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Abstract

Post-translational modifications (PTMs) regulate protein activity, stability and interaction profiles and are critical for cellular
functioning. Further regulation is gained through PTM interplay whereby modifications modulate the occurrence of other
PTMs or act in combination. Integration of global acetylation, ubiquitination and tyrosine or serine/threonine
phosphorylation datasets with protein interaction data identified hundreds of protein complexes that selectively
accumulate each PTM, indicating coordinated targeting of specific molecular functions. A second layer of PTM coordination
exists in these complexes, mediated by PTM integration (PTMi) spots. PTMi spots represent very dense modification patterns
in disordered protein regions and showed an equally high mutation rate as functional protein domains in cancer, inferring
equivocal importance for cellular functioning. Systematic PTMi spot identification highlighted more than 300 candidate
proteins for combinatorial PTM regulation. This study reveals two global PTM coordination mechanisms and emphasizes
dataset integration as requisite in proteomic PTM studies to better predict modification impact on cellular signaling.
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Introduction

Normal cellular functioning requires a broad range of rapid

responses to both internal and external cues that are largely

mediated through multiple proteins acting in coordination to

undertake specific molecular tasks. These rapid responses are

predominantly mediated through alteration of protein binding

partner preferences, stability and activity via regulation by a vast

array of post-translational modifications (PTMs).

Human PTMs are known to number greater than 400 [1] and

range from small chemical modifications of amino acid side chains

such as acetylation [2] and phosphorylation [3] to the addition of

the large peptide chains of the ubiquitin and ubiquitin-like families

through isopeptide bonds [4]. PTM regulation is achieved by a

large number of components encoded by 5–10% of the protein

coding genome, each controlled by distinct regulatory systems that

vary in both size and mechanism of modification. For example,

reversible protein phosphorylation is controlled through the direct

action of .500 kinases [5] and .150 phosphatases. Under 100

deubiquitinating enzymes mediate the direct removal of distinct

forms of ubiquitin [6] while in contrast to direct kinase action,

.600 components mediate target protein modification in a more

combinatorially complex enzymatic cascade [7,8]. The critical

requisite for normal PTM functioning can be observed as many

regulatory proteins are annotated in disease pathogenesis and as

such are the targets of current drugs or in ongoing clinical trials

[9–11]. Given their number and diversity, it is unsurprising that

these modifications cover a huge range of molecular functions.

A further layer of PTM complexity is generated through

interplay between modifications on the same protein. This

interplay, or crosstalk, can either modulate the occurrence of

distinct PTMs at the same or spatially separated sites, or act in

concert to generate combinatorial outputs. Directed studies have

provided several functional paradigms for PTM interplay in a

range of cellular processes from modification of histone tails in

epigenetic control [12], gene transcription by RNApol II [13], cell

fate orchestration by TP53 [14] to dynamic control of signaling

through the EGFR [15].

Systematic analysis and identification of novel candidates for

combinatorial PTM regulation has been predicated by data

paucity for multiple signaling PTMs. Identification of phosphor-

ylation sites on both tyrosine (pY) or serine/threonine (pS/T)

residues has been aided by the generation of biochemical affinity

reagents [16,17] or pan-specific pY antibodies [18,19] allowing

systematic enrichment of these modifications from total cell lysates.

However, global identification of other PTMs had lagged behind.

Recently multiple high throughput proteomic studies have

revealed acetylation (Ac) and ubiquitination sites (or Neddylation,

for simplicity further referred to as solely ubiquitination (Ub))

spanning a large proportion of the proteome [20–24]. Each of the

above studies used novel modification specific antibodies to enrich

cellular lysates to be able to identify targets sites systematically,

aiding much broader coverage of modified proteins than was

previously possible. Across all four modifications (pS/T, pY, Ac

and Ub), these systematic and small scale studies have identified

over 100,000 target sites distributed across .12,000 unique

human proteins. While these four PTMs are well characterized to

be mediated and recognized by distinct regulatory systems (for a

review see [25]) their interplay in control over multiple cellular

functions is poorly studied.
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Two recent studies utilised evolutionary conservation of PTMs

to drive systematic investigation into modification co-evolution

[26] and functionality [27], focusing on predicting characteristics

of PTMs within individual proteins in isolation. However, all

cellular processes are governed by protein interactions [28,29], a

feature which has not been addressed in these two studies.

Previously it has been shown that phospho-proteins in yeast are

more likely to interact than expected by random chance [30], a

characteristic also shown by modified prokaryotic proteins [31].

Also, phosphorylation is coordinated in protein interactions

networks in response to epidermal growth factor [32]. Further-

more, acetylation has been shown to accumulate over protein

complexes in human cultured cells [24]. Therefore we took a

protein network driven approach and systematically characterized

four globally measured PTMs through integration of .100,000

PTMs with protein complex data, highlighting emergent features

of PTM signaling in humans: Protein complexes accumulate

specific PTMs through selective interaction profiles and these

complexes are enriched for subunits that are modified by multiple

PTMs. Furthermore, while this PTM signal is generally spatially

distributed, highly dense PTM integration (PTMi) spots are

preferentially found within these complexes, showing both single-

and multi-PTM signal integration. This infers these complexes are

regulated through combinatorial PTM inputs in two distinct

layers; accumulation of specific PTMs through selective binding

profiles and via PTMi spot containing proteins.

Results

Identification of PTM enriched protein complexes
All PTM data was collated into a single dataset of 100,391

modifications, distributed across 12,127 proteins (Table 1,

Dataset S1, for details of collation and dataset characteristics

see Materials and Methods). This dataset provides a resource for

further investigation into the selectivity and functionality of four

different PTMs on a global scale. No protein in the cell functions

in isolation, rather each interacts with or is embedded within

multi-subunit protein complexes to carry out requisite molecular

tasks. Therefore we integrated this PTM resource with human

protein complex data from ConsensusPathDB [33] to ascertain

how multiple modifications are coordinated within a functional

human protein interaction network. Taking forward only protein

complexes of three or more unique subunits this resulted in a

dataset of 4462 complexes constituted by 4143 proteins (Dataset
S2, for details of collation and dataset characteristics, see Materials

and Methods).

In analogy to individual proteins that can be functionally

classified by overall modification status [34–36], we reasoned

protein complexes could likewise follow similar regulation. We

therefore investigated the prevalence of highly modified complexes

for each modification that could represent targets for concerted

PTM regulation. Protein complexes are distributed over a vast

range of sizes, to distinguish between complexes that are large and

thus more likely to accumulate modifications and smaller

complexes that may contain a high proportion of modified

subunits we plotted the total modification level of any given

complex against its median (Figures 1 and S1). The majority of

protein complexes were poorly modified for any given PTM and

there were only 2 complexes that showed both a high total number

and high average level of modification, with one NFAT5

transcriptional regulatory complexes in the ubiquitination dataset

and an SRRM1 containing, phospho-serine/threonine enriched,

regulatory splicing complex (Red circles, Figures S1C–D).

Interestingly however, two distinct groups of protein complexes

can be observed that were separated from the majority distribution

(Figure S1). For all four modifications we found complexes that

tend towards a large total modification but low median, and those

that had fewer modifications but a higher median (Figures 1A–
D). For each modification the two groups of highly modified

complexes can be generally characterized as huge complexes with

many modified subunits or smaller complexes with high modifi-

cation levels of its components (Figure S2).

