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A recent genome-wide association study reported five loci for which there was strong, but sub-genome-wide significant

evidence for association with multiple sclerosis risk. The aim of this study was to evaluate the role of these potential risk

loci in a large and independent data set of �20 000 subjects. We tested five single nucleotide polymorphisms rs228614

(MANBA), rs630923 (CXCR5), rs2744148 (SOX8), rs180515 (RPS6KB1), and rs6062314 (ZBTB46) for association with multiple

sclerosis risk in a total of 8499 cases with multiple sclerosis, 8765 unrelated control subjects and 958 trios of European descent.

In addition, we assessed the overall evidence for association by combining these newly generated data with the results from

the original genome-wide association study by meta-analysis. All five tested single nucleotide polymorphisms showed consist-

ent and statistically significant evidence for association with multiple sclerosis in our validation data sets (rs228614: odds

ratio = 0.91, P = 2.4 � 10�6; rs630923: odds ratio = 0.89, P = 1.2 � 10�4; rs2744148: odds ratio = 1.14, P = 1.8 � 10�6;

rs180515: odds ratio = 1.12, P = 5.2 � 10�7; rs6062314: odds ratio = 0.90, P = 4.3 � 10�3). Combining our data with results

from the previous genome-wide association study by meta-analysis, the evidence for association was strengthened further,

surpassing the threshold for genome-wide significance (P5 5 � 10�8) in each case. Our study provides compelling evidence

that these five loci are genuine multiple sclerosis susceptibility loci. These results may eventually lead to a better understanding

of the underlying disease pathophysiology.
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Introduction
Multiple sclerosis is the most common inflammatory demyelinating

disease of the CNS that is likely caused by an interplay of genetic

and environmental risk factors. Apart from several independent

association signals in the HLA (human leukocyte antigen) region

on chromosome 6p21, a recent genome-wide association study

(GWAS) in multiple sclerosis has reported 52 loci exerting

small to moderate risk effects (IMSGC and WTCCC2, 2011).

In addition, five additional loci provided strong support for asso-

ciation (P5 5 � 10�7) in that GWAS, but failed to meet current

criteria for genome-wide significance (P5 5 � 10�8). The most
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significantly associated single-nucleotide polymorphisms (SNPs) in

these regions were rs228614 in MANBA (mannosidase, beta A,

lysosomal), rs630923 upstream of CXCR5 (chemokine C-X-C

motif receptor 5), rs2744148 downstream of SOX8 (sex determin-

ing region Y-box 8), rs180515 downstream of RPS6KB1 (riboso-

mal protein S6 kinase, 70 kDa, polypeptide 1), and rs6062314 in

ZBTB46 (zinc finger and BTB domain containing 46) (IMSGC and

WTCCC2, 2011). Given the lack of genome-wide significance,

independent validation efforts are needed to further discern the

putative role of these loci in multiple sclerosis risk. To this end, we

have tested these five SNPs for association with multiple sclerosis

risk in a multicentric study comprising 20 138 subjects of European

descent who were independent of the original GWAS sample

(IMSGC and WTCCC2, 2011).

Materials and methods

Power analysis
Power was estimated using the Genetic Power Calculator (Purcell et al.,

2003) assuming a one-sided a of 0.01 and a disease prevalence of 0.1%.

Data sets
The current study included a total of 8805 multiple sclerosis cases and

8981 unrelated control subjects of self-reported European descent from

Germany, Spain, France, The Netherlands, and Australia, as well as 963

trios from the UK. Subjects were selected specifically to be non-over-

lapping with the original study (IMSGC and WTCCC2, 2011). Diagnosis

of multiple sclerosis was established according to standard diagnostic

criteria (Poser et al., 1983; McDonald et al., 2001). All samples were

collected with informed written consent and appropriate ethical approval

at the respective sites. The effective sample size after quality control

comprised 8499 multiple sclerosis cases, 8765 unrelated control subjects,

and 958 trios (see below and Supplementary Table 1).

Genotyping and quality control
Genotyping for the German, Spanish and British samples was per-

formed at the individual sites using single-assay allelic discrimination

assays based on TaqMan� chemistry following the manufacturer’s in-

structions (Applied Biosystems, Inc.). The French subjects were

TaqMan� genotyped using the multiplex ‘OpenArray’ platform

(Applied Biosystems, Inc.), the Australian subjects were genotyped

using the MassARRAY iPLEX system (Sequenom, Inc.), and the

Dutch genotypes were generated on the Human610-Quad Bead

GWAS array (Illumina, Inc.). Samples with missing genotypes for

more than two SNPs were excluded before analysis [applicable to a

total of 115 samples (0.5%) across all data sets]. Information on sex

and/or age at examination was available for 490% of subjects in all

case-control data sets except in the sample from Central Spain.

