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Abstract

Background: Although levels of iron are known to be increased in the brains of patients with Parkinson disease (PD),
epidemiological evidence on a possible effect of iron blood levels on PD risk is inconclusive, with effects reported in
opposite directions. Epidemiological studies suffer from problems of confounding and reverse causation, and mendelian
randomization (MR) represents an alternative approach to provide unconfounded estimates of the effects of biomarkers on
disease. We performed a MR study where genes known to modify iron levels were used as instruments to estimate the
effect of iron on PD risk, based on estimates of the genetic effects on both iron and PD obtained from the largest sample
meta-analyzed to date.

Methods and Findings: We used as instrumental variables three genetic variants influencing iron levels, HFE rs1800562, HFE
rs1799945, and TMPRSS6 rs855791. Estimates of their effect on serum iron were based on a recent genome-wide meta-
analysis of 21,567 individuals, while estimates of their effect on PD risk were obtained through meta-analysis of genome-
wide and candidate gene studies with 20,809 PD cases and 88,892 controls. Separate MR estimates of the effect of iron on
PD were obtained for each variant and pooled by meta-analysis. We investigated heterogeneity across the three estimates
as an indication of possible pleiotropy and found no evidence of it. The combined MR estimate showed a statistically
significant protective effect of iron, with a relative risk reduction for PD of 3% (95% CI 1%–6%; p = 0.001) per 10 mg/dl
increase in serum iron.

Conclusions: Our study suggests that increased iron levels are causally associated with a decreased risk of developing PD.
Further studies are needed to understand the pathophysiological mechanism of action of serum iron on PD risk before
recommendations can be made.
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Introduction

Iron is involved in fundamental biochemical activities, such as

oxygen delivery, mitochondrial respiration, and DNA synthesis in

almost all cell types. In the brain, iron is a cofactor for a large

number of enzymes, including key enzymes of neurotransmitter

biosynthesis, such as the tyrosine hydroxylase, which represents

the rate-limiting enzyme of dopamine synthesis [1]. However, iron

is also potentially toxic as an excess of free iron contributes to the

generation of reactive oxygen species and can favor oxidative

tissue damage [1]. In the brains of patients with Parkinson disease

(PD), increased levels of iron in the substantia nigra (SN) and the

lateral globus pallidus have been observed, and yet the mecha-

nisms responsible for this phenomenon are not completely

understood [2,3]. PD is characterized by the rather selective loss

of dopaminergic neurons [4] and the presence of a-synuclein-

enriched Lewy body inclusions in the SN [5], and several studies

have demonstrated that free iron in the SN can enhance the

aggregation of a-synuclein and may thus promote the formation of

Lewy bodies [1].

Limited epidemiological evidence on the relationship between

peripheral blood levels of iron and PD risk is available. A recent

meta-analysis of ten studies, with a total of 520 PD cases and 711

controls, showed a trend for lower serum iron levels in PD patients

compared with controls, although the difference in iron levels was

not statistically significant (standardized mean difference: 20.45;

95% CI 20.98 to 0.08; p = 0.09) [6]. However, the very large

degree of heterogeneity observed across studies (I2: 93%;

p,0.0001) makes it difficult to interpret these findings.

A major limitation of observational studies is the difficulty in

distinguishing between causal and spurious associations due to

problems of confounding and reverse causation. Mendelian

randomization (MR) is an approach based on the use of genes

as instrumental variables, which has been proposed to assess

causality and provide estimates of the effect of modifiable

intermediate phenotypes on disease unaffected by classical

confounding or reverse causation, whenever randomized clinical

trials are not feasible [7]. Genes are randomly allocated at

conception, so that genetic effects on the intermediate phenotype

cannot be affected by classical confounding, such as lifestyle

factors, or reverse causation, as in the situation where the

phenotype level is influenced by the presence of the disease [8].

For this reason, demonstration that a genetic polymorphism

known to modify the phenotype level also modifies the disease risk

represents indirect evidence of a causal association between

phenotype and disease.

The MR estimate of the effect of the intermediate phenotype on

the disease is derived from the estimates of the associations of the

polymorphism with both intermediate phenotype and disease.

MR, as any other instrumental variable approach, has low

statistical power and therefore requires very large sample sizes [9].

