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Abstract

MiRNAs are discussed as diagnostic and therapeutic molecules. However, effective miRNA drug treatments with miRNAs are,
so far, hampered by the complexity of the miRNA networks. To identify potential miRNA drugs in colorectal cancer, we
profiled miRNA and mRNA expression in matching normal, tumor and metastasis tissues of eight patients by Illumina
sequencing. We validated six miRNAs in a large tissue screen containing 16 additional tumor entities and identified miRNA-
1, miRNA-129, miRNA-497 and miRNA-215 as constantly de-regulated within the majority of cancers. Of these, we
investigated miRNA-1 as representative in a systems-biology simulation of cellular cancer models implemented in PyBioS
and assessed the effects of depletion as well as overexpression in terms of miRNA-1 as a potential treatment option. In this
system, miRNA-1 treatment reverted the disease phenotype with different effectiveness among the patients. Scoring the
gene expression changes obtained through mRNA-Seq from the same patients we show that the combination of deep
sequencing and systems biological modeling can help to identify patient-specific responses to miRNA treatments. We
present this data as guideline for future pre-clinical assessments of new and personalized therapeutic options.
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Introduction

Colorectal cancer (CRC) is the third most common cancer

worldwide and a major cause of cancer mortality with an

incidence of approximately one million cases. At early stages a

curative treatment is achieved by surgical resection and (neo-)

adjuvant chemotherapy. Current chemotherapies however are

often limited due to i) unspecific and broad mechanisms of action,

ii) a large proportion of patients which is resistant to the

chemotherapies, but nevertheless suffers from undesirable side-

effects and iii) tumors that are diagnosed at advanced stages where

a chemotherapy cannot be applied anymore.

Recent years have identified a number of oncogenic and tumor

suppressive miRNAs [1–3]. MiRNAs are evolutionarily conserved,

small (20–25 nucleotides) non-protein-coding molecules that

regulate gene expression at the post-transcriptional level and

participate in the regulation of various cellular processes, such as

cell differentiation, cell cycle progression, metabolism and
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apoptosis [4]. The regulatory potential of miRNAs results from the

target diversity of each miRNA, such that each miRNA targets

multiple mRNAs and one mRNA can be regulated by different

miRNAs.

Currently more than 1600 microRNA sequences have been

identified in the human genome (miRBase v19, 2012) and it is

predicted that ,30% of the protein-encoding genes are regulated

by miRNAs. In 2002 Calin et al. [1] showed that in over 65% of B

cell chronic lymphocytic leukemia (B-CLL) patients, the miRNA

genes miRNA-15 and miRNA-16 are deleted, suggestive of their

tumor suppressor functions. Subsequently numerous miRNAs

have been identified with oncogenic and tumor suppressive

activities [2,3].

For colorectal cancers miRNAs are not only grouped as tumor

suppressors or oncogenes, but their specific functions in CRC-

associated pathways has been identified [5]: As such, the

adenomatous polyposis coli gene APC is targeted by the miR-

135 family and results in a de-regulated Wnt/b-catenin pathway

[6]. Other examples include KRAS which is targeted by the let-7

miRNA family, miRNA-18 and miRNA-143 which also targets

MACC1 (metastasis-associated in colon cancer-1). MACC1 pro-

motes tumor progression and metastasis through an activation of

the HGF/Met signaling pathway [7–9]. MiRNA-21 is indicated as

an oncogenic miRNA which can promote cell proliferation, inhibit

apoptosis and enhance invasion and metastasis. Increased

miRNA-21 expression has also been associated with inflammation

in ulcerative colitis, thus linking inflammation and cancer [10,11].

Interestingly, miRNAs can also function as kind of intermediate

switch to transmit the effect of other proteins. TP53 for example

directs the expression of miRNA-34 family members. TP53

induced miRNA-34a leads to apoptosis, cell cycle arrest and

senescence [12,13]. The upstream and downstream regulation of

miRNAs adds another layer of complexity on the networks

underlying CRC.

The complexity of biological systems favors computer models

which have been developed with the aim to represent features

of a disease and to predict therapeutic outcomes. One caveat of

many such systems is that appropriate kinetic parameters need

to be estimated. A Monte Carlo type strategy developed by

Wierling and colleagues samples parameter vectors from a given

random distribution with subsequent statistical significance

testing [14]. Those mathematical models can integrate infor-

mation of cellular processes, such as cellular signaling pathways,

and can be used to study the qualitative and even quantitative

behavior of the underlying biological system given specific

perturbations, like targeted drugs or mutations. This approach

can be used to study individual pathways, but also multiple

signaling pathways taking into account cross-talk effects and the

subsequent gene-regulatory network as well as regulatory effects

of miRNAs [15].

