
Next-Generation Sequencing Algorithms:
From Read Mapping to

Variant Detection

Dissertation zur Erlangung des Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich

Mathematik und Informatik

der

Freien Universität Berlin

vorgelegt von

Anne-Katrin Emde

Berlin, 15. November, 2012

Betreuer:

Prof. Dr. Knut Reinert, Freie Universität Berlin

Prof. Dr. Martin Vingron, Max-Planck-Institut für Molekulare Genetik, Berlin

Gutachter:

Prof. Dr. Knut Reinert, Freie Universität Berlin

Prof. Dr. Martin Vingron, Max-Planck-Institut für Molekulare Genetik, Berlin

Prof. Dr. Peter Nürnberg, Universität Köln

Datum der Disputation: 17. April, 2013

Abstract

Next-Generation-Sequencing (NGS) has brought on a revolution in sequence analysis with its

broad spectrum of applications ranging from genome resequencing to transcriptomics or metage-

nomics, and from fundamental research to diagnostics. The tremendous amounts of data necessi-

tate highly efficient computational analysis tools for the wide variety of NGS applications.

This thesis addresses a broad range of key computational aspects of resequencing applications,

where a reference genome sequence is known and heavily used for interpretation of the newly

sequenced sample. It presents tools for read mapping and benchmarking, for partial read mapping

of small RNA reads and for structural variant/indel detection, and finally tools for detecting and

genotyping SNVs and short indels. Our tools efficiently scale to large NGS data sets and are well-

suited for advances in sequencing technology, since their generic algorithm design allows handling

of arbitrary read lengths and variable error rates. Furthermore, they are implemented within the

robust C++ library SeqAn, making them open-source, easily available, and potentially adaptable

for the bioinformatics community. Among other applications, our tools have been integrated into

a large-scale analysis pipeline and have been applied to large datasets, leading to interesting

discoveries of human retrocopy variants and insights into the genetic causes of X-linked intellectual

disabilities.

i

ii

Zusammenfassung

Neuste DNA-Sequenzieungstechnologien (kurz genannt NGS Technologien) ermöglichen revolu-

tionäre neue Anwendungen, die sowohl von Genomresequenzierung über Transkriptomsequen-

zierung zu Metagenomik als auch von Grundlagenforschung zu Diagnostik reichen. Problema-

tisch ist dabei die Flut an Daten, die eine grosse Herausforderung für die Bionformatik darstellt.

Hocheffiziente Analysesoftware ist von enormer Wichtigkeit für das breite Spektrum von NGS

Anwendungen.

Diese Arbeit adressiert mehrere Schlüsselaspekte der Analyse von Resequenzierungsdaten, bei

der ein bereits sequenziertes Referenzgenom als Grundlage für die Interpretation eines neu sequen-

zierten Datensatzes dient. Es werden Algorithmen und Programme präsentiert für das sogenannte

Read Mapping Problem und für die Auswertung der Güte seiner Lösung, für partielles Read Map-

ping, welches in miRNA Studien und bei der Suche nach strukturellen Variationen Anwendung

findet, sowie letztlich zum Auffinden und Genotypisieren von Basenmutationen und kurzen Inser-

tionen/Deletionen im Genom. Die vorgestellten Algorithmen sind effizient und so gestaltet, dass sie

auch bei Fortschritten in Sequenzierungstechnologien weiterhin anwendbar und skalierbar bleiben.

Zudem sind sie in der robusten C++ Bibliothek SeqAn implementiert, was sie leicht zugänglich und

adaptierbar macht. Unter anderem wurden unsere Tools in eine Hochdurchsatz-Analysepipeline

integriert und auf grosse Datensaetze angewendet, wodurch interessante biologische Erkenntnisse

(vorallem im Zusammenhang X-Chromosom gebundener geistiger Behinderung) gewonnen werden

konnten.

iii

iv

Acknowledgements

First and foremost, I want to thank my supervisors Knut Reinert and Martin Vingron who gave me

the opportunity to work on this thesis and therefore the many diverse aspects of next-generation

sequencing. I very much enjoyed working in the two groups and gaining experience from a the-

oretical as well as a more applied perspective. I am particularly grateful to Knut who has been

a true mentor for many years and whose ideas, advice and encouragement I greatly appreciate.

Furthermore, I want to thank Stefan Haas from whom I learned a lot and whose supervision made

my usually systematic and theoretical approach more real-world applicable. I would also like to

thank Peter Nürnberg for acting as external thesis examiner.

I am very grateful to have been part of many fruitful and enjoyable collaborations. With David

Weese I enjoyed working on RazerS. A lot of the work I did is based on his work and ideas. I

thank Manuel Holtgrewe for the collaboration on Rabema, Marcel Grunert for the joint work on

MicroRazerS and Marcel Schulz for working with me on SplazerS. Further thanks for pleasant

collaborations goes to Magdalena Feldhahn at the University in Tübingen, and Peter Krawitz and

Na Zhu at the Humboldt University. I furthermore enjoyed working with Hugues Richard, Ruping

Sun, Tomasz Zemojtel, and Vera Kalscheuer at the MPI-MG.

Thank you to Birte Kehr, Stefan Haas, and René Rahn for proof-reading and to Patrick Schultz

for helping me with figures. Special thanks to Birte for extensive proof-reading, moral support

and many good conversations, both scientific and non-scientific. Also thanks to my other office

mates during the years: Tobias Rausch, Sandro Andreotti, Sean O’Keefe, Kathrin Trappe. Very

important: the many good coffee breaks, both at the Max-Planck-Institute as well as the university.

I am grateful to all members of the two groups for creating a great working (and coffee-drinking)

atmosphere. I am indebted to the International Max Planck Research School and particularly our

great coordinators Kirsten Kelleher and Hannes Luz, who is missed dearly.

A huge thank you to my friends, family, roommates, and all the special people in my life.

v

vi

Contents

1 Introduction 1

2 Background 5

2.1 Biological Background: Genomic Variation . 5

2.1.1 Types of Genomic Variation . 6

2.1.2 Functional Impact of Variants . 7

2.2 Methodological Background . 9

2.2.1 Next-Generation Sequencing Technologies 9

2.2.2 Sequencing Data Characteristics . 12

2.2.3 Computational Analysis Framework . 13

2.2.4 Genomic Variant Detection Methods . 16

2.2.5 Sequencing-Based vs. Array-Based Methods 18

2.3 Overview of Thesis . 19

2.3.1 SeqAn . 20

2.3.2 Developed SeqAn Tools . 20

3 Read Mapping 21

3.1 Background: Filtering and Verification Methods . 22

3.1.1 Filtering Techniques . 23

3.1.2 Index Data Structures . 26

3.1.3 Verification Techniques . 27

3.2 Overview of Read Mapping Tools . 28

3.3 RazerS - Overview of Read Mapping Algorithm . 30

3.3.1 Filtering algorithm . 31

3.3.2 Match Verification . 31

3.4 RazerS - Filter Parameter Computation . 32

3.4.1 Computing Sensitivities by Dynamic Programming 33

3.4.2 Computing Heavy Lossless Shapes . 35

3.4.3 ParamChooser . 36

3.5 RazerS - Results . 39

3.5.1 Evaluation of RazerS’ Mapping Sensitivity Estimation 39

vii

viii CONTENTS

3.5.2 Comparison with Other Read Mappers . 40

3.6 Improved Benchmarking of Read Mapping Tools 44

3.6.1 Rabema - Generating a Gold Standard . 44

3.6.2 Rabema - Evaluation of Read Mapping Tools 45

3.7 Chapter Summary . 48

4 Partial Read Mapping and Applications 51

4.1 Small RNA Read Mapping . 53

4.1.1 Strategies for Mapping Small RNA Reads 53

4.1.2 MicroRazerS - Algorithm . 53

4.1.3 MicroRazerS - Evaluation and Comparison with Other Tools 55

4.2 Overview of Split Read Mapping Tools . 57

4.3 SplazerS - Split Read Mapping for Indel Detection 58

4.3.1 Split Match Definition . 58

4.3.2 Algorithm . 59

4.4 SplazerS - Results . 64

4.4.1 Evaluation Datasets . 65

4.4.2 Anchored Indel Detection on 1000 Genomes Project Data 67

4.4.3 Anchored Indel Detection on 100 bp Illumina Reads 69

4.4.4 Unanchored Indel Detection on Simulated Data 70

4.4.5 Unanchored Indel Detection on Targeted Resequencing Data 73

4.5 Chapter Summary . 75

5 Small Variant Detection 77

5.1 SNV/Indel Calling: Challenges in NGS Data . 77

5.2 Small Variant Detection Strategies . 78

5.2.1 Variant Detection Tools and Their Realignment Strategies 79

5.3 SnpStore - Variant Calling Algorithm . 80

5.3.1 Realignment . 81

5.3.2 Variant Calling and Genotyping . 82

5.4 SnpStore - Results . 86

5.4.1 Evaluation Datasets . 86

5.4.2 Comparison with Other Tools on Simulation Data 88

5.4.3 Comparison with Other Tools on 1000 Genomes Data 89

5.4.4 Application to Targeted Resequencing Data 94

5.5 Chapter summary . 95

6 Discussion and Conclusions 97

6.1 Outlook . 100

Chapter 1

Introduction

When the structure of DNA, the carrier of genetic information, was discovered by Watson and

Crick (1953), and Franklin and Gosling (1953), it was surely hard to imagine that only about

50 years later in 2001 the whole DNA sequence of a human genome would have been deciphered.

Another ten years later, with revolutionary advancements in DNA sequencing technology (Mardis,

2008b), we today know the sequence of hundreds of human individuals and have sequenced more

than thousands of species (NCBI, 2012). Nowadays, DNA sequencing is routinely used to answer

fundamental research as well as medical/diagnostic questions. For example, the 1000 Genomes

Project (Durbin et al., 2010), a large-scale sequencing endeavor launched in 2008 by a consortium

of researchers from more than 75 universities and companies around the world, has compiled the to

date most complete catalogue of human variation. This catalogue of normal differences occurring

between individual human genomes serves as a solid basis for investigations into disease. Gradually

paving the way towards personalized medicine, DNA sequencing has already been successfully

used to identify the genetic causes of many diseases (Johnston et al., 2010; Ng et al., 2010a,b);

predominantly advancing diagnostics of Mendelian disorders where pathogenic variations affecting

a single gene provoke a strong phenotype.

Developed by Sanger et al. (1977), the first method for DNA sequencing through chain termi-

nation was quite laborious and slow, but was soon automated to achieve higher throughput (Smith

et al., 1986). In fact, automated Sanger sequencing was the technology used to produce the first

human genome draft sequences in 2001 (Venter et al., 2001; Lander et al., 2001) – still at com-

parably low throughput and high cost. Altogether it took more than ten years to finish this

draft sequence, at an estimated total cost of $3 billion (Collins et al., 2003). In the following

years, enormous efforts were put into the development of superior sequencing technologies. By

the middle of the decade, three new and revolutionary sequencing technologies were in sight:

Roche (454 Life Sciences) pyrosequencing, ABI SOLiD (Life Technologies) sequencing, and Illu-

mina (Solexa) sequencing, collectively called next-generation sequencing (NGS) methods (Mardis,

2008b). Compared to Sanger sequencing, these NGS technologies offered extraordinary throughput

and thereby became affordable for exciting new applications. Not only has sequencing since been

used for inspecting genomes of different species and individuals, but also it has found application,

1

2 CHAPTER 1. INTRODUCTION

for example, in sequencing and characterizing transcriptomes (Wang et al., 2009b) (the entirety

of DNA transcribed into RNA in a cell). Other prominent NGS applications include sequencing

of DNA bound by certain proteins (Park, 2009), e.g. modified histones. Altogether, these applica-

tions have already lead to fundamental insights in gene regulation, e.g. that histone modification

levels are quantitatively predictive for gene expression (Karlić et al., 2010), and ultimately our

understanding of molecular cell biology is profiting immensely.

Over the course of the last years, sequencing throughput has increased continuously, with

Illumina (formerly Solexa) being the mostly widely adopted sequencing instrument provider. In

one Illumina HiSeq instrument run, a total of 600 Gb is generated within ten days, theoretically

enough to reconstruct an entire human genome (Illumina Inc., 2012). For comparison, the most

efficient Sanger sequencing machines (Applied Biosystems, 2012) produce four orders of magnitude

less, requiring more than 500 years for the equivalent amount of data.