The recent availability of large collections of genome-wide data on

intermediate phenotypes, such as blood biomarkers, and disease

traits within international consortia represents a great opportunity

to exploit the potentials of this approach, and indeed MR studies

have become increasingly popular over the last few years.

The validity of the MR approach relies on the crucial

assumption that the polymorphism acts on the disease only

through the intermediate phenotype of interest and not through

others (assumption of no pleiotropy) [8]. Evaluating the possibility

of pleiotropic effects of the polymorphism is therefore fundamental

when using MR, and yet pleiotropy can only be excluded with

confidence if the function of the gene and its polymorphisms is

completely known, which is rarely the case. This problem can be

addressed by using multiple instruments (polymorphisms in

multiple genes influencing the same intermediate phenotype),

since in the absence of pleiotropy, similar MR estimates should be

obtained regardless of the instrument used, so that differences

across MR estimates beyond what can be expected by chance can

indicate the presence of pleiotropy [10].

In this study, we provide evidence on the presence, direction,

and magnitude of a causal effect of serum iron levels on PD risk by

performing a MR study, based on iron data in 21,567 individuals

from the general population and PD data from 20,809 PD cases

and 88,892 controls. We used three polymorphisms as instruments

in order both to increase statistical power by combining their MR

estimates and to investigate the possible presence of pleiotropy.

Methods

Mendelian Randomization Approach
The selection of the genes modifying iron levels to be used as

instruments in our MR study was based on published results

showing that polymorphisms in the hemochromatosis (HFE,

ENSG00000010704) gene and the transmembrane protease 6

(TMPRSS6, ENSG00000187045) gene have the strongest effects

on serum iron in the general population of European ancestry

[11]. The choice of the polymorphisms within these two genes was

based on the findings of a recent large meta-analysis of genome-

wide association (GWA) studies on iron levels in the general

population (unpublished data). We selected the polymorphisms

with the strongest statistical evidence, two for the HFE gene,

rs1800562 (C282Y) and rs1799945 (H63D), which are not in

linkage disequilibrium (HapMap CEU r2,0.01) and therefore

represent independent signals of association, and one for the

TMPRSS6 gene, rs855791 (V736A) (Figure 1).

Our MR approach was based on the use of aggregate results for

both the gene–iron and gene–PD associations: for each polymor-

phism, we performed a meta-analysis of studies investigating its

effect on iron levels and a meta-analysis of studies investigating its

effect on PD risk, with no studies contributing to both meta-

analyses (see next sections). Three separate MR estimates of the

effect of iron on PD were obtained for the three polymorphisms,

and they were subsequently pooled by meta-analysis to provide a

single MR estimate. Heterogeneity between the three MR

estimates was investigated to detect the possible presence of

pleiotropy.

Data on Gene Associations with Iron
Estimates of the effect sizes of the three polymorphisms in HFE

and TMPRSS6 on total serum iron levels was based on the findings

of a recent GWA meta-analysis on iron parameters performed by

the Genetics of Iron Status (GIS) Consortium (Table 1) (unpub-

lished data). The GIS meta-analysis includes ten cohorts from

eight participating research groups. The individual datasets

included in the meta-analysis are described in Table S1.

Data on Gene Associations with PD Risk
To estimate the association of the three polymorphisms with PD

risk, we performed a meta-analysis of both candidate gene and

GWA studies (Table 1).

Candidate gene studies were identified using PDGene (http://

www.pdgene.org), a database providing a regularly updated

synopsis of genetic association studies performed in PD [12].

These studies provided data for the two polymorphisms in HFE,

rs1800562 and rs1799945. A total of nine studies were included in

Serum Iron Levels and Parkinson Disease
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our analysis for both rs1800562 [13–20] and rs1799945 [13–

17,19–21] (Tables 1 and S2).

Three large international GWA studies recently published, the

PD GWAS Consortium [22], the 23andMe study [23], and the

International Parkinson’s Disease Genomics Consortium (IPDGC)

[24,25], provided data for all three polymorphisms (Table 1). The

PD GWAS Consortium includes data from five studies: PRO-

GENI/GenePD [26], NIA Phase I [27], NIA Phase II [28],

HIHG [29], and NGRC [30]. The 23andMe data come from a

slightly expanded version of the cohort used in [23], including

more than 4,000 PD cases and 60,000 controls. From the IPDGC,

four GWA studies were included in our analysis, together with five

studies genotyped with a custom genotyping array (Immunochip

Illumina iSelect array); the USA-NIA and the USA-dbGAP

studies were not included because of overlap with the PD GWAS

dataset, and the Icelandic study was not available for analysis.

