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Abstract. We study the effects of curved background geometries on the critical
behavior of scalar field theory. In particular we concentrate on two maximally
symmetric spaces: d-dimensional spheres and hyperboloids. In the first part of
the paper, by applying the Ginzburg criterion, we find that for a large correlation
length the Gaussian approximation is valid on the hyperboloid for any dimension
d � 2, while it is not trustable on the sphere for any dimension. This is
understood in terms of various notions of the effective dimension, such as the
spectral and Hausdorff dimension. In the second part of the paper, we apply
functional renormalization group methods to develop a different perspective on
such phenomena and to deduce them from a renormalization group analysis. By
making use of the local potential approximation, we discuss the consequences
of having a fixed scale in the renormalization group equations. In particular, we
show that in the case of spheres there is no true phase transition, as symmetry
restoration always occurs at large scales. In the case of hyperboloids, the phase
transition is still present, but as the only true fixed point is the Gaussian one,
mean field exponents are valid also in dimensions lower than four.
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1. Introduction

Curved spaces in physics are typically associated with the setting of general relativity
and cosmology. However, their relevance is of course much more general and they appear
for example in the classical mechanics of constrained systems, as well as in the study
of membranes and interfaces in condensed matter. A brief review of the theoretical and
experimental motivations for studying the effects of curved geometry in condensed matter
can be found in [1]. The search and study of condensed matter systems characterized by an
actual or effective curved geometry is also stimulated by the idea of analogue gravity [2].

In this paper we are interested primarily in the case in which the geometry is non-
dynamical. Such a situation is commonly considered in the cosmological setting as a first
approximation in which the gravitational degrees of freedom are frozen and one studies
just a quantum field theory in curved spacetime. From the condensed matter perspective
this can also be seen as a first approximation, or alternatively as the primary case of
interest in situations where the curvature is introduced as a technical device (e.g. [3]) or
for theoretical modeling (e.g. [4]).
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The presence of curvature in the background geometry can have drastic effects on the
infrared (IR) behavior of a model [5] and in particular on its phase transitions and critical
behavior. Much work has been performed in this direction for the case of a constant
negative curvature, that is, for the case of statistical models in hyperbolic space. The
differences between models in the usual flat background and in the hyperbolic one have
been studied in the context of liquids [6, 7], percolation [8, 9], the Ising model [10–15],
the XY model [16], self-avoiding walks [17] and more. Besides the hyperbolic case, it is
also worth mentioning that curved spaces appear in the study of finite size effects [18],
curvature defects [19], topological effects [20] and of course in the presence of compactified
dimensions [21].

Despite the many relevant works, many directions would appear to be unexplored. In
particular, a renormalization group approach to this kind of problem seems to be lacking.
Of course the situation is quite different in the high-energy context, where renormalization
group investigations on curved backgrounds are quite common. However, the focus there
is typically on the ultraviolet properties, at least until recently. Over the past few years
there has been an increased interest in IR effects in the cosmological setting of de
Sitter spacetime (e.g. [22–25]). In particular, it has been noticed how nonperturbative
renormalization group techniques can be applied to this context and it was demonstrated
that spontaneously broken symmetries are radiatively restored in de Sitter spacetime
in any dimension [26]. The de Sitter case, because of the Lorentzian signature of the
metric, presents a number of technical challenges and one would expect the situation to
be somewhat easier in Euclidean signatures. Surprisingly, as far as we know, there has
not been a thorough study of this sort in Euclidean signatures.

The purpose of this paper is in part to bridge such a gap. We will study scalar field
theory on two standard types of curved Riemannian geometry, d-dimensional spheres
and hyperboloids. Our goal is to gain a detailed understanding of how the background
curvature affects the critical behavior of the model at large distances. In section 2 we
will use the Ginzburg criterion in order to test when and whether we should expect that
mean field to give trustable results. In this way we will confirm general expectations based
on effective dimensionality arguments, which we expand upon at the end of the section.
In the second part of the paper, section 3, we will explore in more detail the effects
brought in by the curvature of space, making use of functional renormalization group
techniques in the local potential approximation. We will in particular study the question
of symmetry restoration (or the existence of a phase transition) and in general we will
discuss how the presence of a dimensional external scale affects the usual renormalization
group picture. In order to keep the treatment as self-contained as possible, we include four
appendices detailing the geometry of spheres and hyperboloids (appendix A), the spectra
of their respective Laplace-Beltrami operators (appendix B), the associated heat kernels
(appendix C) and propagators (appendix D).

2. The Gaussian approximation and effective dimensionality

Let (M, gµν) be a d-dimensional Riemannian manifold, that is, a differentiable
manifold M equipped with a positive-definite metric gµν (in a given coordinate basis
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xµ, µ = 1, . . . , d). The metric can be defined by the associated line element1,

ds2
(M) = gµνdxµdxν . (2.1)

In this work we will restrict to homogenous spaces and in particular we will consider only
three types of d-dimensional Riemannian spaces: the flat space (as a benchmark), the
sphere and the hyperboloid. The respective geometries are briefly reviewed in appendix A.

We are interested in the statistical properties of scalar field theories on such
backgrounds. The statistical field theory of the field ϕ = ϕ(x) is characterized as usual
by the generating functional

Z[J ] ≡ eW [J ] =
∫

Dϕ e−S[ϕ]+
∫

ddx
√

gJϕ, (2.2)

and by the bare action

S[ϕ] =
∫

ddx
√

g

[
Z

2
gµν∂µϕ∂νϕ + U(ϕ)

]
, (2.3)

where g is the metric determinant and gµν the inverse metric. For the purpose of this
section, we choose

U(ϕ) =
1
2
(m2 + ξR)ϕ2 +

u

4!
ϕ4, (2.4)

where R is the Ricci scalar of the background and ξ a dimensionless coupling. The mean-
field approximation is obtained evaluating the partition function Z[0] by the saddle point
method. For a constant field the classical solution satisfies U ′(ϕ0) = 0, that is,

ϕ0 =

{
0 for m2 + ξR > 0,

±
√

−6m2+ξR
u

for m2 + ξR < 0.
(2.5)

The transition from a zero to non-zero mean field is a textbook example of second-order
phase transition.

In the Gaussian approximation we also keep the quadratic fluctuations around the
minimum of the potential, their covariance being given by the inverse of the second
functional derivative (Hessian) of the action, evaluated at ϕ0:

S(2) =
{

−Z ∇2 + m2 + ξR for m2 + ξR > 0,
−Z ∇2 − 2 (m2 + ξR) for m2 + ξR < 0. (2.6)

Here ∇2 is the Laplace–Beltrami operator (or simply the Laplacian) on the curved
background, see (B.1) and given the structure of the Hessian we define the correlation
length �c,

�−2
c ≡ b =

{
m2+ξR

Z
for m2 + ξR > 0,

−2m2+ξR
Z

for m2 + ξR < 0.
(2.7)

The correlation length (2.7) is the scale beyond which the flat-space propagator, i.e. the
correlation between ϕ(x) and ϕ(x′), decays exponentially with the distance |x − x′|, see
(D.5). At the phase transition �c → ∞ the propagator has a power-law behavior, see
(D.6). In curved space, the definition of the physical correlation length as the scale at
which exponential decay sets in requires some hierarchy of scales, as we have another
length scale a (see (A.4) and (A.8)). We will have a regime in which a � �c, for which
1 We use the Einstein convention, according to which repeated indices imply a summation.
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the same definition as on flat space applies, with the understanding that the exponential
damping takes place for a � σ(x, x′) � �c, where σ(x, x′) is the geodesic distance between
the two points. In the opposite regime, for �c � a, the behavior is in general different than
on flat space. For example, on the hyperboloid we find (using (D.15)) that the propagator
also decays exponentially for �c → ∞ as σ(x, x′) > a/(d−1), while on the sphere it makes
no sense to talk of σ(x, x′) � a as σ(x, x′) ∈ [0, πa]. Nevertheless we will for convenience
call the correlation length the one defined in (2.7), as this acts as a control parameter for
the transition in (2.5), which classically is reached as �c → ∞.