We applied high throughput sequencing on colorectal normal,

tumor and metastasis tissues to generate miRNA and gene

expression patterns from individual patients. We identified

miRNA-1, miRNA-129, miRNA-215, miRNA-497, miRNA-

135b and miRNA-493 among our top candidates de-regulated

in colorectal cancer. We extended our screen to 16 additional

tumor entities (330 tissues) and found miRNA-1 constantly down-

regulated. Using the Monte Carlo-based systems biology modeling

approach we explored the power of miRNA-1 response prediction

in individual patients and suggest a new strategy to optimize

personalized treatment regimes.

Materials and Methods

Tissue Samples and Cell Lines
The primary colon carcinoma tissue and matched normal colon

epithelium as well as liver metastases tissue used for the next

generation sequencing (NGS) experiments were obtained from

patients diagnosed with CRC and undergoing surgical resection

(Table 1, Table S1, Methods S1). The study has been

approved by the Research Ethics Committee of the Medical

University of Graz. Colon cancer cell lines SW480 and SW620

were obtained from American Type Culture Collection (ATCC).

All cells were maintained and propagated according to the

recommendations of ATCC.

For the large cancer screen 243 tumor samples and 87 normal

tissue samples were selected from the biobank of the Medical

University of Graz, Austria. This collection consists of tumor and

normal tissue samples obtained from different organs, such as

adipose tissue, brain, breast, colon, endometrium, kidney, liver,

lung, lymphatic system, muscle, ovary, pancreas, prostate,

stomach, testis and thyroid gland (Table S2). All tissue samples

were reviewed and evaluated histopathologically and a macro-

dissections of the required areas were performed before RNA

extraction.

RNA Isolation from Human Cell Lines
RNA was extracted with the Trizol (Invitrogen) reagent

according to the manufacture’s protocol including a DNase

digestion step with the RNase-free DNase set from Qiagen

(Methods S1). The integrity was assessed using the Agilent

BioAnalyzer 2100 technology.

Library Preparation and Next Generation Sequencing of
RNAs and Small RNAs

For RNA sequencing rRNA substraction was performed with

the RiboMinusTM Human/Mouse Transcriptome Isolation Kit

SmallRNA and RNA sequencing including smallRNA isolation,

Table 1. Clinical parameters of the colorectal cancer patients.

Patient Sex Age MSa-Status Tissue Type Organ

P1 M 70 stable Tumor Sigmoid

Metastases Liver

P2 M 74 stable Tumor Coecum

Metastases Liver

P3 M 44 instable Tumor Colon asc.

Metastases Liver

P4 W 49 stable Tumor Rectum/Sigmoid

Metastases Liver

P5 W 80 instable Tumor Colon

Metastases Lymph node

P6 W 66 stable Tumor Colon asc.

Metastases Liver

P7 W 76 stable Tumor Colon asc.

Metastases Lymph node

P8 M 74 stable Tumor Coecum

Metastases Liver

amicrosatellite.
doi:10.1371/journal.pone.0067461.t001
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cDNA library preparation, and sequencing was performed by

Illumina’s DGE smallRNA sample and Illumina’s RNA-Seq

prep kit following the manufacturer’s instructions (see also

Methods S1). The purified DNA was quantified and diluted to

10nM for cluster generation and sequencing on an Illumina

Genome Analyzer GAII. The data discussed in this publication

have been deposited in NCBI’s Gene Expression Omnibus and

are accessible through GEO Series accession number

GSE46622 [16].

Analysis of Deep Sequencing Data
Primary data analysis: Sequences were obtained using Illumina

Genome Analyser IIx. Reads were mapped against Illumina

adaptor sequences using blat [17] and adaptor signatures were

clipped from the reads subsequently. In detail; clipping always

starts from one of the ends of a read and reads with a length less

than 16 bp after clipping were omitted from analysis.

Analysis of miRNA expression: Adaptor-clipped reads were

mapped to the human genome version GRCh37 (hg19) with the

bwa 0.5.8 alignment tool [18] using default parameters. As a

measure for miRNA expression, reads on target regions were

counted. A read had to have at least one base within the target

region to be evaluated ‘‘on target’’. Log2 ratios were calculated

using the read counts per target to compare different conditions.

Ratios were subsequently normalized for each comparison by

centering the median of log2 ratios to zero. Differential expression

was evaluated using student’s t-test on the log2 ratios (samples

versus controls).