Figure 1. Graphical representation of the MR approach, with all estimates used to derive the final MR estimate. *Reported is the allele
that increases iron levels, together with its frequency (AF). **This corresponds approximately to an OR per unit mg/dl increase in iron of 0.997 (95%CI
0.994–0.999), that is 0.3% (0.1%–0.6%) relative reduction in PD risk per 1 mg/dl increase in iron.
doi:10.1371/journal.pmed.1001462.g001

Table 1. Characteristics of the studies included for the gene–iron and gene–PD associations.

Data Source n studies Type of Study Maximum Sample Size

Gene–iron association

GIS Consortiuma 10 GWA 21,567

Gene–PD association

PDGene database [13–21] 9 Candidate gene studies (HFE rs1800562
and HFE rs1799945)

2,384 cases; 6,908 controls

PD GWAS Consortium [22] 5 GWA 4,238 cases; 4,239 controls

23andMe [23]b 1 GWA 4,127 cases; 62,037 controls

IPDGC [24,25]c 4 GWA 4,258 cases; 10,152 controls

IPDGC [24,25] 5 Immunochip genotyping 5,802 cases; 5,556 controls

Details on individual datasets are reported in Text S1 and in Tables S1 and S2.
aUnpublished data. The original sample size was 22,444, but genotype and phenotype data were available only for 21,567.
b23andMe: slightly expanded version of the cohort used in [23].
cIPDGC: USA-NIA and USA-dbGAP studies were not included in our analysis due to overlap with PD GWAS Consortium; the Icelandic dataset was not available for
analysis.
doi:10.1371/journal.pmed.1001462.t001
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A detailed description of the individual datasets is reported in

Text S1 and in Table S2.

Statistical Analyses
GIS meta-analysis results for the gene–iron association were

expressed in terms of Z-score, that is the number of standard

deviations (SDs) above the mean iron level associated with each

copy of the allele.

Study results for the candidate gene studies investigating the

gene–PD risk association were obtained either from the PDGene

website or directly from the original papers [18–20]. For two

studies, estimates of the associations of interest were not provided,

but they could be calculated from the data reported, by

performing a per-genotype analysis based on an additive genetic

model [19], or a per-allele analysis when genotype data were not

available [20]. For the gene–PD meta-analysis, estimates of the

(log) odds ratio (OR) were combined across studies using an

inverse-variance-weighted fixed-effect model and assuming an

additive genetic model, consistently with the gene–iron meta-

analysis.

As for the instrumental variable analysis, an MR estimate of the

effect of iron on PD risk was obtained for each of the three

instruments separately, and the three estimates were combined

using an inverse-variance-weighted fixed-effect meta-analysis. We

evaluated the presence and magnitude of heterogeneity across the

three instruments with the I2 statistics, a measure defined as the

percentage of total variation in study estimates explained by

heterogeneity rather than sampling error [31]. MR estimates were

derived using the Wald-type estimator [32]:

log ORPD=iron~log ORPD=allele=betairon=allele

where log ORPD/iron is the (log) increase of PD risk by SD unit

increase in iron (MR estimate), log ORPD/allele is the (log) increase

in PD risk per allele (gene–PD association), and betairon/allele is the

number of SDs above the mean iron level per allele (gene–iron

association). The standard error of the MR estimate was derived

using the Delta method [33,34]. The MR estimate is presented in

terms of OR, by exponentiating the log ORPD/iron.

We evaluated the strength of each instrument using the F

statistics, which is a function of the magnitude and precision of the

genetic effect on the biomarker (iron):

F~R2 n{2ð Þ= 1{R2
� �

where R2 is the variance of iron blood levels explained by the

genetic variant and n is the sample size for the gene–iron

association. We also evaluated the overall F statistics for the three

combined instruments assuming that their effects were indepen-

dent, as are expected to be given that the three gene variants are

not in linkage disequilibrium.

A sensitivity analysis was performed to investigate the possible

impact on our findings of population stratification in any of the

studies included in the gene–iron or gene–PD analyses, by

excluding studies which had not adjusted for population stratifi-

cation.