With this immense data flood, bottleneck has shifted from laboratory work to computational

analysis (Pop and Salzberg, 2008). Challenges are not only posed by the sheer amounts of data –

with sequencing power rising more quickly than storage capacity, even data storage has become a

challenge (Shumway et al., 2010) – but also the nature and characteristics of the data complicate

analysis. Compared to Sanger sequencing, the length of DNA fragment that can be read in one

piece is significantly shorter. These short sequencing reads, in early stages of NGS development as

short as 30 base pairs, are harder to make sense of than the kilobase long Sanger reads. Especially,

longer reads facilitate analysis of the many highly repetitive DNA stretches within a genome. For

illustration one can imagine assembling a puzzle of a world map: if puzzle pieces are large, and

contain some distinguishable part (perhaps part of a continent), they are easily placed. If pieces

are small, possibly from somewhere within an ocean, we are faced with more uncertainty and

potentially ambiguity. Larger pieces thus give us more information which contributes significantly

to ease of placement. Analogously, the longer the read sequence is, the higher its power to bridge

repetitive genome regions and reach into an informative, unique part of the genome.

As a consequence of this data flood, efficient bioinformatics methods are in great demand.

While many tools from the Sanger sequencing era exist, such as for genome assembly and mapping

of newly sequenced reads onto an existing reference genome sequence (Huang and Madan, 1999;

Ning et al., 2001), most of them scale poorly for NGS data. In addition, the emergence of novel

NGS-based applications necessitates the development of entirely new computational methods.

Sophisticated tools built on clever algorithms addressing all steps of computational NGS data

analysis are quintessential for continuous progress and for exhausting NGS capacities to the fullest.

This work deals with the development and implementation of several novel methods for key

steps of computational NGS data analysis. In particular, our focus is on methods for identifying

genomic variants in re-sequencing data, i.e. characterizing a newly sequenced sample genome with

respect to a reference genome. Adhering to the analogy above, in re-sequencing we have a guiding

– albeit slightly different and imperfect – picture of the puzzle we aim to reconstruct. This stands

in contrast to de-novo genome assembly, where we are essentially clueless about the underlying

picture, or at least equipped with much less information. In genome re-sequencing, our ability

to efficiently place reads to their correct location is of major importance and a prerequisite for

3

accurate identification of genomic variation. We therefore devised strategies for highly sensitive

read mapping and for evaluating accuracy of read mapping tools (Chapter 3). Especially when

reads span larger genomic variants, or when certain sequencing protocols for specific types of

data are in use, specialized read mapping algorithms are required (Chapter 4). We developed two

strategies for so-called partial read mapping, with applications in small regulatory RNA sequencing

and in detection of structural variants that comprise more than a few base pairs. Major difficulties

in variant detection after (supposedly correct) read placement are in distinguishing real variants

from sequencing errors (Chapter 5), as sequencing machines unfortunately do not necessarily read

out DNA fragments in an error-free fashion. Also, DNA sample preparation before sequencing

may introduce biases that need to be taken into consideration when making a variant call.

Our tools have lead to the discovery of causal mutations in X-linked intellectual disability

patients (Kalscheuer et al., submitted) and have identified a surprisingly high number of a certain

type of genomic variant, retroposed genes (Emde et al., 2012). On comparison with other state-

of-the-art tools we especially excel in sensitivity (Weese et al., 2009; Emde et al., 2010, 2012), an

important factor particularly in disease studies. Especially noteworthy is that all of our methods

are implemented in the well-established, high-quality C++ library SeqAn (Döring et al., 2008)

and are thus well-documented, well-maintained and integrated into a thoroughly tested frame-

work. Several SeqAn tools, including the ones introduced in this work, have been developed in

the last years, and are applicable to large-scale real world data sets while relying on solid the-

oretical foundations. In times where fast and efficient algorithm development and testing is of

particular interest, the SeqAn framework offers a fruitful method development environment where

data structures and algorithmic components are geared towards high performance and generic

(re-)usability. Efficient computational methods as well as systematically designed biological stud-

ies will continuously contribute to progress in fundamental biological research and especially in

diagnostics. With the expected continuous advances in sequencing technology – third generation

sequencing technologies already at the doorstep – personalized healthcare is a near future in which

computational aspects will play a key role.

Thesis Structure and Relevant Publications. In the following, we start by laying out the

biological and methodological foundations in Chapter 2. Chapter 3 to 5 will present own methods

in read mapping, specialized read mapping and variant calling, together with their evaluation. In

chapter 6, we discuss our findings, conclude and give an outlook on current and future develop-

ments. Our results are mainly published in the following articles:

• RazerS –fast read mapping with sensitivity control. David Weese, Anne-Katrin Emde, Tobias

Rausch, Andreas Döring, and Knut Reinert. Genome Research (2009).

• MicroRazerS: rapid alignment of small RNA reads. Anne-Katrin Emde, Marcel Grunert,

David Weese, Knut Reinert, and Silke R. Sperling. Bioinformatics (2010).

• A novel and well-defined benchmarking method for second generation read mapping. Manuel

Holtgrewe, Anne-Katrin Emde, David Weese, and Knut Reinert. BMC Bioinformatics (2011).

4 CHAPTER 1. INTRODUCTION

• Detecting genomic indel variants with exact breakpoints in single- and paired-end sequenc-

ing data using SplazerS. Anne-Katrin Emde, Marcel H. Schulz, David Weese, Ruping Sun,

Martin Vingron, Vera M. Kalscheuer, Stefan A. Haas, and Knut Reinert. Bioinformatics

(2012).

• Draining the pond: 14 novel candidate genes for X-linked intellectual disability. Vera M.

Kalscheuer, ... Anne-Katrin Emde... Hans-Hilger Ropers. Manuscript submitted.

Chapter 2

Background

This background chapter lays the foundation for the following chapters where own contributions

to next-generation sequencing (NGS) data analysis, in particular variant detection, will be ad-

dressed. In section 2.1, we briefly introduce some essential biological background, with focus on

genomic variants in humans. We assume the reader is familiar with the terms DNA, RNA, protein,

gene and gene structure, and has basic knowledge in genome biology including DNA replication,

recombination, transcription and splicing. Next, we dive into the methodological background in

section 2.2, introducing NGS data characteristics and the fundamental computational analysis

methods.

2.1 Biological Background: Genomic Variation

Genomic variation is a natural consequence of evolutionary processes, introducing with certain

frequency mutations during recombination and during DNA replication that escape correction by

DNA repair mechanisms. Mutations happening in germ cells (resulting in germline variants) will

be present in all cells of the developing organism and may thus be passed on to progeny and form

part of the gene pool. Mutations in somatic cells (resulting in somatic variants) remain within the

organism, possibly specific to one cell or tissue (e.g. cancer where mutations lead to uncontrolled

cell growth). Typically, extinct or endangered species have a low amount of genomic variation

within the population (O’Brien, 1994). This low genomic diversity decreases their ability to adapt

to environmental changes and puts them at higher risk of extinction. Genomic diversity thus is a

key component in a population’s fitness.

Depending on the frequency of a genomic variant within a population it is classified as a

polymorphism (allele frequency ≥ 1%) or as a rare variant (allele frequency < 1%). Variants

associated with or causal of a disease are expected to be rare, while polymorphisms present

in many individuals are less likely to have pathogenic impact. Polymorphic variants are thus

often excluded from suspicion when searching for disease-causing variants. The human variation

catalogue compiled by the 1000 Genomes Project constitutes the most comprehensive population-

scale variant set to date and is continuously growing towards a higher degree of completion,

5

6 CHAPTER 2. BACKGROUND

improving its usefulness as a background variant set. However, in the absence of a complete

catalogue, the terms polymorphism or variant are not necessarily used correctly due to lack of

evidence. In this work, we will simply refer to ”variant” irrespective of the population allele

frequency.

Many different types of variation can be found in the (human) genome, all of which have been

linked to diseases (Stenson et al., 2009). In the following we first review and show examples of

different types of variation. Next, we discuss their potential functional impact.

2.1.1 Types of Genomic Variation

Usually, a somewhat arbitrary size cutoff is used to divide genomic variation into two categories:

small variants, for all variants up to the size cutoff, and structural variants (SVs), for all variants

larger than that. The most common size cutoff in use is 50 bp (Alkan et al., 2011). Figure 2.1

shows the most frequent types of variation, further subdividing SVs into balanced (no gain or loss

of genetic material) and unbalanced SVs (associated with sequence gain or loss).

Small variants comprise single nucleotide variants (SNVs), where a single base pair is mutated,

and short insertions/deletions (indels), where a few base pairs are inserted or deleted. SNVs are

the most frequent source of genomic variation. On average two human individuals differ in 1 SNV

per ∼ 1 kb (International HapMap Consortium, 2003) and 1 indel per ∼ 8 kb (Lunter, 2007).

A) Small variants

B) Balanced structural variants

Single nucleotide variant (SNV)

allele A
allele B

Short insertion/deletion (indel)

A

C

 ACGTACGA

 ACGTAC

Inversion

Translocation

chr 1

chr 2

C) Unbalanced structural variants

Insertion/deletion

Duplication

Repeat insertion (mobile elements)

Variable number tandem repeats

tandem dispersed

LINE/SINE

ACGAGG

Figure 2.1: Genomic variation can be divided into small variants (A), and balanced (B) and unbalanced (C)
structural variants. Irrelevant sequence here is shown as solid lines, whereas variable sequence segments are shown
as yellow boxes. Small variants comprise single nucleotide variants (SNVs) and short indels smaller than 50 bp.
Structural variants are variants larger than 50 bp. Unbalanced variants lead to a loss or gain of genetic material,
whereas for unbalanced ones there is no such loss or gain.

2.1. BIOLOGICAL BACKGROUND: GENOMIC VARIATION 7

SVs occur with lower frequency than small variants. However, in recent years it has been shown

that human variation due to SVs is significantly more frequent than previously thought; while SVs

vary strongly in size, it is estimated that on average at least ∼ 4-5 Mb of the individual human

genome are involved in structural variation (Tuzun et al., 2005; Redon et al., 2006).

Balanced SVs include inversions and translocations where the inverted or translocated sequence

is cut out and inserted without significant loss or gain of genetic material. Translocations can be

intra- or interchromosomal, i.e. within one chromosome or between different chromosomes. Un-

balanced variants (or copy number variants) are associated with significant sequence loss or gain,

such as in a sequence deletion or novel sequence insertion. Further types of unbalanced SVs are

duplications where sequence is copied and inserted either right after the original copy (tandem du-

plication) or at another location in the genome (dispersed duplication). Also, individual genomes

often differ in their content of repeats. Repeats are families of highly similar sequences that can

be found in large numbers in the human genome. The most common genomic repeats are long-

interspersed nuclear elements (LINEs, ∼ 2-6 kb in size) and short-interspersed nuclear elements

(SINEs, < 500 bp). They are inserted into the genome through retrotransposition (DNA tran-

scription to RNA, reverse transcription to DNA, and subsequent re-integration into the genome)

and are therefore often referred to as mobile elements. Another special case of mobile elements

are retroposed genes. Here, mature mRNA is reverse transcribed to DNA and re-integrated into

the genome, producing a copy of the intronless transcript of the parental gene. Variable number

tandem repeats (VNTRs) are expansions or contractions of short repetitive sequence, also called

satellites, and are usually caused by polymerase slippage during replication. As VNTRs can be

shorter than 50bp, they actually belong to both the small as well as structural variation class.

2.1.2 Functional Impact of Variants

Genomic variants can be anything from beneficial to neutral to functionally disruptive, i.e. show-

ing a strong phenotypic variation, in the extreme case being lethal for the host cell/organism.

Figure 2.2 shows how mutations can have functional impact on the protein level. We can differ-

entiate between small variants in the coding sequence (A), variants disrupting the gene structure

(B) and variants leading to gene dosage/regulatory effects (C).

