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We combine recent applications of the two-dimensional quantum inverse scattering method to the scattering
amplitude problem in four-dimensional N = 4 Super Yang-Mills theory. Integrability allows us to obtain
a general, explicit method for the derivation of the Yangian invariants relevant for tree-level scattering
amplitudes in the N = 4 model.
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1 Introduction

For now many years there has been considerable interest in the integrable properties of planar gauge theo-
ries. Of special importance as the primary playground for testing ideas of integrability is the planar N = 4
super Yang-Mills (SYM) model, the unique, maximally supersymmetric theory in four dimensions, for
a comprehensive review see [1]. Integrability has already proven to be a good tool for calculating many
observables for that model, including the set of anomalous dimensions of composite operators as well as
certain families of structure constants. The former is believed to be understood at any finite value of the
coupling constant, the most advanced method for calculating them taking the form of a “Quantum Spectral
Curve” [2]. Recently, the attention of most workers in the field turned to the application of integrability
methods to further quantities of interest, such as the expectation values of Wilson loops as well as scatter-
ing amplitudes. At strong coupling it already turned out to be very useful, allowing to recast the leading
part of scattering amplitudes in terms of a Y-system [3]. There have also been impressive advances to-
wards the exact computation of Wilson loops and of amplitudes at any coupling [4–6]. For example, the
non-perturbative answer for expectation values of polygonal Wilson loops was reformulated as a sum over
infinitely many particle contributions, which are, in principle, accessible via an asymptotic Bethe ansatz
at any coupling. This provides a somehow orthogonal expansion compared to perturbation theory, giving
rise to new predictions for the all-loop answers. There have also been important advances in understanding
amplitudes using integrability at weak coupling. At tree-level the Yangian symmetry of amplitudes was
proven in [7], which combined the invariance under explicit superconformal transformations of the model
with its hidden counterpart – a second, dual superconformal symmetry [8]. This Yangian invariance, under-
lying a large class of rational two-dimensional integrable models, usually does not provide an immediate
tool for calculations. However, it allows for a powerful approach termed the Quantum Inverse Scattering
Method (QISM), where one constructs a family of operators in involution.
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For the tree-level amplitudes, the first step towards the application of the QISM was done in [9], where
the crucial notion of a spectral parameter was introduced to the scattering amplitude problem in N = 4
SYM, see also [10]. This parameter found an interesting interpretation as a deformed, and thus in general
unphysical, particle helicity. With the use of on-shell diagrams [11], providing a solution to the BCFW
recursion relation [12], it allowed to deform tree-level amplitudes in such a way that they satisfy (gener-
alized) Yang-Baxter equations. The latter are often interpreted as the quintessence of quantum integrable
models. A full classification of Yangian invariants was also found in [11], based on a deep relation between
on-shell diagrams and permutations due to Postnikov [13]. This relation to permutations was further stud-
ied in [14], and will be an essential ingredient in the construction proposed in this paper. The next steps in
putting scattering amplitudes into the QISM framework were independently performed in [15, 16], where
it was proposed to study certain auxiliary spin chain monodromies built from local Lax operators. In this
approach the amplitudes are found as “eigenstates” of these monodromies. The monodromies depend on
an “auxiliary” spectral parameter, while the spectral parameters of [9, 10] are encoded as inhomogeneities
of the Lax operators. The amplitudes do not depend on the auxiliary spectral parameter, which is a key
feature of the QISM. In [15] most details were given for a toy version of scattering amplitudes, where
the complexified superconformal algebra gl(4|4) was simplified to the gl(2) case. It was then shown how
to obtain the Yangian invariants from the monodromy matrix eigenproblem. Applying a modified version
of the Algebraic Bethe Ansatz, this led to a system of Bethe equations for Yangian invariants. A different,
more direct, and very powerful method, also based on the monodromy eigenproblem, was proposed in [16].
However, neither in [15] nor in [16] a systematic classification of Yangian invariants was provided. In this
paper, we would like to fill this gap, and detail an integrability-based construction method for all Yangian
invariants relevant to the tree-level scattering amplitudes in N = 4 SYM. As a byproduct, some interesting
relations between the techniques in [15] and [16] as well as the observations in [14] will emerge. After
completing this project we became aware of [17], which shares many conclusions with our work.

The paper is organized as follows. In section 2 we begin by recapitulating some basic results of [15]
and [16], and we provide a link between the two approaches. This link helps to understand how to systemat-
ically generalize the powerful construction method of [16] to general Yangian invariants. This generalized
construction is provided at the end of the section. As in [15], we will, for pedagogical reasons, mostly
restrict the discussion in section 2 to gl(2) or certain closely related compact representations of gl(N |M).
In section 3 we explain how the construction of the previous section generalizes, with small changes, to
the problem of deformed psl(4|4) invariant tree-level scattering amplitudes in N = 4 SYM. In section 4
we illustrate how our method works for particular examples with up to five external particles. We end with
a summary and outlook.