All analyses were performed using Stata 10 (StataCorp LP).

Results

Gene Association with Iron
The GIS meta-analysis for iron levels included 21,567

individuals from Europe and Australia (Table S1). The effect on

iron levels, expressed as number of SDs from the mean, was 0.37

(95% CI 0.33–0.41; p = 4.0610277) for each copy of the A allele of

HFE rs1800562, 0.19 (95% CI 0.17–0.21; p = 1.7610242) for the

G allele of HFE rs1799945, and 0.19 (95% CI 0.17–0.21;

p = 4.3610277) for the G allele of TMPRSS6 rs855791 (Figure 1;

Table S3). With a SD for serum iron levels of 37.6 mg/dl, these

figures correspond to an increase in iron per allele of approxi-

mately 13.9, 7.1. and 7.1 mg/dl, respectively. HFE rs1800562,

HFE rs1799945, and TMPRSS6 rs855791 explained 1.7%, 0.9%,

and 1.7% of iron total variance, respectively (Table S3).

The F statistics was very high for all genetic variants, as can be

expected given the sample size of more than 21,000 individuals

[35]: 382, 199, and 379 for HFE rs1800562, HFE rs1799945, and

TMPRSS6 rs855791, respectively. The F statistics for all combined

instruments was 987.

Gene Association with PD Risk
All datasets available for the analysis of the effects of the three

genetic polymorphisms on PD risk (Table S2) were checked for

the presence of overlapping studies, and duplicates were

removed. The meta-analysis, which included a total of 20,809

PD cases and 88,892 controls from Europe and North America

(Table S2), revealed a significant association for TMPRSS6

rs855791 with PD risk, with an OR of 0.97 (95% CI 0.94–0.99;

p = 0.034) per copy of the G allele. As shown in the Forest plot of

the meta-analysis for this polymorphism (Figure S3), there was no

statistical evidence of heterogeneity across studies, with a

heterogeneity test p-value of 0.86 and an I2 of 0% (95% CI

0%–85%). In particular, although the 23andMe study was based

on self-reported disease status and therefore differed from the

rest, its results were consistent with those of the other PD studies.

The association with PD risk for the two polymorphisms in HFE

was not statistically significant, with an OR of 0.97 (95% CI

0.92–1.02; p = 0.281) for the A allele of rs1800562 and 0.99 (95%

CI 0.96–1.03; p = 0.715) for the G allele of rs1799945 (Figures 1,

S1, and S2; Table S4). This might be explained by the much

lower statistical power for the two HFE variants compared with

the TMPRSS6 variant due to their lower minor allele frequency

(1,000 Genomes project: 0.02 and 0.08 versus 0.40), as suggested

by their wide confidence intervals.

Mendelian Randomization Estimate of Iron Association
with PD Risk

The meta-analysis of the three MR estimates resulted in a

statistically significant combined estimate of 0.88 (95% CI 0.82–

0.95; p = 0.001), representing the OR for PD per SD unit

increase in iron (Figure 1). Again, with a SD for iron levels of

37.6 mg/dl, this corresponds approximately to an OR of 0.997

(95% CI 0.994–0.999) per 1 mg/dl increase in iron, that is a

0.3% (95% CI 0.1%–0.6%) relative risk reduction. The Forest

plot in Figure 2 shows how the meta-analysis result was driven

by the TMPRSS6 rs855791 variant, and that there was no

statistical evidence of heterogeneity across instruments (p = 0.54;

I2: 0%, 95% CI 0%–90%), suggesting that the assumption of no

pleiotropy might hold.

The sensitivity analysis investigating the impact of population

stratification excluded the nine studies from PDGene, which had

not reported any adjustment for population stratification, while

there were no exclusions from the GIS consortium on iron since all

studies had adjusted for population stratification (Table S2). The

result of the sensitivity analysis was similar to that of the main

analysis, with a combined MR estimate of 0.91 (95% CI 0.83–

0.99; p = 0.032) (Figure S4).

Serum Iron Levels and Parkinson Disease
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Discussion

Our study shows a protective effect of serum iron levels on PD,

with a 3% (95% CI 1%–6%; p = 0.001) relative reduction in PD

risk per 10 mg/dl increase in iron. If we hypothesise increasing

serum iron levels of one SD unit (38 mg/dl in our study) in a

population of Caucasians older than 60, where PD risk is around

1% [36], a corresponding relative risk reduction of 12% would

translate to a decrease in PD cases from 100/10,000 to 88/10,000.

