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We propose a novel possible mechanism to solve the electroweak hierarchy problem. Assuming
the existence of a UV complete underlying fundamental theory and treating the cutoff scale Λ of
the effective theory as a real physical scale we argue that the hierarchy problem would be solved if
the coefficient in front of quadratic divergences vanished for some choice of Λ, and if the effective
theory mass parameters fixed at Λ by the fundamental theory were hierarchically smaller than Λ
itself. While this mechanism most probably cannot work in the Standard Model if the scale Λ is to
be close to the Planck scale, we show that it can work in a minimal extension (Conformal Standard
Model) proposed recently for a different implementation of soft conformal symmetry breaking.
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The problem of stability of the electroweak scale with respect to the Planck scale (the so-called hierarchy problem)
has for almost 40 years been one of the main driving forces of theoretical research in high energy physics. Over the
years various mechanisms for solving it have been proposed and investigated in detail, of which the most notable
are technicolor and low energy supersymmetry. With the discovery of a spin-zero particle at the LHC, and after
establishing its basic characteristics, it has become clear that a solution which departs little from the simplest mech-
anism of the electroweak symmetry breaking realized in the Standard Model (SM) may be preferred. In particular,
extensions of the SM which predict only elementary scalars and no new higher spin particles other than right-chiral
neutrinos seem distinguished at present. It is therefore of interest that there exists an alternative way to stabilize the
electroweak scale which does not require new spin s ≥ 1

2
degrees of freedom. It is based on a novel implementation of

‘near conformal symmetry’ in the effective low energy theory.
As is well known, the classical conformal symmetry of the SM is spoiled only by the scalar field mass term necessary

to induce phenomenologically viable electroweak symmetry breaking. Moreover, as in any generic quantum field
theory, conformal symmetry of the SM is broken by quantum effects. Yet, the idea that ‘softly broken conformal
symmetry’ (SBCS) might be relevant for the solution of the hierarchy problem was expressed already long ago [1].
As one possible concrete implementation of this idea a minimal extension of the SM, the Conformal Standard Model
(CSM), has been proposed in [2]. Besides the known particles this model only involves right-chiral neutrinos and one
extra (complex) scalar field. Originally it was assumed that its conformal symmetry is broken only by the anomaly,
inducing electroweak symmetry breaking via the Coleman-Weinberg mechanism [3]. However, although there do exist
perturbatively stable minima of the potential of this model giving rise to a Higgs mass equal to 125 GeV (as we have
checked by carefully investigating the 2-loop effective potential of the model), the mixing with the second heavier
spin-zero particle in all cases turned out too large to be in agreement with the LHC data. For this reason, and because
of another serious drawback of this implementation (related to quadratic divergences, see below) we here propose a
different way in which SBCS can be at work to solve the hierarchy problem, and show how this mechanism can be
realized in the model [2, 4] with explicit small mass parameters. We also note some similarities with the scheme
proposed in [5] in the framework of the asymptotic safety program.
Let us first define our framework. We assume that there exists a complete and UV finite fundamental theory

describing all interactions including (quantum) gravity which, after integrating out all degrees of freedom above some
large scale Λ (presumably close to the Planck scale MPl), fixes the ‘bare’ action of the effective field theory. In
particular, we assume that the fundamental theory determines the way the cutoff Λ should be implemented in the
effective theory loop calculations. For the solution to the hierarchy problem we are going to propose it is crucial
that, unlike the usual renormalization program in which Λ is eventually taken to infinity, here Λ is finite; for this
reason all ‘bare’ parameters of the effective theory fixed at this scale are also finite. In general the cutoff Λ is a priori

arbitrary: given an UV finite fundamental theory it should always be possible to integrate out all (gravitational and
matter) degrees of freedom above the scale Λ to obtain a finite ‘bare’ effective theory valid for all energy scales below
Λ. Even if the fundamental theory does correctly predict (as we assume) the very small ratio M2

EW/M2
Pl and related

low energy observables, the effective theory generically is not free of the hierarchy problem if it involves scalar fields:
if the effective theory is solved (perturbatively or not) directly in terms of the bare parameters defined at the scale Λ,
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such small ratios arise as the result of very precise cancellations of Λ2 contributions against (bare mass)2 parameters
of the same order.
From this perspective the implementation of SBCS as proposed in [2] (as well as in any other model that relies on

radiative symmetry breaking à la Coleman-Weinberg) suffers from the same problem: the absence of Λ2 divergences
in the dimensional regularization scheme used there is, in fact, artificial: in terms of bare parameters, there is a huge
cancellation between the Λ2 contributions induced by real fluctuations of the quantum fields and the (bare mass)2

terms of the effective action fixed at Λ by the fundamental theory which is supposed to produce vanishing or very
small mass values at the level of the effective action.
Within this general framework one can envisage two different ways in which the hierarchy problem can be avoided.