2 Details of construction

2.1 Introductory remarks

The purpose of this paper is the systematic classification of Yangian invariants relevant for the tree-level
scattering amplitudes of N = 4 SYM. Yangian invariance can be defined in a very compact form as a
system of eigenvalue problems for the elements of a suitable monodromy matrix M(u), cf. [15],

Mab(u)|Ψ〉 = δab |Ψ〉 . (1)

We are looking here for eigenvectors |Ψ〉 that are elements of the space V = V1 ⊗ . . . ⊗ Vn with Vi

being a representation space of a particular gl(N |M) representation. The representations we are interested
in have the property that they can be built using a single family of harmonic oscillators transforming in
the fundamental representation of gl(N |M). In order to make our discussion more transparent, we focus
first on the gl(2) algebra and consider only compact representations. Later on we proceed to the general
problem with emphasis on the case N |M = 4|4, relevant for the N = 4 SYM amplitudes.
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Following [15] we distinguish two oscillator realizations of the gl(2) algebra,

Jab = +āaab with [aa, āb] = δab , aa|0〉 = 0 , (2)

J̄ab = −b̄bba with [ba, b̄b] = δab , ba|0̄〉 = 0 , (3)

where the fundamental indices a, b take the values 1, 2. We call (2) a symmetric realization and (3) a dual
realization. The generators Jab and J̄ab act on the states obtained by applying the creation operators āa

and b̄a to their respective Fock vacua |0〉 and |0̄〉. The infinite-dimensional vector space spanned by these
states decomposes into finite-dimensional representation spaces Vs and V̄s of homogeneous polynomials
of degree s in the creation operators. For each degree there is a highest weight state and the representation
is labeled by the positive integer s which is an eigenvalue of one of the Cartan elements,

|hws〉 = (ā1)s|0〉 , Jaa|hws〉 = s δa1|hws〉 , (4)

|hws〉 = (b̄2)s|0̄〉 , J̄aa|hws〉 = −s δa2|hws〉 . (5)

It is sometimes convenient to notationally hide the difference between the two types of oscillators a and b,
and to instead use only one type w satisfying

[wa,wb] = δab . (6)

This is just a relabeling which looks as follows:

āa ↔ wa , aa ↔ wa , wa|0〉 = 0 , (7)

b̄a ↔ −wa , ba ↔ wa , wa|0̄〉 = 0 . (8)

Note that we are not spelling out any conjugation properties of our oscillators, nor computing any norms,
therefore there is no problem with negative norm states from (8).

Written in terms of these variables the generators and highest weight states of Vs and V̄s become,
respectively,

Jab = wawb , |hws〉 = (+w1)s|0〉 , (9)

J̄ab = wbwa , |hws〉 = (−w2)s|0̄〉 . (10)

In the following we will use both notations, as is convenient.
The space V = V1 ⊗ . . . ⊗ Vn of (1) can then be built out of factors Vi which are of the type Vsi :=

span{wsi |0〉} or V̄si := span{(−w)si |0̄〉}. We may think of V as the quantum space of a compact spin
chain. The monodromy matrix M(u) of this spin chain is defined on V�⊗V , where V� denotes an auxiliary
space in the fundamental representation � of gl(2). The monodromy matrix can be written with the help
of Lax operators L(u, v) and L̄(u, v) describing the “interaction” of the auxiliary space with, respectively,
the spaces Vs and V̄s. We use similar Lax operators as in [15]. For the symmetric representations we take

L(u, v) = 1 + (u − v)−1
∑

a,b

eab ābaa =

s, v

�, u , (11)

while for dual ones

L̄(u, v) = 1 − (u − v − 1)−1
∑

a,b

eab b̄abb . (12)
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In both cases the elementary matrices eab with matrix elements (eab)cd = δacδbd act on the auxiliary space.
Compared to [15] we dropped a non-trivial normalization factor of the Lax operators and we introduced a
shift of the parameter v in (12). This shift allows us to express both types of Lax operators in terms of

L(u, v) = u − v +
∑

a,b

eab wbwa . (13)

Using (7) and (8), respectively, we obtain

L(u, v) = (u − v)−1L(u, v) , (14)

L̄(u, v) = (u − v − 1)−1L(u, v) . (15)

In order to render our discussion clearer, we take a spin chain with a very particular quantum space. The
first k sites are represented with the use of the dual realization (3), and the last n−k sites with the symmetric
realization (2), i.e.

V = V̄s1 ⊗ · · · ⊗ V̄sk
⊗ Vsk+1 ⊗ · · · ⊗ Vsn . (16)

Finally, the monodromy matrix reads

M(u) = L̄1(u, v1) . . . L̄k(u, vk)Lk+1(u, vk+1) . . . Ln(u, vn) (17)

. . .

. . .

sk+1, vk+1s1, v1 sk, vk sn, vn

�, u

. . .

. . .
. (18)

Note that the monodromy M(u) depends only on the spectral parameters u and vi as well as on n and
k, but not on the representation labels si. As we did already in (11), we have nevertheless attached these
labels in the graphical depiction, to indicate the nature of the quantum space the monodromy is acting on.
This monodromy provides a realization of the Yangian Y (gl(2)). Each Lax operator itself is an evaluation
realization of the Yangian with evaluation parameter vi, which is called an inhomogeneity in spin chain
language.