A simple test for the validity of the Gaussian approximation for the description of the
phase transition is given by the Ginzburg criterion (e.g. [27]), obtained by computing (in
the broken phase) the quantity

Q =

∫
�c

ddx
√

g G(σ; �−2
c )∫

�c
ddx

√
g ϕ2

0
, (2.8)

where the integrals extend over a region of radius �c. Here G(σ; �−2
c ) is the correlation

function,

G(σ; �−2
c ) =

δ2W [J ]
δJ(x)δJ(x′)

∣∣∣
J=0

, (2.9)

which on homogeneous spaces depends on the space points x and x′ only via their geodesic
distance σ(x, x′) and in the Gaussian approximation it is given by the inverse of (2.6). The
correlation functions, or propagators, on curved backgrounds are reviewed in appendix D.

If Q � 1, the fluctuations are small and the Gaussian approximation provides a
good approximation. On the other hand, if Q � 1, fluctuations are large, the Gaussian
approximation breaks down and we need a nonperturbative treatment. At a second order
phase transition, the correlation length diverges, hence we are interested in checking what
happens to Q in such a limit.

In flat space, approximating the integral in the numerator with an integral over the
whole space (exploiting the fact that the correlation function cuts off the integration at
about a radius �c, see (D.5)), one finds

Q ∼ �4−d
c u

3Z2

d π Γ(d+1
2 )

(2π)
d+1
2

, (2.10)

where we used ϕ2
0 = 3Z/(�2

cu). Note also that in the present section all propagators come
with an extra factor Z−1 with respect to the formulae reported in the appendix due to
the difference between (2.6) and the operator being inverted in (D.1). From (2.10), in
the large-�c limit, we deduce the well-known critical dimension dc = 4, below which the
Gaussian approximation does not provide a valid description of the phase transition.

2.1. The hyperboloid

For the case of a hyperboloid Hd, we can use the results reported in the appendices. From
appendix A we find the volume integral∫

�c

ddx
√

g = ad Ωd−1

∫ �c/a

0
dy sinh(y)d−1 ∼ ad Ωd−1

e(d−1) �c/a

(d − 1)2d−1 , (2.11)

where the last expression is obtained for �c/a � 1.
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As we did for the flat case, we evaluate the numerator of (2.8) by integrating over the
whole space. Using the asymptotic expansion of the propagator (D.15) for y = σ/a � 1,
which is analytical at b = 0 (see also the definitions (B.5), (C.5), (D.7) and (D.8)), we
find

Q(Hd) ∼ e(ρ−ω+)�c/aωρ
+

ω+ − ρ

2ρ
e2ρ �c/a

u�2
ca

2−d

3Z2 , (2.12)

and since ω+ → ρ + 1
2ρ

a2

�2c
for �c → ∞, we obtain

Q(Hd) ∼ 4ρρ+2e−2ρ �c/a u�4
c

3Z2ad
→ 0, (2.13)

for any d > 1 (i.e. ρ > 0). We conclude that on Hd the Gaussian approximation provides a
trustable description of the phase transition for any d > 1. Note that while the power law
in (2.10) could be deduced by simple dimensional analysis (�c being the only dimensionful
parameter at play), in the case of a curved background that is not the case anymore due
to the presence of a and an explicit calculation is needed to obtain the behavior in (2.13).

2.2. The sphere

The sphere is a compact space and as we shall see, all of its main distinctive features
follow from this simple fact. In fact, common wisdom would suggest that there should be
no phase transition. However, the basic argument behind such an expectation is based on
lattice models, which at finite volume contain only a finite number of degrees of freedom
and hence they cannot give rise to a non-analytic behavior of the free energy or of any
other thermodynamic function. Here we are working in a continuous framework, where
effectively the lattice spacing has been taken to zero2, and the number of degrees of
freedom is hence infinite even at finite volume (there is no upper limit to n in (B.2)). To
the best of our knowledge there is no obvious argument as to why a discrete (but still
infinite) spectrum of modes should lead to no phase transition, as opposed to a continuous
spectrum. Therefore we see no reason a priori to expect or less a phase transition and the
logic that we follow here is one of being agnostic about it: starting from the mean field
intuition, telling us that �c → ∞ corresponds to a phase transition, we will first try to
understand whether the Gaussian approximation is trustable in such limit and only later
will we come back to the issue of whether or not a phase transition exists for the sphere.

We now wish to apply the Ginzburg criterion to the case of a sphere. Being a compact
space, we can perform the integrals in (2.8) directly over the whole space. At finite �c, the
denominator is obviously a finite number. In the numerator, a divergence could appear
only from a singularity of the propagator, but the latter is only singular at the origin
(see appendix D), where however it is exactly balanced by the vanishing of the volume
element (just like in the flat and hyperbolic case). Therefore Q(Sd), evaluated on the whole
sphere at finite �c, is finite. We want to estimate its magnitude in the limit �c → ∞. In
such a limit, the dominant contribution comes from the presence of a zero mode, which
exists (in the sense of being a normalizable eigenfunction of the Laplace operator) and is
2 In fact it is well known that in the continuum limit the interacting scalar field theory exists only for d < 4
(see for example the review [28] and the more recent [29]). However, this observation is not very relevant for the
Gaussian approximation we are discussing in the present section, while in the following section we will mostly
restrict it to d = 3 when doing explicit calculations.
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isolated (the spectrum is discrete) precisely because the sphere is a compact space. From
(D.11) we find that in the massless limit, the propagator is dominated by the zero mode
contribution G(Sd)(y; �−2

c ) ∼ �2
c (the remainder G

(0)
(Sd)(y; �−2

c ) gives a finite contribution to
the numerator of Q(Sd) in the �c → ∞ limit) and as a consequence

Q(Sd) ∼ �4
ca

−d

3Z
u. (2.14)

Comparing it to (2.10) we conclude that, for a large �c, the effective behavior on Sd is that
of a zero-dimensional space and in particular the Gaussian approximation is expected to
be insufficient at a large correlation length for any d.

2.3. Interpretation in terms of effective dimension

The conclusions we have reached with the Ginzburg criterion could have also been guessed
by a heuristic argument in terms of effective dimensionality. We are going to illustrate
such an argument for two different notions of effective dimension, that is, the spectral and
the Hausdorff dimension. The former is defined as

ds ≡ −2
∂ log Tr[K(s)]

∂ log s
, (2.15)

where K(s) is the heat kernel for the Laplace–Beltrami operator (see appendix C, with
b = 0). On flat space ds = d, which justifies the definition, while on a general space it is in
the limit of s → 0 that we always have ds → d. A simple interpretation of such a property
is that, s being the diffusion time, then small s means that only a small neighborhood
of a point is being explored by the diffusion process, hence the space looks flat at those
scales.