The first possibility is that the bare parameters m2
B(Λ) of the effective theory are hierarchically smaller than Λ and

loop corrections to masses of light particles proportional to Λ2 cancel exactly by some symmetry. This mechanism is
realized in supersymmetric theories [6]. In this case the precise value of the cutoff Λ does not matter: the cancellation
of the quadratic divergences holds automatically for any choice of Λ. For practical purposes one can then formally
send Λ to infinity and adopt any convenient regularization in order to set up the standard renormalized perturbative
expansion.
The second and novel possibility proposed here is that the putative fundamental theory singles out a particular scale

Λ, the physical cutoff, at which m2
B(Λ) ≪ Λ2 and at which the complete ∝ Λ2 corrections to the physical spin-zero

boson(s) (and thus to the ratio M2
EW/M2

Pl) vanish. Naturally one expects Λ to be close to the Planck mass MPl. We
will argue below that this can also be regarded as a solution of the hierarchy problem. Both mechanisms of avoiding
the hierarchy problem can thus be attributed to SBCS, by small mass terms and by the quantum anomaly.
To see how this second possibility manifests itself in a bottom-up perspective, it is important to realize that for

this the finiteness of the bare parameters must be preserved by keeping the cutoff Λ finite (in a way dictated by the
fundamental theory), and for this reason one is not allowed to use continuation in space-time dimension to regularize
loop integrals in the effective theory calculations. Renormalized running parameters can nevertheless be introduced by
the usual splitting of the mass parametersm2

B(Λ) = m2
R(Λ, µ)+δm2(Λ, µ) and couplings λB(Λ) = λR(Λ, µ)+δλ(Λ, µ),

and by fixing the counterterms involving δm2(Λ, µ) and δλ(Λ, µ) in the Λ-MS subtraction scheme in which by definition
they absorb only contributions proportional to Λ2 and ln(Λ2/µ2) (the counterterms δm2) and ∝ ln(Λ2/µ2) (the
counterterms δλ). Computing physical observables within the effective theory one then finds the following relation
between bare and renormalized parameters

λB(µ, λR,Λ) = λR +

∞
∑

L=1

L
∑

ℓ=1

aLℓ λ
L+1
R

(

ln
Λ2

µ2

)ℓ

, (1)

so that λB = λR for µ = Λ, and

m2
B(µ, λR,mR,Λ) = m2

R − f̂quad(µ, λR,Λ)Λ
2 + m2

R

∞
∑

L=1

L
∑

ℓ=1

cLℓ λ
L
R

(

ln
Λ2

µ2

)ℓ

. (2)

The crucial fact is now that the coefficient in front of Λ2

f̂quad(µ, λR,Λ) =

∞
∑

L=1

L−1
∑

ℓ=0

bLℓ λ
L
R

(

ln
Λ2

µ2

)ℓ

, (3)

can be written as a function of the bare coupling(s) only: from the analysis of the φ4 theory [7] (which we assume to
hold generally) it follows that the logarithmic dependence on the scale µ of the Λ2 divergence in (2) is spurious, so
that

f̂quad(µ, λR,Λ) ≡ fquad
(

λB(µ, λR,Λ)
)

= fquad(λB). (4)

In other words, when corrections to the scalar boson mass are computed in the perturbative expansion in terms of the
renormalized parameters, only non-logarithmic pieces proportional to Λ2 in consecutive orders of the loop expansion
correct the form of the function fquad; logarithms multiplying Λ2 contribute only to converting the renormalized
couplings λR into the bare ones. Thus, a theory is free from the hierarchy problem if the condition

fquad(λB) = 0 (5)

is satisfied!
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As we do not know the scale Λ nor the precise way the cutoff should be implemented, we adopt here a simple smooth

cutoff by replacing kµ → kµ exp
(

− k2

2Λ2

)

