nnu> dL  (17)
0

o on
_ 3 _ 2
= e/o L ( G8L+nnuc> dL

1 oo
—e— LP*KT(L)ndL (18)
T3 0
with np = 11, p+n2,p and Npue = 71, nuc +72,nuc- In order
to achieve affinity in the control a virtual control wy;.; is
introduced.

o)
Upirt = / LPKT(L)ndL (19)
0
Using this virtual control negative definiteness of the time
derivative of the candidate Lyapunov functional V' (18)
can be achieved choosing the following control law.

e 3 ony .
Uyirt = T3 |CE + L —G—— + Npue | dL (20)
0 oL
For an application the virtual control wu.,;-+ has to be
transformed into the associated critical particle diameter
L1, which leads to the following zero-finding problem.

@'—ry)?
o e” o dL’
0= f(Ll) = Uvirt — / LSKIO (L-L,)2 ndL (21)
0 fooo e < dL

In addition to stability with respected to the two discrep-
ancies p and pg, the control law (20) guarantees exponen-
tial convergence of V.

V=—c (/OOO L3(ng — n)dL)2 =2V (22)
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However, it has to mentioned that applying the discrep-
ancy based control law (20) guarantees stability with re-
spect to a L, or L, norm only if the zero dynamics asso-
ciated with the discrepancy p are stable with respect to a
L, or Ly norm, which is in accordance with [12, 13]. As a
rigorous stability analysis of the zero dynamics is difficult
an heuristic approach is to study the zero dynamics of the
linearized semi-discrete approximations.

The control law as depicted in Fig. 5 consists of nonlinear
compensation part, which needs a measurement of the
particle size distribution n; and ng (e.g. by two Parsum
inline probes), and a proportional error feedback.

Ya=Wsa e Uiy
Discrepancy based »
|

Control

Y=H;
Granulator >

A

n(L,t)

Fig. 5. Control scheme

In order to test the control law the desired set point, i.e.
fooo L3ng4dL, has been increased by 20% at t = Oh and two
times decreased by 20% at t = 10h and t = 15h as depicted
in Fig. 6. As can be seen in Fig. 7 and 8 the discrepancy
based control succeeds in stabilizing the desired particle
size distributions n; and ny with reasonable control effort
(Fig. 9).
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Fig. 6. Reference fooo L3n4dL (dotted black) and controlled
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Fig. 7. Error in the particle size distribution e =
IS L (na —n)dL
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Fig. 8. Particle size distribution in the spraying zone n;
(top) and in the drying zone ny (bottom)
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Fig. 9. Critical particle diameter L; (top) and virtual
control ;¢ (bottom)

5. CONCLUSION

In this contribution control of systems of population bal-
ances models has been studied using continuous pellet
coating in a fluidized bed as an example. It has been shown
that applying discrepancy based control stabilization and
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control of systems of population balances is possible. Fu-
ture work will be concerned with real plant experiments,
a thorough study of the zero dynamics associated with
the chosen discrepancy and an extension of the linear
robust control approaches proposed in [6, 7] to systems
of population balances.
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