For large s, curvature effects become important and for s → +∞ (at �2
c � s) we find

that ds → 0 on Sd, while ds → +∞ on Hd. Such limits are easily found. For the sphere we
use the spectral sum representation of the heat trace, which is convergent in the large-s
domain,

Tr[K(Sd)(s)] =
1

Ωdad

∑
n

Dne−sωn , (2.16)

from which we see that Tr[K(Sd)(s)] → 1
Ωdad for s → +∞ (again due to the zero mode)

and hence ds → 0. This can be heuristically understood as a statement that the sphere
looks like a point when observed from a very large distance.

For the hyperboloid, we can use (C.7) to find that, for d odd,

Tr[K(Hd)(s)] ∝ e−sρ

(4πs)d/2 , (2.17)

where essentially the exponential decay is due to the presence of a ‘mass gap’ in the
spectrum and the absence of a zero mode. Plugging (2.17) into (2.15) we find ds = d+2sρ,
that is, the spectral dimension grows linearly with s. For d even, the expression for the heat
trace is complicated by the integral nature of the pseudo-differential operator, however
using (C.9) for y = 0, we find that in the large s limit the integral only contributes
with subleading power corrections and the dominant suppression is still given by the
exponential factor in front, that for b = 0 it is again e−sρ. Therefore the same result is
obtained for the spectral dimension at large s in even and in odd dimensions.

doi:10.1088/1742-5468/2015/01/P01002 7
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We can also use a different notion of effective dimension, the Hausdorff dimension

dH =
∂ log

∫
L

ddx
√

g

∂ log L
, (2.18)

where the integral extends over the set of points for which σ(x, 0) � L. For the sphere
such an integral reaches a plateau3 at L = πa, hence the Hausdorff dimension is zero at
large L. On the contrary, for the hyperboloid the integral keeps growing exponentially,
that is, faster than any power of L and the Hausdorff dimension diverges.

It is well known that mean field theory becomes exact at a large number of dimensions,
hence the infinite effective dimensionality of the hyperboloid at large scales provides a
heuristic explanation of the result we obtained from the Ginzburg criterion. At the same
time, we know that in the Ising universality class there is no phase transition for d � 1,
hence we might expect a failure of the Gaussian approximation for the sphere.

We should stress however that even though such arguments based on the effective
dimension give a correct picture of the underlying physical mechanism, the Ginzburg
criterion is more trustable as it directly involves the correlation function.

3. A functional renormalization group perspective

In this Section we want to analyze in more detail the effects induced by the curvature
of the background geometry. To that end, we will use the method known as functional
renormalization group (FRG)4. There are many reviews of the FRG [27, 30–34], to which
we refer for an introduction to the topic. We will employ here the FRG version that deals
with the so-called effective average action [35],

Γk[φ] = Γ̄k[φ] − 1
2

∫
ddx

√
g φRk φ (3.1)

where k stands for the running RG scale associated with the IR cutoff Rk = Rk(−∇2/k2)
and Γ̄k[φ] the Legendre transform of

Wk[J ] = log
∫

Dϕ e−S[ϕ]+
∫

ddx
√

gJϕ− 1
2

∫
ddx

√
g ϕ Rk ϕ, (3.2)

that is,

Γ̄k[φ] =
∫

ddx
√

g Jφ − Wk[J ], with φ =
δWk[J ]

δJ
, (3.3)

where in turn Wk[J ] is an IR-regulated version of the functional W [J ], introduced in (2.2).
The effective average action satisfies the flow equation

k∂kΓk =
1
2
Tr

[(
Γ(2)

k + Rk

)−1
k∂kRk

]
, (3.4)

where Γ(2)
k = δ2Γk/δφδφ is the Hessian of Γk. Note that while an additional UV cutoff Λ

must be implicitly assumed in the definition of the functionals, the cutoff Rk is enough to
3 Here and in the rest of the paper the geodesic distance σ(x, 0) refers to the distance between x and the origin
along a direct geodesic path (i.e. one that does not wrap multiple times around the sphere). As on the sphere
there are no points with σ(x, 0) > πa, the volume of the ball stops increasing beyond L = πa.
4 Sometimes also referred to as exact or nonperturbative renormalization group.
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render the equation (3.4) finite both in the UV and in the IR and therefore no reference to
a UV cutoff is needed in (3.4). Similarly, in order to write down the equation no reference
to the bare action is needed. However, in order to solve the flow equation we need the
initial conditions and these will introduce the equivalent of a bare action and a UV scale
via Γk=Λ[φ] = S[φ]. Finally, from the general properties of the IR cutoff (in particular
limk→0 Rk = 0) it follows that upon integrating Γk[φ] down to k = 0 we obtain the full
(textbook) effective action Γ[φ] = Γk=0[φ] = Γ̄k=0[φ].

The equation (3.4) is amenable to several approximation schemes, one of the most
common being the derivative expansion, in which Γk is expanded in invariants containing
an increasing number of derivatives. The lowest order of the derivative expansion is known
as the local potential approximation (LPA) and it is the one we will consider here.

The ansatz for the effective average action in the LPA is

Γk[φ] =
∫

ddx
√

g

[
Zk

2
gµν∂µφ∂νφ + Vk(φ)

]
. (3.5)

Strictly speaking, LPA usually stands for the case Zk = 1, otherwise (3.5) is typically
referred to as LPA′ (e.g. [36]). The functional RG equation (3.4) for the potential reads

k∂kVk(φ) =
1
2
Tr(M)

[
k∂kRk(−∇2/k2)

−Zk∇2 + V ′′
k (φ) + Rk(−∇2/k2)

]
|φ=const.

, (3.6)

where we have redefined the trace on the Riemannian manifold M by dividing out the
volume of M and we have projected the equation onto constant field configurations.

The equation (3.6) describes the evolution of the potential under (continuous) coarse
graining. The latter is the first of the two standard steps of the renormalization group [37],
the second consisting of a rescaling of lengths and momenta so as to bring back the cutoff to
its original value and in a field redefinition that restores the normalization of the kinetical
term. In the LPA′, the second step is taken care of by the introduction of dimensionless
variables

φ̃ = Z
1/2
k k(2−d)/2φ, Ṽ (φ̃) = k−dV (φ(φ̃)). (3.7)

We also define ∆̃ = −∇2/k2 and we write the cutoff as Rk(z) = Zkk
2r(z), for

some dimensionless function r(z) constrained only by standard requirements [38]. In
dimensionless variables, (3.6) reads

k∂kṼk(φ̃) + d Ṽk(φ̃) − d − 2 + ηk

2
φ̃Ṽ ′

k(φ̃) = T̃r(M)

[
(1 − ηk/2)r(∆̃) − ∆̃ r′(∆̃)

∆̃ + Ṽ ′′
k (φ̃) + r(∆̃)

]
|φ̃=const.

,

(3.8)

where ηk = −k∂k ln Zk is the scale-dependent anomalous dimension and T̃r(M) =
k−dTr(M). The LPA′ needs an additional equation for the flow of Zk, which can be
expressed as a relation between ηk and (the derivatives of) the potential evaluated at its
minimum (e.g. [32,39,40]). In what follows, we will set ηk = 0 in any practical calculation
(i.e. we will only perform calculations within the strict LPA), so we will not need such an
expression. This is a common approximation in the flat case (see the already mentioned
reviews [27, 30–33] and the references therein), where it is known to give qualitatively
good results in general, as well as quantitatively accurate results in the case where the
actual anomalous dimension is small (e.g. at the Wilson-Fisher fixed point in d = 3, where
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η � 0.03). We hope to come back to the LPA′ in future work, as this might be relevant
for the d = 2 case (see e.g. [39]).