Samples with missing information in these categories (n = 407) were

excluded. The threshold for genotyping efficiency per SNP and data

set was set to 495%. Hardy–Weinberg equilibrium was assessed in

control subjects and in unaffected founders of the nuclear families.

Deviations from Hardy–Weinberg equilibrium were defined as

P5 0.05 based on Pearson’s �2 as implemented in PLINK v1.07

(Purcell et al., 2007).

Association analyses
All association analyses were performed using PLINK. For the case-

unrelated control data sets, logistic regression with adjustment for

age at examination and/or sex was performed where available

(Supplementary Table 1) using an additive transmission model.

Transmission equilibrium testing was applied to the UK trio data set.

Odds ratios (OR) are displayed for the allele dosage of the minor allele

as defined by the frequency in the overall data set. Meta-analyses across

all validation data sets were based on fixed-effect models. The threshold

for nominal significance was set to P5 0.01 (i.e. applying a conservative

Bonferroni correction for five tests). All P-values are one-sided with

regard to the expected direction of effect based on the original

study (IMSGC and WTCCC2, 2011). Between-study heterogeneity

was quantified using the I2 metric, and statistical significance was

assessed by the Q-test statistic. Forest plots were generated using a

customized version of the ‘rmeta’ package in R language (Lill et al.,

2012). Two-sided unweighted P-values of the original GWAS (IMSGC

and WTCCC2, 2011) and of this study were combined using METAL

(Willer et al., 2010).

Results
The combined effective replication data sets of 8499 cases, 8765

unrelated controls, and 958 trios had �80% power to detect

an odds ratio of 1.10 down to allele frequencies of 0.13.

Control genotypes in all data sets were distributed according to

Hardy–Weinberg equilibrium (P40.05) for all SNPs. Total geno-

typing efficiency was 498% for each SNP (Table 1).

Table 1 Association results for the five loci and multiple sclerosis assessed in 20 138 subjects of European descent

SNP Location (hg19) Nearest gene Validation data sets Original study Combined
P**

Eff. MAF OR (95% CI) P* I2 (95% CI) PQ OR P**

rs228614 (A/G) chr4:103,578,637 MANBA (intronic) 99.0 47.6 0.91 (0.87–0.95) 2.4 � 10�6 37 (0–71) 0.120 0.92 1.4 � 10�7 3.4 � 10�12

rs630923 (A/C) chr11:118,754,353 CXCR5 (122 bp 5’) 98.3 15.7 0.89 (0.84–0.95) 1.2 � 10�4 1 (0–65) 0.425 0.89 2.8 � 10�7 4.7 � 10�10

rs2744148 (G/A) chr16:1,073,552 SOX8 (36,573 bp 3’) 99.5 16.8 1.14 (1.08–1.20) 1.8 � 10�6 0 (0–14) 0.915 1.12 8.4 � 10�8 1.6 � 10�12

rs180515 (G/A) chr17:58,024,275 RPS6KB1 (3’ UTR) 99.1 35.5 1.12 (1.07–1.17) 5.2 � 10�7 28 (0–66) 0.198 1.09 8.8 � 10�8 2.3 � 10�13

rs6062314 (C/T) chr20:62,409,713 ZBTB46 (intronic) 99.1 7.9 0.90 (0.83–0.97) 4.3 � 10�3 31 (0–68) 0.169 0.86 1.3 � 10�7 2.3 � 10�8

Fixed effect meta-analysis results for the SNPs tested across all validation data sets were performed using PLINK. The association results from the original study (IMSGC and
WTCCC2, 2011) and this study were combined using METAL. Allele names are displayed as minor/major allele based on frequencies in the entire validation data set.
Brackets following the gene name list the location of the SNP relative to the gene, base pairs (bp) indicate upstream (5’) or downstream (3’) distance to the primary
transcript (as annotated on the UCSC Genome Browser).
CI = confidence interval; Eff. = genotyping efficiency (in %); hg19 = human genome build 19; MAF = minor allele frequency in controls (in %); OR = odds ratio;

UTR = untranslated region; * = one-sided; ** = two-sided.
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Figure 1 Meta-analysis of validation data sets assessing the association between the MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 loci

and multiple sclerosis risk in populations of European descent. The x-axis depicts the odds ratio (OR). Study-specific odds ratios (black

squares) and 95% confidence intervals (CIs, lines) were calculated using an additive model. The summary odds ratios and 95% confidence

intervals (grey diamonds) were calculated based on fixed-effect meta-analysis.
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Fixed-effect meta-analysis across all validation data sets revealed