Since genotype influences on serum iron levels represent

differences that generally persist throughout adult life, the estimate

of our MR study reflects an effect of iron over the course of a

lifetime. These findings are important since evidence on the

association between serum iron levels and PD risk collected so far

has been controversial. Although iron is generally thought of as a

risk factor for PD, in line with the well-known phenomenon of iron

accumulation in the brain of PD patients [2,3], epidemiological

studies have shown effects of iron in opposite directions. A recent

meta-analysis of epidemiological studies suggests a possible

protective role of serum iron levels on PD risk, but its findings

are difficult to interpret owing to the very large degree of

heterogeneity across studies [6]. Epidemiological studies suffer

from confounding and reverse causation, which are intrinsic to

their observational nature, so that they can hardly provide

conclusive evidence on the causality of an observed association.

Tobacco smoking and coffee drinking, which have been suggested

as protective factors for PD [37,38], represent two potential

confounders for the association between iron and PD, since both

might have an effect on iron levels. Nicotine might decrease the

availability of free reactive iron [39], and coffee is known to inhibit

the intestinal absorption of iron [40,41]. Reverse causation could

also produce spurious associations in epidemiological studies if the

phenotype level can be influenced by the presence of the disease.

An example is that of monoamine oxidase (MAO) inhibitors used

to treat PD. MAO inhibitors may have iron-chelating effects and

thus reduce iron blood levels, which could lead to spurious

epidemiological evidence of a difference in iron levels between PD

cases and controls [42]. Although causality is usually assessed by

use of randomized clinical trials, the MR approach represents a

valuable alternative whenever these are not feasible [7]. It is based

on the concept that genetic variation modifying the concentration

of a biomarker should also affect the disease risk if (and only if) the

biomarker is directly and causally involved in the disease

pathogenesis. Being genes randomly allocated at conception, their

effects on biomarkers are unaffected by classical confounding

factors and reverse causation [8].

The protective effect of higher serum iron levels on PD risk

found in our study may seem somewhat counterintuitive at first

sight. However, there are several reports in the literature in line

with our findings. A recent study showed a negative correlation

between SN echogenicity, a marker for increased SN iron content

[43], and serum iron levels in PD patients [44]. A case-control

study suggested an increased risk of PD in men who reported

multiple recent blood donations and thus experienced depleted

systemic iron stores [45], and another study showed an association

of anemia experienced early in life with increased PD risk, with the

authors hypothesizing that anemia could be a surrogate marker for

iron deficiency [46]. Finally, in dietary iron-restricted mice

Figure 2. Forest plot of the MR estimates from the three instruments. The size of the squares is proportional to the precision of the MR
estimates for each polymorphism, with the horizontal lines indicating their 95% confidence intervals. The combined MR estimate is represented by
the centre of the diamond, with the lateral tips indicating its 95% confidence interval. The solid vertical line is the line of no effect.
doi:10.1371/journal.pmed.1001462.g002
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impaired motor behavior and a marked decrease of striatal

dopamine levels was observed, which was explained with the fact

that iron is essential for the activity of tyrosine hydroxylase, the

rate-limiting enzyme in the dopamine synthesis [47]. Consistent

with these findings, a recent study performed in Japan found an

association between higher iron intake and reduced PD risk [48].

The underlying mechanisms of the protective effect of iron on

PD risk observed in our study remains unclear, as does the

mechanism that regulates the relationship between serum and

brain iron levels. Low peripheral iron levels may reduce the

functioning of neuronal enzymes or receptors, since iron is a

crucial cofactor of tyrosine hydroxylase [49], plays a role in the

synthesis of monoamine neurotransmitters, and is involved in

dopaminergic neurodevelopment [50]. Furthermore, low iron

levels may decrease neuronal iron storage in the form of ferritin

[51], which was found to be inappropriately low in SN neurons in

PD [1]. A reduction in ferritin could decrease neuronal iron

utilization by decreasing the pool of iron available for neuronal

enzymes [47], thus leading to the accumulation of free iron in SN

[1]. Similar large-scale MR studies investigating other markers of

iron metabolism, such as ferritin and transferrin, could contribute

to our understanding of the role of peripheral iron homeostasis in

the pathophysiology of PD.