Evaluation of miRNA biomarker combinations: To assess the

potentials of combinations of miRNAs for the discrimination of

sample subgroups Mann-Whitney p-values were calculated for

each miRNA comparing tumor and normal, metastasis and

normal, tumor and metastasis, and tumor/metastasis and normal.

For each comparison, the 50 best scoring miRNAs were extracted.

Linear combinations of each two miRNAs out of the 50 were

assessed for separating the groups. If no overlap between the

groups was detected using a marker combination, this marker

combination was called ‘‘promising’’.

Analysis of mRNA expression: Adaptor-clipped reads were

mapped to the human genome version GRCh37 (hg19) using

transcript models taken from Ensembl v64 with TopHat [19].

Using the parameters -u -N –max-bundle-length 350000000–max-

bundle-frags 50000000. Differential expression as well as unknown

transcript models were determined using the Cufflinks software

bundle [20]. In detail transcript models from all tissues were

merged for each patient using cuffcompare and differential

expression was determined using cuffdiff with upper quartile

normalization.

Real-time Quantification of microRNAs using Stem-loop
real-time PCR

For real-time quantification of mature microRNAs we used

TaqManH MicroRNA Assays (Applied Biosystems) and performed

a two-step RT-PCR according to the manufacturer’s protocol (see

also Methods S1). All reactions were typically run in triplicates.

The relative quantification of expression was calculated by the

"delta CT" method using RNU44 as an internal control [21]. (For

an assessment of RNU44 as reference gene see Methods S1.) The

comparison of normal and tumor or metastasis tissues was

calculated as ‘‘delta delta Ct’’ values.

Transfection of Cells with miRNA-1 Mimic and Functional
Analyses

Transfection of SW480 and SW620 cells was performed with

100nM microRNA-1 mimic (Dharmacon) using Hiperfect trans-

fection reagent (Qiagen). For wound healing experiments, SW480

and SW620 cells were seeded, after 24 h transfected and

additional 24 h later wounds were generated through the

monolayer with a pipette tip. Wound closure was assessed after

24 h and 48 h. For cell viability assays SW480 and SW620 cells

were seeded into 96 well plates at concentrations of 5000 cells/well

and transfected with the corresponding miRNA mimic. For

Camptothecin treatment cells were additionally treated for 24 h

and 48 h with 0.06 mM Camptothecin. For cell viability the

alamarBlue reagent was used according to the manufacturer’s

protocol.

Model Description
The development of the mathematical model of cellular

signaling pathways was guided by the cancer-related pathways

as described for the hallmarks of cancer by Hanahan and

Weinberg [22,23]. Ligands and receptors as well as downstream

signaling pathways that have been integrated are listed in Table
S3 and the complete model is provided as an SBML file (Data
S1). By rigorous literature screening using different resources, like

PubMed, GeneCards, iHOP and Bibliosphere, molecular inter-

action details were added when required. The model integrates

several receptor tyrosine kinases such as epidermal growth factor

receptor (EGFR), insulin-like growth factor receptor (IGF), colony

stimulating factor receptor (CSFR), platelet-derived growth factor

(PDGF), vascular endothelial growth factor (VEGF), insulin

receptor (INSR) and their respective ligands as well as their

subsequent signal transduction via the MAP kinase cascade and

PI3K/AKT. Furthermore, the model covers signaling that is

triggered by the ligands transforming growth factor-b (TGFb1),

bone morphogenetic protein (BMP) and its corresponding

signaling via SMADs, by different interleukins, by WNT and its

subsequent signal transduction via APC/AXIN/GSK3b/b-cate-

nin, by interferone via JAK/STAT, and by Delta/Notch and the

corresponding signal transduction via the notch intracellular

domain. Moreover, the model contains several direct transcrip-

tional targets of the individual signal transduction pathways as

described in text books or as annotated by Transfac [24]. The

model also covers signaling that triggers apoptosis via the ligands

FASL, TNFa, and TRAIL. The model integrates in total 3542

reactions and 2369 components covering 505 human genes. The

respective ODE model has 3845 kinetic parameters, 1737

variables and 632 components that are treated as fixed. The

Monte Carlo-based simulations of the model were performed as

described in Wierling et al. [14].

Results

High Throughput Small RNA Sequencing of Matched
Normal, Tumor and Metastasis Colon Tissues

To identify miRNAs which are constantly over- or under-

expressed in tumor- and metastasis tissues we screened matching

normal, tumor and metastasis tissues from eight colorectal cancer

patients (Table 1, Table S1). We generated genome-wide

miRNA expression maps with the Illumina high throughput

sequencing technology. For miRNA expression analysis we aimed

to sequence more than 25 million reads total for each sample of

which 71.34% of uniquely aligned reads are located on miRNA

regions as taken from miRBase release 18 (Table S4). We

detected 724 miRNAs covered with at least one sequencing read in

Sequencing and Modeling of microRNA Action
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at least one tissue or cell line over all experiments. Our high-

throughput sequencing approach proved to be very reliable as was

probed using technical replicates and RT-PCR data (Data S2).