2.2 Quantum inverse scattering method for Yangian invariants

It was shown in [15] that one can construct eigenvectors |Ψ〉 satisfying (1) using the Quantum Inverse
Scattering Method (QISM), and in particular apply the Algebraic Bethe Ansatz technique. Most details of
this construction were given for the simplest case of compact gl(2) representations. In this case one writes
the monodromy matrix (17) explicitly as a matrix acting in the fundamental auxiliary space,

M(u) =

(
A(u) B(u)
C(u) D(u)

)
. (19)

The operators A(u), B(u), C(u) and D(u) act only on the quantum space V . The standard procedure is
then to construct a “reference” state |Ω〉 satisfying

C(u)|Ω〉 = 0 , A(u)|Ω〉 = α(u)|Ω〉 , D(u)|Ω〉 = δ(u)|Ω〉 , (20)

where α(u) and δ(u) are scalar functions depending on the representations labels si and the inhomo-
geneities vi of the monodromy. The reference state |Ω〉 is realized as the tensor product of the highest
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weight states at each spin chain site. As already pointed out in (16), we focus on the case where the first k
highest weight states are of the form (5) and the remaining n − k are as given in (4),

|Ω〉 =
k⊗

i=1

|hws〉i
n⊗

i=k+1

|hws〉i =
k∏

i=1

(b̄i
2)

si

n∏

i=k+1

(āi
1)

si |0〉 (21)

with

|0〉 = |0̄〉 ⊗ . . . ⊗ |0̄〉︸ ︷︷ ︸
k

⊗ |0〉 ⊗ . . . ⊗ |0〉︸ ︷︷ ︸
n−k

. (22)

In order to construct Yangian invariants one proceeds to define the Bethe vectors

|Ψ〉n,k = B(u1) . . . B(uK)|Ω〉 . (23)

The Bethe roots uj and the parameters si and vi of the monodromy have to satisfy the first order Baxter
equations

Q(u)
Q(u + 1)

= δ(u) with Q(u) =
K∏

j=1

(u − uj) , (24)

α(u)δ(u − 1) = 1 . (25)

These equations impose stronger conditions than the usual Bethe equations and they guarantee the Yangian
invariance of the Bethe vector. For the monodromy (17) the functions α(u) and δ(u) can be worked out
explicitly. This turns (24) into an equation1 determining the Bethe roots uj

Q(u)
Q(u + 1)

=
k∏

i=1

u − vi − si − 1
u − vi − 1

. (26)

In addition, (25) becomes

k∏

i=1

u − vi − si − 2
u − vi − 2

n∏

i=k+1

u − vi + si

u − vi
= 1 , (27)

which constrains the representation labels si and inhomogeneities vi.
Equations (26) and (27) were solved explicitly in [15] for some sample invariants. The correspond-

ing Bethe vectors were evaluated for small integer values of the representation labels si. Up to overall
normalization factors this led to the invariants

|Ψ〉2,1 = (b̄1 · ā2)s2 |0〉 , (28)

|Ψ〉3,1 = (b̄1 · ā2)s2(b̄1 · ā3)s3 |0〉 , (29)

|Ψ〉3,2 = (b̄1 · ā3)s1(b̄2 · ā3)s2 |0〉 , (30)

|Ψ〉4,2 =
∞∑

k=0

1
(s1 − k)!(s2 − k)!k!Γ(z − s1 + k + 1)

(31)

1 Equations (26) and (27) are slightly different from the ones in [15]. This difference originates from the shift of the inhomo-
geneity in the dual Lax operator (12).
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· (b̄1 · ā3)s1−k(b̄2 · ā4)s2−k(b̄2 · ā3)k(b̄1 · ā4)k|0〉 ,

where b̄i · āi =
∑

a b̄i
aā

i
a. Surprisingly, perhaps, even though one acts in general with a large number

of suitable operators B(uj) on the reference state |Ω〉, the final result looks very simple for the first few
invariants |Ψ〉2,1, |Ψ〉3,1 and |Ψ〉3,2. As for the considerably more involved “harmonic R-matrix” |Ψ〉4,2,
note the following two features. Firstly, for finite dimensional representations, the sum in (31) is actually
finite, of course. Secondly, a complex spectral parameter z appears.

The expressions (28)-(30) are reminiscent of the ones found in [16], where the authors studied a con-
dition for Yangian invariance2 similar to (1). Even though the method used there differs from the standard
Algebraic Bethe Ansatz approach explained above, the idea bears many similarities. The construction
in [16] is valid for any algebra gl(N |M). Let us explain it here in a few steps, restricting to the gl(2) case
for simplicity. Now it is convenient to use (7) and (8) to express the a, b oscillators in terms of the w
oscillators. As opposed to the reference state |Ω〉, the authors of [16] start from the Fock vacuum |0〉 in the
quantum space, defined in (22), which corresponds to a trivial singlet representation. They then look for
Yangian invariants of the form3

|Ψ〉 = Bi1j1(ū1) . . .BiP jP (ūP )|0〉 , (32)

with

Bij(u) = (−wj · wi)u (33)

and i, j = 1, . . . n. As an example let us consider the invariants in (28), (29), (30) and notice that

|Ψ〉2,1 ∝ B12(s2)|0〉 , (34)

|Ψ〉3,1 ∝ B12(s2)B13(s3)|0〉 , (35)

|Ψ〉3,2 ∝ B13(s1)B23(s2)|0〉 . (36)

At first, it seems impossible to also write down the four-point invariant in such a simple form since it is
given in (31) as a complicated sum. In addition, it depends on the complex parameter z. However, using
the formal algebraic commutation relations for the oscillators, one easily proves

|Ψ〉4,2 ∝ B12(z)B23(s1)B12(s1 − z)B24(s2)|0〉 , (37)

or more explicitly

|Ψ〉4,2 =
1

Γ(s1 + 1)Γ(s2 + 1)Γ(z + 1)
(b̄1 · b2)z(b̄2 · ā3)s1(b̄1 · b2)s1−z(b̄2 · ā4)s2 |0〉 . (38)

The careful reader might be a bit puzzled here since in (37) and (38) the spectral parameter z is a complex
number. Let us therefore give some details on the purely algebraic derivation of (31) from (38). We interpret
the action of the two rightmost operators as

(b̄1 · b2)s1−z(b̄2 · ā4)s2 |0〉 =
Γ(s2 + 1)

Γ(s2 − s1 − z + 1)
(b̄2 · ā4)s2−s1+z(b̄1 · ā4)s1−z|0〉 . (39)

Then the fourth operator (b̄1 ·b2)z produces the sum of terms in (31) by means of the generalized Leibniz
rule. Finally, all complex powers of oscillators disappear and we obtain the invariant (31) for compact
representations. This illustrates that we should not require in (33) the variable u to be a non-negative
integer; we take it as a general complex number u ∈ C.