A cutoff that leads to a very simple expression for the right-hand-side of (3.6) or (3.8)
is Litim’s optimized cutoff [38,41]

r(z) = (1 − z)θ(1 − z), (3.9)

with which we obtain

k∂kṼk(φ̃) + d Ṽk(φ̃) − d − 2 + ηk

2
φ̃Ṽ ′

k(φ̃) =
1

1 + Ṽ ′′
k (φ̃)

F(M)(ã, ηk), (3.10)

where

F(M)(ã, ηk) = T̃r(M)[θ(1 − ∆̃)] − ηk

2
T̃r(M)[(1 − ∆̃)θ(1 − ∆̃)], (3.11)

and we have introduced

ã = ak. (3.12)

In order to explicitly perform the traces, we need to fix the dimension d. It is instructive to
consider the case of d = 3, for which the computations are easiest and where a nontrivial
critical behavior is known to occur in the flat case. In flat space, using a Fourier transform
we find

F(E3)(∞, ηk) =
Ωd−1

d (2π)d

(
1 − ηk

d + 2

) ∣∣∣
d=3

=
1

6π2

(
1 − ηk

5

)
, (3.13)

and the analysis of the equation is standard (see e.g. [39,40,42,43]): one finds a non-trivial
(Wilson-Fisher) fixed point, at which the critical exponents differ from their mean field
value and are in good agreement with the observed values.

On the hyperboloid, using the results collected in appendix B, we find

F(H3)(ã, ηk) =
1

6π2

(
1 − 1

a2k2

) 3
2

θ

(
1 − 1

a2k2

) (
1 − ηk

5

(
1 − 1

a2k2

))
. (3.14)

Finally, on the sphere we find

F(S3)(ã, ηk) =
1

a3k3Ω3
P(�N3
)

(
1 − ηk

2
Q(�N3
)

)
, (3.15)

where �x
 is the floor function,

P(N) =
N∑

n=0

Dn =
1
6
(1 + N)(2 + N)(3 + 2N), (3.16)

Q(N) =
1

P(N)

N∑
n=0

Dn(1 − ω̃n) =
5a2k2 − 9N − 3N2

5a2k2 , (3.17)

being ω̃n the eigenvalues (B.2) in units of k and

N3 = −1 +
√

1 + a2k2. (3.18)

The spherical case gives rise to a staircase function, as a combined effect of the discrete
spectrum and the use of a step function in the cutoff, a phenomenon already known in
the literature (e.g. [44–46]).

We notice a crucial difference between the flat and the curved cases: in the curved
backgrounds the FRG equation is a non-autonomous equation, in the sense that there
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is an explicit dependence upon k on the rhs. In flat space, it is the introduction of
dimensionless variables that leads to an autonomous equation. In the curved background
case, the existence of a fixed external scale implies that we cannot in general achieve
an autonomous equation. The same thing generically happens if any non-running scale
is present, for example in quantum field theory at finite temperature [32], or on a non-
commutative spacetime [47].

We thus immediately realize that true fixed points are unlikely, the potential will
always retain a dependence on k via its dimensionless product with a. In special cases
such a dependence can be harmless, as in the case of the massless free theory. The latter
is given by a φ̃-independent potential Ṽk(φ̃) = vk, with vk satisfying (ηk = 0)

k∂kvk + dvk = T̃r(M)

[
r(∆̃) − ∆̃ r′(∆̃)

∆̃ + r(∆̃)

]
. (3.19)

Note that also in flat space the Gaussian solution to (3.10) has a non-zero vacuum term,
Ṽ (φ̃) = 1/(d 6 π2). We could eliminate such running vacuum terms and obtain a proper
Gaussian fixed point with Ṽk(φ̃) = 0, by a modified equation in which the vacuum
contributions are appropriately subtracted (see for example [27] or [48]).

Alternatively, we can introduce the concept of floating-points [47], i.e. solutions of the
FRG equation which are independent of k, up to dependence on ã = ak. In other words,
we can introduce and keep track of, an explicit dependence on ã, as if it was another field,
an external field. Clearly, in the present case such a procedure can be seen as a first step
towards the treatment of cases in which the geometry is dynamical and the curvature is
indeed treated as being on a par with other fields. We will discuss such a point of view in
section 3.2.

3.1. Scaling dimension and symmetry restoration

We will first discuss the consequences of the non-autonomy of the equation, taking the
explicit formulae for d = 3 with optimized cutoff as a guidance.

On the hyperboloid we observe that the loop contributions on the rhs of the FRG
equation (i.e. the functional trace (3.14)), vanish as soon as k < 1/a, thus leaving us with
the classical (tree level) part of the equation. Although we have not computed explicitly
the functional traces needed to evaluate the anomalous dimension, it is clear that a similar
phenomenon also occurs in such traces as all the functional traces always include the same
step function coming from the cutoff and hence the anomalous dimension also vanishes
in the deep IR. As a consequence, IR fixed points coincide with classical scale invariant
theories and thus mean field behavior is recovered at large distances, confirming our
conclusions from section 2.1. It should be stressed that the use of a cutoff with step
function, such as (3.9), provides us with an extreme version of the general case: with a
generic cutoff the approach to zero will be smooth, but in general fast enough for k < 1/a,
thus leading to the same conclusion.

On the sphere, we see that P(�N3
) → 1 for k → 0, or more precisely as soon as
k2 < 3/a2, that is, only the zero mode remains unsuppressed. However, the dimensionless
volume of the 3-sphere goes to zero, making the rhs of the FRG equation divergent. A
similar behavior happens in any dimension, as for k2 < d/a2 only the zero mode survives
in the functional trace, which then reduces to the inverse of the volume (in units of k),
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i.e. F(Sd)(ã, 0) = (ãdΩd)−1 for ã2 < d. The presence of a singularity for k → 0 is a general
consequence of the presence of compact dimensions, with the d-sphere behaving as k−d

because all its dimensions are compact. In order to absorb such divergence we should
rescale the potential and the field such that the lhs will be as divergent as the rhs. This
is achieved by introducing the new variables (here and in the following Zk = 1)

φ̄ = (ka)d/2φ̃ = ad/2kφ, (3.20)

V̄ (φ̄) = (ka)dṼ (k−d/2a−d/2φ̄) = adV (a−d/2k−1φ̄). (3.21)

The scaling of φ̄ with k has been chosen so that 1 + Ṽ ′′
k (φ̃) → 1 + V̄ ′′

k (φ̄). The resulting
equation (obtained by plugging (3.20)–(3.21) into (3.10)) for k2 < d/a2 is

k∂kV̄k(φ̄) + φ̄V̄ ′
k(φ̄) =

1
Ωd

1
1 + V̄ ′′

k (φ̄)
, (3.22)

which can be recognized as the flat FRG equation for d = 0, apart from the Ωd factor
which could be removed anyway with a k-independent rescaling of the field and potential.
We thus expect that the IR properties of scalar field theory on a spherical background will
resemble those of the same theory in zero dimensions, in agreement also with the result
(2.14). In particular, as in flat space we have no phase transitions for d < 2, we might
also expect this to be the fate of scalar field theory on a sphere in any dimension.