To ascertain whether these highly modified complexes are likely

to occur through the random accumulation of PTMs across

protein complexes, the datasets were compared to a null model

obtained through PTM annotation permutation. We sub-divided

the proteins into 16 distinct bins, controlling for both protein size

and frequency in the dataset, and then permuted the PTM

annotations for all proteins within a bin (Figure S3). The

enriched groups of complexes for each PTM showed a high

modification state distinct from 99% of data generated through

100 dataset randomisations (Figures 1A–D, red data points on

graphs, 95% cut-off taken for pS/T). Despite completely distinct

regulatory mechanisms governing each of acetylation, tyrosine

Table 1. Post translational modification datasets.

All Modified Components Complex Components

IDs Total PTMs IDs Total PTMs

Ac 3009 6682 1241 3370

pS/T 8859 56251 2863 24794

pY 5666 13241 1956 5865

Ub 6244 24217 2265 11677

Totals 12127 100391 4143 45706

Number of unique proteins and the number of modifications across the
proteome or in defined human complexes.
doi:10.1371/journal.pcbi.1002933.t001

Author Summary

Normal cellular functioning is maintained by a vast array of
macro-molecular machines that control both core and
specialised molecular tasks. These machines are in large
part multi-subunit protein complexes that undergo regu-
lation at multiple levels, from expression of requisite
components to a vast array of post translational modifi-
cations (PTMs). PTMs such as phosphorylation, ubiquitina-
tion and acetylation currently number up to more than
100,000 in the human proteome yet how, or if, they
coordinate remains poorly understood. Here we show two
mechanisms of systematic modification coordination that
likely combine to provide finer control of protein complex
function. Firstly, individual modifications selectively target
protein complexes to execute specific molecular functions.
Secondly, highly modified subunits of these complexes
further accumulate multiple distinct modifications and
contain regions of dense modification patterns, termed
PTM integration (PTMi) spots. Through multiple PTM
inputs, PTMi spots represent key regions for integrating
multiple signals within these complexes, allowing finer
regulation of protein function. Here we highlight the large
extent of coordinated PTM regulation of protein complex-
es, and hence cellular function. Systematic dataset
integration revealed biological insight into PTM mediated
cellular regulatory mechanisms and further provides a
resource for future hypothesis-driven studies.

Dual Post Translational Modification Coordination
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Figure 1. Selectivity of post-translational modification on human protein complexes. Median modification level of protein complexes
plotted against total number of modifications for each PTM, with each data point representing a unique complex for (A) acetylation, (B) tyrosine
phosphorylation, (C) ubiquitination and (D) serine/threonine phosphorylation. Data points may overlay preventing visualisation of each unique
complex. The density data from 100 random datasets is overlaid on each plot with graded colours representing percentages of total randomized
data. Complexes that are highly unlikely to be generated through random dataset generation are selected at confidence cut-offs of 99% for Ac, pY
and Ub and 95% for pS/T and highlighted in red. (E) Overlap analysis for selected, highly modified complexes from 1A–D. (F) GO analysis highlighting
coordinated differential molecular function control by each group of complexes selected in the above analysis. Ac & Ub represents the 57 complexes
that are enriched for both these PTMs, $3PTMs represents the 39 complexes enriched in at least 3 PTMs.
doi:10.1371/journal.pcbi.1002933.g001

Dual Post Translational Modification Coordination
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phosphorylation, ubiquitination and serine/threonine phosphory-

lation, these groups of highly modified complexes show similarities

in numbers with 160–270 complexes separated from the majority

distribution.

Next we asked if these complexes are highly modified by several

different modifications through examining the overlap between

the four sets of enriched complexes. The complexes highly

modified by one type of PTM were largely distinct (Figure 1E),

with only acetylation and ubiquitination showing a larger degree

of overlap. Complexes targeted by acetylation had been noted

previously [24], however this is the first evidence to suggest that Ac

and Ub not only target the same amino acid but coordinate over

entire complexes. 39 of the 659 complexes were present in 3 or

more of the enriched datasets, representing target points for

regulation through multiple signals within the cell.

To examine the functions of the targeted complexes we

undertook a Gene Ontology analysis using the ConsensusPathDB

over-representation tool [33]. Acetylation enriched complexes

were involved in sequence specific DNA binding, transcription

coactivator activity and metabolic processes (Green boxes,

Figure 1F, full size image Figure S4). Phospho-serine and

phospho–threonine complexes were involved in multiple mitotic

stages, metabolism and cellular spatial organisation (Red boxes,

Figure 1F). Phosphorylation on tyrosine residues showed the

most distinct number of highly modified complexes with GO terms

relating to response to extra-cellular stimulation, cell migration

and immune cell functions (Blue boxes, Figure 1F). Complexes

enriched for ubiquitination were involved in S phase and

interphase cell cycle control, catabolic processes and the DNA

damage response (Purple box, Figure 1F). The highlighted

complexes support ubiquitin as a multifunctional modification,

with stability control (cell cycle) and non-degradative functions

(DNA damage) both enriched. Given that a large proportion of

ubiquitin chains in the cell are not classical Lys-48 linked

proteasomal signals [22], we hypothesize that these complexes

may be targeted with multi-functional/distinct ubiquitin signals.

Complexes enriched for multiple PTMs were involved in mRNA

regulation, predominantly through modification of spliceosomal

and ribosomal sub-complexes (Grey boxes, Figure 1F). Therefore

each of these subgroups of specifically modified protein complexes

mediates distinct cellular processes. These results are in excellent

agreement with the current knowledge base of functional

regulation for each modification supporting our approach to

PTM complex modification identification.

Signal integration on highly modified complexes
Having observed this coordination of specific PTMs on a

functional protein complex level we next sought to characterize

these complexes with respect to the levels of other types of

modification. Interestingly, while these complexes are enriched for

one PTM they are also modified by the other three PTMs,

however the distribution of total modifications in these complexes

is shifted towards a larger percentage of the enriched modification

(Figure 2A). Exemplarily, complexes enriched for acetylation

contained a greater number of phosphorylated serine and

threonine residues than acetylated lysines, due to the large

number of phosphorylated residues in the dataset. The 39

complexes that were enriched for 3 or more PTMs ($3PTMs)

contained the same proportion of modifications as all complexes in

the dataset but were very heavily modified with an average of over

500 modifications per complex (Figure 2A). To investigate the

nature of this signal integration across protein complexes we

therefore asked whether the enriched modification signal is carried

by distinct subunits modified with one type of PTM each

(Figure 2B(i)), or whether multiple PTMs are directed onto

single proteins in these complexes (Figure 2B(ii)). For each group

of complexes, all subunits were initially divided into sub groups

based on their number of distinct modifications (1–4 PTMs). The

total modification across all proteins within a sub group was then

determined for each modification. This was compared to the

signal carried by random samples of the same number of

complexes from the entire dataset. Thus we could observe the

origin of this modification enrichment, and see whether it

preferentially stemmed from multiply modified components or

from components with only one type of modification (Figures S5,
S6, S7, S8, S9). For example while there were 28 proteins only

modified by pS/T in the acetylation enriched complexes, the total

number of modified residues (133, Figure S5) is less than

expected from random samples of the whole dataset (Figure 2C,

Ac: 1_PTM row, pST col, pink). On the other hand we observed a

strong Ac signal for the proteins that also carried the other three

modifications (Figure 2C, Ac: 4_PTM row, Ac col, green).