, for each momentum in the action. With this prescription the bottom-up

procedure to check whether a given theory with n physical spin-zero bosons is free from the hierarchy problem consists
in fixing its renormalized couplings from fits to the low energy data at MEW, and then evolving them with the RG

equations as functions of the scale µ to check whether there exists some scale at which the relevant n functions fquad
k

for k = 1, . . . , n (determined to the appropriate loop order) vanish simultaneously. One may then identify this scale
with Λ and equate λB with λR at this scale. For consistency, the couplings of the model should then satisfy the
following additional conditions over the whole range MEW < µ < Λ:

• there should be neither Landau poles nor instabilities (manifesting themselves as the unboundedness from below
of the effective potential depending on the running scalar self-couplings);

• all couplings λR(µ) should remain small (for the perturbative approach to be applicable and stability of the
effective potential electroweak minimum).

In the SM there is only one possible quadratic divergence associated with the Higgs boson. Its vanishing was first
conjectured in [8], but the SM couplings were taken at the electroweak scale, leading to a wrong prediction for the
top quark mass. The RG evolution of the coefficient in front of this divergence was recently investigated in [9, 10]
(see also [11]). This analysis indicates that the SBCS requirements are not met in the SM: the zero of coefficient
function fquad lies well above the Planck scale (outside the range of validity of the SM), and furthermore the scalar
self-coupling λR(µ) becomes negative near 1010 GeV, signaling an instability of the electroweak minimum. Although
these statements depend on the loop order considered, and also (to a considerable extent!) on the precise value of the
top mass, we conclude that in the SM the hierarchy problem is most likely not solved by the SBCS mechanism.
We now show that all the necessary conditions can be satisfied for the CSM of [2, 4]. With explicit mass terms the

potential of this model reads

V = m2
HH†H +m2

φ|φ|2 + λ1(H
†H)2 + 2λ3(H

†H)|φ|2 + λ2|φ|4,

where H = (H1, H2) is the SU(2)EW doublet and φ is the extra gauge singlet. At the minimum
√
2〈Hi〉 = vHδi2,√

2〈φ〉 = vφ, and the physical spin-zero particles are the CP-even h0 and ϕ0, which are mixtures
(

h0

ϕ0

)

=

(

cβ sβ
−sβ cβ

)(√
2Re(H2 − 〈H2〉)√
2Re(φ− 〈φ〉)

)

, (6)

with masses Mh and Mϕ, and the CP-odd axion a0 =
√
2 Imφ [12]. We assume that Mh < Mϕ. The existing

experimental results suggest that | tanβ| <
∼ 0.3, if h0 is to mimic the SM Higgs boson (see e.g. [13]).

Since there are two scalars in this model, two equations (5) must be simultaneously satisfied [14]. At one loop, the

two relevant functions fquad
k are straightforward to determine in terms of bare couplings, viz.

16π2fquad
1 (λ, g, y) = 6λ1 + 2λ3 +

9

4
g2w +

3

4
g2y − 6y2t

16π2fquad
2 (λ, g, y) = 4λ2 + 4λ3 −

3
∑

i=1

y2
Ni
. (7)

Here gw and gy are the SU(2)EW × U(1)Y gauge couplings, yt is the top quark Yukawa coupling, and yN govern
the Majorana-like couplings of the new scalar to the right-chiral neutrinos. For simplicity (and without much loss
in precision) we neglect all other SM couplings. In subsequent work we will show that higher loop corrections are
indeed small with our assumptions. As there are parameters of the model which are not fixed at present by the data,
we adopt the following procedure to check if the necessary conditions can be satisfied: we take the known values of
the SM couplings gy, gw, yt at the electroweak scale and evolve them using the one-loop RG equations up to the
(reduced) Planck scale MPl = 2.4× 1018 GeV, which we assume is the scale Λ singled out by the fundamental theory.
At Λ = MPl we chose the values of the couplings λ1, yN and determine λ2 and λ3 from the vanishing of the one-loop

functions fquad
k (7). The whole set of couplings is then evolved back down to the electroweak scale. The necessary

one-loop β-functions are given below (we use the notation β̃ := 16π2β). For the scalar self-couplings, we have