Such expectations can be directly tested by studying the flow of the dimensionful
potential, i.e. integrating (3.6) and looking for a transition in the IR between a potential
with spontaneous symmetry breaking and one without. What determines the presence or
less of spontaneous symmetry breaking is the full effective potential and this is obtained
integrating the FRG equation all the way to k = 0, starting with some initial condition at
a UV scale k = Λ. Such an initial condition plays the same role that the bare action has in
a path integral and as such it is used to parametrize the phase diagram. In flat space, this
is a standard analysis (see for example [27, 32, 40]) and it proceeds as follows: one solves
numerically the flow equation for the dimensionful potential with an initial condition
at k = Λ corresponding to a potential with spontaneous symmetry breaking (potentials
with a minimum at the origin always remain such for the simple scalar field theory),
i.e. VΛ(φ) = λΛ(φ2 − ρΛ)2 with ρΛ > 0. Integrating down towards k = 0 one observes
in general that the local maximum at φ = 0 flattens out, as expected, because the full
effective potential has to be convex (e.g. [49–51])5. In this process, two different behaviors
can arise depending on the initial condition ρΛ, namely in one case the potential becomes
flat in a finite interval around the origin at k = 0, corresponding to the effective potential
of a broken phase6, while in the other case the lowering of the maximum continues until
we obtain at finite k = ks > 0 a global minimum at φ = 0, i.e. we obtain a symmetry
restoration. On a flat background we know that both phases are present for d � 2 (or
5 Note that the effective average action is not the Legendre transform of Wk[J ], as it differs from Γ̄k[φ] by a cutoff
term (see (3.1)). As a consequence, Γk[φ] is not in general a convex functional. However, Γ̄k[φ] should be convex
as usual, hence we should have Γ(2)

k +Rk � 0 at any scale k, a property that we expect to be respected by the flow
if we are careful in choosing the initial conditions that respect such a constraint and given that limk→0 Rk = 0,
we should recover a convex effective action at k = 0. The recovery of a convex Γ[φ] = Γk=0[φ] has been studied in
detail in the literature, see [32] and the references therein.
6 The value at the left-most or right-most end of the flat region is chosen dynamically as the ground state when
we switch off the external magnetic field (when the latter is on, the bottom of the potential is not horizontal, it
has a slope, hence one of the two extremes of the linear region is a global minimum).
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Figure 1. The flow of the potential (with the minimum subtracted for graphical
purposes) on a flat background in d = 3. The blue curve is the initial condition
VΛ(φ) = λΛ(φ2 − ρΛ)2, with Λ = 20, λΛ = .05, ρΛ = 2.25 (left) and ρΛ = 0.49
(right). The red curve is at k = 0.1, smaller values of k being indistinguishable
on the scale of the plot. Symmetry restoration is evident in the plot on the right.
The phase transition occurs near ρΛ � 1.82.

d > 2 in the O(N) model with N > 1 [32,52]) and a continuous phase transition separates
them at some critical value ρΛ = ρc > 0. The behaviors characteristic of the two phases
are depicted in figure 1.

On the hyperboloid, the phase diagram is qualitatively similar to the flat case, i.e. there
is both a broken and a symmetric phase, but the plots present an important difference,
as can be seen in figure 2. The crucial point is that for k < ρ/a (compare (3.11) and
(B.4)) the rhs in (3.6) vanishes and the potential stops running. As a consequence, the
potential remains frozen in the shape it had reached at k = ρ/a, which could either be still
a double well potential (left panel in figure 2), or a symmetry-restored one (right panel
in figure 2), if symmetry restoration happens at k = ks � ρ/a. In the broken phase we
seem to have a violation of the convexity property, but in fact there is no contradiction, as
convexity of the effective action does not imply convexity of the effective potential on the
hyperboloid. Convexity of the effective action means that if we split the field as φ = φ̄+ϕ,
we require ϕ · Γ(2)[φ̄] · ϕ ≡

∫
ddx

√
g(x)

∫
ddy

√
g(y)ϕ(x)Γ(2)[φ̄](x, y)ϕ(y) � 0 for any ϕ.

Of course we can equivalently ask that all the eigenvalues of Γ(2)[φ̄] are non-negative.
Working within a derivative expansion of the action, the potential acts multiplicatively
on functions and we only have to diagonalize the derivative terms. In flat space the
diagonalization is implemented by plane waves and Γ(2) is reduced to a function of φ̄ and
of the momentum pµ. As the zero mode with p2 = 0 is in the spectrum, it follows that the
second derivative of the effective potential (i.e. Γ(2)[φ̄] at p2 = 0) has to be non-negative.
On the contrary, in hyperbolic space the zero mode is not part of the spectrum and this
spoils the convexity argument for the effective potential. In fact, from (B.4) we know
that the smallest eigenvalue of the Laplacian is ν0 = ρ2/a2 (with eigenfunction ϕ0,l) and
as a consequence Γ(2)[φ̄] · ϕ0,l �= V ′′(φ̄) · ϕ0,l. For example, in the next to leading order
approximation of the derivative expansion, where the constant Zk in (3.5) is replaced by
a function Zk(φ), for constant φ̄ we find Γ(2)[φ̄] ·ϕ0,l = (Z(φ̄)ν0 +V ′′(φ̄))ϕ0,l, showing that
the potential itself (and in general any truncation of the derivative expansion) need not
be convex. Interestingly this is in agreement with the mean field approximation, in which
the potential (as defined for example in [40]) in the broken phase is not convex. We take
this as another indication that on the hyperboloid the mean field is valid at large scales.
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Figure 2. The flow of the potential (with the minimum subtracted) on a
hyperbolic background in d = 3. All the parameters and initial conditions are as
in figure 1 and in addition we have a = 1/5. Although it looks like less curves
are being plotted, the actual number is the same as in figure 1. However, as
explained in the text, below a certain value of k (for k < 5 in this example) the
potential freezes out and some of the curves are therefore superimposed.
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Figure 3. The flow of the potential (again with the minimum subtracted) on
a spherical background with a = 1/5 in d = 3. The blue curve is the initial
condition VΛ(φ) = λΛ(φ2 − ρΛ)2, with Λ = 20, λΛ = .05, ρΛ = 25, while the
red curve is at k = 0.1. Despite the large value of the initial symmetry breaking
parameter, it is evident that symmetry restoration still takes place.

In the spherical case the situation is instead radically different, as it turns out that
symmetry is always restored at finite k, i.e. we do not find the broken phase for any
value of ρΛ. An example of symmetry restoration is shown in figure 3. We find that, for
a large enough ρΛ, at some intermediate scale (k ∼ 0.6 in the specific case of figure 3)
the potential is basically that of a broken phase, but as we keep decreasing the scale the
symmetry is restored by the development of a minimum at φ = 0.

3.2. Floating points

We can introduce an explicit dependence on ã = ak in the potential, so as to transform the
flow equation into an autonomous equation, but with an additional independent variable.
In order to highlight the presence of an additional argument in the potential, we denote
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the potential as Uk(φ, a). We then introduce the dimensionless potential
Ũk(φ̃, ã) = k−d Uk(φ(φ̃), ã/k), (3.23)

for which we obtain the equation

k∂kŨk(φ̃, ã) + d Ũk(φ̃, ã) − d − 2 + ηk

2
φ̃ ∂φ̃Ũk(φ̃, ã) + ã ∂ãŨk(φ̃, ã)

=
1

1 + ∂2
φ̃
Ũk(φ̃, ã)

F(M)(ã, ηk). (3.24)

This is simply a rewriting of (3.10), with k∂kṼk(φ̃) = k∂kŨk(φ̃, ã) + ã ∂ãŨk(φ̃, ã). Now
the fixed point (or floating point) equation is provided by the PDE obtained by setting
k∂kŨk(φ̃, ã) = 0.