Variants in the gene coding sequence can be synonymous or non-synonymous. A synonymous

variant (not shown in figure) has no effect on the amino acid level, i.e. does not alter the amino

acid sequence. A non-synonymous variant, however, can affect the amino acid sequence in different

ways. We speak of a missense mutation when a SNV changes a codon such that a different amino

acid is incorporated. A prominent example is a mutation in hemoglobin leading to incoporation

of valine instead of glutamic acid, which causes sickle-cell disease (Ingram, 1957). Frameshift,

nonsense and splice site mutations have been shown to be causal mutations in Duchenne muscular

dystrophy (DMD) (Muntoni et al., 2003), an X-chromosome-linked (X-linked) disease affecting

the dystrophin gene that occurs in about one out of 3,500 male births. Also repeat expansion

mutations that lead to incorporation of additional amino acids have been found to be the cause

of many diseases (Orr and Zoghbi, 2007). One example is expansion of a short (CTG)-repeat in

8 CHAPTER 2. BACKGROUND

B) Distruption of gene structure
A) Alteration of gene (coding) sequence through small variants

C) Dosage/regulatory effects

Original DNA code for an amino acid

Amino acid

CAGCATTCACAGGTAATCCCT

Gln His Ser Gln Val Ile Pro

Missense mutation

Incorporation of incorrect amino acid

CAGCATTCACATGTAATCCCT

SNV

Gln His Ser Val Ile ProHis

Repeat expansion mutation

Incorporation of additional amino acid

CAGCATTCACAGGTAATCCCTCCTCCT

Gln His Ser Gln Val Ile Pro ProPro

Gene duplication
Duplication

Retroposition

Increase in gene product

SVs in regulatory elements
Insertion

Deletion of repressor

Altered complement/structure of regulators,
altered gene expression

SV overlapping with gene

Loss of gene product

deletion

Gene fusion

Fusion transcript, possibly functional

translocation

Frameshift mutation

Incorrect continuation of amino acid chain

CAGCATTCACAGGTCAATCCCT

1bp insertion

Gln His Ser Gln Gln Leu Pro

Nonsense mutation

Shortened amino acid sequence

CAGCATTCATAGGTAATCCCT

SNV

Gln His Ser Stop

Loss or gain of splice site leading to altered
amino acid sequence (possibly with frameshift)

SNV/indel

Splice site mutation

Exon

Figure 2.2: Functional impact of variants on the protein level can be divided into alteration in the coding sequence
(A), disruption of the gene structure (B), and altered gene dosage (C). Small variants in the coding sequence can
at the same time disrupt the gene structure (shown as overlap), for example when a splice site is mutated or a
frameshift mutation disrupts the reading frame.

the DMPK gene, which leads to myotonic muscular dystrophy (Fu et al., 1992), a different kind

of dystrophy more common in adults.

Structural variants that overlap with a gene or several genes can have severe impact and result

in loss of functional protein products. Again, we can see examples in muscular dystrophy where

large deletions spanning several kilobases of the dystrophin locus are the genetic cause in more

than 50% of DMD patients (Chamberlain et al., 1988).

Gene fusions are formed when parts of two genes are joined by translocation1. Fusion tran-

scripts are strongly associated with and often causal of cancer (Mitelman et al., 2007).

Genes present in variable copy number (through duplication, deletion or retroposition) can

have an influence through altered dosage. For example, high copy number of the beta-defensin

gene has been shown to increase susceptibility to psoriasis (Hollox et al., 2008), an autoimmune

disease affecting skin cells. Differential protein dosage can also be caused by SVs or small variants

affecting regulatory elements, leading to increased or decreased transcription levels.

On top of the direct influence variants can have on one allele, they can also play together in

the diploid cell. Just as a functioning allele can correct for a damaged recessive one, loss of a

1Gene fusions can also result from read-through of adjacent genes, which is only visible on the RNA level

2.2. METHODOLOGICAL BACKGROUND 9

functioning allele can also unmask a damaged one (loss of heterozygosity).

In the following, we turn to the methodological background including sequencing technologies

and computational analysis for genomic variant detection.

2.2 Methodological Background

The availability of high throughput DNA sequencing technologies has greatly paved the way to-

wards studying genomic variation on a large scale (Durbin et al., 2010). Different protocols for

studying whole genomes (Bentley et al., 2008; Wheeler et al., 2008) or certain parts of a genome

such as the exome (Ng et al., 2009; Albert et al., 2007) have emerged and have made it possible

to study specific aspects in depth. We call this application of DNA sequencing where a refer-

ence sequence is available genome re-sequencing. Re-sequencing has been successfully applied in

many studies to identify disease-associated genomic variants (Ng et al., 2010a,b; Lupski et al.,

2010; Rios et al., 2010). In general, we can differentiate between reference-guided and de-novo

sequencing applications (Figure 2.3A and B). De-novo genome sequencing refers to the sequencing

of an organism where no reference sequence is available yet. The main computational method

here is an assembly algorithm that reconstructs the underlying sequence. Our focus however will

be on reference-guided applications. In addition to genome resequencing, other reference-guided

applications of DNA sequencing have arisen. For example, protocols have been developed for se-

quencing RNA, collectively called RNA-Seq, by extracting RNA from the cell, reverse transcribing

and then sequencing the resulting cDNA (Wang et al., 2009c). Usually, RNA-Seq refers to mRNA

sequencing (where mRNA is captured by its poly-A-tails) and investigates alternative splicing

and transcript expression levels within a certain tissue or cell line (Mortazavi et al., 2008; Sultan

et al., 2008a). Another type of RNA-Seq is small RNA sequencing, where miRNA or other small

regulatory RNAs are the center of interest (Morin et al., 2008). ChIP-Seq refers to sequencing

after chromatin immunoprecipitation of protein-bound DNA (Park, 2009). Just as its predecessor

ChIP-Chip (Ren et al., 2000) which uses array technology instead of sequencing, it has the power

to identify binding of proteins such as transcription factors (Valouev et al., 2008), but has the

advantage of requiring less a priori knowledge.

Depending on the application, different computational analysis steps are necessary. However,

most reference-guided applications fundamentally rely on read mapping with subsequent ”feature”

discovery. In the following sections we first introduce NGS data and it characteristics and then

turn to the computational analysis protocol that all above mentioned reference-guided applications

usually share. We then concentrate on genome resequencing and variant detection in more detail.

For a review of other DNA sequencing applications, the interested reader is referred to (Mardis,

2008b).

2.2.1 Next-Generation Sequencing Technologies

NGS technologies are based on sequencing-by-synthesis. That is, complementary bases are added

to a growing DNA sequence using a single stranded DNA fragment as template (synthesis), while

10 CHAPTER 2. BACKGROUND

B) De-novo genome sequencing

sample sample

assembly

contig construction
&

sequence fi nishing

DNA-Reseq DNA-Seq

variant discovery
&

genotyping

transcript discovery
&

quantitation

binding site discovery
&

motif fi nding

RNA-Seq ChIP-Seq

read
mapping

AAA

AAA
AAA

A) Reference-guided applications

GTAT GTAT

Figure 2.3: Sequencing applications can be divided into reference-guided applications (A) where a reference se-
quence is known and de-novo genome sequencing (B) where a new organism is sequenced. The probably most
common reference-guided applications are resequencing of genomic sequence (DNA-Reseq), transcriptome sequenc-
ing (RNA-Seq), and sequencing of chromatin immunoprecipitated DNA (ChIP-Seq). The diverse reference-guided
applications all employ a read mapping step, while the main computational step in de-novo sequencing is an
assembly step.

incorporation of new nucleotides is recorded by a camera taking fluorescence images (sequencing).

This process happens in a highly parallel fashion with hundred thousands to millions of DNA

fragments sequenced simultaneously. Fluorescence images are then processed by a base calling

algorithm that infers the sequence of incorporated nucleotides. In contrast to Sanger sequencing,

no bacterial cloning step is necessary for fragment amplification; instead, DNA fragments are am-

plified directly on the technology-specific sequencing surface. While characteristics of sequencing

data vary a lot depending on the technology, all NGS methods have in common that they gener-

ate orders of magnitude more data and shorter reads than Sanger sequencing. Table 2.1 gives an

overview of throughput of Illumina, 454 and Solid technologies (the three most successful NGS

pioneers), with the tremendous advances within the last four years shown. Especially Illumina has

increased its throughput significantly and has thus become the most widely adopted sequencing

technology.

Recently, so-called third-generation sequencing methods have started emerging (Schadt et al.,

2010; Branton et al., 2008; Rothberg et al., 2011). Also called single molecule sequencing methods,

they do not require a fragment amplification step but work on single DNA molecules. These

methods are expected to deliver longer reads and lower costs per run. As of yet, they are not

widely adopted. However, the definite trend in DNA sequencing is decreasing costs with increasing

throughput and/or data quality.

In the following, we briefly outline the Illumina and 454 technology, as these are most relevant

for this work. For a detailed review of NGS technologies, see Mardis (2008b). As we mainly use

Illumina sequencing data in this work, we will from then on assume Illumina read data unless

stated otherwise.

2.2. METHODOLOGICAL BACKGROUND 11

Roche 454 sequencing: Specific adapter sequence is attached to each DNA fragment with

which fragments then bind to agarose beads carrying the complementary adapter sequence. Each

bead holds one DNA fragment which is then amplified by emulsion PCR. The beads, now holding

about a million copies of the original DNA fragment, are then poured on a picoliter plate with

hundred thousands of wells. Each well can hold a single bead and contains enzymes and reactants

for pyrosequencing : when a nucleotide is incorporated pyrophosphate is released. Through a series

of reactions this produces light that is in its intensity proportional to the number of nucleotides

incorporated. The most common errors in 454 sequencing are insertion and deletion errors due to

over- or undercalling the number of incorporated bases. Especially in long stretches of the same

nucleotide (homopolymer runs) base calling is very unreliable due to saturation. Substitution

errors however are rare for this technology.

Illumina sequencing: Also in Illumina sequencing, specific adapter sequence is attached to the

DNA fragments. The fragment library is then poured onto a flow cell which consists of 8 channels

(lanes). Fragments get attached to the flow cell surface through binding to complementary adapter

sequence. Next, so-called bridge amplification results in clusters of about a million copies of the

same DNA fragment. Sequencing-by-synthesis then proceeds in a cyclic fashion, incorporating

one nucleotide per cycle in each fragment cluster. All four nucleotides are added simultaneously,

and the appropriate nucleotide is added to each growing fragment. Nucleotides carry reversible

terminators that ensure that only one nucleotide is incorporated per cycle. Furthermore, each

nucleotide is fluorescently labeled. After fluorescence imaging, reactants are washed off, termina-

tors are chemically removed, and another sequencing cycle can take place. In the end, all reads

have the same length, as the number of sequencing cycles is the same for each cluster. Sequencing

quality, i.e. certainty of incorporated nucleotide, decreases with each cycle With improvements

in sequencing chemistry, more than 100 cycles are nowadays possible. The main type of error is

base miscalling which stems mainly from clusters becoming desynchronized with increasing cycle

number.

Illumina 454 ABI SOLiD
2008 2012 2008 2012 2008 2012

Gb/run 1.3 600 0.1 0.9 3 155
Run time (days) 4 10 0.3 0.8 5 8
Read length 36 100 250 700 35 75
Mb/h 13.5 2500 14.3 45 25 807.3
US $/Mb 6 0.1 84 20 6 0.2

Table 2.1: Next-generation sequencing technologies and their throughput, 2008 compared to 2012. Data collected
from (Mardis, 2008a) and sequencing company websites.

12 CHAPTER 2. BACKGROUND

Figure 2.4: A typical Illumina error profile along read positions. Figure from (Dohm et al., 2008), courtesy of
Juliane Dohm.

2.2.2 Sequencing Data Characteristics

There are a number of characteristics of sequencing data that will be of relevance in this work.

In the following, we introduce quality values and read pair sequencing. Next, we mention biases

associated with certain sequencing protocols that need to be taken into account when analyzing

sequencing data.

Sequencing Quality

Apart from identifying which nucleotides were incorporated, base calling algorithms also assign a

measure of certainty, i.e. base call quality value, to each called nucleotide. This is an estimate of

the probability of the base call being incorrect and is calculated from recorded signal intensities

during image analysis. While some platforms initially used a different scaling method, these error

probabilities can always be transformed to and are usually represented by a Phred scaled quality

value (Ewing and Green, 1998):

QPhred = −10 · log10P (error) (2.1)

Thus, a quality value of 10 means an error probability of 0.1, a quality value of 20 an error

probability of 0.01 and so on. A typical, representative error profile of early Illumina reads (Illumina

Genome Analyzer I) is shown in Figure 2.4 (taken from (Dohm et al., 2008)), with error rate clearly

increasing toward the 3’-end. Note that this profile is based on alignment errors, i.e. including real

single nucleotide variants as well as sequencing errors. However, the occurrence of a variant is

independent from read position, and thus the clearly visible increase in error rate towards the 3′-

end is solely due to sequencing quality degradation. Quality values are used in some downstream

computational analyses and, for example, aid in distinguishing small variants from sequencing

errors.

2.2. METHODOLOGICAL BACKGROUND 13

Read Pair Sequencing

Read pair sequencing produces pairs of reads with known relative layout. There are two commonly

used protocols. The main principle behind paired-end sequencing is a size selection step where

DNA fragments of a specific length (e.g. 400 bp) are isolated by use of gel electrophoresis. The

size-selected fragments, which all have approximately the same size, are sequenced first from one

end and then from the other end, producing read pairs. While we do not know the sequence in

between the read pairs, we do know relative orientation and approximate distance of the two reads.