2 Up to a very non-trivial normalization of the monodromy, which however will not play a role in this paper.
3 We changed the notation from Rij(u) to Bij(u) compared to [16], and furthermore changed the normalization.
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In [16] the authors studied a few more examples beyond (34), (35) and (36). However, no general
construction for arbitrary n and k was proposed. In particular, no classification of such invariants was
provided. In practical terms, we would like to find a prescription which tells us which (ip, jp) and ūp in
(32) have to be taken in order to obtain the Yangian invariant |Ψ〉n,k for a given n and k. We will now fill
this gap. It will turn out that there are many distinct solutions for fixed n and k, but that all of them are in
one-to-one correspondence with permutations.

Before we proceed to this general construction let us come back for a moment to the first order Bax-
ter equation (25) spelled out in (27). There exists a redefinition of the inhomogeneities which turns this
equation into a much simpler form. Let us introduce

v′i =

⎧
⎨

⎩
vi + si

2 + 2 for i = 1, . . . , k ,

vi − si

2 for i = k + 1, . . . , n .
(40)

In addition we define

si =

⎧
⎨

⎩
−si for i = 1, . . . , k ,

si for i = k + 1, . . . , n ,
(41)

and

v±i = v′i ± si

2 . (42)

In term of these variables (27) reads

n∏

i=1

(u − v+
i ) =

n∏

i=1

(u − v−i ) . (43)

Both sides of this equation are polynomials in u of degree n. Since the set of roots is unique for a given
polynomial we conclude that for each v+

i there exists j such that v+
i = v−j . Altogether, it means that with

each solution to (27) we can associate a permutation σ such that

v+
σ(i) = v−i . (44)

This provides a systematic construction of the solutions of (25), a problem proposed in [15]. We restrict
our representations from now on and take generic values for the si, namely si �= 0, then σ(i) �= i, i.e. σ
does not have fixed points.

Even though the above analysis was done for the case of gl(2) we claim that it continues to be valid for
any realization of the gl(N |M) algebra in terms of a single family of oscillators. In particular this includes
the gl(4|4) case relevant for the N = 4 SYM amplitudes. It is not an accident that on-shell diagrams
are also parametrized by permutations. As was shown in [10] each on-shell diagram can be deformed by
allowing non-physical particle helicities. While a generic deformation of the amplitude is not Yangian
invariant, there exists a simple criterion enforcing it. It is sufficient to restrict to deformations such that all
possible cluster transformations leave the appropriate integration measure invariant, see [10] for details.
These constraints were studied in details in [14] and it was shown there that they can be naturally recast in
the form (44). We will show that all such deformations can be obtained from (32) with an appropriate set
of indices (ip, jp) and parameters ūp, leading to a complete classification of Yangian invariants relevant
for the tree-level amplitudes.
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2.3 General construction of Yangian invariants

In this section we will construct a Yangian invariant |Ψ〉σ for each permutation σ using the operatorsBij(u)
introduced in (33). The procedure is closely related to the combinatorics of permutations and scattering
amplitudes in chapter 2 of [11].

Let σ be a permutation of n elements and k be the number of elements i with σ(i) < i. We decompose
σ into transpositions Tp = (ip, jp), which exchange the two elements ip < jp

σ = TP ◦ . . . ◦ T2 ◦ T1 = (iP , jP ) · · · (i2, j2)(i1, j1) . (45)

This (non-unique) decomposition is assumed to be minimal, meaning that there exists no other decomposi-
tion of σ into a smaller number of transpositions. In addition, the transpositions Tp = (ip, jp) are required
to be adjacent, cf. [11], in the sense that

iq, jq /∈ {ip + 1, . . . , jp − 1} for q > p . (46)

Note that this “generalized adjacency” of the indices ip, jp of the transposition Tp means that the condition
ip + 1 = jp is relaxed to ip + 1 < jp, iff all transpositions Tq = (iq, jq) applied after Tp are restricted by
(46). For practical purposes, the Mathematica program in [18] may be used to obtain such a decomposition
for a given permutation σ.