We identified several miRNAs to be differentially regulated in

tumor and metastasis tissues, some of which have already been

described in the literature, which further supports the validity of

our approach. We found a 21-fold up-regulation of miRNA-135b

in the colon cancer samples (p-value = 0.0001) which has been

described [6] and a 28-fold higher expression in metastasis tissues

(FC = 28.94, p-value = 0.00156) (Figure 1A, Table S5, S6).

Other findings which concord with the literature are the down-

regulation of miRNA-145 and miRNA-133b and the up-regula-

tion of miRNA-21, miRNA-31, miRNA-183 and miRNA-96

[25,26]. When compared to the normal tissues we found 19

miRNAs specifically up-regulated and 13 down-regulated in the

tumor tissues and 29 miRNAs specifically up-regulated and 16

down-regulated in the metastasis tissues. We identified one

microRNA, miRNA-559, which is down-regulated in all tumor

tissues with an even stronger and significant down-regulation in

the metastasis. MiRNA-559 targets the protooncogene human

epidermal growth factor receptor 2 (HER2) which leads to cell

growth and differentiation [27].

Primary tumor and corresponding metastasis were found to

differ less from each other than in comparison to the normal tissue

samples, a finding which is also supported by hierarchical

clustering analyses (Figure S1A). We identified only six miRNAs

up- and 11 down-regulated in the metastasis as compared to the

corresponding tumor tissue (Figure S1B, Table S5C, S6).

MiRNA-1 is Constantly Down-regulated in 16 Different
Tumor Entities and Acts as Tumor Suppressor

Potential miRNA drug candidates should be de-regulated in

both tumor and metastasis tissues. As top candidates we

determined miRNA-1, miRNA-129, miRNA-135b, miRNA-215,

miRNA-493 and miRNA-497. We screened these six candidates

in 16 additional tumor entities using 330 different tissue samples.

Normal and tumor tissues were taken from adipose tissue, brain,

breast, colon, endometrium, kidney, liver, lung, lymph node,

muscle, ovary, pancreas, prostate, stomach, testis and thyroid

gland (Table S2).

We found miRNA-1, miRNA-129, miRNA-215 and miRNA-

497 down-regulated over the majority of cancers. The most

significant down-regulations were found for miRNA-1 in colorec-

tal cancer (fold change = 8.5), muscle (fold change = 20.28), ovary

(fold change = 88.87) and prostate tissues (fold change = 45.94).

The expression of miRNA-135b and miRNA-493 varied across all

cancer tissues investigated. For miRNA-135b we observed in colon

cancer an up-regulation (fold change = 9.23), similar in endome-

trium (fold change = 15.44), stomach (fold change = 5.7), adipose

tissue, brain, lung and ovary (Figure 2). In contrast, breast,

kidney, liver, lymph node, muscle, pancreas, prostate, testis and

thyroid gland tissues showed down-regulation of miRNA-135b

expression in tumors. Based on the constant de-regulation across

many tissues we concentrated on miRNA-1 for further experi-

ments. Ectopic expression of miRNA-1 in lung, liver and

colorectal cancer as well as in rhabdomyosarcoma inhibits cellular

growth similar to the function of a classical tumor suppressor gene

[28–32]. To investigate the functional impact of miRNA-1 in a

tumor-metastasis model system we used the colorectal cancer cell

lines SW480 (primary tumor) and SW620 (metastasis) which

originate from the same patient and thus best resemble our

normal-tumor-metastasis sequence. We found miRNA-1 down-

regulated in SW480 (fold-change = 61) and SW620 cells (fold-

change = 7) when compared to the averaged expression of all

normal colon tissues. We transfected these cell lines with miRNA-1

mimics to increase the miRNA-1 level and monitored the cell

viability with an alamarBlue assay. Measuring the fluorescence

intensity of metabolizing cells we detected a decrease of

approximately 25% after 48 hours and of 30% after 72 hours

for SW480 and of 20% after 72 hours for SW620 cells after

miRNA-1 transfection (Figure 3A). We also examined the

motility of miRNA-1 transfected colon cancer cells (SW480,

SW620) using a ‘‘scratch wound healing’’ assay and found that

miRNA-1 expressing cells migrated towards the ‘‘wound’’ at a

much slower rate (Figure 3B).