β̃λ1
= 24λ2

1 + 4λ2
3 − 3λ1

(

3g2w + g2y − 4y2t
)

+
9

8
g4w +

3

4
g2wg

2
y +

3

8
g4y − 6y4t

β̃λ2
= 20λ2

2 + 8λ2
3 + 2λ2

3
∑

i=1

y2
Ni

−
3

∑

i=1

y4
Ni
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β̃λ3
=

1

2
λ3

{

24λ1 + 16λ2 + 16λ3 −
(

9g2w + 3g2y
)

+ 2
3

∑

i=1

y2
Ni

+ 12y2t

}

For the remaining couplings we have

β̃gw = −19

6
g3w , β̃gy =

41

6
g3y, β̃gs = −7g3s ,

β̃yt
= yt

{

9

2
y2t − 8g2s −

9

4
g2w − 17

12
g2y

}

,

β̃y
Nj

=
1

2
y
Nj

{

2y2
Nj

+

3
∑

i=1

y2
Ni

}

(8)

At the electroweak scale the scalar field mass parameters, whose β-functions we give here for completeness

β̃m2

H
=

{

12λ1 + 6y2t −
(

9

2
g2w +

3

2
g2y

)}

m2
H + 4λ3m

2
φ,

β̃m2

φ
= 8λ3m

2
H +

{

8λ2 +

3
∑

i=1

y2
Ni

}

m2
φ , (9)

are adjusted to give the required values vH = 246 GeV and Mh = 125 GeV. The mixing angle β defined in (6) is then

a prediction, as well as the Majorana mass parameters MNj
≡ yNj

vφ/
√
2 yielding the neutrino masses mN .

We have performed a numerical scan over the values (in the range 0 ÷ 2) of the couplings λ1 and yN at the scale
Λ, rejecting all points for which one of the couplings λ1, λ2 becomes negative (or λ3 < −

√
λ1λ2) between the scales

MEW ≤ µ ≤ Λ. A typical plot of the running couplings λi(µ) and yN(µ) is shown in Fig.1. Due to the constraints
imposed, only solutions with negative values of the mixing angle β in the range 0 < | tanβ| <

∼ 0.3 are found. In Fig.2
we show the predicted correlation of the masses mN of the right-chiral neutrinos (here for simplicity assumed to be
degenerate) with the mass of the additional scalar ϕ0 and negative values of tanβ in the allowed range. The extra
scalar ϕ0 can decay into the usual SM particles (with small widths [15]), but also into two or three h0’s, or into the
lightest right-chiral neutrinos if this is kinematically allowed (for instance, with non-degenerate neutrino masses, not
all of which obey Mϕ < 2mN , unlike in Fig.2). This produces calculable deviations from the ‘shadow Higgs’ behavior
described in [15]. These very distinctive features of the CSM would clearly allow to discriminate it from other models
also predicting new heavy scalar particles.
We have also checked that the results shown in Figs.1 and 2 are not very sensitive to the precise choice of the scale

Λ: for example for the same values of the masses Mϕ and mN varying the scale Λ within one order of magnitude
changes the value of tanβ by a few percent at most.
To summarize: we have proposed a novel way the hierarchy problem can be solved. We have shown that the

solution can work in the CSM of [2, 4] in which there does exist a range of values for which all SBCS requirements can
be satisfied with the scale Λ of the order of the Planck scale. Remarkably, with Λ this high, the CSM may provide
a complete scenario within which all problems of particle physics proper can be addressed: strong CP-problem is
solved, neutrinos are naturally massive, non-thermally produced axions can constitute dark matter, and baryogenesis
can probably proceed through leptogenesis (whereas the ultimate explanation of the cosmological constant problem,
dark energy, and of the mechanism driving inflation must be relegated to a more fundamental theory of quantum
gravity). Of course, the real test of the model and of the proposed SBCS scheme would require the detection of the
new scalar particle ϕ0, the heavy neutrinos and the axion. In the further perspective, with all the parameters of the
model fixed from the low energy data it should become possible to check whether the coefficients in front of quadratic
divergences indeed vanish, and to fix the scale Λ at which this occurs.
A detailed account of our results will be given elsewhere.
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