We claim that a Yangian invariant is now constructible from the ansatz (32), which reads

|Ψ〉σ = Bi1j1(ū1) · · · BiP jP (ūP )|0〉 . (47)

Here the indices of the operators are precisely the arguments of the transpositions in (45), and the number
k defined above fixes the vacuum |0〉 to be (22). The parameters ūp, akin to Bethe roots in the Algebraic
Bethe Ansatz, will be given below. Let us briefly outline the idea of how to show the Yangian invariance
of this ansatz. The main tool is the “intertwining” relation

Li(u, yi + Ci)Lj(u, yj + Cj)Bij(yi − yj) = Bij(yi − yj)Li(u, yj + Ci)Lj(u, yi + Cj) , (48)

with Ci = wi · wi being the number operator of the oscillators at site i. This equation is easily verified by
a direct computation, and may be depicted as in Fig. 1. It is similar to, but distinct from the standard form
of the Yang-Baxter equation: Note that the indices on the Lax operators Li and the number operators Ci

are not permuted, while the ones on the inhomogeneities yi are. A closely related equation was introduced
in [16,19], see also Appendix A. One now expresses the monodromy M(u) given in (17) entirely in terms
of Lax operators Li(u, vi) found in (13), and then acts with M(u) on the ansatz (47). Then one uses (48)
to commute all operators Bipjp(ūp) inside |Ψ〉σ to the left side of the monodromy M(u). This constrains
the parameters ūp in terms of the inhomogeneities vi of the monodromy. It also modifies the distribution of
inhomogeneities of the monodromy. However, one notices that this modified monodromy acts diagonally
on the vacuum |0〉. This shows that the ansatz (47) satisfies the invariance condition (1) up to a factor. The
latter conveniently turns out to be unity in our conventions.

=

u

u

yi,Ci yj,Cj

yj,Ci yi,Cj

Fig. 1 Fundamental relation (48) for the construction of Yangian invariants using the intertwining opera-
tors Bij(yi − yj).
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To implement this procedure we replace the inhomogeneities vi of the monodromy by new variables4

yi defined in terms of the representation labels si, cf. (41)

vi|Ψ〉σ = (yi + Ci)|Ψ〉σ =

⎧
⎨

⎩
(yi + si − N + M)|Ψ〉σ for i = 1, . . . , k ,

(yi + si)|Ψ〉σ for i = k + 1, . . . , n .
(49)

For the convenience of the reader, here and in the formulas in the rest of this section we have already given
the correct expressions for the algebra gl(N |M); to specialize back to gl(2) just put N = 2, M = 0. The
action of the monodromy on the ansatz (47) in these variables reads

M(u)|Ψ〉σ =
k∏

i=1

1
u − vi − 1

n∏

i=k+1

1
u − vi

L1(u, y1 + C1) · · · Ln(u, yn + Cn)|Ψ〉σ . (50)

The arguments of the Lax operators are already in the form of (48). To apply (48) we also have to specify
the variables ūp in (47) in terms of the yi. For this purpose we introduced the permutations

τp = τp−1 ◦ (ip, jp) = (i1, j1) · · · (ip, jp) (51)

for p = 1, . . . , P . As we will see shortly, the correct choice of the ūp is

ūp = yτp(jp) − yτp(ip) . (52)

Let us explain how to use (48) to commute the operators Bipjp(ūp) inside |Ψ〉σ to the left side of the
monodromy M(u). For a moment we disregard the arguments ūp. If the indices of an operator Bipjp are
adjacent, ip + 1 = jp, we can directly apply (48) to move Bipjp left of the Lax operators LipLip+1 and
then on through the entire monodromy. However, if ip + 1 > jp, this is not immediately possible because
in the monodromy there are some Lax operators in between Lip and Ljp . In this case the decomposition
into adjacent transpositions guarantees, cf. (46), that all operators Biqjq to the right of Bipjp do not act on
the spaces labeled ip + 1, . . . , jp − 1. Hence, the corresponding Lax operators Lip+1, . . . , Ljp−1 in the
monodromy act directly on the vacuum |0〉. For any Lax operator acting on the vacuum we have

Li(u, yj + Ci)|0〉 =

⎧
⎨

⎩
(u − yj + N − M − 1)|0〉 for i = 1, . . . , k ,

(u − yj)|0〉 for i = k + 1, . . . , n .
(53)

Consequently, the Lax operators between Lip and Ljp effectively disappear from the monodromy. This
means we can apply (48) to commute the operators Bipjp past the monodromy also in the case ip +1 > jp.

Finally, we give some details on the commutation of all operators Bipjp(ūp) inside |Ψ〉σ to the left of
the monodromy M(u). For this computation we introduce

M(u; y1, . . . , yn) = L1(u, y1 + C1)L2(u, y2 + C2) · · · Ln(u, yn + Cn) . (54)

Using (48), (52) and applying (53) once the whole monodromy hits the vacuum yields

M(u)|Ψ〉σ =
k∏

i=1

1
u − vi − 1

n∏

i=k+1

1
u − vi

M(u; y1, . . . , yn)Bi1j1(ū1) · · · BiP jP (ūP )|0〉 (55)

=
k∏

i=1

1
u − vi − 1

n∏

i=k+1

1
u − vi

Bi1j1(ū1)M(u; . . . , yj1 , . . . , yi1 , . . .)Bi2j2(ū2) · · · BiP jP (ūP )|0〉 (56)

4 These variables are related to those in (40) by yi = v′i − si
2

.
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=
k∏

i=1

1
u − vi − 1

n∏

i=k+1

1
u − vi

Bi1j1(ū1)M(u; yτ1(1), . . . , yτ1(n))Bi2j2(ū2) · · · BiP jP (ūP )|0〉
(57)

=
k∏

i=1

1
u − vi − 1

n∏

i=k+1

1
u − vi

Bi1j1(ū1)Bi2j2(ū2) · · · BiP jP (ūP )M(u; yτP (1), . . . , yτP (n))|0〉

(58)

=
k∏

i=1

u − yτP (i) + N − M − 1
u − vi − 1

n∏

i=k+1

u − yτP (i)

u − vi
Bi1j1(ū1)Bi2j2(ū2) · · · BiP jP (ūP )|0〉 (59)

=
k∏

i=1

u − yτP (i) + N − M − 1
u − vi − 1

n∏

i=k+1

u − yτP (i)

u − vi
|Ψ〉σ . (60)

This proves that the ansatz for |Ψ〉σ given in (47) with ūp specified in (52) satisfies the Yangian invari-
ance condition (1) up to a factor. Let us now argue that this factor is equal to 1. One may compute the
representation labels si of the vector |Ψ〉σ, leading to

yσ(i) + sσ(i) = yi . (61)

Together with the variable redefinition (49) and τP = σ−1 this turns the scalar factor in (60) into 1, which
shows the Yangian invariance of |Ψ〉σ. Notice that defining v+

i = yi + si and v−i = yi turns (61) into (44).