A major problem in oncology is the therapy-resistance of many

tumors: Recent studies showed that miRNAs can alter the

sensitivity of cancer cells to therapeutic agents [33–38]. MiRNA-

1 has been found to act synergistically with doxorubicin in lung

cancer cells [29]. We were interested if miRNA-1 can also alter the

sensitivity of colorectal cancer cells to anticancer drugs. We treated

SW480 and SW620 cell lines with camptothecin, a topoisomerase

inhibitor, in presence and absence of miRNA-1 and measured the

cell viability with an alamarBlue assay after 24 h and 48 h of

treatment. Compared to the non-transfected cells we detected a

8% and 17% reduced viability after 24 hours camptothecin

treatment in SW480 and SW620 cells, respectively (Figure 3C).

Combination of camptothecin treatment and expression of

miRNA-1 further lowered the cancer cell viability by 72% and

75%, respectively. The effect was even stronger after 48 hours:

Camptothecin treatment alone reduced the cell viability to 57%

and 51% in SW480 and SW620, respectively. A combination

therapy with miRNA-1 further decreased the viability by 45% and

43%. Thus, in both cell lines camptothecin and miRNA-1 had an

additive effect.

Modeling of miRNA-1 Function and Therapeutic Effects
We showed that miRNA-1 is down-regulated in many different

tumor entities and exerts tumor suppressor like characteristics.

Consequently, augmenting the expression level of miRNA-1 might

revert tumor cells.

To investigate the effect of miRNA-1 expression on a system

biological scale we used a computer simulation of cancer related

cellular signaling pathways [22,23] and its down-stream regulated

genes. The mathematical model was developed with PyBioS that is

a web-based software for the modeling and simulation of cellular

reaction systems [14,39,40]. It provides a framework for the

development of computational models using an interface to public

pathway databases such as KEGG, Reactome and Consensus-

PathDB [41–43]. PyBioS supports the automatic generation of

ordinary differential equations (ODEs) system of the model using a

given set of kinetic laws and their respective kinetic parameters.

The ODE system of the model can subsequently be used for

simulation by numerical integration and model analysis. The

model comprises more than 4,000 components representing

functional interactions of approximately 500 genes.

We modeled the effect of miRNA-1 up- and down-regulation

for four patients. For each of the patients we had generated

mRNA-Seq data for each tissue, normal, tumor and metastasis

from the same samples used for the miRNA analysis. The RNA

expression levels were used to initialize the gene expression state of

the model states normal N0, tumor T0 and metastasis M0 for each

patient individually (Figure 4A, Table S7). In order to

investigate the effect of miRNA-1 overexpression and repression

on the biological system of an individual, we screened our cancer

model for target genes of miRNA-1. According to the miRWalk

database (version March 15th 2011, [44]) 843 genes are known as

validated targets of miRNA-1, of which 59 are integrated in our

Sequencing and Modeling of microRNA Action
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Figure 1. Differential expression of miRNAs in colon tumor and metastasis tissues. (A) Top 25 up- and down-regulated miRNAs comparing
tumor (left) or metastasis (right) tissues versus normal colon samples as analyzed by Illumina sequencing. All depicted miRNAs sufficed a p-value
threshold #0.05. A star indicates samples with p#0.01. (B) Venn diagram of microRNAs expressed in colorectal cancer patients, as determined by
Illumina sequencing. (Left) Numbers of detected miRNAs, specific for each tissue (normal (N) = 19, tumor (T) = 34, metastases (M) = 29) and in all
tissues (559). (Middle) Venn diagram of the significantly up-regulated miRNAs (p-value #0.05) for all comparisons (N/T, N/M and T/M). (Right) Venn
diagram of the significantly down-regulated miRNAs (p-value #0.05) for all comparisons (N/T, N/M and T/M).
doi:10.1371/journal.pone.0067461.g001
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cancer model (Table S8). To study the quantitative effect of

different miRNA-1 levels, we simulated different levels of the

miRNA target genes and extracted the expression levels of all 1645

components contained within the model (Table S9, S10).