So-called mate-pair sequencing involves a different sample preparation protocol, that produces read

pairs with different orientation. Essentially, the ends of large size-selected DNA fragments (e.g.

3 kb) are tagged with biotin and then circularized. After random shearing, fragments containing

biotin are extracted, again size-selected and sequenced from both ends as in paired-end sequencing.

As we know the length of the originally circularized fragment, we know the approximate distance

between the read pairs. In contrast to paired-end sequencing, sequenced read pairs face away from

each other.

In both paired-end and mate-pair sequencing, the outer distance of the reads is called the

insert size. On the one hand, the read pair approach makes sample preparation and sequencing

more laborious and costly. On the other hand, it provides valuable information for downstream

computational analysis, as we will see later.

Biases

Several steps of the sequencing protocol can introduce biases. Initial DNA fragmentation, i.e.

shearing, is not entirely random, leading to biases in produced DNA fragments (Schwartz and

Farman, 2010). Furthermore, DNA fragments with extreme GC content, in particular very low GC

content, are harder to sequence and amplify (Aird et al., 2011). This leads to underrepresentation

of these sequences, or relative overrepresentation of sequences with balanced GC content.

Targeted re-sequencing refers to a special sequencing protocol where specific genomic regions

of interest are targeted and captured, for example with an oligonucleotide array (Ng et al., 2009).

Certain sequences are harder to target as it is harder to design unique probes (this affects repetitive

sequence), and some are harder to capture due to lower binding affinity (Zhang et al., 2003). Again,

this leads to GC bias. Moreover, preferential capture of the reference allele introduces bias towards

the reference allele and may complicate identification of variant alleles (Turner et al., 2009).

2.2.3 Computational Analysis Framework

After sequencing, computational analysis now deals with a set of sequenced reads including quality

values and possibly read pair information. From this information, we want to reconstruct the

underlying events or features. The main computational steps for reference-guided analyses can be

divided into four stages:

1. Read cleaning and pre-processing: read filtering and clipping, adapter or tag removal, error

correction

14 CHAPTER 2. BACKGROUND

2. Read mapping: finding the location of origin of each read in a reference sequence, possibly

including several and specialized types of read mapping depending on the application

3. Postprocessing of mapped reads: multi-read assignment, PCR artifact removal, error correc-

tion

4. Feature discovery: depending on the application e.g. genomic variant detection and geno-

typing or transcript detection and quantification

The details of steps 1 and 3 can vary widely and sometimes these steps, especially step 3, are

even skipped. Their importance depends on the type of application and the quality and type of

sequencing data. In the following, an overview of each of these steps will be given, mainly with

the application of genome resequencing in mind, i.e. with the goal of detecting genomic variants,

such as SNVs, indels, and structural variants.

Read Cleaning

There are different sources of noise in NGS data, some of which can be treated before reads are

mapped. Apart from making data less noisy for downstream analysis, this also has the advantage of

reducing the read set and thereby saving computational resources. Read cleaning approaches can

be roughly divided into simple quality-based clipping or filtering strategies (Smeds and Künstner,

2011), more sophisticated sequencing-error correction methods (Salmela, 2010; Kelley et al., 2010)

and contaminant-removal procedures (Schmieder et al., 2010; Chen et al., 2007).

In quality-based clipping (Smeds and Künstner, 2011), bases with low base call quality are

clipped from the 3’ end or from both ends of a read. If the overall quality of a read is low, the

whole read may be discarded. This removes read (sub)sequences likely to be sequencing error-

prone. Error correction methods, on the other hand, aim to correct read bases likely to be se-

quencing errors by using information from other reads. These methods are usually based on k-mer

counting or suffix array algorithms (Yang et al., 2012) implemented in stand-alone tools (Salmela,

2010; Kelley et al., 2010) or as built-in components of de-novo assembly tools (Zerbino and Birney,

2008). Contaminant removal can be necessary for some sample preparation protocols that lead to

reads containing adaptor/tag sequence or viral contamination. Strategies basically rely on align-

ment methods such as Blat (Kent, 2002) for contaminant identification and masking (Schmieder

et al., 2010; Chen et al., 2007). However, with all read cleaning approaches there is always the

risk of losing information through over-cleaning. Depending on the type of sequencing data and

application, this step is frequently skipped or limited to basic quality-control.

Read Mapping

The goal of read mapping is to locate for each sequenced read its originating position in a reference

sequence. Read mapping is thus an alignment problem where the read is usually allowed to differ

slightly from the reference sequence, i.e. some alignment errors are allowed.

There are essentially two major difficulties in read mapping: Firstly, the tremendous amount of

data necessitates extremely efficient algorithms. Depending on the sequencing platform and type of

2.2. METHODOLOGICAL BACKGROUND 15

application and sequencing depth, the set of input reads can be in the range of billions of short reads

(< 100bp). Secondly, the ambiguous nature and error-proneness of the data complicates confident

read assignment. The longer the reads, the higher the probability that they can be unambiguously

mapped to a reference sequence position (Figure 2.5), i.e. the higher the uniqueness or mappability.

Using paired-end sequencing also has a positive effect on mappability, especially with increasing

fragment insert size (Chikhi, 2012). Obviously, mappability furthermore strongly depends on the

organism.

Characteristics of sequencing data and patterns of sequencing errors are specific to the different

sequencing technologies. Thus, read mapping tools specifically geared toward certain types of

sequencing data have been developed (Li et al., 2008a; Rumble et al., 2009). Also, the type of

experiment needs to be taken into consideration. For example, in RNA-Seq data reads may span

spliced out introns which makes mapping even harder (Trapnell et al., 2009; Au et al., 2010; Wang

et al., 2010).

Different types of read mapping algorithms will be the focus of chapters 3 and 4 of this thesis.

Postprocessing of Mapped Reads

Postprocessing of mapped reads addresses assignment of reads mapped to multiple locations

(multi-reads), removal of noise or errors only visible after alignment, and correction of minor

alignment artifacts.

The most straight-forward and common way to deal with multi-reads is to ignore them in

subsequent analysis, which however results in an obvious loss of information. Another strategy is

to distribute them randomly to their possible mapping locations (Li et al., 2008a). However, more

sophisticated methods for assigning multi-reads have been developed (Hashimoto et al., 2009; Ji

et al., 2011) that use coverage and sequence information from reads mapped to flanking sequence.

Concerning noise removal, PCR amplification artifacts can be identified after mapping as stacks

of reads mapping to the same genomic coordinates. It is common to keep only a certain number

 0

 25

 50

 75

 100

 5 10 15 20

U
ni

qu
e

re
ad

s
(%

)

Read length (nt)

E. coli

paired
unpaired

 0

 25

 50

 75

 100

 20 40 60 80 100

Read length (nt)

H. sapiens

Figure 2.5: Uniqueness of single and paired-end reads for the E. coli and H. sapiens genomes plotted over read
length. Paired uniqueness is shown for a fragment size of 300 bp. Figure from (Chikhi and Lavenier, 2009), courtesy
of Rayan Chikhi.

16 CHAPTER 2. BACKGROUND

of reads from each stack (no more than expected from overall sequencing coverage) to avoid

propagation of errors possibly introduced during amplification (Li et al., 2009a). Furthermore,

alignment errors unlikely to stem from real variation can be removed with a posteriori read

clipping, i.e. read clipping not only based on quality values but also on alignment errors (Li and

Durbin, 2009). Finally, as regular read mapping maps reads in a pairwise read-to-reference fashion,

there may exist small alignment inconsistencies and artifacts. By looking at all reads mapped to

a location, realignment methods correct small alignment errors and make the multiple-read-to-

reference-alignment more consistent (Homer and Nelson, 2010). Realignment is very important

for small variant detection and will be treated in more detail in Chapter 5.

Feature Discovery

Feature discovery, obviously a very broad category, depends on the type of sequencing data and

the goal of the experiment. The three probably most common types are shown in Figure 2.3:

detecting transcript expression in RNA-Seq data, identifying protein-bound DNA in ChIP-Seq

data, or discovering genomic variants in DNA resequencing data.

In the first case, RNA-Seq, the goal is to detect which transcripts are expressed in the sample,

including prediction of alternatively spliced transcript isoforms. The number of reads mapped onto

a transcript isoform is then used to quantify expression. Several tools for RNA-Seq data analysis

have been developed, including pipelines that start with read mapping (usually multiple steps of

mapping) and finally output transcripts and expression levels (Mortazavi et al., 2008; Trapnell

et al., 2009, 2012). Specific tools are available for detecting gene fusions, of special interest in

cancer RNA-Seq (Maher et al., 2009; Iyer et al., 2011).

In ChIP-Seq data, the goal is to identify which sequences have been bound by a protein, such

as a transcription factor. Many tools have been developed for detecting binding peaks (Zhang

et al., 2008a; Zang et al., 2009) where the difficulty lies in distinguishing real binding from back-

ground noise. Once bound sequences have been identified they can be further searched for binding

motifs (Bailey, 2011).

The last case, genomic variant discovery, will be treated with more detail in the following

section.

2.2.4 Genomic Variant Detection Methods

We differentiate between small variant and structural variant (SV) detection. Methods for detect-

ing small variants mainly rely on inspecting the alignment of the mapped reads, looking at all

reads overlapping candidate variants and trying to distinguish real variants from sequencing errors

by using cutoffs or statistical calculations. Chapter 5 will deal with small variant detection in more

detail. Here, we want to focus on methods for SV detection. SVs are of special interest, because

they are more likely to be gene-disruptive and are at the same time harder to detect. Reference-

guided SV detection methods can be divided into three categories: read pair, read depth, and split

read methods, as shown in Figure 2.6.

2.2. METHODOLOGICAL BACKGROUND 17

Most SV detection methods exploit read pair information (Korbel et al., 2009; Chen et al.,

2009; Lee et al., 2009; Hormozdiari et al., 2009). As approximate distance and relative orientation

of read pairs are known, shifts in the mapped distance or changes in relative orientation can be

used to locate SV events. The main advantage of these methods lies in the wide range of SVs

they can detect (green boxes in Figure 2.6). However, read pair methods require tight insert size

distributions for accurate discovery of small to medium-sized SVs and for confident localization

of breakpoints (Alkan et al., 2011).

Split read methods (Ye et al., 2009; Karakoc et al., 2012; Emde et al., 2012) directly take

advantage of reads crossing a breakpoint and can thereby detect SVs with base pair precision.

Splitting, however, immensely increases mapping ambiguity and hence decreases mapping confi-

dence. To increase confidence in split-read mapping, it is usually used in conjunction with read

pair data for so-called anchored split read mapping. Here, the split read is anchored by a confi-

Read Pair

Deletion

Insertion

Inversion

Translocation

Tandem
Duplication

donor

ref

Split ReadRead Depth

Figure 2.6: The three main read mapping-based strategies for SV detection using sequencing data. Read pair
methods are able to detect all types of SVs (indicated by green boxes), read depth methods can only detect
unbalanced SVs, but no novel insertions or balanced SVs (red boxes), and split read methods can theoretically
identify all SV types but have limited power for novel insertions due to read length (yellow box).

18 CHAPTER 2. BACKGROUND

dently mapped paired read which greatly decreases search space for the split read. This strategy

was first developed by Ye et al. (2009) and is particularly useful for short reads (< 100bp). In

chapter 4 of this thesis, we will introduce our own split read based SV detection method which

can deal with paired-end as well as single-end data (Emde et al., 2012).

The third strategy shown in Figure 2.6, read depth methods (Xie and Tammi, 2009; Yoon et al.,

2009), works on single-end as well as paired-end data and is able to detect very large deletions and

duplications, i.e. changes in copy number, by comparing the observed number of mapped reads in

a genomic region to the expected one. These methods can detect large unbalanced SVs, i.e. copy

number variants (CNVs), but provide low resolution and hence no exact breakpoints (Alkan et al.,

2011). Furthermore they are vulnerable to coverage fluctuations due to mapping and sequencing

biases (Medvedev et al., 2009).

Apart from the three approaches shown in Figure 2.6, reference-guided assembly methods

are becoming more common (Hajirasouliha et al., 2010; Li et al., 2011). These methods do a

local de-novo assembly, often using one-end anchored reads, and therefore possess the unique

ability to detect large novel sequence insertions. In addition, completely different methods for SV

breakpoint detection exist, e.g. the BreakPointer (Sun et al., 2012) method that exploits read

mapping artifacts close to SV breakpoints (accumulation of alignment errors and sudden drop in

coverage depth).