To our knowledge, this is the first MR study aimed at estimating

the magnitude of the effect of serum iron levels on PD risk.

Previous case-control studies have tried to assess causality and

direction of the association by investigating the effect on PD risk of

genes involved in iron metabolism and homeostasis, although their

findings are somewhat inconsistent with only some supporting the

hypothesis of a causal association. Among the many genes

evaluated, which include FTL, FTH1, TF, TFRC, IREB2, LTF,

CP, FXN, HFE [52], HPX, HAMP, HFE2 [53], and FTMT [54],

only the G258S polymorphism in the TF gene showed a

statistically significant association with PD [17], although the

finding was not replicated in a subsequent study [55], and a

haplotype in the SLC11A2 gene was found to occur more

frequently in PD [56]. However, all these previous studies were

relatively small and therefore underpowered to detect modest

genetic effects on PD risk. Our MR study used three polymor-

phisms in the HFE and TMPRSS6 genes as instruments. Evidence

on their association with PD risk was obtained through meta-

analysis of several candidate gene studies and three large GWA

studies, including a total of more than 20,000 patients and 88,000

controls, which represents the largest PD case-control sample with

genetic data meta-analyzed to date. Similarly, estimates of the

effect of the three polymorphisms on serum iron levels were based

on results from a recent GWA meta-analysis including more than

21,000 individuals. Unlike similar MR investigations that have

combined multiple instruments into a single allele score using

individual data analyses from all contributing studies, our analyses

required only aggregate results for the effect of each genetic

variant on both biomarker and disease. This may have practical

importance, since it allows inclusion of results from ongoing

genetic consortia without requiring further analyses, as well as

inclusion of previous findings from published reports. However,

methodological work will be needed to assess the relative benefits

of the two approaches under different scenarios.

The crucial aspect of a MR study, and more generally of any

study based on an instrumental variable approach, is the choice of

the gene (instrument) that needs to have a strong effect on the

intermediate phenotype of interest. We used three polymorphisms

as instrumental variables, since the use of multiple instruments

influencing the intermediate phenotype of interest can increase the

statistical power of the MR analysis [10]. The instrument strength

was high for all of them, as shown by their very large F-statistic

values. Two of them, rs1800562 (C282Y) and rs1799945 (H63D),

are non-synonymous polymorphisms in HFE, a gene with well

known effects in the modulation of iron blood levels [57]. The

third non-synonymous polymorphism, rs855791 (V736A), is

located in TMPRSS6, a gene whose role in iron regulation was

demonstrated more recently [58]. The two variants in the HFE

gene are responsible for most cases of hereditary hemochromatosis

[59,60], and they are associated with iron overload when present

in the homozygous (C282Y/C282Y) or compound heterozygous

(C282Y/H63D) state. The C282Y variant prevents the altered HFE

protein from reaching the cell surface and interacting with the

transferrin receptor (TfR) [61,62]. As a result, iron regulation is

disrupted. The exact functional effect of the H63D variant is as yet

unclear, but some evidence suggests that it may alter an

intramolecular salt bridge, possibly affecting the interaction of

the HFE protein with the TfR [63]. The TMPRSS6 V736A variant

was found associated with iron-deficiency anemia [64]. Further-

more, the A allele has been shown to inhibit hepcidin more

efficiently than the V allele in in vitro experiments, and to affect

hepcidin levels in healthy individuals [65]. Interestingly, TMPRSS6

rs855791 was by far the most influential and was the one driving

the result of the meta-analysis of MR estimates from the three

instruments. The wide confidence intervals of the MR estimates

for HFE rs1800562 and rs1799945 suggest that the power of their

MR analysis was very limited due to their low allele frequency.

This illustrates the importance of balancing the strength of the

effect on the intermediate phenotype with allele frequency and

statistical power when choosing the instruments for a MR study.