Furthermore, complexes enriched for $3PTMs carried much

more signal than random samples from the entire dataset on

multiply modified proteins, i.e. on proteins modified by 3 or 4

different PTMs (Figure 2C). Figure 2C further highlights that

for each group of enriched complexes the PTM enrichment was

found in the respective column and that proteins with $2 distinct

PTMs carried the signal, supporting the model where PTM

integration takes place on individual subunits (Figure 2B(ii)).
This suggests that while these complexes are identified as highly

modified for a specific modification, the proteins that contribute

most to the elevated modification levels of the complexes are

controlled by complex PTM regulation.

Interestingly, in contrast to the other modifications, pY enriched

complexes contained a much larger signal enrichment on proteins

modified only by 2–3 PTMs than by those modified by 4 PTMs. In

agreement with the previous complex level analysis (Figures 1E
and F), phospho-tyrosine modifications were in large part

exclusive to both acetylation and ubiquitination. 83% of total

modification across these proteins was phosphorylation with 96%

(276/289) of proteins modified by 2 PTMs being solely

phosphorylated. This suggests that complexes that are enriched

for pY signaling undergo regulation predominantly through

phosphorylation.

Dense PTM regions on complex components
Given these complexes contained proteins highly modified by

more than one type of PTM we then further investigated the PTM

signal integration potential of those complex subunits that were

modified with $2 distinct types of PTMs. While PTM interplay

can likely occur between distal modifications on the same protein

sequence we reasoned that clusters of modifications would more

directly promote combinatorial PTM regulation, such as those

extensively studied on histone H3/H4 N-terminal tails (for a

review see [12]). To identify regions of PTM clusters, the local

PTM density was calculated scanning with overlapping sequence

windows of 20 amino acids (AAs) across each protein. Non-

overlapping, local peaks of PTM density were then calculated for

each protein to give a total of 10,004 20AA peaks in 1361 unique

proteins. The density of lysine (K), tyrosine (Y), serine (S) and

threonine (T) residues was also calculated to correlate PTM

density values with the proportion of modifiable residues present in

each window. Figure 3A highlights that while the majority of

20AA windows contained low local PTM density indicating spatial

separation of PTMs, hundreds of high density regions were present

throughout proteins in PTM enriched complexes. 207 local peaks

spread across 147 proteins contained a density of more than one

Dual Post Translational Modification Coordination

PLOS Computational Biology | www.ploscompbiol.org 4 March 2013 | Volume 9 | Issue 3 | e1002933



Figure 2. Signal integration on highly modified protein complexes. (A) Percentage of total modifications across each specific group of
complexes in comparison to all complexes in the dataset and all of the enriched complexes combined (Selected Complexes). Box plot represents the
total number of modifications present across all complexes for each enriched group. (B) Schematic representations of potential PTM integration.
Putative signal integration through distinct singly-modified subunits (i) is compared to more complex combinatorial signaling through multiply-
modified subunits (ii). (C) Enrichment analysis for each subgroup of nodes. Each square represents the Z-score for an increase or decrease in signal
compared to random samples from the entire complex dataset. * Represents Z-scores .35, not reflected by the colour code of the heatmap.
doi:10.1371/journal.pcbi.1002933.g002

Dual Post Translational Modification Coordination
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Figure 3. PTMi spot identification and characterisation. (A) 2D density plot of local STYK AA density windows plotted against local PTM
density with a histogram showing the number of local peaks. The 500 most outlying data points are plotted as points on the density plot, however
with substantial overlay, preventing visualization of all data point. Some PTM regions contain a higher PTM density than modifiable residues,
highlighting regions which are key candidates for direct ubiquitination:acetylation competition on the same lysine residues. Specific proteins with
densely modified regions are indicated through coloured circles. (B) 2D density plot of the number of 20 AA windows containing more than 1 PTM.
(C) The number of high density windows that contain multiple PTMs compared to 100 random annotation permutation simulations. (D) Overlap

Dual Post Translational Modification Coordination
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modification for every 3 amino acids over a stretch of 20 amino

acids, highlighting the prevalence of defined sequence space that

have a high potential to integrate multiple PTMs and produce

combinatorial outputs.

In support of the hypothesis that proteins with these regions

represent candidates for complex PTM regulation, this scoring

metric highlighted canonical examples of regulation through PTM

interplay. TP53, POLR2A, multiple histones and RTKs (EGFR)

were all present among proteins with regions of high PTM density

(PTM density .0.3; Figure 3A). The frequency of novel

candidate proteins identified alongside the canonical examples of

PTM interplay suggests it is not limited to these well studied

examples but rather plays a broad role in cellular functioning.

Candidate proteins included many well characterized proteins

involved in transcription (NFKB1, Figure 3A), cellular signaling

(MET, MAP4K4), cytoskeletal dynamics (ACTA2, CD2AP,

ZYX), mTor signaling (MTOR, DEPTOR, RICTOR) and

nuclear membrane proteins (LAMINB, EMD, POM121). These

dense PTM peaks contained examples of both single-PTM (one

type of modification) and multiple-PTM (different types of

modification) signal integration, with regions that contained

multiple-PTMs showing an overall similar distribution to all

modified regions (Figure 3B) and representing 57% of highly

dense regions (Figure S10A).

The highly dense PTM regions showed a similar contribution of

each PTM to that present in all PTM modified windows (Figure
S10B). We therefore sought to investigate how stringently

controlled multiple-PTM integration is within these regions using

a permutation analysis. We randomised the PTMs annotated at

specific sites across a protein sequence, controlling for both PTM

density and type and then calculated the number of different

PTMs present in 20AA windows across all proteins in 100

permutations. As can be seen in Figure 3C, there were fewer

highly dense peaks (PTM density .0.3) that contained multiple-

PTMs and a greater number that contained single-PTM

integration alone than expected from random PTM annotation

permutation. This result again suggests stringent control of

multiple signal integration and shows that multiple-PTM dense

regions do not occur through random accumulation of PTMs

across proteins. As well exemplified for POLR2A or TP53 (red

circles, Figure 3A), multiple-PTMs densely integrated in specific

regions are therefore likely key to the regulation and function of

those proteins.

We hypothesized that in analogy to functional, sequence

defined domain architectures, whereby single proteins combine

multiple domains in a modular fashion for increased functionality,

spatially separated peaks of high PTM density in individual

protein sequences may have analogous properties. We therefore

analyzed these local PTM peaks in the context of the whole

protein sequence. In general, PTM peaks were distributed

unevenly across proteins with most containing very few high

density peaks (Figure S10C), showing diversity in both density

and length (Dataset S3). We therefore sought to operationally

define and characterize high density regions with respect to overall

protein architecture. Sequential 20AA windows across the entire

protein sequence were utilised to ascertain the overlap between

PTM dense regions and annotated protein domains (Dataset S3).