3 Generalization to superalgebras and scattering amplitudes

The general construction of Yangian invariants in the previous section easily generalizes to compact rep-
resentations of the superalgebra gl(N |M) that can be realized in terms of a single oscillator family. More-
over, we will argue that it also applies to the non-compact representations of gl(4|4) relevant to tree-level
scattering amplitudes of N = 4 SYM.

Let us first focus on the compact representations of gl(N |M). We therefore replace the oscillators
of section 2 by superoscillators. Generalizing (2) and (3), we obtain two families of realizations with
generators

Jab = +āaab with [aa, āb} = δab , aa|0〉 = 0 , (62)

J̄ab = −(−1)b+abb̄bba with [ba, b̄b} = δab , ba|0̄〉 = 0 , (63)

where the oscillators labeled by a, b = 1, . . . , N are bosonic and those with a, b = N + 1, . . . , N + M are
fermionic, and the exponent of −1 is to be understood as the degree of the corresponding index. As in the
purely bosonic case it is convenient to relabel the oscillators by introducing yet another oscillator family
w as in (7) and (8),

āa ↔ wa , aa ↔ wa , wa|0〉 = 0 , (64)

b̄a ↔ −(−1)a wa , ba ↔ wa , wa|0̄〉 = 0 . (65)

The Lax operator (13) then generalizes to a graded one,

L(u, v) = u − v +
∑

a,b

(−1)beab wbwa , (66)
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whence the gl(N |M) versions of L(u, v) and L̄(u, v) may be deduced by imposing (14) and (15).
This is the setup we need in order to adapt the general construction method of section 2.3 to the super-

algebra case. Importantly, the classification of the invariants using permutations and the decomposition of
these permutations into transpositions does not make any reference to the specific symmetry algebra, let it
be gl(2) or gl(N |M). The form of the vacuum |0〉 in (22), the operators Bij(u) specified in (33), as well as
the key relation (48) remain unchanged. Furthermore, all formulas in section 2.3 already contain N − M
at the appropriate places, and already pertain to the gl(N |M) case. Hence the construction of Yangian
invariants carries over to the case of compact gl(N |M) representations, where the generators (62) and (63)
are given in terms of a single family of superoscillators.

For the moment we stay with these compact representations, and discuss an integral realization of the
operators Bij(u). Soon this realization will be the basis for a formal transition to scattering amplitudes. As
was observed in [16] (see also [15]), one may formally rewrite the intertwiner Bij(u) in (33) for arbitrary
complex numbers5 u ∈ C as

Bij(u) = (−wj · wi)u = −Γ(u + 1)
2πi

∫

C

dα

(−α)1+u
eαwj ·wi

, (67)

where the Hankel contour C goes counterclockwise around the cut (for u /∈ Z) of the function (−α)1+u

defined to lie between its branch points at 0 and ∞. Now we make a further notational change, and realize
the w oscillators in terms of “supertwistor” variables W

wa ↔ Wa , wa ↔ ∂Wa , |0〉 ↔ 1 , |0̄〉 ↔ δN |M (W) . (68)

In this realization the vacuum state (22) in the construction of invariants becomes

|0〉 =
k∏

i=1

δN |M (Wi) . (69)

The operators Bij(u) in (67) then read

Bij(u) = −Γ(u + 1)
2πi

∫

C

dα

(−α)1+u
eαWj·∂Wi . (70)

Note that for u = s ∈ N0 the cut in the complex α-plane disappears, and the only singularity inside C
is a pole at α = 0. In this case, the Hankel contour may be collapsed into a counterclockwise circle around
the pole, and (70) simplifies to

Bij(s) =
(−1)s s!

2πi

∮
dα

α1+s
eαWj ·∂Wi = (−Wj · ∂Wi)s , (71)

which is essentially the expression, here in terms of twistor variables, given in (5.11) of [15] for compact
representations. We may then express, as in (5.21) of [15], e.g. (28) in twistor variables

|Ψ〉2,1 ∝
∮

dα

α1+s2
δ2|0(W1 + αW2) , (72)

where we used the representation (69) of the vacuum. However, for more complicated compact invariants
such as (37), where the intertwiners depend on complex parameters, we should use the integral represen-
tations (70) employing the Hankel contours.

5 For u = −1,−2, . . . one needs to take a limit, as the Gamma function diverges and the integral tends to zero since the
integrand becomes completely analytic inside C.
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Now, as already pointed out in [15], with a small further modification the compact formalism is easily
modified to also apply to the non-compact gl(4|4) Yangian invariants appearing in the N = 4 tree-level
scattering problem, which are expressed in terms of formal Graßmannian contour integrals [11]. As the
procedure for building invariants is entirely algebraic, and reality conditions, conjugation properties of the
operators, and the norms of the states are never considered, the construction immediately carries over to
the amplitude problem. The price one pays is merely that the contour integrations and the delta functions,
which are well-defined in the compact case (cf. appendix A of [15]) become somewhat formal in the
scattering problem, see again [11]. Let us now illustrate the method in some examples.