A potential source of bias specific to MR studies is pleiotropy,

whereby the HFE or TMPRSS6 genotypes could influence PD risk

through another mechanism that is independent of their effect on

serum iron levels. Although we cannot completely exclude pleiotropic

effects of the three polymorphisms used in our study because of

incomplete knowledge of the underlying biology, we can indirectly

investigate the presence of such effects through the simultaneous use

of the three polymorphisms as multiple instruments. In a MR study, if

all instruments are valid, their MR estimates should differ only as a

result of sampling error [10], so that there should be no heterogeneity

in the meta-analysis of MR estimates. In our meta-analysis of MR

estimates there was no evidence of heterogeneity, although the

statistical power to detect heterogeneity is limited when only three

estimates are included in the meta-analysis [66]. As more evidence on

genes influencing iron blood levels becomes available, MR studies

investigating the effects of iron on the risk of PD and other diseases

will be able to include many more genetic variants as instruments.

This will ensure that pleiotropy can be ruled out with greater

confidence. Selection of genes to be used as instruments requires

careful consideration, since inclusion of variants with small genetic

effects on the biomarker may introduce a ‘‘weak instrumental

variable’’ bias [35]. Another potential issue in MR investigations is

developmental canalization, the ability to produce the same

phenotype regardless of genetic (or environmental) variation. If a

genetic polymorphism is expressed during fetal development,

compensatory processes may influence development in a way that

can protect against the effect of the polymorphism [8]. Although

canalization of genetic effects needs to be considered when

interpreting MR findings, this problem is very difficult to investigate.

Finally, one could speculate that the observed association of the

subject’s iron-related genotype with PD risk might actually reflect an

intrauterine effect of iron due to a similar iron-related maternal

genotype. Some evidence suggests that maternal iron deficiency could

result in an altered iron status of the newborn, with possible negative

effects on the neurophysiologic development [67].
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Despite all the possible limitations discussed above, MR offers a

valuable approach to derive causal effect estimates whenever

randomized trials are very difficult to perform, as in the case of

iron and PD. A trial investigating the long-term effect of changes

in a subject’s iron status, obtained by some means, on the risk of

developing PD would require not only a very long follow-up but

also a huge sample size, given the low frequency of the disease and

the magnitude of the effect that might realistically be expected.

In our study, the MR analysis to combine the OR of the gene–PD

association with the effect of the gene–iron association was based on

a Wald-type estimator, which works under a ‘‘rare disease

assumption’’ that is appropriate in the case of PD. However, the

use of a Wald-type estimator for the MR analysis of binary

outcomes represents only an approximate method and may produce

biased MR estimates [32]. Although such bias has been recently

shown to be small, typically within 10% of the MR estimate [68],

methods in this area are still under active development.

In summary, our MR study suggests a causal association

between increased serum iron levels and decreased risk of

developing PD, suggesting that disrupted iron metabolism may

be an important factor in the pathogenesis of PD. However,

further research is needed to elucidate the pathophysiological

mechanism of action underlying our findings. The effect of dietary

iron or drugs capable of altering the balance between serum iron

and iron storage compartments, might prove to be suitable to test

in experimental models. The development of such disease models

is therefore necessary before any public health or clinical

recommendation can be made for primary prevention in subjects

at high risk of developing PD.
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Figure S1 Forest plot of the meta-analysis of the studies
included for the effect of HFE rs1800562 on PD risk. The

boxes indicate the genetic (additive) effects of individual studies, with

the size of the box being inversely proportional to the variance and

horizontal lines indicating 95% confidence intervals. The diamond

indicates the pooled effect estimate, obtained using inverse-variance

weighted fixed-effect meta-analysis, and its 95% confidence interval.

The full vertical line shows the value for no effect, as opposed to the

dashed line indicating the estimated pooled effect.

(TIF)

Figure S2 Forest plot of the meta-analysis of the studies
included for the effect of HFE rs1799945 on PD risk. The

boxes indicate the genetic (additive) effects of individual studies, with

the size of the box being inversely proportional to the variance and

horizontal lines indicating 95% confidence intervals. The diamond

indicates the pooled effect estimate, obtained using inverse-variance

weighted fixed-effect meta-analysis, and its 95% confidence interval.

The full vertical line shows the value for no effect, as opposed to the

dashed line indicating the estimated pooled effect.

(TIF)

Figure S3 Forest plot of the meta-analysis of the studies
included for the effect of TMPRSS6 rs855791 on PD risk.
The boxes indicate the genetic (additive) effects of individual

studies, with the size of the box being inversely proportional to the

variance and horizontal lines indicating 95% confidence intervals.