highly significant associations of all five tested SNPs and multiple

sclerosis risk in the validation data sets, i.e. rs228614 (MANBA,

OR = 0.91, P = 2.4 � 10�6), rs630923 (CXCR5, OR = 0.89,

P = 1.2 � 10�4), rs2744148 (SOX8, OR = 1.14, P = 1.8 � 10�6),

rs180515 (RPS6KB1, OR = 1.12, P = 5.2 � 10�7), and rs6062314

(ZBTB46, OR = 0.90, P = 4.3 � 10�3). Effect estimates were similar

to those originally reported (IMSGC and WTCCC2, 2011). There was

no evidence for substantial between-study heterogeneity for any

of the five SNPs (Fig. 1 and Table 1). Combining our results with

P-values from the original GWAS (IMSGC and WTCCC2, 2011)

increased the statistical support of our findings to genome-wide

significance for each of the five tested SNPs: rs228614 (MANBA),

P = 3.4 � 10�12, rs630923 (CXCR5), P = 4.7 � 10�10, rs2744148

(SOX8), P = 1.6 � 10�12, rs180515 (RPS6KB1), P = 2.3 � 10�13,

and rs6062314 (ZBTB46), P = 2.3 � 10�8 (Table 1).

Discussion
Our study shows that common genetic variants in or near

MANBA, CXCR5, SOX8, RPS6KB1, and ZBTB46, are associated

with multiple sclerosis risk at genome-wide significance. Our

results, thus, provide compelling evidence that these loci represent

genuine genetic risk factors for multiple sclerosis.

As is the case for the majority of genetic associations, the pre-

cise molecular genetic mechanisms underlying these results still

remain to be assessed. That is, future studies need to clarify

whether the SNPs tested here are directly involved in altering

gene expression/protein function or whether such effects are

exerted by other correlated variants, possibly located in neigh-

bouring genes. For instance, SNP rs180515 in the 3’ UTR of

RPS6KB1 is located in the seed region of a predicted micro-RNA

binding site for hsa-miR-3616-5p and hsa-miR-573 and may thus

directly alter RPS6KB1 translation (Supplementary Fig. 1)

(Schilling, 2012). The intronic SNP rs228614 in MANBA is in sub-

stantial linkage disequilibrium with two non-synonymous SNPs in

the same gene [rs2866413 (p.Thr701Met), r2 = 0.87, and

rs227368 (p.Val253Leu), r2 = 0.74, based on 1000 Genomes

Pilot 1 CEU data (1000 Genomes Project Consortium, 2010)],

which may affect protein function. However, and possibly more

importantly, of all five loci tested here MANBA is the only one to

contain SNPs (including rs228614) showing strong cis effects on

messenger RNA expression based on recently published data

(Yang et al., 2010) (Supplementary Fig. 2). The intronic SNP

rs6062314 in ZBTB46 displays only moderate linkage disequilib-

rium to potentially functional variants, i.e. a non-synonymous SNP

in LIME1 [Lck interacting transmembrane adaptor 1, SNP

rs1151625 (p.Pro211Leu), r2 = 0.39], and in ZGPAT [zinc finger,

CCCH-type with G patch domain, SNP rs1291212 (p.Ser61Arg),

r2 = 0.31]. In addition, TNFRSF6B (tumour necrosis factor receptor

superfamily, member 6b, decoy) is also located in this chromo-

somal region and would represent a compelling candidate based

on its implications on T cell function (e.g. Zhang et al., 2001).

However, the only coding sequence SNP displaying noteworthy

linkage disequilibrium with rs6062314 in this gene does not

invoke an amino acid change (rs2738787, r2 = 0.36). Finally,

rs630923 maps into a potential CXCR5 transcription factor binding

site for the nuclear factor of kappa light polypeptide gene enhan-

cer in B-cells (NFKB) in a region of DNase I hypersensitivity

(ENCODE Project Consortium, 2012). Rs630923 is predicted to

alter NFKB binding (Boyle et al., 2012) and could thus, potentially

affect CXCR5 transcription.

It should be emphasized that the abovementioned potential

functional consequences are based on in silico assessments and

require experimental testing and validation. It is also possible

that hitherto unknown, rare DNA sequence variants underlie or

contribute to the observed association signals.

In summary, our study provides compelling evidence that the list

of established multiple sclerosis risk genes can now be extended

by five additional loci, all of which show genome-wide significant

association with disease risk. Further fine-mapping and functional

studies are required to elucidate the biochemical and pathophysio-

logical mechanisms underlying these associations.
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Germany; 22Unidad de Esclerosis Múltiple, Hospital Virgen Macarena,

Sevilla, Spain; 23Institute of Human Genetics, University of Ulm, Ulm,

Germany; 24Max Planck Institute for Human Development, Berlin,

Germany; 25Department of Psychology, Technische Universität

Dresden, Dresden, Germany; 26Department of Clinical Chemistry,

Ludwig Maximilian University, Munich, Germany; 27Interdisciplinary

Metabolic Center, Lipids Clinic, Charité University Medicine, Berlin,
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