One important finding of the 1000 Genomes Project has been that the different SV detection

strategies share a rather low overlap of predicted SVs (Alkan et al., 2011). Due to the different

strengths and weaknesses, none of the methods is comprehensive. Hence, recent developments

have brought new tools that combine these strategies in order to increase SV detection sensitivity.

For example, SVseq (Zhang et al., 2012) combines split read and read pair information, while

GenomeSTRiP combines the read pair with the read depth approach (Handsaker et al., 2011).

Nevertheless, these combined strategies depend on accurate and efficient basic steps, mostly using

the strategies briefly introduced here as building blocks.

2.2.5 Sequencing-Based vs. Array-Based Methods

Large unbalanced SVs (CNVs) can also be detected with array-based techniques (Iafrate et al.,

2004; Redon et al., 2006; Conrad et al., 2010). In fact, array-based methods have so far been the

major strategy for inferring copy number of genomic sequences. There are two major array tech-

niques for this purpose: array comparative genomic hybridization (array CGH) (Iafrate et al., 2004)

and SNP microarrays (Bignell et al., 2004), both based on similar principles. Most importantly, in

both cases array design requires solid prior knowledge of the genome. In arrayCGH, differentially

labeled test and control DNA are competitively hybridized on the probe array and copy num-

ber ratio is inferred from fluorescence signal ratios. The probes are usually long oligonucleotides

(∼ 50 bp) or bacterial artificial chromosome (BAC) clones. Also SNP arrays carry oligonucleotide

probes, but probe sequences are shorter (∼ 20 bp) and designed to be specific to single nucleotide

differences. Only test DNA is hybridized to the SNP array and binding intensity measured. To

generate a copy number ratio as in arrayCGH, the measured intensities are compared to signal

2.3. OVERVIEW OF THESIS 19

intensities of control DNA on a different array.

In general, arrayCGH offers a lower signal-to-noise-ratio than SNP arrays (Greshock et al.,

2007; Alkan et al., 2011). However, SNP microarrays carry SNP allele-specific probes and can

thereby detect CNV alleles with higher sensitivity (Alkan et al., 2011). Both technologies have

difficulty to infer high copy counts due to saturation and have limited power to detect variation

in repetitive regions.

The cost-effectiveness of array techniques for CNV detection has enabled their use in diagnos-

tics (Zhang et al., 2008b). However, with the decreasing cost, sequencing is becoming the standard

method for CNV detection, as it offers several advantages. Not only is sequencing in principle free

from the necessity of prior knowledge of the genome, but also it does not suffer from saturation.

In theory, it is able to detect all copy number ratios and in general offers a lower noise level. Fur-

thermore, SV detection at base pair resolution is possible, and the full range of genomic variation

including balanced SVs can be discovered (Alkan et al., 2011). While repeat sequences are difficult

to map and analyze, they are nevertheless theoretically detectable with sequencing data, and will

mostly require longer reads and fragment library sizes as well as more sophisticated computational

handling.

Apart from cost, another limiting factor for the use of sequencing-based SV detection in di-

agnostics has so far been a lack of experience in reliable computational handling; especially, with

relatively short read lengths as well as sequencing biases, which can complicate analysis. But with

coming advances in sequencing technology and, importantly, in computational method develop-

ment, sequencing will most likely become the method of choice in the near future. The availability

of efficient algorithms for clever handling of the huge amounts of sequencing data and for compre-

hensive variant detection will play a key role in this process.

2.3 Overview of Thesis

This thesis deals with some of the main computational steps in NGS data analysis, focusing on read

mapping and variant detection. The methods developed within this work aim at being flexible to

the advances in NGS technology and sufficiently efficient to handle large datasets. Ultimately, this

work thus contributes to advancing computational method development towards comprehensive

and efficient algorithmic tools for NGS data. In Chapter 3, we will focus on ”general-purpose” read

mapping which finds application in all reference-guided studies. Apart from introducing a read

mapping tool with sensitivity control (joint work with David Weese), we will shed light on the non-

trivial task of benchmarking read mapping tools (joint work with Manuel Holtgrewe). The subject

of Chapter 4 will be two strategies for specialized, partial read mapping. We apply the first method

to small RNA sequencing data (joint work with Marcel Grunert). Algorithmically an extension

to this method, we then introduce a tool for split-read mapping. Employed on different data

sets, we demonstrate its flexibility and high accuracy in detecting large indel variants. Chapter 5

then concentrates on small variant detection and introduces a tool for SNV and indel calling. All

methods developed in this work have been implemented within the SeqAn C++ library (Döring

et al., 2008), a comprehensive library of C++ functionality for sequence analysis (more detail

20 CHAPTER 2. BACKGROUND

in the following section). This makes our tools easily available to the community, reusable and

adaptable for possible changes or special purposes, and, very importantly, efficient.

2.3.1 SeqAn

SeqAn (Döring et al., 2008) is an open-source C++ library providing extensive functionality

for biological sequence analysis. Its core components are efficient data structures and algorithms

available for programmers, but also an increasing number of SeqAn applications for direct use

by program users is becoming available. SeqAn uses a generic template-based design and its

main goals are efficiency, integrability, generality and usability. Algorithmic components such as

standard alignment algorithms are implemented in a reusable fashion such that they may be

employed and reused in many applications. Since 2005, SeqAn is under active development and

continuously growing. Automatic nightly builds and tests ensure high quality. Any tool and code

that is part of the library is thus required to meet SeqAn’s quality standards.

2.3.2 Developed SeqAn Tools

A number of tools that are available from the SeqAn project webpage (www.seqan.de) were de-

veloped in the course of this work:

1. RazerS: a general read mapping tool for gapped and ungapped semiglobal mapping (chapter

3). Joint project with David Weese, own contribution in tool development (mainly Param-

Chooser module/tool), testing and manuscript preparation.

2. MicroRazerS: a prefix-based read mapping tool, specifically for application in small RNA

sequencing, built on RazerS core engine. Joint project with Marcel Grunert, own contribution

mainly in tool development and manuscript preparation.

3. SplazerS: a split-read mapping tool, employing a prefix and suffix alignment strategy, which

can identify deletions of arbitrary size and up to medium sized insertions, built on RazerS

core engine.

4. SnpStore: a variant detection tool that uses a set of mapped reads and a reference sequence

as input and calls and genotypes SNVs and indels.

5. Helper tools: indelSimulator and variantComp, for simulation of a variant-containing sample

genome and comparison of predicted with reference variants, respectively.

Chapter 3

Read Mapping

Given a set of sequenced reads, the goal of read mapping is to find the location of origin of

each read in a reference genome. In this chapter we address the most conventional type of read

mapping, semiglobal read mapping, where the read sequence needs to align with its entire length

in order for the read to be mapped successfully. Semiglobal read mapping finds application in

most reference-guided NGS data analyses, including genome resequencing and RNA-Seq (Bentley

et al., 2008; Mortazavi et al., 2008). It is one of the most fundamental steps in NGS data analysis

(as seen in the computational analysis framework introduced in section 2.2.3) and of particular

importance as all subsequent steps will be based on the mapped reads.

From a computer scientist’s point of view, read mapping is an approximate string search

problem: we search for approximate matches of many short sequences (the reads) in a long text

(the reference sequence). Difficulties lie mainly in the computational complexity due to the huge

number of reads (millions to billions) and the length of the reference sequence (for example 3

billion base pairs for the human genome). Also, reads are relatively short (30 to 150 bp), making it

hard to unambiguously assign them to a specific location in the genome, especially in the presence

of sequencing errors and repeat sequences.

In this chapter, we will introduce the basic algorithms and concepts that play key roles in read

mapping, placing focus on semiglobal read mapping. First, we will give the necessary notation.

Next we turn to read mapping algorithms and point out their basic steps, which will serve as

background knowledge for the remainder of this and also for the following chapter. After briefly

describing some different read mapping tools, we will then focus on the q-gram counting based

RazerS (Weese et al., 2009) which was developed in collaboration with David Weese. We will focus

on own contributions which are predominantly in RazerS’ parameter choosing module (section 3.4)

and in the comparison and evaluation of read mapping tools (sections 3.5). Section 3.6 presents

further results for benchmarking of read mapping tools, which was done in collaboration with

Manuel Holtgrewe.

21

22 CHAPTER 3. READ MAPPING

Notation

Given a set of reads R where r ∈ R and a reference sequence g, where r and g are sequences

(or strings) over the alphabet
∑

= {A,C,G,T,N}. A subsequence (or substring) of a sequence s

starting in position i and ending in position j is denoted by si,j . Furthermore, the operator | · |
denotes the length of a sequence or the size of a set. Given an alignment a

gi,j
r of a read sequence

r and a reference subsequence si,j , we define a distance function d(a
gi,j
r) that returns a validity

measure of an alignment (see section ”Distance Functions” below). Super- and subscripts will be

dropped when the context is clear.

Semiglobal Read Mapping

Given a read r ∈ R, a reference sequence g, a distance function d and a maximal distance k, a

valid match of r is an alignment a
gi,j
r with d(a

gi,j
r) ≤ k.

For each read, there may exist multiple valid matches. A best match a′ of read r is one for

which holds d(a′) = min
a∈A

(d(a)) where A is the set of all valid matches of r. If only one valid match

exists for a read, the read is considered unique. For short reads, it is common to call a read unique,

if it has only one valid best match, i.e. suboptimal matches may exist.

Generally, the goal in read mapping is to find all valid matches, but different objectives are in

use, as defined in (Holtgrewe et al., 2011): apart from finding all valid matches (the all problem),

it is common to report all best valid matches only (all-best), or up to c best valid matches (c-best

or any-best if c = 1).

Distance Functions

Different distance functions are used, Hamming and Levenshtein (edit) distance being among the

most popular choices in short read mapping. In the case of Hamming distance, the alignment

is allowed to have matches and mismatches only, and distance function d returns the number

of mismatches in the alignment. For Levenshtein distance, gaps are allowed additionally, and d

returns the sum of the number of gaps and mismatches.

However, some read mapping tools (Rumble et al., 2009; Li and Durbin, 2009) measure align-

ment similarity by using a scoring function as in Smith-Waterman alignment (Smith and Water-

man, 1981). In addition, base call quality values may be incorporated into the distance function,

penalizing alignment errors as a function of sequencing quality of mismatched bases (Li et al.,

2008a). In this work, we will concentrate on Hamming and Levenshtein distance read mapping.

3.1 Background: Filtering and Verification Methods

Figure 3.1 illustrates the two basic steps that efficient read mapping algorithms usually rely on.

The first step identifies potential matches using a fast filtering technique based on an index data

structure. Identified potential matches are then inspected by an exact and usually slow alignment

3.1. BACKGROUND: FILTERING AND VERIFICATION METHODS 23

filtering (fast)

verification (slow)

caATCAGCATTACGag
ATCAGGATTACG

caATGAG-ATTAGGaa
ATCAGGATTACG

valid invalid

ref

potential
matches

Figure 3.1: Many read mapping algorithms are based on two steps: a fast filtering step that identifies potential
matches and a slow alignment verification method that evaluates the potential match and classifies it as true (valid)
or false (invalid).

method. If the alignment fulfills the maximum distance criterion k it is returned as a valid match,

i.e. classifies as a true positive of the filter.

In the following we briefly review different filtering techniques, including index data structures

commonly in use and alignment algorithms for verification of potential matches.

Notation

We call a short sequence of length q a q-gram1. q-grams shared between two sequences are called

q-matches. A gapped q-gram or shape is a set Q = {p1, p2, ..., ps} of positions p1 < p2 < ... < ps.

Here, we enforce that p1 = 1. The span s(Q) is the maximum entry in Q, i.e. s(Q) = ps. The

weight q or w(Q) is the cardinality of the set |Q|. Instead of the set notation, we will sometimes

use the more graphical representation of shapes, e.g. ###-##-# for Q = {1, 2, 3, 6, 7, 9}, where

all ”#” represent positions contained in Q and all ”-”-positions are joker-positions not contained

in Q. One-gapped shapes are a special case of gapped shapes that contain exactly one contiguous,

arbitrary length stretch of jokers. A shape can be applied to n − s(Q) + 1 overlapping positions

in a sequence of length n, thereby producing n− s(Q) + 1 q-grams.