Highly dense PTM windows were predominantly located outside

of classically annotated functional domains (blue bars, Figure 3D),

with lower PTM density windows showing a higher percentage of

windows that either overlap, or are internal to, annotated domains

(Figure 3D). While S/T phosphorylation has been previously

shown to accumulate in disordered regions of proteins across

multiple species [37–39], acetylation has been conversely shown to

accumulate in more ordered regions of protein structure [24].

Therefore we investigated how the multiple PTMs analysed here

were distributed across regions of predicted protein disorder

outside of sequence defined protein domains. ,83% of 20AA

windows with high PTM density contained some disordered

protein sequence with ,56% being completely disordered

(Figure 3E). The fraction of 20AA windows associated with

disordered sequence decreased with PTM density highlighting that

regions of dense modifications preferentially accumulate in

disordered regions outside of annotated protein domains.

Mutations in functional protein regions can lead to oncogenic

transformation of human cells and would therefore be expected to

occur in high frequency in domains when querying systematic

sequencing datasets. Following this line of thought we sought to

compare dense PTM regions and annotated domains and

integrated 182,581 mutations from the COSMIC cancer database

[40] with the local PTM density data. The frequency of mutations

in cancer cells will be generally higher in functional regions but

can vary by an order of magnitude within 20AA windows

(Dataset S3). Therefore the dataset was binarised, regions with 0

or 1 mutation were treated as background and windows with 2 or

more mutations were taken forward (11.5% of all mutations). The

fraction of mutated 20AA windows in annotated protein domains

was higher in comparison to windows covering either fringe or

external regions of domains (coloured bars, Figure 3F). As a

general trend this infers functional relevance to these annotated

domains over other protein coding regions in normal cellular

functioning. However, as described above the majority of dense

PTM regions lie in regions external to these domains (Figure 3D).

We therefore analysed the mutation window frequency outside of

annotated domains, further sub-dividing windows into bins of

increasing PTM density (grey bars, Figure 3F). A strikingly high

ratio of mutated windows was observed in the high density PTM

regions. The value was equal to annotated functional domains,

suggesting an equivocal importance in normal cellular function.

Importantly, this trend was also observed when using either a

higher cut-off for dataset binarisation or only complex components

that are annotated as either tumor suppressors or oncogenes

(Figure S11).

Taken together, identification of canonical examples of PTM

interplay, stringent control of multiple-PTM integration, spatial

separation from annotated protein domains into regions of protein

disorder and the high cancer mutation frequency all support the

notion that the highly dense regions of PTMs bear functionally

relevant features and can thus be characterized as PTM

integration (PTMi) spots. Recently, Beltrao et al. [27] had used

the term ‘‘hot spot’’ to describe modified residues within protein

domains that likely represent functional PTMs. ‘‘PTMi spots’’ here

analysis between individual PTM 20AA windows and annotated protein domains. Int: 20AA window internal to a protein domain, Lg: Large overlap
with a proteins domain (.10AAs), Sm: Small overlap with a protein domain, Ext: 20AA window external to an annotated protein domain. (E) Overlap
analysis between individual PTM 20AA windows and predicted protein disorder. High: Every amino acid is predicted to be disordered, Med: 11–19
AAs in a window are predicted to be disordered, Low: 1–10 AAs in a window are predicted to be disordered. (F) Frequency of 20AA windows across a
protein sequence that are mutated in cancerous cells, sorted based on their protein domain annotation (coloured bars). The frequency of 20AA
windows outside of annotated protein domains that are mutated in cancerous cells, sorted based on their PTM density (Grey bars).
doi:10.1371/journal.pcbi.1002933.g003

Dual Post Translational Modification Coordination
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represent clusters of modifications (both single- and multiple-type

modifications) in regions of short sequence space to integrate

multiple PTMs. Using the correlations observed we defined, at a

PTM density cut-off of .0.3, 201 PTMi spots distributed across

147 proteins between 20 and 90 AAs in length (Dataset S4). The

proteins showed diverse PTM density distributions with some

dominated by a single-PTMi spot, such as the highly studied C-

terminal tail of POLR2A crucial for transcriptional initiation and

elongation, while others showed two or more (Dataset S4). PTMi

spots provide regulatory focal points within these proteins as sites

of single- and multiple-PTM integration and they preferentially

accumulate in the highly modified complexes identified here

(Figure S12), providing a second layer of PTM coordination

within protein complexes.

Proteome wide PTM integration spot (PTMi spot)
characterisation

Interestingly, while combining the PTM data with known

protein complexes provided insight into two distinct layers of PTM

coordination within protein networks, PTMi spot characteristics

were also observed throughout the entire PTM dataset (405 PTMi

spots across 323 proteins, Figure S13 and Dataset S4),

suggesting that this mechanism of PTM coordination exists

proteome wide.

Therefore we sought to further characterize the PTMi spots

independently of the protein complex data and initially investi-

gated the influence of local disorder and STYK ratios on PTMi

spots proteome wide in more detail. While the fraction of

disordered windows increased as the STYK ratio increased, the

total number of disordered 20AA windows actually decreased

(Figure S14A). However, the percentage of windows that were

modified across STYK density varied only slightly between 20–

27% (Figure S14B). While the majority of these windows

contained few modified residues, the PTM distribution shifted to

more dense modification patterns with increasing STYK density

(Figure S14B). Therefore, as expected, the number of windows

containing a PTM density of .0.3 initially increased, with higher

STYK densities allowing more dense modification patterns.

However, the total number of available windows becomes limiting

at higher STYK densities, leading to the observation of a peak of

highly modified windows between 0.4–0.5 local STYK density

(Figure S14C). Disordered windows were favored at high

modification states at the STYK density of 0.4–0.5, showing a

2–3 fold increase (Figure S14C). We therefore observed that the

number of windows at a given STYK density guides the presence

of highly modified protein sequence, and that within the optimal

STYK density, disordered regions create much more favorable

conditions, e.g. the structural flexibility, for multiple modifying

enzymes to act.

Disordered protein regions often contain common short (3–10

residues) linear motifs (SLIMs) that can provide mechanistic

insight into protein function. We parsed the PTMi spot sequences

using the SLIMfinder tool [41] to identify over-represented SLIMs

associated with these regions. 17 of the 20 over-represented SLIMs

could be assigned to proline directed kinase motifs (Dataset S4),

with the only characterized SLIM of the remaining three

representing a PKB motif. The enrichment for target sites for

serine/threonine kinases here is unsurprising given that the

majority of single-PTMi spots were phosphorylated on serine or

threonine residues (Figure 4A). Each single-PTMi spot contains a

minimum of 7 pS/T residues, or 128 (27) possible modification

states, thus it is likely that phosphorylation either proceeds in a

sequential manner or not all states have distinct functional

outcomes [42]. Regions of bulk pS/T have been previously

observed in disordered regions of human proteins [37–39] and

have the potential to mediate their functionality through defining

local electrostatic patterns. Proximal multisite phosphorylation has

been modeled to function as an ultrasensitive switch [43]

regulating nuclear import, membrane localization, stability and

DNA binding (for a review see [42]). For example, the SRR1 motif

of NFATC2, here highlighted as a single-PTMi spot, was

previously shown to be hyperphosphorylated in the cytoplasm.