Outputs of the simulations are steady state levels of signaling

components and mRNA values of their direct downstream

regulated genes which we used to calculate the effect of different

miRNA-1 levels in terms of changed expression. The changed

expression levels for all components in the model including

downstream regulated mRNAs and excluding direct miRNA-1

targets were then evaluated according to whether the effect was

desired or adverse. In detail, differential expression was calculated

as comparison between tumor (T0) and normal state (N0) as well as

between treated (T1 to Ty or T1 to Tz) and normal (N0) states

(Figure 4A). The alterations were stratified into five different

groups: ‘desired’, ‘aggravating’, ‘side effect’ and ‘weak effect’, each

Figure 2. Expression of miRNA-1, miRNA-129, miRNA-215, miRNA-135b, miRNA-493 and miRNA-497 in 16 different cancer entities
using the TaqMan platform. Expression values of both miRNAs were determined with the delta delta Ct method. Normalizations were performed
against a stable internal control gene (RNU44) and to the expression levels in the normal tissues.
doi:10.1371/journal.pone.0067461.g002

Sequencing and Modeling of microRNA Action
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of which was subdivided by the direction of change (‘plus’ and

‘minus’) (Figure 4B, C). The alteration ‘flip’ was assigned if the

direction of change ‘plus to minus’ or ‘minus to plus’ was observed.

Genes in the tumor that approached the normal state were

summed up as ‘desired’. Genes with a more severe expression level

after treatment were counted as ‘aggravated’. If the expression

levels of genes were the same in tumor and normal tissue and after

treatment changed to an up- or down-regulation, the genes were

summarized as ‘side effect’. The numbers of genes in five effect-

groups were calculated for each manipulated miRNA-1 concen-

tration and dosage-dependent curves were plotted (Figure 4D,
Table S11). First we simulated a down-regulation of miRNA-1

(1.01 to 100fold) mimicking the disease state. For the majority of

genes we found an amplification of their over-expressed state

(‘aggravated plus’). Besides the pronounced tumor-like effect of a

low miRNA-1 level, many genes were also counted as ‘desired

minus’ and ‘weak minus’, indicating that gene expression levels of

previously de-regulated states returned towards the normal state

after miRNA-1 treatment (Figure 4D, Figure S2).

To analyze the potential therapeutic effect of miRNA-1

overexpression we simulated an increase in miRNA-1 levels by

down-regulating the synthesis rate of miRNA-1 targets from 1.01-

to 100-fold. In particular patients 4 and 5 had many genes with a

desired expression change which were grouped into ‘weak effect

plus’ and ‘desired plus’. The optimal therapeutic window was

found between 1.6 and approximately 4-fold change of miRNA-1

levels. Interestingly, at 1.2 to 1.5 fold down-regulation of miRNA-

1 the fraction of genes with an enhancement of their decreased

expression (‘aggravated minus’) predominated. The weakest

positive effect of miRNA-1 down-regulation was detectable for

patient 7 (low ‘weak+’ and no ‘desired+’), indicating that a

potential miRNA-1 treatment might not be beneficial for this

patient.

Discussion

In recent years miRNAs have emerged as diagnostic and

prognostic biomarkers, but also as potential new therapeutic

molecules. In this study on colorectal cancer we investigated the

complete set of miRNAs by means of high throughput sequencing

technology in normal, tumor and metastasis tissue samples

originating from the same patients. The inclusion of tumor and

metastasis tissues from the same patient represents a unique

resource not investigated with high throughput technologies so far.

Many studies have analyzed miRNA profiles in colorectal cancer,

but either applied real-time PCR or array-based technologies, or

were restricted to normal/tumor pairs [25,45–48]. Nevertheless

we found a broad overlap between already published miRNA

regulations and our data. For the comparison we used the

PhenomiR 2.0. PhenomiR is a database which provides informa-

tion about differentially deregulated miRNAs and is generated by

manual extraction of data out of more than 365 scientific articles

[49]. We found that out of 64 which have been described in

PhenomiR to be overexpressed 43 were also overexpressed in our

experimental data. On the other side, out of 49 down-regulated

miRNAs in PhenomiR we found 35 also down-regulated in our

data. If we also apply a p-value restriction (p-value ,0.05) we have

79 miRNAs left in our analysis. Of these 30 have an entry (down-

regulated, overexpressed or ambiguous) in the database. Pheno-

miR lists 10 of them as overexpressed and out of these we could

validate 7 with our sequencing study. As down-regulated miRNAs

PhenomiR lists 12 miRNAs out of which 10 can be confirmed by

Figure 3. Functional assays on miRNA-1 as a potential tumor-suppressor gene. (A) AlamarBlue cell viability assay to test the effect of
miRNA-1. SW480 (primary colon cancer cell line) and SW620 (corresponding metastases cell line) cells were transfected with miRNA-1 mimics (+miR-1)
or mock transfected (2miR-1) and measured using an spectrophotometer after 24 h, 48 h and 72 h. The miRNA-1 level was determined by TaqMan
assays for mature microRNAs. (B) ‘‘Wound healing’’ assay for miRNA-1 in SW480 and SW620 cells. After 24 h of transfection with miRNA-1 mimics a
uniform scratch was generated through each confluent cell layer and ‘‘wound’’ closure was documented after 24 h using a phase-contrast
microscope (n = 2). (C) AlamarBlue cell viability assay in SW480 and SW620 cells after camptothecin treatment alone or in combination with miRNA-1.
Cell viability was measured after 0 h, 24 h and 48 h of drug treatment using a spectrophotometer.
doi:10.1371/journal.pone.0067461.g003
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our approach. Among the top candidates are miR-135b, miRNA-

143 and miRNA-21 (Table S12).