An alignment transcript is a string over the edit operation alphabet {M,R} in the case of

Hamming distance, and {M,R,I,D} in the case of Levenshtein distance; where M, R, I and D

correspond to match, replacement (mismatch), insertion and deletion, respectively. An alignment

as1s2 between two sequences s1 and s2 is unambiguously described by exactly one transcript T . The

distance d(as1s2) is given by the sum of occurrences of characters R, I, and D in T , i.e. the sum of

error operations, which we also denote as ||T ||. A Q-match produced by two matching Q-grams

can then be represented by a transcript sequence of length q that consists of M operations only.

We will also use the term seed to refer to a short match.

3.1.1 Filtering Techniques

A filter is characterized by its sensitivity and selectivity. Filter sensitivity is the fraction of true

positive matches returned among all valid matches. Filters that have sensitivity = 1 hence guar-

antee to identify all valid matches and are called lossless, while filters with sensitivity < 1 may

1Alternatively, the term k-mer for a short sequence of length k is often used in the literature.

24 CHAPTER 3. READ MAPPING

miss valid matches and are called lossy. The selectivity of a filter is the fraction of true positive

matches returned among all potential matches returned. Thus, the lower the selectivity of a filter,

the higher is the fraction of false positive potential matches. Usually, sensitivity increases when

selectivity decreases and vice versa. Therefore, filter algorithms usually try to find a good tradeoff

between the two, or try to maximize selectivity while remaining lossless.

By inspecting the properties of valid match transcripts, efficient filters can be designed. Fil-

tering approaches can be roughly divided into seed -based vs. counting approaches. While in seed-

based filtering a single exact match serves to seed/initiate an alignment, counting approaches look

for regions containing at least a certain number of matches and return those regions as potential

matches. Furthermore, we differentiate between single shape approaches and approaches based on

multiple shapes (also called seed or shape families). Usually, a high match weight q is desirable

for efficiency, as we want to avoid random q-matches whose probability is inversely proportional

to |
∑
|q. Two of the most prominent principles in filtering are the q-gram counting lemma and

the pigeonhole principle, both described in the following.

Pigeonhole principle

Formalized by Myers (1994) for approximate string matching, and here adapted to fit our notation,

the pigeonhole lemma states:

Lemma 3.1.1. Given an alignment as
′

s of two sequences s and s′ with Hamming or Levenshtein

distance k = d(as
′

s), let s = s1, s2, ..., sj be a concatenation of arbitrary-length non-empty subpat-

terns, and m1,m2, ...,mj non-negative integers such that M =
∑j
i=1mi. Then, for some i ∈ 1, ..., j

s’ includes a substring s” such that d(as
′′

si) ≤ bmik
M c.

The basic intuition behind this principle is easily seen in an example (Figure 3.2A). Given

an alignment with k errors (k = 2 in the example figure), if the alignment transcript is divided

into k+1 non-overlapping parts, there must exist at least one part that contains no errors. The

corresponding transcript T thus contains at least one b |T |k+1c-match. This holds for Hamming as

well as Levenshtein distance.

Similarly, if the alignment is divided into k+2 parts, there must be at least two parts without

errors. Several early NGS read mapping tools (first used in (Cox, 2006)) exploit this special case

of the pigeonhole lemma for k = 2. Instead of searching for two parts independently, they use a

seed family of one contiguous and two one-gapped shapes in order to increase the weight of the

seed (Figure 3.2C). This works for Hamming distance, as mismatches placed within the gap are

tolerated. However, insertions and deletions lead to a different distance between the two matching

parts in reference and read, and are thus not tolerated. Therefore, this special two-seed-pigeonhole

strategy is lossless only for Hamming distance up to k = 2, and lossy for Levenshtein distance

k > 1.

3.1. BACKGROUND: FILTERING AND VERIFICATION METHODS 25

ref
read

 ref
read

CAGTCTC-ACAT
CAGACTCTACAT

MMMRMMMIMMMM

CAGACTCTTGAT
CAGACTCTACAT

MMMMMMMMRRMM

MMMMMMMMRRMM

x
x

x
x

x
x
x

x

x
x

MMMRMMMIMMMM
x

x

MMMRMMMIMMMM

Gapped q-grams

Contiguous q-grams

Levenshtein transcript

Hamming transcript

MMMMMMMMRRMM

A) B)

C) D)

x
x
x

x
x
x

Figure 3.2: Example of filtering techniques for k = 2. The first row shows an alignment of length 12 with
Levenshtein distance 2. A) Following the pigeonhole principle there must be at least one matching contiguous
(ungapped) 4-gram or B) following the q-gram counting approach with overlapping q-grams there must be at least
4 matching 3-grams. The second row shows an alignment of length 12 with Hamming distance 2. C) According
to the two-seed pigeonhole principle, which uses an ungapped and two gapped shapes, there must be at least one
matching (gapped or ungapped) 6-gram or D) according to the gapped q-gram counting approach there is at least
one gapped 4-gram of shape ##---#-#. Note that the gapped shape would not tolerate insertion or deletions errors.

Q-gram counting

While the pigeonhole principle looks at non-overlapping seeds or seed parts, the q-gram counting

approach uses overlapping seeds. The q-gram lemma (Jokinen and Ukkonen, 1991) states:

Lemma 3.1.2. Given an alignment as
′

s of two sequences s and s′ with Hamming or Levenshtein

distance k = d(as
′

s), then s and s′ share at least t0 = max(|s|, |s′|)− (k+1)q+1 common q-grams.

This lemma holds for ungapped q-grams only. We call t0 the optimal lossless threshold, i.e.

the highest threshold value that guarantees full sensitivity. A high threshold value t is preferred

to a lower one, as this increases selectivity (given the same q). A q-gram counting filter is then

characterized by the tuple (q, t). An example of the worst case error scenario of a (3,4)-filter is

shown in Figure 3.2B.

Placing gaps into the q-gram has been shown to dramatically increase sensitivity for Hamming

distance (Burkhardt and Kärkkäinen, 2001). Or conversely, one can increase the weight of the

gapped q-gram while maintaining the same sensitivity as with an ungapped q-gram, but at the

same time increasing selectivity. For example, for sequence length n = 18 and k = 2, one can find

a gapped 7-gram that has t0 > 0 while the ungapped 7-gram cannot guarantee full sensitivity

with a threshold > 0. However, no closed formula for the minimum number of q-matches, i.e. the

threshold t0, is known for gapped shapes, and optimal threshold computation has been shown to be

NP-complete (Nicolas and Rivals, 2005). Algorithms for the computation of the optimal threshold,

and for the calculation of filtering sensitivities have been proposed (Herms and Rahmann, 2008),

but assume alignment transcripts to be generated by a Markov process, i.e. are unaware of position

within the alignment. This information, however, is of importance in read mapping, as sequencing

quality and therefore alignment error probability increases towards the read end. Also, there is

no simple way of computing ”good” shapes that lead to a high filtration efficiency (Burkhardt

26 CHAPTER 3. READ MAPPING

and Kärkkäinen, 2001) and this problem is NP-hard (Nicolas and Rivals, 2005). We will focus

on q-gram counting as implemented in RazerS in section 3.4, more specifically on sensitivity and

threshold computation in section 3.4.1 and on shape computation in section 3.4.2.

3.1.2 Index Data Structures

In order to quickly identify exact q-matches (or seed matches), all read mapping algorithms build

an index either of the reads or the genome or both. A popular index structure is the suffix

array (Manber and Myers, 1993) which stores all suffixes of the indexed sequence in lexicographi-

cally sorted order for fast access. However, due to its high space consumption for large sequences

(around 48 GB for the human genome) it is not very common in read mapping. The most recent

read mapping tools to date use a compressed version of the suffix array, the FM-index (Manzini

and Ferragina, 2004) (around 3 GB for human) which uses the Burrows-Wheeler transform for

compression (Burrows and Wheeler, 1994). Most early read mapping tools however use a simpler,

more access-efficient data structure: a hash table or a q-gram index which stores all subsequences

of length q in sorted order. In the following we describe the q-gram index in more detail, as it is

heavily used and of most importance for this work.

Q-gram index

A q-gram index consists of two arrays: one that stores the occurrence positions of q-grams in

sequence s in lexicographically sorted order (occ), and one that stores for each q-gram a pointer

to the first position in occ corresponding to the respective q-gram (dict), see Figure 3.3.

Construction time is linear in |s|, in the case of gapped q-grams O(q · |s|). In a full q-gram

index, dict has size |
∑
|q. Each possible q-gram p can be quickly accessed with its hash value

h =
∑q
i=1 |Σ|q−i+1 · ord(pi) where the function ord assigns a value 0, ..., |Σ| − 1 to each character

of the alphabet. For q > 14 and the DNA alphabet, this q-gram index becomes too large in

practise, as it requires at least |
∑
|q · 4 bytes for dict. In this case, a q-gram index with open

addressing may be used: by using a non-trivial hash function it requires less space for array dict,

but then requires more time for q-gram lookups.

sequence = AAAACAAAAACGGGTTTTTACGTGAAAAA...

A A A A A
A A A A C

.

.

.

.

.

.

C G G G T

T T T T T

∑ q n

dict occ

A A A A A
A A A A A
A A A A C

C G G G T

T T T T T

5
24
0

10

14

Figure 3.3: The q-gram index data structure. The dictionary dict provides fast lookup of q-grams in the sorted
occurrence table occ.

3.1. BACKGROUND: FILTERING AND VERIFICATION METHODS 27

3.1.3 Verification Techniques

Depending on the filter technique and index type used, a potential match is identified and verified

through a backtracking procedure through the index (usually for suffix array or FM index based

methods) or a potential match is returned as a potentially matching subsequence of the genome.

In the latter case, a classical alignment method then verifies whether a valid read-to-reference

alignment exists. We concentrate on this case, as it is more general and used in q-gram counting

filters.

Let read r have a potential match in genome subsequence s. In the case of Hamming distance, it

suffices to naively test each possible alignment starting position i and scan the alignment a
si,i+|r|−1
r

for mismatches going from left to right. Scanning stops once either the maximum distance k cannot

be fulfilled anymore, as k+1 mismatches have been encountered already, or the end of the alignment

has been reached, in which case a valid match is returned.

If gaps are allowed in the alignment (or in general if a scoring scheme other than Hamming

distance is used), usually a dynamic programming approach is used. In the following we briefly

provide the basics of dynamic programming.

Dynamic programming verification

Alignment of two sequences with dynamic programming (DP) methods has its origin in Needleman-

Wunsch alignment (Needleman and Wunsch, 1970). Given two sequences r and s, a DP matrix F

is computed that stores in each cell Fi,j the score of the optimal alignment of prefixes ri and sj .

A traceback trough the matrix gives the actual alignment. While the Needleman-Wunsch algo-

rithm computes a global alignment, i.e. the one that ends in cell F|r|,|s|, modifications such as the

Smith-Waterman algorithm (Smith and Waterman, 1981) to compute local alignments have sub-

sequently been proposed. Another variation is semiglobal alignment, where the optimal alignment

of one sequence to a subsequence of the other sequence is computed, as is the case for alignment

of a read to a potential match region. Given read r and genomic subsequence s, the DP matrix is

computed with the following initialization and recursion:

1. Initialization
Fi,0 = d(ri,

′−′) · i 0 ≤ i ≤ |r|
F0,j = 0 0 ≤ j ≤ |s|

(3.1)

2. Recursion

Fi,j = max

Fi−1,j−1 + d(ri, sj)

Fi,j−1 + d(ri,
′−′)

Fi−1,j + d(′−′, sj)
(3.2)

where d(x, y) returns a score for aligning character x with character y. If we set d(x, y) = −1

for x 6= y and d(x, y) = 0 if x = y, the cells in F contain Levenshtein distance (with negative sign).

Tracing back the alignment from the cell with the best score in the last row gives us the optimal

semiglobal alignment. There may be ambiguity in the optimal alignment, as shown in Figure 3.4.

Banded alignment methods reduce complexity by only computing values within a band of the

28 CHAPTER 3. READ MAPPING

ref

re
ad

Figure 3.4: A semiglobal alignment within a band of the dynamic programming matrix. Branches of the alignment
trace (black line) indicate ambiguity among ending positions.

alignment matrix (indicated by gray background) and thereby avoiding calculation of cells that

cannot be part of the optimal alignment anyway.

3.2 Overview of Read Mapping Tools

Table 3.1 gives an overview of some popular read mapping tools with some of their key algorithmic

properties. Many more tools have been developed (see (Fonseca et al., 2012) for a recent compre-

hensive list), but we focus here on the ones that are among the most popular and relevant for this

work.