Upon dephosphorylation of the SRR1 motif NFATC2 undergoes

a conformational change and is transported to the nucleus [44].

Also, bulk charge in defined regions has been shown previously to

be important for the localization the yeast proteins Ste5 [34],

whereby multiple proximal phosphorylations preclude binding to

the membrane and attenuate signaling. We therefore hypothesize

that many of the .180 single-PTMi spots identified here

(Dataset S4) could regulate localization of target proteins. For

example, in analogy to Ste5, the ARAF, RAF1, ARHGEF2 and

DLC1 proteins are involved in signaling from the outer cell

membrane (Figure 4B). Furthermore, kinases themselves and

mTor pathway components have PTM landscapes dominated by

single-PTMi spots that could likewise regulate their localization

(Figure 4B).

The potential for single-PTMi spots to regulate protein

localization then led us to investigate the potential for multi-

PTMi spots to perform likewise functions. A sub-class of nuclear

localization signals (NLSs) have been reported in disordered

regions of protein sequences and require a R/H/KX(2–5)PY motif

downstream of either a hydrophobic or basic stretch of amino

acids [45]. Here we report four putative PY-NLSs in HNRNPA3,

SRRM2, TRA2B, and BCLAF1 that integrate multiple signals

and thus could control protein localization (Figure S15).

Phosphorylation of serine residues in the canonical HNRNPA1

PY-NLS has been previously reported to reduce binding affinity of

karyopherins/importins and was also observed in each putative

PY-NLS here. Interestingly, the tyrosines in the strictly conserved

PY motifs were phosphorylated in the four candidate proteins.

These tyrosines have been shown to be crucial for importin

binding and make several hydrophobic interactions with karyo-

pherin b [45] (Figure S15), suggesting distinct signals may

integrate within these PTMi spots to regulate protein localization.

The yeast protein Sic1 provides a functional paradigm for

phosphorylation and ubiquitination integration that can be further

analyzed here. During the S phase of the cell cycle, lysine residues

are ubiquitinated in response to proline directed hyperpho-

sphorylation of adjacent serine residues, ultimately leading to

Sic1 proteosomal degradation [36,46]. Here we can identify 47

multi-PTMi spots that contained $4 pS/T residues, at least one of

which is within a proline directed kinase motif, and also contained

$1 annotated ubiquitination sites (a subset of these displayed in

Figure 4C as ‘‘putative hyperphospho-degron’’, for a full list see

Dataset S4). This suggests that these PTMi spots may be

hyperphosphorylation switches that mediate stability of many

human protein targets.

Besides localization and stability control, the 240 multi-PTMi

spots identified proteome wide include the few well characterized

examples of multiple PTM interplay in human cells. Functional

paradigms provided by intensively studied proteins such as TP53,

RNApol II subunit POLR2A and core histones demonstrates the

regulatory potential of combinatorial PTMs [47] (Figure 4C).

Histones in particular represent intensively studied examples of

multiple signal integration used to provide docking for multiple

epigenetic regulators and as signaling scaffolds in context

dependent gene transcription control (for a review see [12]).

Analogously, an array of cytoskeletal proteins/regulators were
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Figure 4. PTMi spot containing proteins. (A) Breakdown of the PTMs present in each of the 405 PTMi spots identified here. (B) Examples of
single phospho-PTMi spot containing proteins with histograms of the local PTM density across the protein sequence. Colour codes beneath each
density histogram represent the number of distinct PTMs (red scale) and the local STKY density (yellow:blue scale, see legend [is in C]). (C) Multi-signal
PTMi spot proteins. Examples of proteins annotated either as canonical PTMi spot containing protein, a protein that integrates both ubiquitin and
multiple phosphorylations in a PTMi spot (putative degron), or to one of five key regulatory cellular modules. Representative examples of PTM density
distributions of a protein in each sub-group is linked to the panel, a full list of PTMi spot containing proteins is found in Dataset S4.
doi:10.1371/journal.pcbi.1002933.g004
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annotated as containing multi-PTMi spots, supporting the notion

that structures at the plasma membrane likewise represent

dynamic signaling scaffolds for multiple context dependent signal

integration (Figure 4C, for a review see [48]). The presence of

many of these multi-PTMi spot containing proteins in critical

cellular machineries (Figure 4C) and overall enrichment in

heavily modified protein complexes suggests key roles for complex

signal integration in human PTM signaling.

Discussion

Large scale proteomic studies have provided high quality

information of protein phosphorylation of functional cellular

snapshots, different cell compartments, cell types or specific

organs. Recently, the development of novel antibodies has enabled

the mass spectrometry based, global investigation of lysine

acetylation [20,24] and ubiquitination [21–23] providing first

views on thousands of these PTMs in human cell lines. However,

these data have predominantly been analysed in isolation, even

though PTM interplay is a crucial aspect for the function of key

cellular players such as TP53, RNAPol II, EGFR or histones in the

regulation of transcription and signaling. We postulated that

ubiquitous PTMs such as pS/T, pY, Ac and Ub may be

coordinated in cellular networks and addressed this through the

generation of an integrated PTM map. More than 100,000 PTMs

were mapped across ,12,000 proteins and placed within a

structured human protein interaction network, allowing these

modifications to be put in context.

This initial map provided insight into two distinct mechanisms

of PTM coordination across protein complexes; firstly, complexes

as entireties accumulate modifications through preferential bind-

ing profiles suggesting coordination of single PTMs at the protein

complex level (Figure 1). Through this protein complex targeting

the cell can regulate specific molecular functions via a single

trigger utilising one type of modification as a driver to mediate a

given cellular response. This is supported by annotation analyses

of PTM enriched complexes which revealed distinct, canonical

functions for each modification (Figure 1). Interestingly, complex

subunits that are highly modified by one PTM and thus contribute

substantially to the modification enrichment across the complexes

are also preferentially modified by other types of PTMs (Figure 2).

This PTM coordination pattern was found prevalent across

hundreds of protein complexes and yet had remained unchar-

acterized due to data paucity predicating systematic dataset

integration. This mode of modification integration suggests a

functional role in protein regulation, as it would allow multiple

distinct regulatory systems to impact upon already highly targeted

protein complexes.

Similar to our findings, it has been previously reported that

protein complexes selectively accumulate acetylation modifications

through preferential interaction profiles [24], yet here we show

these complexes are also heavily modified by pS/T signaling.

Exemplarily, Choudhary et al. highlight the NuRD chromatin

remodeling complex as a novel target for high levels of lysine

acetylation, while we find several distinct NuRD complexes that

additionally contain .100 pS/T residues (Dataset S2). This

suggests that while acetylation will almost certainly impact on

molecular function, multiple inputs are likely required for stringent

control of NuRD dependent transcriptional events. The preva-

lence of multiple PTM signals across all identified complexes

would support the notion that greater biological insight can be

gained through dataset integration, e.g. through prioritisation of

highly, multiply modified components in further functional

analyses.