The small RNA sequencing data revealed a total of 29 miRNAs

significantly down-regulated and of 17 miRNAs up-regulated in

tumor and metastases as compared to the normal tissues. Overall,

we found more differentially expressed miRNAs in metastases than

in primary tumors, indicating that metastases undergo further

genomic alterations that lead to changed miRNA patterns. For a

potential use as biomarker candidates we were interested to see if

combinations of two miRNAs would be sufficient to discriminate

normal and malign tissues. In this line, among the top 50

differentially expressed miRNAs we found 143 (T/N) and 159 (M/

N) different combinations of two miRNAs which could serve as

potential biomarkers to separate normal from primary tumor or

metastases tissues (Figure S3).

One of the aims of our study was to identify ’driver miRNAs’

and we reasoned that miRNAs which are constantly de-regulated

in different tumor types might have a central carcinogenic role.

We performed a large tissue screen with 16 different tumor types

for miRNA-1 miRNA-135, miRNA-129, miRNA-215, miRNA-

493 and miRNA-497. In general we found a constant decrease in

all tumor tissues for down-regulated miRNAs (miRNA-1, miRNA-

129, miRNA-215 and miRNA-497) (Figure 2 and data not shown),

whereas for miRNA-135b and miRNA-493 the patterns are more

heterogeneous between the tumor tissues. A down-regulation of

microRNAs has been described as a common phenomenon and

thus might play a causal role in the generation or maintenance of

tumors [50]. The impaired miRNA expression is most likely due to

an altered miRNA processing machinery which also promotes

oncogenic transformation [51].

For further analyses we selected miRNA-1 as top drug

candidate based on the findings that miRNA-1 i) is strongly

down-regulated in colorectal tumors and metastases, ii) is

constantly down-regulated over 16 different tumor entities and

iii) acts as tumor suppressor in functional assays and iv) exerts

camptothecin-additive functions. MiRNA-1 is known to be

expressed in cardiac and skeletal muscle cells and inhibits cell

cycle progression by interacting with the histone deacetylase 4

(HDAC4) and the serum response factor (SRF) [52,53]. In

rhabdomyosarcoma miRNA-1 suppresses tumor growth by

targeting the oncogene c-met [30] and in A549 lung cancer cells

an over-expression of miRNA-1 sensitizes cells to the chemother-

apeutic agent doxorubicin [29]. Here miRNA-1 induces apoptosis

by an enhanced activation of caspases 3 and 7 and depletion of

anti-apoptotic Mcl-1. Assuming that miRNA-1 could also have a

triggering effect on colon cancer we applied in silico analysis to

address the question.

We used a systems biology approach, implemented in the

PyBioS modeling software to emulate the signaling network

influenced by miRNA-1. We simulated the effect of a wide range

of miRNA-1 concentrations: decreased concentrations to mimic

the state of tumors and increased concentrations to assess the

potential therapeutic effects of miRNA-1. Before we changed the

miRNA-concentrations we initialized our computer model with

mRNA-Seq data generated from the tumor colonic tissue

simulating an in silico tumor. We then modulated the miRNA-

concentrations in the model and measured in silico gene

expressions. These we compared with the mRNA-Seq data

generated from the normal colonic mucosa from the same tumor

patient and evaluated if the gene expression shift was towards a

normalization or indicated an adverse effect (Figure 4A).

The possible effects of altered miRNA-1 levels on gene

expression were grouped into five classes (ten subclasses) and we

counted how many genes were predicted to belong to each class

(Figure 4B,C). As expected, a simulated down-regulation of

miRNA-1 (1.01- to 100-fold) led to a significant number of up-

regulated genes. Interestingly, the up-regulations were even more

pronounced in the simulation indicating a continuation of the

carcinogenic process (‘aggr.plus’, orange in Figure 4B, C).

The simulation of miRNA-1 as a therapeutic agent was

accomplished by gradually decreasing protein synthesis rates of

miRNA-1 target genes. The group of genes with the desired effect

(‘desired +’) - tumor expression reduced to ’normal’ levels - showed

a dose dependent reaction to increasing miRNA-1 concentrations.