While earlier tools were mostly based on read indices, later tools prefer the space efficient

compressed FM index of the genome. Eland is Illumina’s commercial software and was therefore

one of the first read mapping tools geared toward short Illumina reads. It uses the two-seed

pigeonhole strategy which was also adopted by Maq (Li et al., 2008a), Soap (Li et al., 2008b)

and SeqMap (Jiang and Wong, 2008). These tools are fully sensitive for up to two errors under

Hamming distance only. Zoom (Lin et al., 2008) is also commercial; it uses multiple gapped

seeds and guarantees full sensitivity for Hamming distance up to five errors, but is heuristic when

gaps are allowed. Shrimp (Rumble et al., 2009) and RazerS (Weese et al., 2009) are the only

q-gram counting based tools. Shrimp differs a bit from the other read mapping tools, as it actually

performs local Smith-Waterman alignment in its verification step. Therefore it can detect local

(partial) as well as semiglobal alignments, making it applicable to a wider range of problems. While

Shrimp uses q-gram counting, its newer version Shrimp2 uses multiple gapped seeds. However,

both versions do not provide sensitivity control, and the default settings will be lossy in many

cases. The newer read mapping tools Bowtie (Langmead et al., 2009), BWA (Li and Durbin,

2009), and Soap2 (Li et al., 2009b) are all based on the space-efficient FM index, and are usually

very fast for reporting a best match. However, for full sensitivity they are usually restricted to low

numbers of errors and use heuristics when gaps are allowed.

RazerS is the only tool that provides fine-grained sensitivity control for Hamming as well

as Levenshtein distance and arbitrary read length as well as error rates up to 10%. Especially

the 100 % sensitivity switch that it provides for more than 2 errors was unique at the time of

development and publication. In the following, we explain the RazerS algorithm in more detail.

3.2
.

O
V
E
R
V
IE

W
O
F
R
E
A
D

M
A
P
P
IN

G
T
O
O
L
S

29

Eland Maq Soap SeqMap Zoom Shrimp RazerS Bowtie BWA Soap2 Shrimp2
year of
publication

unpubl. 2008 2008 2009 2009 2009 2009 2009 2010 2010 2010

filtering
technique

two-seed
pigeonhole

two-seed
pigeonhole

two-seed
pigeonhole

two-seed
pigeonhole

multiple
gapped seeds

q-gram
counting

q-gram
counting

FM index
backtracking

FM index
backtracking

pigeonhole
seeding
(using FM
index)

multiple
gapped seeds

distance
measure in
filtering step

Hamming Hamming Hamming Hamming
and
Levenshtein

Hamming Hamming
and
Levenshtein

Hamming
and
Levenshtein

- - Hamming both
Hamming
and
Levenshtein
possible

distance
measure in
mapping step

Hamming Hamming
(Smith-W.
for second
mate)

Hamming or
one up to
3 bp gap

Hamming or
edit with at
most 5
errors

Hamming or
edit with at
most one
gap

Smith-W. either edit or
Hamming

Hamming Hamming,
Levenshtein,
Smith-W.

Hamming Smith-W.

indexing
strategy

q-gram
index on
reads

q-gram
index on
reads

q-gram
index on
reference

q-gram
index on
reads

q-gram
index on
reads

q-gram
index reads

q-gram
index on
reads

FM index on
reference

FM index on
reference

FM index on
reference

multiple
q-gram
index on
reference

supported
read length

≤ 32 ≤ 127 ≤ 60 arbitrary ≤ 63
(currently
≤ 240)

arbitrary arbitrary ≤ 1024 arbitrary ≤ 1024 arbitrary

sensitivity full
sensitivity
only for up
to 2
mismatches

full
sensitivity
for up to 3
mismatches
in 28 bp
prefix

full
sensitivity
for up to 2
mismatches

full
sensitivity

switch to
guarantee
full
sensitivity

no help for
parameter
choice,
default will
be lossy for
many
settings

arbitrarily
adjustable

switch for
full
sensitivity
for best
matches

switch for
full
sensitivity
for best
matches

full
sensitivity
only for up
to 2
mismatches

no help for
parameter
choice,
default will
be lossy for
most
settings

can output all
(suboptimal)
hits

no no no yes yes yes yes no no no yes

Table 3.1: Short read mapping tools with their characteristics. Extends Table 1 from (Weese et al., 2009).

3.2. OVERVIEW OF READ MAPPING TOOLS 29

E
la
n
d

M
a
q

S
o
a
p

S
e
q
M

a
p

Z
o
o
m

S
h
ri
m
p

R
a
z
e
rS

B
o
w
ti
e

B
W

A
S
o
a
p
2

S
h
ri
m
p
2

ye
ar

of
p
u
b
li
ca
ti
on

u
n
p
u
b
l.

20
08

20
08

20
09

20
09

20
09

20
09

20
09

20
10

20
1
0

2
0
10

fi
lt
er
in
g

te
ch
n
iq
u
e

tw
o-
se
ed

p
ig
eo
n
h
ol
e

tw
o-
se
ed

p
ig
eo
n
h
ol
e

tw
o-
se
ed

p
ig
eo
n
h
ol
e

tw
o-
se
ed

p
ig
eo
n
h
ol
e

m
u
lt
ip
le

ga
p
p
ed

se
ed
s

q-
gr
am

co
u
n
ti
n
g

q-
gr
am

co
u
n
ti
n
g

F
M

in
d
ex

b
ac
k
tr
ac
k
in
g

F
M

in
d
ex

b
ac
k
tr
ac
k
in
g

p
ig
eo
n
h
o
le

se
ed
in
g

(u
si
n
g
F
M

in
d
ex
)

m
u
lt
ip
le

g
ap

p
ed

se
ed
s

d
is
ta
n
ce

m
ea
su
re

in
fi
lt
er
in
g
st
ep

H
am

m
in
g

H
am

m
in
g

H
am

m
in
g

H
am

m
in
g

an
d

L
ev
en
sh
te
in

H
am

m
in
g

H
am

m
in
g

an
d

L
ev
en
sh
te
in

H
am

m
in
g

an
d

L
ev
en
sh
te
in

-
-

H
am

m
in
g

b
ot
h

H
am

m
in
g

a
n
d

L
ev
en
sh
te
in

p
os
si
b
le

d
is
ta
n
ce

m
ea
su
re

in
m
ap

p
in
g
st
ep

H
am

m
in
g

H
am

m
in
g

(S
m
it
h
-W

.
fo
r
se
co
n
d

m
at
e)

H
am

m
in
g
or

on
e
u
p
to

3
b
p
ga
p

H
am

m
in
g
or

ed
it
w
it
h
at

m
os
t
5

er
ro
rs

H
am

m
in
g
or

ed
it
w
it
h
at

m
os
t
on

e
ga
p

S
m
it
h
-W

.
ei
th
er

ed
it
or

H
am

m
in
g

H
am

m
in
g

H
am

m
in
g
,

L
ev
en
sh
te
in
,

S
m
it
h
-W

.

H
am

m
in
g

S
m
it
h
-W

.

in
d
ex
in
g

st
ra
te
gy

q
-g
ra
m

in
d
ex

on
re
ad

s

q
-g
ra
m

in
d
ex

on
re
ad

s

q
-g
ra
m

in
d
ex

on
re
fe
re
n
ce

q
-g
ra
m

in
d
ex

on
re
ad

s

q
-g
ra
m

in
d
ex

on
re
ad

s

q
-g
ra
m

in
d
ex

re
ad

s
q
-g
ra
m

in
d
ex

on
re
ad

s

F
M

in
d
ex

on
re
fe
re
n
ce

F
M

in
d
ex

o
n

re
fe
re
n
ce

F
M

in
d
ex

on
re
fe
re
n
ce

m
u
lt
ip
le

q
-g
ra
m

in
d
ex

on
re
fe
re
n
ce

su
p
p
or
te
d

re
ad

le
n
gt
h

≤
32

≤
12
7

≤
60

ar
b
it
ra
ry

≤
63

(c
u
rr
en
tl
y

≤
24
0)

ar
b
it
ra
ry

ar
b
it
ra
ry

≤
10
24

ar
b
it
ra
ry

≤
10
2
4

ar
b
it
ra
ry

se
n
si
ti
v
it
y

fu
ll

se
n
si
ti
v
it
y

on
ly

fo
r
u
p

to
2

m
is
m
at
ch
es

fu
ll

se
n
si
ti
v
it
y

fo
r
u
p
to

3
m
is
m
at
ch
es

in
28

b
p

p
re
fi
x

fu
ll

se
n
si
ti
v
it
y

fo
r
u
p
to

2
m
is
m
at
ch
es

fu
ll

se
n
si
ti
v
it
y

sw
it
ch

to
gu

ar
an

te
e

fu
ll

se
n
si
ti
v
it
y

n
o
h
el
p
fo
r

p
ar
am

et
er

ch
oi
ce
,

d
ef
au

lt
w
il
l

b
e
lo
ss
y
fo
r

m
an

y
se
tt
in
gs

ar
b
it
ra
ri
ly

ad
ju
st
ab

le
sw

it
ch

fo
r

fu
ll

se
n
si
ti
v
it
y

fo
r
b
es
t

m
at
ch
es

sw
it
ch

fo
r

fu
ll

se
n
si
ti
v
it
y

fo
r
b
es
t

m
at
ch
es

fu
ll

se
n
si
ti
v
it
y

on
ly

fo
r
u
p

to
2

m
is
m
at
ch
es

n
o
h
el
p
fo
r

p
ar
am

et
er

ch
o
ic
e,

d
ef
a
u
lt
w
il
l

b
e
lo
ss
y
fo
r

m
os
t

se
tt
in
gs

ca
n
ou

tp
u
t
al
l

(s
u
b
op

ti
m
al
)

h
it
s

n
o

n
o

n
o

ye
s

ye
s

ye
s

ye
s

n
o

n
o

n
o

y
es

T
a
b
le

3
.1
:
S
h
o
rt

re
a
d
m
a
p
p
in
g
to
o
ls

w
it
h
th

ei
r
ch

a
ra
ct
er
is
ti
cs
.
E
x
te
n
d
s
T
a
b
le

1
fr
o
m

(W
ee
se

et
a
l.
,
2
0
0
9
).

3.2. OVERVIEW OF READ MAPPING TOOLS 29

E
la
n
d

M
a
q

S
o
a
p

S
e
q
M

a
p

Z
o
o
m

S
h
ri
m
p

R
a
z
e
rS

B
o
w
ti
e

B
W

A
S
o
a
p
2

S
h
ri
m
p
2

ye
ar

of
p
u
b
li
ca
ti
on

u
n
p
u
b
l.

20
08

20
08

20
09

20
09

20
09

20
09

20
09

20
10

20
1
0

2
0
10

fi
lt
er
in
g

te
ch
n
iq
u
e

tw
o-
se
ed

p
ig
eo
n
h
ol
e

tw
o-
se
ed

p
ig
eo
n
h
ol
e

tw
o-
se
ed

p
ig
eo
n
h
ol
e

tw
o-
se
ed

p
ig
eo
n
h
ol
e

m
u
lt
ip
le

ga
p
p
ed

se
ed
s

q-
gr
am

co
u
n
ti
n
g

q-
gr
am

co
u
n
ti
n
g

F
M

in
d
ex

b
ac
k
tr
ac
k
in
g

F
M

in
d
ex

b
ac
k
tr
ac
k
in
g

p
ig
eo
n
h
o
le

se
ed
in
g

(u
si
n
g
F
M

in
d
ex
)

m
u
lt
ip
le

g
ap

p
ed

se
ed
s

d
is
ta
n
ce

m
ea
su
re

in
fi
lt
er
in
g
st
ep

H
am

m
in
g

H
am

m
in
g

H
am

m
in
g

H
am

m
in
g

an
d

L
ev
en
sh
te
in

H
am

m
in
g

H
am

m
in
g

an
d

L
ev
en
sh
te
in

H
am

m
in
g

an
d

L
ev
en
sh
te
in

-
-

H
am

m
in
g

b
ot
h

H
am

m
in
g

a
n
d

L
ev
en
sh
te
in

p
os
si
b
le

d
is
ta
n
ce

m
ea
su
re

in
m
ap

p
in
g
st
ep

H
am

m
in
g

H
am

m
in
g

(S
m
it
h
-W

.
fo
r
se
co
n
d

m
at
e)

H
am

m
in
g
or

on
e
u
p
to

3
b
p
ga
p

H
am

m
in
g
or

ed
it
w
it
h
at

m
os
t
5

er
ro
rs

H
am

m
in
g
or

ed
it
w
it
h
at

m
os
t
on

e
ga
p

S
m
it
h
-W

.
ei
th
er

ed
it
or

H
am

m
in
g

H
am

m
in
g

H
am

m
in
g
,

L
ev
en
sh
te
in
,

S
m
it
h
-W

.