4 Sample invariants

We will illustrate our construction in the first few cases. As we elaborated before, all the invariants are
labelled by permutations. Here we restrict our discussion to the permutations σn,k(i) = i + k mod n that
are relevant for the top cells of the positive Graßmannian G(n, k). For the corresponding invariants we use
the shorthand notation |Ψ〉n,k = |Ψ〉σn,k

. Each invariant may be rewritten into integral form using (70).
However, we will drop the reference to the Hankel contours, in order to stay general. There are at least
three natural sets of variables in which the integral representation can be expressed. Directly using (70),
we may write it employing variables αp, which are related to the decomposition into BCFW bridges (45),
see also [11]. Another set of variables is given by the entries of the matrix C = (cij)

i=1,...,k
j=1,...,n making its

appearance in the Graßmannian integral formulation studied in [20]. The last form is given in terms of the
face variables fi introduced in [13].

As was already mentioned in the previous section, the ensuing formulas are valid for both the Yangian
invariants of compact gl(N |M) algebras as well as for the amplitude problem of N = 4 SYM with gl(4|4)
symmetry.

4.1 n=2, k=1

There is only one non-trivial two-point invariant, for which k = 1. The permutation reduces just to a single
transposition

σ2,1 =

(
1 2

2 1

)
= (12) , (73)

The invariant (47) in that case is given by

|Ψ〉2,1 = B12(y1 − y2)|0〉 = B12(s2)|0〉 ∝
∫

dα1

α1+s2
1

δN |M (W1 + α1W2) , (74)

where we used the fact that y1 = y2 + s2.
There are at least three distinguished graphical representations for each invariant. The first one, as

proposed in [16], comes from the identification of Bij with a BCFW bridge. Each such bridge can be
depicted as a composition of one white and one black three-point vertex. Then the invariant can be drawn6

as in Fig. 2A. When we remove all dotted lines and replace all vertices with only two solid lines by a single
solid line, we end up with a graphical representation analogous to the one in [15], as depicted in Fig. 2B.
It is now easy to translate the latter into an on-shell diagram as in Fig. 2C, which obviously is rather trivial
in the case of the two-point invariant.

6 We thank Yvonne Geyer for bringing this construction to our attention in the case of undeformed amplitudes.
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C

2

1

B

21

A

21

Fig. 2 Two-point Yangian invariant. A) Transposition decomposition; B) wilted on-shell diagram; C) on-
shell diagram with a perfect orientation.

4.2 n=3, k=1

For the three-particle invariant there are two non-trivial values of k. Let us first take the permutation

σ3,1 =

(
1 2 3

2 3 1

)
= (13)(12) , (75)

for which k = 1. We specified here also the decomposition of this permutation into transpositions. The
invariant (47) is given by

|Ψ〉3,1 = B12(y1 − y2)B13(y2 − y3)|0〉 = B12(s2)B13(s3)|0〉 (76)

∝
∫

dα1dα2

α1+s2
1 α1+s3

2

δN |M (W1 + α1W2 + α2W3) (77)

∝
∫

dc12dc13

c1+s2
12 c1+s3

13

δN |M (W1 + c12W2 + c13W3) . (78)

This is exactly the deformed three-point MHV amplitude introduced in [9]. See Fig. 3 for the graphical
representation of |Ψ〉3,1.

A B C

1

3211 2 3 32

Fig. 3 Three-point MHV Yangian invariant. A) Transposition decomposition; B) wilted on-shell diagram;
C) on-shell diagram with a perfect orientation.

4.3 n=3, k=2

For the case of the three-particle invariant with k = 2 we have the permutation

σ3,2 =

(
1 2 3

3 1 2

)
= (23)(12) . (79)
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The invariant is given by

|Ψ〉3,2 = B12(y1 − y2)B23(y1 − y3)|0〉 = B12(−s1)B23(s3)|0〉 (80)

∝
∫

dα1dα2

α1−s1
1 α1+s3

2

δN |M (W1 + α1W2)δN |M (W2 + α2W3) (81)

∝
∫

dc13dc23

c1−s1
13 c1−s2

23

δN |M (W1 + c13W3)δN |M (W2 + c23W3) . (82)

This is again the deformed three-point MHV amplitude found in [9]. Together with (78) it is the building
block for all deformations of on-shell diagrams, and subsequently all deformed tree-level amplitudes. For
the graphical representation see Fig. 4.

A B C

1 2 3 1 2 3

12

3

Fig. 4 Three-point MHV Yangian invariant. A) Transposition decomposition; B) wilted on-shell diagram;
C) on-shell diagram with a perfect orientation.