A second layer of coordination was found through the

preferential accumulation of proteins within these complexes that

contain PTMi spots, integrating both single and multiple PTMs in

short defined sequence spaces. We provide evidence to support the

hypothesis that PTMi spots, i.e. dense clusters of modifications in

defined amino acid sequence stretches, represent functional

entities. We contrast PTMi spots to classically defined protein

domains and suggest equal importance in normal cellular

functioning (Figure 3).

Two recent reports into global PTM analysis used distinct

measures to identify putatively functional PTMs. Beltrao et al.

identified and characterized individual PTM ‘‘hot spots’’ present

within certain protein domain families [27]. The approach

presented here provides a conceptually different and thus

complementary dataset focusing on clusters of PTMs located

outside of protein domains that provide an alternate source of

PTM regulation in the cell. Minguez et al. used co-evolution of

reported PTM sites to infer a functional network of multiple

PTMs, providing evidence that PTM signal integration, or ‘‘cross-

talk’’, is more wide spread than previously anticipated [49]. In

addition, analyses presented in these reports support the hypoth-

esis that PTMi spots represent functional entities. Beltrao et al.

showed that phosphosites are more likely to be conserved, and

therefore functionally relevant, when in proximity to modified

lysines [27], while the fraction of co-evolving PTM sites identified

by Minguez et al. is higher in PTMi spots (74%) than present

across the entire PTM dataset (68%, dataset comparison details in

Materials and Methods).

The presence of multiple PTM signals in short sequence

stretches could provide exquisite sensitivity in PTM signaling, for

example through multivalent interactions with other cellular

components [47]. However simple combinatorial enumeration of

all PTMi spot ‘‘states’’ makes clear that neither so many

biochemically distinct species can simultaneously exist in a cell

[50] nor that these states could be interpreted distinctively. Many

of the PTMi spot states will be present in low fractional

occupancies [35,50] or be mutually exclusive. PTM systems have

been proposed to require three tiers consisting of readers, writers

and erasers for full functionality of a specific modification [51]. For

any of these three components to function they must first recognise

and bind the target protein sequence. The addition or removal of

one or multiple modifications could directly affect the ability of

other system components to bind to, and therefore impact upon, a

given protein (or vice versa), therefore limiting the combinatorial

output and allowing the coordination of multiple modifications in

short sequence spaces.

The strengths and weaknesses of this analysis are inherent in the

data collation. This integrated modification map significantly

advances our understanding of PTM signaling, with the modifi-

cations collated here likely representing the more prevalent PTMs

as predicted by the number of components encoded in the genome

to regulate them. However, not only are these datasets likely

incomplete, over 400 modifications impact on protein function

within the cell [1], each with distinct temporal and spatial

constraints. Furthermore, modifications such as protein methyla-

tion are thought to be widespread yet lack the proper tools for

systematic investigation [52]. Therefore this map will increase in

complexity as more systematic datasets arise for both the PTMs

analysed here in distinct cellular context and for novel modifica-

tions. For example, POLR2A’s C-terminal tail is annotated as

modified by phosphorylation in this analysis, however it has

recently been shown that methylation of R1810 interplays with

proximal phosphorylation sites to allow correct functioning within

the cell [13]. Methylation also interplays with phosphorylation
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signaling at the cell surface, negatively modulating EGFR

signaling and influencing tumor model progression in vivo [15].

Furthermore, even less well characterized modifications such as O-

Linked b-N-acetylglucosamine have also been shown to play a role

in PTM interplay with phosphorylation histone H3 [53].

Therefore as these datasets become more comprehensive and

functional protein complexes become more comprehensively

defined, we predict our ability to identify sites of PTM interplay

and cellular processes affected will increase.

Here we have shown two distinct mechanisms of signal

integration exist within human protein complexes; firstly multiple

signals are integrated on individual subunits of highly modified

PTM complexes, predominantly in low density or spatially

separated regions. However, these complexes are enriched for

PTMi spots with the capacity to integrate multiple PTMs in short

defined sequence spaces. PTMi spots likely represent functionally

important regions within proteins on a proteome wide level. These

emergent features of the PTM landscape within interaction

datasets highlight the requisite for dataset integration in future

HTP proteomic studies to gain a better understanding of the

context of observed cellular signaling states.

Materials and Methods

Dataset collation and characterization
Post translational modifications. Data for each PTM was

obtained from PhosphositePlus [54] and integrated with publically

available datasets to obtain a non-redundant list of 13 amino acid

sequences (13mers). The central amino acid is annotated as

modified in each 13mer and only modified tyrosine, lysine, serine

or threonine residues were taken forward to the final analysis.

Each 13mer was standardised in annotation type to an individual

RefSeq protein sequence. Identical proteins from distinct Entrez

Gene IDs were collapsed onto a single identifier (For example

SMN1 & 2 and also the calmodulins, Dataset S1). In the case of

histone proteins where multiple very similar protein products are

annotated across many RefSeqs and gene IDs, the most highly

annotated protein in each class was taken forward for further

analysis as representative of the protein sub-family. The most

highly modified RefSeq annotated sequence for each gene ID was

then utilised for further analysis giving a final dataset of 100,391

uniquely mapped 13mers annotated across 12,127 unique proteins

(Dataset S1).

In analogy to protein-protein interaction data each PTM

dataset showed an approximate scale free distribution highlighting

the presence of modification hubs (Figure S16A). With the

exception of acetylation, the frequency of modification generally

increased with increased protein size (Figure S16B–E). Acetylat-

ed proteins showed no difference between distinct bins of protein

size suggestive of highly stringent modification control. Approx-

imately 59% of proteins are modified by more than one PTM

(Figure S17A), with multiply modified proteins showing only a

small tendency for increased protein length (Figure S17B).

Protein length is not however directly predictive of either high or

multiple PTM modification as equally sized proteins can be poorly

modified for one modification but highly modified for another,

while smaller proteins can be modified by multiple PTMs (For

examples see Figure S17C).

Protein domain annotation. Domain annotation was

downloaded from HPRD in tab delimited format (version

072010) with only the annotation taken forward for the specific

RefSeq identifier utilised in the PTM analysis.

Amino acid structural disorder prediction. Each RefSeq

protein sequence annotated for post translational modification was

analysed using the Iupred disorder prediction software [55], at 0.5

as a cut-off to binarise each amino acid into ordered or disordered.

Cosmic mutation dataset. The data was obtained from the

Wellcome Trust Sanger Institute Cancer Genome Project web

site, http://www.sanger.ac.uk/genetics/CGP, v58_150312. Mu-

tations were filtered for only protein coding or frame-shift

mutations that would likely affect functional protein domains.

These mutations were then mapped to the annotated RefSeq

protein sequences with only mutated amino acids annotated in the

same position as on the protein sequence taken forward for further

analysis giving a high confidence dataset of 182,581 mutations.

Tumor suppressor/Oncogene annotation. The 1258

genes annotated as tumor suppressor/oncogene were obtained

from Memorial Sloan-Kettering Cancer Center CancerGenes

dataset [56]. The 1078 present in the PTM dataset are annotated

in Dataset S1.