In order to understand the meaning of (3.24) we can first consider the case in which
we discard the loop contribution on the rhs. That is, we study the tree level equation
(with ηk = 0)

dŨk(φ̃, ã) − d − 2
2

φ̃ ∂φ̃Ũk(φ̃, ã) + ã ∂ãŨk(φ̃, ã) = 0. (3.25)

Such an equation, in the absence of boundary conditions simply constrains the dependence
on the variables to

Ũk(φ̃, ã) = ã−d Y
(
ã

d−2
2 φ̃

)
, or U(φ, a) = a−d Y

(
a

d−2
2 φ

)
, (3.26)

or in other words, the floating point potential is effectively a fixed point potential, where
dimensional quantities (the potential and the field) are expressed in units of a. This was
to be expected as in the absence of the rhs, the FRG equation is simply a statement of
classical scale invariance (or k-independence) and thus dimensional analysis is enough to
fix the potential. If in addition we require analyticity in both φ and a−1 (the latter in
order to recover the flat space limit), that is, if we require regular behavior at a−1 = φ = 0
and also Z2 symmetry, we find

U(φ, a) =
� d

d−2 �∑
n=0

cn a−d+n(d−2) φ2n, (3.27)

with free dimensionless coefficients cn. Because of the presence of the dimensionful
parameter a, we find a more general potential than the usual φ

2d
d−2 required by scale

invariance in flat space.
As another consequence of the dimensional scale given by the curvature, we can

straightforwardly see that the Gaussian fixed point has a massive generalization that
would be forbidden on flat space: we can solve the full floating point equation with an
ansatz of the type

Ũ(φ̃, ã) = u(ã) + c
φ̃2

ã2 . (3.28)

When plugged into (3.24), the second term disappears from the linear (or tree level)
part of the equation, because it is a solution of (3.25). On the other hand, the trace part
becomes φ̃-independent, with ∂2

φ̃
Ũk(φ̃, ã) = 2c/ã2. We are then left with an inhomogeneous

linear ODE for u(ã), for which the solution of the associated homogeneous equation
is uhom(ã) = u0/ã

d, for an arbitrary constant u0, while the special solution of the
inhomogeneous equation is scheme and dimension dependent.
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Non-trivial floating points are much harder to study without truncations, as they
require the flat case solution as a boundary condition at ã−1 = 0. For this reason, we will
now resort to a polynomial truncation.

3.3. A simple truncation

Truncations of the potential to polynomial form are a very useful approximation even
in flat space. The lowest order truncations can serve as a playground to understand
qualitative features of the theory under examination (e.g. [31, 32]), while their recursive
extension can serve even as a quantitative method for the extraction of precise critical
exponents (e.g. [43, 53]). Here, since we focus on the qualitative picture rather than on
precise quantitative estimates, we will consider the simplest possible truncation, that is,
a simple quartic potential and again Zk = 1. We distinguish two cases, corresponding to
equations (3.10) and (3.24) respectively:

Ṽk(φ̃) = v0(k) + v2(k) φ̃2 + v4(k) φ̃4, (3.29)

and

Ũk(φ̃, ã) = u0(k, ã) + u2(k, ã) φ̃2 + u4(k, ã) φ̃4. (3.30)

As observed previously, the first case (3.29) does not lead to nontrivial fixed points. We
obtain the system of beta functions

k∂kv0 = −d v0 +
F(M)(ã, 0)
1 + 2 v2

, (3.31)

k∂kv2 = −2 v2 − 12 v4
F(M)(ã, 0)
(1 + 2 v2)2 , (3.32)

k∂kv4 = (d − 4) v4 + 144 v2
4

F(M)(ã, 0)
(1 + 2 v2)3 . (3.33)

It is easy to check that setting the left-hand-sides to zero, if F(M)(ã, 0) has a nontrivial
dependence on ã (i.e. in the non-flat case), then the only fixed point is at v2 = v4 = 0 (as
already discussed below (3.19), in order to fix also v0 = 0 we would need to modify the
equation). The nontrivial solution is

v∗
2 =

4 − d

2d − 32
, v∗

4 =
12(d − 4)

(d − 16)3F(M)(ã, 0)
. (3.34)

In the flat case F(M)(ã, 0) is a constant and for d < 4 this is the Wilson Fisher fixed point
in the simplest truncation. In the curved case this solution changes with k (at fixed a)
and we cannot interpret it as a fixed point. In fact, it is not a solution of the flow equation
at all, because while it leads to the vanishing of the rhs of the flow equations, its lhs is
non-vanishing. It could nevertheless be interpreted as fixed point in some limit (k → 0
or k → ∞) if the lhs vanishes in such limit too. From the known behavior of F(M)(ã, 0),
we find that as k → 0, v∗

4 → +∞ in the hyperbolic case (actually as k → 1/a because
of the optimized cutoff), while v∗

4 → 0 in the spherical case. In the spherical case, the
nontrivial solution merges with the Gaussian fixed point, but as we already know, there
is no phase transition in this case. In the hyperbolic case, the nontrivial fixed point is
pushed to infinity, leaving us with only the Gaussian fixed point, thus explaining why the
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Gaussian approximation is valid in this case. We can also study the linear perturbations
around (3.34) in H3. As usual, we expand the beta functions (3.32) and (3.33) to linear
order around the (would-be) fixed point (3.34) and look for the eigenvalues of the matrix
of the coefficients. The relevant eigenperturbations correspond to negative eigenvalues
and the latter are in close relation to the critical exponents (see for example [27]). We
find that the stability eigenvalues are k-independent and equal to ν± = 1

6(2 ±
√

82), but
the eigendirections are k-dependent and become degenerate at k = 1/a, both reducing
to the vector (0,1). As a consequence, stability eigenvalues have to be taken from the
Gaussian fixed point and thus they trivially coincide with the results from the Gaussian
approximation (i.e. in d = 3 they are ν2 = −2 and ν4 = −1).

In the parametrization (3.30) we obtain

k∂ku0 = −ã∂ãu0 − d u0 +
F(M)(ã, 0)
1 + 2 u2

, (3.35)

k∂ku2 = −ã∂ãu2 − 2 u2 − 12 u4
F(M)(ã, 0)
(1 + 2 u2)2 , (3.36)

k∂ku4 = −ã∂ãu4 + (d − 4) u4 + 144 u2
4

F(M)(ã, 0)
(1 + 2 u2)3 . (3.37)

Essentially what we have done here is to separate the k-dependence that is associated
to the presence of the dimensionful parameter a, from any other k-dependence (see also
below (3.24)). We now have a ‘time’-independent system of partial differential equations,
rather than a non-autonomous system of ordinary ones. Imposing again the vanishing
of the left-hand-sides, we obtain this time a system of ordinary differential equations.
The advantage of this formulation is that the solution to this ‘floating point’ system of
equations is now a true solution to the flow equations, differently from the status of (3.34).