A similar pattern was found for genes where the effect was too

weak to revert tumor expression levels back to ’normal’, but

nevertheless, the direction of change was desirable (‘weak +’). On

the other side, we also found genes with a significant decrease of

their expression below the ‘normal’ state in a sense of ‘overtreat-

ment’ (‘flip+to2‘). Another set of genes was already down-

regulated in the tumor and was even more down-regulated after

increased miRNA levels which represents potentially undesired

side effects (‘aggr2‘). This fraction is disproportionately high in

patient 4 and 5 at miRNA concentrations of 1.2 to 1.6fold increase

and might indicate that a miRNA-1 treatment at this concentra-

tion would not be beneficial for these patients and that there is an

optimal therapeutic window between 1.6 and 4fold increase of

miRNA-1. For patient 3 and even more for patient 7 complete

beneficial effects (‘desired+’) are low, thus these patients might

respond less to a miRNA-1 increase. Interestingly, in our miRNA-

Seq approach we find miRNA-1 on average 10 to 13 fold

downregulated. For the in silico modeling similar concentrations of

1.2 to 4 fold upregulation are effective. The slight discrepancy

between the values may be explained by the different systems

Figure 4. In silico modeling of the individual response of 4 patients to either miRNA-1 down-regulation or miRNA-1 drug treatment
using a Monte Carlo-based computational cancer model integrated in PyBios. (A) Schematics of the modeling approach: mRNA-Seq data
from the tumor or metastasis of each patient was used to initialize the in silico model (T0/M0). After ‘treatment’ of the model with different miRNA
concentrations, the ‘therapeutic state’ model (T1/M1) was compared to the mRNA-Seq data of the normal tissue of the same patient (N0). (B,C) We
compared the expression changes induced by miRNA-1 dosages to the expression changes originally found in the tumor. In both cases changes were
calculated in comparison to the normal tissue expression as log2ratios (T-N and miR-N). Predicted component concentration changes in the model
were classified into five different groups (or 10 different sub-groups) depending on the changes between the T-N and miR-N log2ratios: ‘Desired’
(desired therapeutic effect, component concentration levels back to ’normal’), ‘weak effect’ (weak effect in changing the component concentration
but tendency to ’normal’), ‘side effect’ (negative therapeutic effect), ‘aggravated’ (component concentration aggravated in the same direction) and
‘flip’ (component concentration status flips from up- to down-regulated or vice versa). Each group can be divided into two sub-groups ‘plus’ and
‘minus’ which depicts an initial up- or down-regulation of a component in the tumor normal comparison as determined by a log2ratio cutoff greater
than 0.58 or smaller than 20.58 respectively. (D) miRNA-1 was either decreased (top row) or increased (bottom row) for the tumor tissues of patient
3, 4, 5, and 7 and gene expression changes were observed in a dose-dependent manner. Different concentrations of miRNA-1 are visualized as scatter
plots where the frequency reflects the ratio of the number of compounds contained in each classification-subgroup to the sum of all compounds;
only those components were considered which were either higher than 1.2-fold up-regulated or lower than 0.8-fold down-regulated in comparison
to the control state.
doi:10.1371/journal.pone.0067461.g004
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investigated – a biological system and a semi-quantitative

computer-based prediction using a Monte Carlo based approach.

Since we have used patient - individual RNA expression levels

for the initialization of each tissue within the model we were able

to investigate the effect of a change in miRNA-1 individually.

Although in its infancy, this approach could be scaled up for a

large number of patients. In contrast, in vivo investigations of

functional miRNA effects are not feasible; in particular not for

each patient separately as it would be required in the clinic. These

experiments would take too long, would be too expensive and too

work-intense for routine clinical use.

The predicted therapeutic effects we described in this study are

already promising given the fact that we have only used one

miRNA as therapeutic candidate. However, we suppose that a

combination of several miRNAs can potentiate the positive effect,

not only because each miRNA might be applied in concentrations

closer to the ’normal’, but also because therapeutic results might

have a synergistic effect.

Taken together, we used mRNA-Seq data for each tissue -

normal, tumor and metastasis – of each patient individually and

predicted the response of miRNA-1 substitution in silico. By using

combined miRNA- and mRNA-Seq data from the same tissue we

were able to monitor not only patient-specific, but also to take into

account tissue-specific effects. The results of our systems biology

approach have shown a patient-specific response to miRNA

treatment. We propose that this in silico modeling approach in

combination with mRNA2/miRNA- Seq data is an effective

strategy for the design of an individualized cancer treatment –

both for the selection of the right treatment as well as the

identification of the optimal therapeutic range.
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