Protein complexes. Complexes were downloaded from

ConsensusPathDB [33], containing both unique and family

expanded complexes mapped to entrez gene IDs. Family

expanded complexes are multiple similar complexes that each

contain one of several homologous proteins that could not be

differentiated through experimental identification. This data was

then filtered to obtain only complexes that contained $3 unique

subunits, with family expanded complexes collapsed onto one

representative complex, taking forward the complex most highly

annotated for PTMs. The final data included 4462 unique protein

complexes. Complex subunit size distribution is similar to the total

proteome showing a long tailed distribution with fewer very large

proteins highlighting that while complex datasets currently contain

more smaller proteins than represented in the whole proteome, the

proteins in these complexes cover a large proportion of the range

of protein sizes encoded in the human genome (Figure S18A).

Protein frequency in the dataset shows a similar distribution to

binary interaction networks, with most proteins present very few

times and a minority showing a high frequency in the dataset

(Figure S18B). Similar to protein length, while protein frequency

in the dataset is not directly predictive of total modifications there

is a slight positive correlation (Figure S18C).

Data analysis
Protein complex analysis. Random protein complex data-

set generation was untaken via PTM annotation permutation

performed at the protein level, keeping all modifications across an

identifier linked when shuffled. Annotation permutation was

performed within 16 individual bins of approximately 200–350

identifiers, each bin contained proteins within the same size and

complex dataset frequency quartiles to account for slight

correlations observed in the dataset characterisation. 100 annota-

tion randomised datasets were generated before collating all data

together and ascertaining the data distribution for the total and

median levels of the randomized complexes for each modification

(heatmaps underlying plot in Figures 1A–D).

Gene Ontology functional analysis was undertaken using

ConsensusPathPD over-representation analysis tool using gene

ontology level 4 categories for both biological processes and

molecular functions (P-Value cut-off ,0.05). Only identifiers

present in complexes that were enriched for the designated PTMs

alone were taken forward to the GO analysis.

PTM enrichment score calculation. To observe the origin

of the PTM enrichment in protein complexes a Z-Score was used

as an approximation of signal enrichment for each dataset. The

proteins in each group of complexes was first sub-divided into

groups dependent on their number of distinct modifications

(1_PTM, 2_PTMs, 3_PTMs or 4_PTMs), and the total signal for
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each modification calculated, giving 16 values for each enriched

complex group. The same number of complexes as present in each

group was then randomly sampled 1000 times from the whole

protein complex dataset and the total signal for each modification

was obtained. The randomly sampled data predominantly

followed approximate normal distributions (Figures S5, S6,
S7, S8, S9), therefore to obtain a value for signal enrichment we

calculated the standard Z-score for each of the 16 values obtained

for each group of complexes.

Single protein 20 amino acid (AA) window scanning

analysis. 20AA scanning across a protein sequence was

undertaken in two different modes: Firstly, to obtain local maxima

of PTM density, 20AA windows were calculated with 10AA

overlay to be able to ascertain the maximum PTM density over

any given sequence space. Local, non-overlapping PTM peaks

were then calculated, taking the AA window position of the local

peak as the first position the PTM maximum is calculated,

discarding all other data points.

Secondly, to compare PTM density with other annotations across

the whole protein length continuous, non-overlapping 20AA

windows were utilised. High PTM density is classified as a density

of .0.3, medium PTM density as .0.05 and #0.3, and low as 0.05.

For domain annotation 1–10AA overlap of a 20AA window with a

protein domain was classified as a small overlap, 11–19AA a large

overlap and 20AA as internal to a protein domain. For disordered

amino acid prediction, the ratio of disordered residues in a 20AA

window (x) was binned as follows; 0.5.x.0 representing low

disorder, 1.x$0.5 representing medium levels of disorder and 1

representing high levels of disorder. For cosmic mutations, the

number of mutations annotated in a 20AA window was calculated

prior to binarising as described in the main text.

Random PTM permutation analysis was performed on

individual protein sequences keeping the type, frequency and

density of modifications across the protein sequence constant, only

shuffling the specific PTM annotation at each residue. This

represents the most stringent randomisation analysis to determine

if distinct modifications are in proximity solely through accumu-

lation of PTMs in defined sequence spaces.

Short linear motif (SLIM) analysis. An enrichment anal-

ysis of short linear motifs in the PTMi spots was undertaken using

the SLIMfinder software [41] with default settings.

Comparison with the PTMcode dataset. From the

PTMcode dataset [49] we mapped 69,049 lysine acetylation,

tyrosine or serine/threonine phosphorylation and lysine ubiquiti-

nation PTMs to 9,749 unique RefSeqs protein identifiers using

mappings from the STRING database resource [57]. Of these

modifications, 46,359 (,67.1%) were annotated as co-evolving

with at least one other PTM. The proportion of co-evolving PTMs

that are also annotated in our dataset is roughly equivalent; from

our dataset of 100,391 PTMs: 56,772 of these modifications were

accurately mapped in the Minguez dataset, 38,970 (68.6%) of

which are annotated as co-evolving. Minguez et al. predicted

functional associations between PTMs based on a co-evolution

measure. In support of the hypothesis that the clusters of PTMs

highlighted here represent short sequence space to integrated

multiple functional PTM signals, a higher percentage of PTMs are

annotated as co-evolving (74%) in the Minguez dataset (2602 of

the 3515 PTMs annotated here are mapped in the Minguez

dataset, of which 1929 (74%) are annotated as co-evolving).

Supporting Information

Dataset S1 Collated post translation modification dataset.

(XLSX)

Dataset S2 Annotated protein complex dataset.

(XLSX)

Dataset S3 Dataset of local PTM density across indi-
vidual proteins.
(RAR)

Dataset S4 Annotated PTMi spots.
(XLSX)

Figure S1 Protein complex data distribution for each
PTM. 2D density distribution for total and median modification

of each complex for each PTM. For each plot blue to black regions

represents increasing number of complexes in the dataset with the

500 most outlying protein complexes plotted as individual data

points. Data points may be overlaid preventing visualisation of

each complex values. 2D density distribution plot for (A)

acetylation, (B) tyrosine phosphorylation, (C) ubiquitination and

(D) serine/Threonine phosphorylation. Both x- and y-axis for (D)

have been truncated for ease of visualisation excluding extreme

outliers.

(PDF)

Figure S2 Characterisation of PTM enriched complex
size. The two outlying groups of complexes were characterized

for both total protein length and number of unique subunits

present; (A) acetylation, (B) tyrosine phosphorylation, (C) ubiqui-

tination and (D) serine/threonine phosphorylation. Cut-offs were

utilised to generally characterize both sets of subgroups and are

indicated in the top corner of each box plot.

(PDF)

Figure S3 Schematic representation of network rando-
misation workflow. Each unique protein is first binned based

upon its frequency in the protein complex dataset. The proteins in

each bin are then further divided into 4 sub-bins based on the

protein size. Finally the annotations for the ,200–350 proteins in

each of these 16 separate bins are randomized.

(PDF)

Figure S4 Large scale figure for complex-subgroup
functional enrichment. As for figure 1F but with GO term

labels on the Y-axis. GO analysis highlighting coordinated

differential molecular function control by each group of highly

modified complexes. Ac & Ub represents the 57 complexes that

are enriched for both these PTMs, $3PTMs represents the 39

complexes enriched in at least 3 PTMs.