The interesting case is the hyperboloid, which we can study once more in d = 3. The
equation for ã > 1 is not easily integrated analytically but can of course be integrated
numerically. However, whatever the solution is in that range, this has to be matched with
the solution for ã < 1. The latter is trivial because of the vanishing of F(M)(ã, 0) and we
are left with a set of equations that is essentially the same as the usual tree-level flow
equations but with k replaced by ã. We thus obtain

u∗
0 =

c0

ã3 , u∗
2 =

c1

ã2 , u∗
4 =

c2

ã
, (3.38)

corresponding to the (dimensionful) potential

U∗(φ, a) =
c0

a3 +
c1

a2φ2 +
c2

a
φ4. (3.39)

From (3.38) we obtain the same result as from (3.34), i.e. that the dimensionless couplings
(in units of k) go to infinity as ã → 0. However, we stress again that (3.38) is an exact
solution (for k < a−1) of the system (3.35)–(3.37), while (3.34) is not a solution of (3.31)–
(3.33). Furthermore, (3.39) gives a different and more interesting point of view on what is
going on: due to the dimensionful scale a, we obtain a mean field k-independent potential,
in agreement with figure 2.
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4. Conclusions

In this paper we have studied the effects of curvature on the critical behavior of a
scalar field, concentrating on spherical and hyperbolic spaces. By applying the Ginzburg
criterion we have deduced that on a d-dimensional sphere the Gaussian approximation
is never trustable when the correlation length becomes large, while on a d-dimensional
hyperboloid it is trustable for any d � 2. We have interpreted this in terms of effective
dimensions, such as the spectral and Hausdorff dimension: in the far IR both notions of
dimension indicate that spheres are effectively zero-dimensional (they look like a point)
while hyperboloids have an infinite effective dimension. In view of the known dependence
of the Ising universality class on the dimension, one would then expect to find no phase
transition on the sphere and to find a phase transition well described by mean field
theory on the hyperboloid. Such expectations were confirmed in section 3, where we
applied functional renormalization group techniques to the analysis of the scalar model
on curved backgrounds. After discussing the general new features of the FRG equation
in the presence of an external scale, we have shown by numerical integrations in the local
potential approximation that on the sphere there is only the symmetric phase. Finally,
with the help of a simple truncation, we have shown how the Wilson-Fisher fixed point is
pushed to infinity in H3, thus leaving us with the sole Gaussian fixed point, with trivial
critical exponents.

The main purpose of this paper was to show how the FRG can help us understanding
the effects of geometry on critical phenomena. To that end, we studied the simplest model
and tried to keep things simple, but many other extension and applications are of course
possible. On the technical level, it would be desirable to consider smooth cutoffs, thus
avoiding the nonanalytic staircase effects encountered with (3.9) and to study the LPA′

more in detail, as well as the full next-to-leading order of the derivative expansion. A
natural and simple extension of this work would be to study the O(N) model, something
to which we hope to come back in the near future. It would also be interesting to study
what happens on different spaces and in particular whether some space can be found in
which a nontrivial behavior persists at the phase transition, but with different exponents
than in the flat case.

Acknowledgment

I would like to thank Alessandro Codello for useful conversations in the early stages of
this work.

Appendix A. Geometry of backgrounds

The most trivial homogeneous space, which we consider in this work as reference case, is
flat Euclidean space Ed, with metric element ds2

(Ed) = δµνdxµdxν . The other two spaces
we study here are d-dimensional spheres and hyperboloids.
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The d-sphere can be defined in an intrinsic way as the quotient Sd � SO(d+1)/SO(d),
or in an extrinsic way via its embedding in Ed+1

d+1∑
A=1

(XA)2 = a2, (A.1)

where XA are the Cartesian coordinates in R
d+1 and a is the radius of the sphere. Its

metric element can be written as

ds2
(Sd) = a2dΩd ≡ a2

d∑
i=1

dθ2
i

d∏
j=i+1

sin2(θj) = a2dθ2
d + a2 sin2(θd)dΩd−1, (A.2)

where the product is omitted for i = d. The angles θi take values in [0, π], except for
θ1 ∈ [0, 2π]. As any homogeneous space, the d-sphere is maximally symmetric, which
implies that it is an Einstein space, i.e. Rµν = 1

d
gµνR with constant scalar Ricci curvature

R and that it has zero Weyl tensor. In other words, the Riemann tensor reduces to

Rµνρσ =
R

d(d − 1)
(gµρgνσ − gµσgνρ). (A.3)

On Sd the scalar Ricci curvature is given by

R(Sd) =
d(d − 1)

a2 . (A.4)

We often use the volume of the unit d-sphere, which is

Ωd ≡ a−d

∫
(Sd)

ddx
√

g =
Γ(d/2)
Γ(d)

(4π)d/2. (A.5)

The d-dimensional hyperboloid is defined intrinsically as the quotient Hd �
SO(d, 1)/SO(d), or extrinsically as the upper sheet (Xd+1 > 0) of the hypersurface

d∑
A=1

(XA)2 − (Xd+1)2 = −a2, (A.6)

embedded in Minkowski space Md,1, i.e. R
d+1 with flat metric of signature (+, . . . , +, −).

Its metric element can be written as
ds2

(Hd) = dτ 2 + a2 sinh2(τ/a)dΩd−1, (A.7)

where dΩd−1 is the metric element on the unit (d − 1)-sphere, defined above and
τ ∈ [0, +∞) is the geodesic distance from the origin. The dimensional parameter a is
the characteristic length or ‘radius’ of the hyperboloid, in terms of which the scalar Ricci
curvature is

R(Hd) = −d(d − 1)
a2 . (A.8)

Appendix B. Spectra of Laplacian operators

On a generic Riemannian manifold with metric gµν the Laplace-Beltrami operator acting
on a scalar field φ(x) is given by

∇2 φ(x) =
1

√
g
∂µ(

√
ggµν∂νφ(x)). (B.1)
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On flat space the eigenfunctions of the Laplacian are of course the plane waves and the
functional traces are evaluated via Fourier transform. On curved backgrounds we lack
a Fourier transform, however we are on a comparable situation whenever we know the
spectrum of the Laplacian, as in the case of the spaces we consider in this work.

The Laplacian spectrum on the sphere is well known [54], the scalar eigenmodes
satisfying

− ∇2 ψn,j =
n(n + d − 1)

a2 ψn,j ≡ ωn ψn,j, (B.2)

with multiplicity Dn = (n+d−2)! (2n+d−1)
n!(d−1)! , j = 1, 2, ...Dn and n = 0, 1, 2, ... + ∞.

Eingenmodes (whose explicit expression we do not need here) are orthonormal, that is,∫
Sd

ddx
√

g ψ∗
m,j(x)ψm′,j′(x) = δmm′δjj′ . (B.3)

For the scalar Laplacian on the hyperboloid we follow [55–57]. The eigenmodes of the
Laplacian on Hd satisfy

− ∇2φλ,l =
1
a2 (λ2 + ρ2)ϕλ,l ≡ νλ ϕλ,l, (B.4)

where

ρ = (d − 1)/2, (B.5)

λ ∈ [0, +∞) and l = 0, 1, 2, ... + ∞. Eigenmodes are normalized as∫
Hd

ddx
√

g ϕ∗
λ,l(x)ϕλ′,l′(x) = δll′ δ(λ − λ′). (B.6)

The analogue of the multiplicty for the continuum spectrum is the spectral function, or
Plancherel measure, which is defined by

µ(λ) ≡ πΩd−1a
d

2d−2

∑
l

ϕ∗
λ,l(0)ϕλ,l(0), (B.7)

and explicitly given by

µ(λ) =
π

22(d−2)Γ(d/2)2

(d−3)/2∏
j=0

(λ2 + j2) (B.8)

for odd d � 3 and by

µ(λ) =
πλ tanh(πλ)

22(d−2)Γ(d/2)2

(d−3)/2∏
j=1/2

(λ2 + j2) (B.9)

for even d � 2 (for d = 2 the product is omitted).
Functional traces (which we define divided by the volume) reduce to

Tr(Sd)[W (−∇2)] =
1

Ωdad

∑
n

DnW (ωn) (B.10)

for the sphere and to

Tr(Hd)[W (−∇2)] =
2d−2

πΩd−1ad

∫ ∞

0
dλ µ(λ)W (νλ) (B.11)

for the hyperboloid.
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Appendix C. Heat kernel

By definition the heat kernel is the solution of the heat equation

(∂s − ∇2
x + b)K(x, s; x0, b) = 0, (C.1)

with initial condition

lim
s→0

K(x, s; x0, b) =
δ(x − x0)√

g
. (C.2)

On a homogeneous space the heat kernel depends only on the geodesic distance between
x and x0, which we denote by σ(x, x0). We thus write K(x, x0, s; b) = K(σ, s; b).