The diamond indicates the pooled effect estimate, obtained using

inverse-variance weighted fixed-effect meta-analysis, and its 95%

confidence interval. The full vertical line shows the value for no

effect, as opposed to the dashed line indicating the estimated

pooled effect.

(TIF)

Figure S4 Sensitivity analysis: Forest plot of the men-
delian randomization estimates after exclusion of nine
studies from the PDGene dataset that had not adjusted
for population stratification (see Table S2).
(TIF)

Table S1 Characteristics and sample size of the indi-
vidual studies included for the gene–iron association. In

all studies, the analyses were adjusted for age and sex, as well as for

the first five MDS (multidimensional scaling) or principal

components to control for population stratification.
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Table S2 Characteristics and sample size of the indi-
vidual studies included for the gene–PD association.
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Table S3 Gene–iron association: GIS-consortium meta-
analysis. The effect size for the genetic effects on iron levels is

expressed as number of SDs from the mean (Z-scores).
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Table S4 Gene–PD association: meta-analysis of all
available candidate gene and GWA studies.
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Text S1 Detailed description of the studies included in
the three GWA investigations of PD risk.
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Editors’ Summary

Background. Parkinson disease is a degenerative disorder
of the central nervous system caused by the death of
dopamine-generating cells in the substania nigra, a region of
the midbrain. The earliest symptoms are usually movement-
related and include tremor, slow movements, and difficulty
walking, and later cognitive and behavioral problems may
arise, with dementia commonly occurring in the advanced
stages of the disease. Parkinson disease affects around ten
million people world-wide and incidence increases with age,
with men more affected than women. To date, the causes of
Parkinson disease remain unknown although a combination
of genetic and environmental factors is thought to play a
role. Identifying possible modifiable risks is an important
step in the possible prevention of Parkinson disease.

Why Was This Study Done? Previous studies have shown
a possible association between lower blood levels of iron in
people with Parkinson disease compared with controls,
although the quality of these studies makes this finding
difficult to interpret. So in this study, the researchers used a
mendelian randomization approach to investigate whether
there was any evidence of an effect of blood iron levels on
the risk of Parkinson disease and if so to further explore the
direction and scale of any link. Mendelian randomization is a
method of using measured variation in genes of known
function to examine the causal effect of a modifiable
exposure on disease in situations where it is inappropriate
to perform a randomized controlled trial.

What Did the Researchers Do and Find? The researchers
estimated the effect of blood iron levels on the risk of
Parkinson disease using three polymorphisms in two genes,
HFE and TMPRSS6. For each polymorphism, they performed a
meta-analysis combining the results of studies investigating
the genetic effect on iron levels, which included almost
22,000 people from Europe and Australia, and a meta-
analysis of studies investigating the genetic effect on the risk
of Parkinson disease, which included a total of 20,809 people
with Parkinson disease and 88,892 controls from Europe and
North America. They then performed three separate men-

delian randomization analyses to estimate the effect of iron
on Parkinson disease for the three polymorphisms. By
combining the three estimates, they obtained a statistically
significant odds ratio of 0.97 for Parkinson disease per 10 mg/
dl increase in iron, corresponding to a 3% reduction in the
risk of Parkinson disease for every 10 mg/dl increase in blood
iron. Since genotype influences on blood iron levels
represent differences that generally persist throughout adult
life, the combined mendelian randomization estimate
reflects an effect of iron over the course of a lifetime.

What Do These Findings Mean? These findings suggest
that increased iron levels in the blood are associated with a
3% reduction in the risk of Parkinson disease for every 10 mg/
dl increase in iron. This finding is important as it suggests
that increased blood iron levels may have a protective effect
against Parkinson disease, although the underlying mecha-
nism remains unclear. Furthermore, although mendelian
randomization is an increasingly used approach to address
the issue of classical confounding, there may be remaining
confounding factors specific of mendelian randomization
that may influence the interpretation of this study. Never-
theless, the results of this analysis have potentially important
implications for future research into the prevention of
Parkinson disease. Further studies on the underlying mech-
anisms are needed before any specific treatment recom-
mendations can be proposed.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001462.

N The National Institutes of Neurological Disorder and
Stroke, MedlinePlus, and NHS Choices have several pages
with comprehensive information on Parkinson disease

N Wikipedia gives an explanation of mendelian
randomization (note that Wikipedia is a free online
encyclopedia that anyone can edit; available in several
languages)
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