(PDF)

Figure S5 Signal enrichment determination for acetyla-
tion enriched complexes. (Addendum to Main Figure 2C).

The total signal obtained for each of 1000 random datasets

displayed as histograms. For each random dataset the number of

complexes randomly sampled was equal to the number of

complexes present in each sub group in the real dataset. The

value in the real dataset is indicated with an arrow.

(PDF)

Figure S6 Signal enrichment determination for phos-
pho-tyrosine enriched complexes. (Addendum to Main

Figure 2C). The total signal obtained for each of 1000 random

datasets displayed as histograms. For each random dataset the

number of complexes randomly sampled was equal to the number

of complexes present in each sub group in the real dataset. The

value in the real dataset is indicated with an arrow.

(PDF)

Figure S7 Signal enrichment determination for ubiqui-
tination enriched complexes. (Addendum to Main Figure 2C).
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The total signal obtained for each of 1000 random datasets

displayed as histograms. For each random dataset the number of

complexes randomly sampled was equal to the number of

complexes present in each sub group in the real dataset. The

value in the real dataset is indicated with an arrow.

(PDF)

Figure S8 Signal enrichment determination for phos-
pho-serine or phospho-threonine enriched complexes.
(Addendum to Main Figure 2C). The total signal obtained for each

of 1000 random datasets displayed as histograms. For each

random dataset the number of complexes randomly sampled was

equal to the number of complexes present in each sub group in the

real dataset. The value in the real dataset is indicated with an

arrow.

(PDF)

Figure S9 Signal enrichment determination for com-
plexes enriched in 3 or more PTMs. (Addendum to Main

Figure 2C). The total signal obtained for each of 1000 random

datasets displayed as histograms. For each random dataset the

number of complexes randomly sampled was equal to the number

of complexes present in each sub group in the real dataset. The

value in the real dataset is indicated with an arrow.

(PDF)

Figure S10 Modifications in 20AA windows. (A) The

number of non-overlapping PTM density peaks (identified with

20AA windows) associated with each combination of modifications

present across the proteins in the enriched complexes. (B) The

percentage of signal for each modification in high density PTM

windows in the enriched complexes in comparison to all windows

over the complex dataset. (C) The distribution of distinct PTM

density local peaks across proteins within the PTM enriched

complex data.

(PDF)

Figure S11 PTM window mutational analysis. (A) Fre-

quency of 20AA windows across a protein sequence that are

frequently mutated in cancerous cells, based on their protein

domain annotation (coloured bars). The frequency of 20AA

windows outside of protein domain annotations that are frequently

mutated in cancerous cells, based on their PTM density (Grey

bars). In contrast to Main Figure 3F, here a cut-off of .2

mutations/20 AA window was utilised to binarise with respect to

cancer association. (B) Mutated 20AA window analysis in A

however using a cut-off of .1 mutation/20 AA window and

restricting the dataset to only complex components annotated as

oncogenes or tumour suppressor genes [56].

(PDF)

Figure S12 Distribution of PTMi spots across the
protein complexes. Bar-chart showing the percentage of

complexes with PTMi spots across either the entire complex

dataset or the PTM enriched complexes.

(PDF)

Figure S13 PTMi spots identification and characteriza-
tion across the modified proteome. Same analysis as

presented in Main Figure 3 but across the entire PTM dataset.

(A) 2D density plot of local STYK density windows plotted against

local PTM density with a histogram of number of local peaks. The

500 most outlying data points are plotted as points on the density

plot, however with substantial overlay preventing visualisation. (B)

2D density plot of the number of 20 AA windows containing more

than 1 PTM. (C) The number of high density windows that

contain multiple PTMs compared to 100 random annotation

permutation simulations. (D) Overlap analysis between individual

PTM 20AA windows and annotated protein domains. Int: 20AA

window internal to a protein domain, Lg: Large overlap with a

proteins domain (.10AAs), Sm: Small overlap with a protein

domain, Ext: 20AA window external to an annotated protein

domain. (E) Overlap analysis between individual PTM 20AA

windows and predicted protein disorder. High: Every amino acid

is predicted to be disordered, Med: 11–19 AAs in a window are

predicted to be disordered, Low: 1–10 AAs in a window are

predicted to be disordered. (F) Frequency of 20AA windows across

a protein sequence that are mutated in cancerous cells, sorted

based on their protein domain annotation (coloured bars). The

frequency of 20AA windows outside of annotated protein domains

that are mutated in cancerous cells, sorted based on their PTM

density (Grey bars). (G) Mutated 20AA widows analysis as in F

however restricting the dataset to genes annotated as oncogenes or

tumour suppressor genes.

(PDF)

Figure S14 Proteome wide STYK ratio, disorder content
and PTM density analysis. (A) Upper panel: Bar graph; Total

number of 20AA windows spread across all proteins above a local

STYK density of 0.3. Red line; Total number of medium or high

disordered 20AA windows at each STYK density. Lower panel:

Percentage of total 20AA windows in each disorder bin at a given

STYK ratio. (B) PTM density distribution of the modified

windows at a given STYK density. (C) Upper panel: Bar graph;

Total number of 20AA windows with a PTM density of .0.3 at

each STYK density of 0.3. Lower panel: Percentage of high PTM

density 20AA windows in each disorder bin at a given STYK ratio.

(PDF)

Figure S15 PY-NLS sequences present in PTMi spots.
Top: Amino acid sequence of the canonical PY-NLS present in

HNRNPA1. The tripartite NLS motif is highlighted with

transparent boxes over the protein sequence. pS residues

annotated in this analysis and known to reduce karyopherinb
affinity highlighted. Bottom: Four PY-NLS sequences present in

PTMi spots in this analysis. Modified amino acids and the

tripartite motifs surrounding the NLS sequence highlighted.

(PDF)

Figure S16 Individual PTM dataset analysis. (A) Log:Log

Distribution of each individual PTM data. Box plots of protein

modifications binned by protein size for (B) acetylation, (C)

tyrosine phosphorylation, (D) ubiquitination, (E) serine/threonine

phosphorylation and (F) total PTMs. Y-axes are truncated to

exclude outliers for ease of visualisation. Size ranges are

approximately equal bins representing small (,297AAs), med-

small (298–494AAs), med-large (494–757AAs) and large proteins

(.757AAs).

(PDF)

Figure S17 Basic overlap PTM dataset analysis. (A)

Overlap analysis of proteins shown to be modified by each

individual PTM. (B) Box plots of total protein length binned by

number of distinct PTM modifications, y axis has been truncated

to 10,000 AAs for ease of visualisation. (C) Three tables providing

examples of group of proteins that are equal in size together with

the number of distinct modifications as examples for specific PTM

states.

(PDF)

Figure S18 Complex subunit dataset analysis. (A) Histo-

gram of protein length present in the protein complex dataset

(black bars) compared to all PTM proteins (white bars). (B)

Histogram of subunit frequency in the protein complex dataset.

Dual Post Translational Modification Coordination
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(C) Box plot of total PTM modification binned by frequency in the

protein complex dataset, Y axis has been truncated to 100

modifications for ease of visualisation.

(PDF)
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