Knowing the spectrum of the Laplacian we can write the general solution in the form

K(σ, s; b) =
∑

u

e−s(λu+b)χu(x)χ∗
u(x0), (C.3)

where −∇2χu(x) = λuχu(x) and u labels the whole set of eigenmodes.
On flat space we have

K(Ed)(x, s; b) =
e− |x|2

4s
−sb

(4πs)
d
2

. (C.4)

For spheres and hyperboloids, the nearest we can get to a closed expression for the
heat kernel on these spaces is probably in terms of fractional derivatives [55]. We introduce
the dimensionless variable y = σ/a, rescale s → a2s and define

ω± =
√

ρ2 ± a2b. (C.5)

On the sphere one finds

K(Sd)(y, s; b) =
1
ad

esω2
−

(4πs)
1
2

(
1
2π

∂

∂(cos(y) + 1)

) d−1
2

+∞∑
n=−∞

(±1)ne− (y+2πn)2

4s , (C.6)

where the plus and minus sign are for d odd and even respectively. As y = θd (see (A.2)),
we have that y ∈ [0, π], however geodesics can wrap several times around the sphere and
such ‘indirect paths’ precisely give rise to the sum over n in (C.6).

On the hyperboloid we have

K(Hd)(y, s; b) =
1
ad

e−sω2
+

(4πs)
1
2

(
− 1

2π
∂

∂ cosh(y)

) d−1
2

e− y2

4s . (C.7)

Note that the fractional derivatives have different definitions for the cases of the sphere and
the hyperboloid [55], but always reduce to ordinary derivatives for d odd. Note also that
the absence of indirect paths for the geodesics makes the expression for the hyperboloid
simpler than that for the sphere.

Since in section 2.3 we need the behavior of (C.7) for large s, we provide here some
further detail on the fractional derivative for the hyperbolic case. The relevant definition
is that of Weyl fractional derivative,

∂n
xf(x) =

(−1)−n

Γ(−n)

∫ +∞

x

(x′ − x)−n−1 f(x′) dx′, (C.8)
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which is well defined for any real n < 0. For n > 0 it is defined by analytic continuation,
by using the property ∂p+q

x f(x) = ∂p
x∂

q
xf(x) and choosing p + q = n, with q = �n� and

p = n − q < 0. We thus get that, for integer m,

K(H2m)(y, s; b) =
1
ad

e−sω2
+

(4πs)
1
2

(−1)m

(2π)m− 1
2 Γ(1

2)

∫ +∞

y

((
∂m

∂ cosh(x′)

)m

e− x′2
4s

)
sinh x′ dx′

(cosh x′ − cosh y)
1
2
.

(C.9)

Appendix D. Propagators

By definition the propagator G(x, x0; b) is the solution to the equation

(−∇2
x + b)G(x, x0; b) =

δ(x − x0)√
g

. (D.1)

Again, due to homogeneity of space the propagator depends only on y = σ(x, x0)/a, hence
we will simply write G(y; b) for the propagator. Its relation to the heat kernel is provided
by the Schwinger proper time integral,

G(y; b) = a2
∫ ∞

0
dsK(y, s; b), (D.2)

which, upon using (C.3), gives (assuming that λu + b > 0, ∀u)

G(y; b) =
∑

u

1
λu + b

χu(x)χ∗
u(x0). (D.3)

On flat space the propagator is well known and it takes the form (e.g. using (C.4)
and (D.2))

G(Ed)(x; b) =
b

d−2
2

(2π)d/2 (
√

b |x|)1− d
2 K d−2

2

(√
b |x|

)
, (D.4)

where Kν(x) modified Bessel function of the second kind, leading to the asymptotic
behavior

G(Ed)(x; b) ∼ b
d−2
2

(2π)d/2 (
√

b |x|) 1−d
2

√
π

2
e−

√
b |x| (D.5)

for
√

b |x| � 1 and

G(Ed)(x; b) ∼ 2
d−4
2

(2π)d/2 Γ(
d − 2

2
) |x|2−d (D.6)

for
√

b |x| � 1. This justifies the definition (2.7) of correlation length �c = b−1/2.
The propagators for both Sd and Hd have been computed in [58] directly solving (D.1),

or from an explicit mode sum in [59] for the sphere and in [56, 60] for the hyperboloid.
Define

α± = ρ + ω±, (D.7)

β± = ρ − ω±. (D.8)
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The propagator on Sd is given by

G(Sd)(y; b) = a2−d Γ(α−)Γ(β−)
Γ(d/2) 2d πd/2 F (α−, β−; d/2; z), (D.9)

where F (α, β; γ; z) is the hypergeometric function and

z = cos2(y/2). (D.10)

Because of the existence of a constant mode −∇2 ψ0,0 = 0, which by the normalization
condition (B.3) is ψ0,0(x) = a−d/2Ω−1/2

d , the propagator on the sphere is singular at b = 0.
The singularity is easily isolated by writing (compare with (D.3))

G(Sd)(y; b) =
1

b ad Ωd

+ G
(0)
(Sd)(y; b), (D.11)

where G
(0)
(Sd)(y; b) is analytical in b at b = 0.

As in (C.6), y ∈ [0, π] and indirect geodesics are taken into account in the sum that
leads to (D.9). Furthermore, the propagator is regular at y = π, hence we only report on
the small-y (i.e. z ∼ 1) behavior, which reads

G
(0)
(Sd)(y; b) ∼ a2−d

2 (4π)(d−1)/2

(
(1 − z)1− d

2 f1(z, b) + f2(z, b) + f3(z, b) log(1 − z)
)

, (D.12)

where fi(z, b), i = 1, 2, 3, are three analytical functions at z = 1 and b = 0, that depend
on the dimension and in particular f3(z, b) = 0 for odd dimensions. Their expression is
not needed in this work hence we do not report it here.

The propagator on Hd is given by

G(Hd)(y; b) = a2−d Γ(α+)Γ(α+ − d/2 + 1)
Γ(α+ − β+ + 1)2dπd/2 z−α+ F (α+, α+ − d/2 + 1; α+ − β+ + 1; z−1),

(D.13)

where

z = cosh2(y/2). (D.14)

The asymptotic behavior for y � 1 reads

G(Hd)(y; b) ∼ a2−d Γ(α+)Γ(α+ − d/2 + 1)
Γ(α+ − β+ + 1)2dπd/2 4α+ e−α+y, (D.15)

while for y � 1 we have

G(Hd)(y; b) ∼ a2−d

2 (4π)(d−1)/2

(
(1 − z)1− d

2 f̃1(z, b) + f̃2(z, b) + f̃3(z, b) log(1 − z)
)

, (D.16)

where again f̃i(z, b), i = 1, 2, 3, are three analytical functions at z = 1 and b = 0, that
depend on the dimension and in particular f̃3(z, b) = 0 for odd dimensions.
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