4.4 n=4, k=2

The four-point invariant with k = 2 is the first one which, interestingly, cannot be written solely by using
representation labels. It corresponds to the deformation of the four-point tree amplitude obtained in [10]
and depends on a spectral parameter z. Let us show how it arises in the context of this paper. The relevant
permutation is

σ4,2 =

(
1 2 3 4

3 4 1 2

)
= (24)(12)(23)(12) . (83)

and the invariant is given by

|Ψ〉4,2 = B12(y1 − y2)B23(y1 − y3)B12(y2 − y3)B24(y2 − y4)|0〉 (84)

= B12(z)B23(−s1)B12(−z − s1)B24(−s2)|0〉 (85)

∝
∫

df1df2df3df4

f1−s1
1 f1−s1−s2

2 f1−z−s1
3 f1−s2

4

δN |M (W1 + f1f2W3 + (1 + f3)f1f2f4W4) (86)

δN |M (W2 + f2W3 + f2f4W4) , (87)

where we defined z = y1 − y2. The form (85) of this invariant was already mentioned in (37). Its integral
representation (86) exactly reproduces the four-point deformed amplitude in the form derived in [9], see
also [10]. Note that a somewhat different looking form involving a hypergeometric function in the integrand
of the harmonic R-matrix was given in [15].
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f4

A B C

1 2 3 4 1 2 3 4

2 1

4
f1

f3

f2

f1

f43

f3f2

Fig. 5 Four-point MHV Yangian invariant. A) Transposition decomposition; B) wilted on-shell diagram;
C) on-shell diagram with a perfect orientation.

4.5 n=5, k=2

In the five particle case the permutation

σ5,2 =

(
1 2 3 4 5

3 4 5 1 2

)
= (25)(12)(24)(12)(23)(12) (88)

with k = 2 leads to the invariant

|Ψ〉5,2 = B12(y12)B23(y13)B12(y23)B24(y24)B12(y34)B25(y35)|0〉 (89)

= B12(−s1 − s4)B23(s3)B12(−s2 − s5)B24(s4)B12(−s1 − s3)B25(s5)|0〉 (90)

∝
∫

df1df2df3df4df5df6

f1−s1
1 f1−s1−s2

2 f1+s4
3 f1+s4+s5

4 f1−s1−s3
5 f1+s5

6

(91)

δN |M (W1 + f1f2W3 + (1 + f3)f1f2f4W4 + (1 + f3 + f3f5)f1f2f4f6W5) (92)

δN |M (W2 + f2W3 + f2f4W4 + f2f4f6W5) , (93)

where we abbreviated yij = yi−yj . This provides a deformation of the five-point MHV amplitude. Notice
that it is fully determined just using representation labels.

4.6 n=5, k=3

A five particle permutation with k = 3 is given by

σ5,3 =

(
1 2 3 4 5

4 5 1 2 3

)
= (35)(23)(34)(12)(23)(12) . (94)

This yields the invariant

|Ψ〉5,3 = B12(y12)B23(y13)B12(y23)B34(y14)B23(y24)B35(y25)|0〉 (95)

= B12(s2 + s4)B23(−s1)B12(s3 + s5)B34(s4)B23(−s2)B35(s5)|0〉 (96)

∝
∫

df1df2df3df4df5df6

f1−s1
1 f1−s1−s2

2 f1+s3+s5
3 f1+s4+s5

4 f1−s2
5 f1+s5

6

(97)
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f2

1 2 3 4 5

A

2 1

54

3

f5

f6

f4

f1

f3

CB

21 3 4 5

f3

f5

f1

f6

f4

f2

Fig. 6 Five-point MHV Yangian invariant. A) Transposition decomposition; B) wilted on-shell diagram; C) on-shell
diagram with a perfect orientation.

δN |M (W1 + f1f2f4W4 + f1f2f4f6(1 + f5 + f3f5)W5) (98)

δN |M (W2 + f2f4W4 + f2f4f6(1 + f5)W5) (99)

δN |M (W3 + f4W4 + f4f6W5) , (100)

which is a deformation of the five-point MHV amplitude.

A

1 2 3 4 5 1 2 3 4 5
f1

f3

f5

f2

f4

B

f6

4 5
f6

f5

f3

f1

f2

f4

3

2 1

C

Fig. 7 Five-point MHV Yangian invariant. A) Transposition decomposition; B) wilted on-shell diagram; C) on-shell
diagram with a perfect orientation.

5 Summary and outlook

In this paper we provided a full classification of Yangian invariants relevant to tree-level scattering ampli-
tudes in N = 4 SYM. Our method combines the idea of deformation of on-shell diagrams [10] with the
QISM as proposed in [15] and [16]. It gives a constructive way to build such invariants and provides a link
to powerful Bethe Ansatz methods. It also introduces natural variables v±, as studied in details by [14],
which are very reminiscent of the Zhukovsky variables x± that play an important role in the all-loop so-
lution of the spectral problem [21]. This leads to the hope that these variables will provide a good starting
point for suitable generalizations of Yangian invariants to scattering amplitudes at higher loops.
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A Other form of intertwining relation

In this appendix we work out the precise connection between the commutation relation (48), which is the
primary tool to construct Yangian invariants in this paper, and the corresponding relation in [16].

We start by multiplying (48) from the left with Lj(−u,−yj − 1)Li(−u,−yi − 1) and from the right
with Lj(−u,−yi − 1)Li(−u,−yj − 1). In the resulting equation products of Lax operators acting on the
same space are eliminated using the “unitarity condition”

Li(u, v)Li(−u,−v − 1 + Ci) = (u − v)(−u + v + 1 − Ci) + Ci . (101)

Then the equation is simplified further employing

CiBij(u) = Bij(u)(Ci − u) , CjBij(u) = Bij(u)(Cj + u) . (102)

Finally, relabeling u 
→ −u, yi 
→ −yj − 1, yj 
→ −yi − 1 leads to the commutation relation used in [16],
which does not contain the operators Ci and Cj ,

Bij(yi − yj)Lj(u, yj)Li(u, yi) = Lj(u, yi)Li(u, yj)Bij(yi − yj) . (103)
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