H
am

m
in
g

S
m
it
h
-W

.

in
d
ex
in
g

st
ra
te
gy

q
-g
ra
m

in
d
ex

on
re
ad

s

q
-g
ra
m

in
d
ex

on
re
ad

s

q
-g
ra
m

in
d
ex

on
re
fe
re
n
ce

q
-g
ra
m

in
d
ex

on
re
ad

s

q
-g
ra
m

in
d
ex

on
re
ad

s

q
-g
ra
m

in
d
ex

re
ad

s
q
-g
ra
m

in
d
ex

on
re
ad

s

F
M

in
d
ex

on
re
fe
re
n
ce

F
M

in
d
ex

o
n

re
fe
re
n
ce

F
M

in
d
ex

on
re
fe
re
n
ce

m
u
lt
ip
le

q
-g
ra
m

in
d
ex

on
re
fe
re
n
ce

su
p
p
or
te
d

re
ad

le
n
gt
h

≤
32

≤
12
7

≤
60

ar
b
it
ra
ry

≤
63

(c
u
rr
en
tl
y

≤
24
0)

ar
b
it
ra
ry

ar
b
it
ra
ry

≤
10
24

ar
b
it
ra
ry

≤
10
2
4

ar
b
it
ra
ry

se
n
si
ti
v
it
y

fu
ll

se
n
si
ti
v
it
y

on
ly

fo
r
u
p

to
2

m
is
m
at
ch
es

fu
ll

se
n
si
ti
v
it
y

fo
r
u
p
to

3
m
is
m
at
ch
es

in
28

b
p

p
re
fi
x

fu
ll

se
n
si
ti
v
it
y

fo
r
u
p
to

2
m
is
m
at
ch
es

fu
ll

se
n
si
ti
v
it
y

sw
it
ch

to
gu

ar
an

te
e

fu
ll

se
n
si
ti
v
it
y

n
o
h
el
p
fo
r

p
ar
am

et
er

ch
oi
ce
,

d
ef
au

lt
w
il
l

b
e
lo
ss
y
fo
r

m
an

y
se
tt
in
gs

ar
b
it
ra
ri
ly

ad
ju
st
ab

le
sw

it
ch

fo
r

fu
ll

se
n
si
ti
v
it
y

fo
r
b
es
t

m
at
ch
es

sw
it
ch

fo
r

fu
ll

se
n
si
ti
v
it
y

fo
r
b
es
t

m
at
ch
es

fu
ll

se
n
si
ti
v
it
y

on
ly

fo
r
u
p

to
2

m
is
m
at
ch
es

n
o
h
el
p
fo
r

p
ar
am

et
er

ch
o
ic
e,

d
ef
a
u
lt
w
il
l

b
e
lo
ss
y
fo
r

m
os
t

se
tt
in
gs

ca
n
ou

tp
u
t
al
l

(s
u
b
op

ti
m
al
)

h
it
s

n
o

n
o

n
o

ye
s

ye
s

ye
s

ye
s

n
o

n
o

n
o

y
es

T
a
b
le

3
.1
:
S
h
o
rt

re
a
d
m
a
p
p
in
g
to
o
ls

w
it
h
th

ei
r
ch

a
ra
ct
er
is
ti
cs
.
E
x
te
n
d
s
T
a
b
le

1
fr
o
m

(W
ee
se

et
a
l.
,
2
0
0
9
).

30 CHAPTER 3. READ MAPPING

3.3 RazerS - Overview of Read Mapping Algorithm

In RazerS, the filtering and verification algorithm is preceded by a parameter choosing step as

visualized in Figure 3.5. Developed in collaboration with David Weese, own contributions are

predominantly in this additional step.

RazerS makes use of a q-gram counting filter for identifying potential read matches. In its

Figure 3.5: RazerS consists of three steps: a parameter choosing step followed by the two typical read mapping
steps filtering and verification. During parameter choosing a shape Q and threshold t that guarantee the desired
mapping sensitivity are chosen. Next, in the filtering phase, a q-gram index is built and the reference sequence
is scanned for potential matches using the Swift algorithm. Potential matches are then verified by an alignment
method.

3.3. RAZERS - OVERVIEW OF READ MAPPING ALGORITHM 31

first step, the parameter choosing phase, a q-gram shape and threshold guaranteeing a certain

filtering sensitivity are chosen (explained in detail in section 3.4.3). Then, we build a q-gram index

containing all read q-grams. Optionally, q-grams occurring more than a user-defined number of

times can be masked to avoid investing computation time on counting highly repetitive/unspecific

q-grams. Next, the reference sequence is scanned using the SWIFT filter algorithm (Rasmussen

et al., 2005), counting q-grams in parallelograms (details in section 3.3.1). Potentially matching

parallelograms are passed on to a verification algorithm (details in section 3.3.2). If multiple

matches for one read exist, then up to a user-defined maximum number m are recorded. Once

m exact (errorless) matches are found for a read, the read is disabled, such that no more time-

consuming verifications are triggered.

The user may set different parameters including allowed error rate, type of distance measure

(Hamming/Levenshtein), sensitivity level, and practical options such as type of output file (e.g.

SAM (Li et al., 2009a) or general feature format (GFF)).

The SWIFT filtering algorithm and subsequent verification are described in the following two

subsections. The parameter choosing step is described in more detail in the next section.

3.3.1 Filtering algorithm

RazerS implements the SWIFT q-gram filtering algorithm (Rasmussen et al., 2005). Given a (q, t)-

filtering criterion, it returns parallelograms (i.e. bands) in the read-to-reference DP matrix, that

contain at least t q-matches. It is based on the observation that any match with at most k errors

will lie within a band of at most k + 1 diagonals in the DP matrix. One could now check each

parallelogram with width k+1 separately. Instead, the SWIFT filter sets parallelogram width to w

with w > k+ 1 and lets parallelograms overlap in k diagonals. This way, each k+ 1 parallelogram

is fully contained in one w parallelogram (see Figure 3.6).

Each w parallelogram stores a counter for contained q-matches. Now we slide over the genome

sequence, look up the current q-gram in the read q-gram index and increase the counter(s) of the

corresponding parallelogram(s). For each read, only a low number of parallelograms is active at

a time and therefore only few counters need to be kept in memory. Whenever a parallelogram

becomes inactive (because we have scanned past it), we check whether the counter is larger or

equal to the threshold and, if so, pass the parallelogram on to verification.

For Hamming distance one can use parallelograms of width 1, as any valid read match will

always lie within a single diagonal (as no indels are allowed that could lead away from this

diagonal).

3.3.2 Match Verification

For Hamming distance, the naive algorithm (diagonal scanning, see section 3.1.3) is implemented

in RazerS. For Levenshtein distance, RazerS uses the bit-vector algorithm by (Myers, 1999) which

computes the edit DP matrix exploiting bit parallelism. 64 cells of the matrix can be computed

at once by a 64-bit CPU by maintaining a number of bit vectors. If a valid match of read r exists,

the bit vector algorithm identifies its ending position j in the genomic subsequence s. In order to

32 CHAPTER 3. READ MAPPING

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

5 8 43

T
read

genome

A ACAT TGACCGACAGT T TG C

C
A
G
T
C
C
G
A
C
A
A
G
T
T
T

A

AA C TGA T

M

M

M I I

M

R

M

M

M

M

M

M

D
M

M

M

M

ACA

counters

M

M

M

M

M

M

M

M

M

M

M

M

M
M

M

M

M

M

M

M

Figure 3.6: SWIFT filtering in overlapping parallelograms. Each parallelogram keeps a counter of matching
3-grams. The parallelogram with counter 8 holds a valid read alignment with Levenshtein distance k=4 which
contains seven 3-matches. An additional random match contributes to the corresponding parallelogram counter.
Figure from (Weese et al., 2009).

identify the starting position, sequence s1,j and r are then reversed and the bit vector algorithm

is repeated.

3.4 RazerS - Filter Parameter Computation

We now describe how to automatically choose efficient q-gram filtration parameters for RazerS.

The goal is to choose a shape and a threshold that optimize the running time, while achieving a

certain filter sensitivity. In other words, we want to allow the filter to be lossy in order to speed

up the filtration process, but we want to be able to control how lossy our filter may be. More

specifically, our goal here is to minimize running time of RazerS while guaranteeing the desired

read mapping sensitivity given position-dependent sequencing error probabilities as are typically

seen for Illumina reads (see section 2.2.1).

The two main computational issues here are 1) finding a set of ”good” shapes which are

considered as candidate shapes and 2) computing their sensitivity in combination with different

thresholds, given a read length n, number of errors k (Hamming or Levenshtein) and position-

dependent error probabilities. First, we introduce some new notation. Then we will give a DP

formulation for the problem of computing filter sensitivities for a given shape (section 3.4.1).

Next a heuristic approach for computing good shapes (with high weight) for a low number of

errors is explained (section 3.4.2). Finally, we devise a simple strategy for choosing efficient filter

parameters implemented in the SeqAn tool ParamChooser which is integrated into RazerS.

Notation

A position-dependent error profile is a vector pX = {pX1, pX2, ..., pXn} where pXi describes the probability

of error type (edit operation) X ∈ {R,I,D} at position i in a read of length n. The probability of

a match is set to pMi = 1− pRi − pIi − pDi .
We can then calculate the occurrence probability of a transcript T as p(T) =

∏|T |
i=1 p

Ti

r(T,i)

where r(T, i) returns the read position corresponding to transcript position i. For insertions, we

define r(T, i) as the read position before the insertion.

3.4. RAZERS - FILTER PARAMETER COMPUTATION 33

The loss rate of a filter for matches with exactly k errors is defined as the probability of a

transcript with k errors to be missed by the filter. Conversely, the sensitivity of a filter for matches

with k errors is defined as the probability of a transcript with k errors to be identified by the filter

as potential match.

3.4.1 Computing Sensitivities by Dynamic Programming

We include here the formulation of the dynamic programming approach for Hamming distance

and gapped shapes as it is explained and proven correct in (Weese et al., 2009). An extension to

Levenshtein distance is formulated in (Weese et al., 2009). The algorithm was originally developed

and implemented by David Weese. Own contributions were in extending the implementation to

gapped q-grams and to position-dependent error probabilities.

Given a gapped shape Q with weight q and span s(Q). For a (Q, t)-filter, we are interested in

the probability that a transcript T with k errors contains at least t Q-matches: P (T contains ≥
tQ-matches

∣∣ ||T || = k). Note that this probability is only a lower bound for the sensitivity of

a (Q, t) filter that counts in overlapping windows/parallelograms, as cross matches, randomly

matching Q-grams that are not part of the optimal alignment of two sequences (see Figure 3.6),

may contribute to the number of shared Q-grams.

We denote the sum of all occurrence probabilities of transcripts of length n with k errors

containing at least t Q-matches by S(n, k, t). We can then write the total sum of all occurrence

probabilities of transcripts of length n with k errors as S(n, k, 0). Then

P (T contains ≥ tQ-matches
∣∣ ||T || = k) =

S(n, k, t)

S(n, k, 0)
(3.3)

By enumerating all transcripts with k errors, calculating their occurrence probabilities and

counting the number of Q-matches, we could naively compute S(n, k, t). However, this quickly

becomes infeasible with increasing n and k, as the number of different Hamming transcripts is(
n
k

)
. Instead, we use a dynamic programming approach similar to the one in (Burkhardt and

Kärkkäinen, 2001).

We denote the occurrence probability of sub-transcript T starting at position j of a read with

p(T, j) =
∏
i=1,...,|T | p

T [i]
i+j . Let R(i, e, t, T2) be the sum of occurrence probabilities of all transcripts

T1, s.t. |T1| = i and ||T1|| = e and the concatenation T1T2 contains at least t Q-matches. Then, it

suffices to enumerate all transcripts of length s(Q), i.e.
∑k
e=0

(
s(Q)
e

)
many Hamming transcripts

and we can calculate

S(n, e, t) =
∑

|T |=s(Q), ‖T‖≤e

R (n− s(Q), e− ‖T‖, t, T) p(T, n− s(Q)) (3.4)

where p(T, n− s(Q)) is the occurrence probability of transcript T at the end of a transcript of

length n. R (n− s(Q), e− ‖T‖, t, T) is the sum of occurrence probabilities of all possible transcript

beginnings with e − ||T || errors such that the concatenation of such a beginning with T results

in a transcript of length n with exactly e errors and at least t Q-matches. Summing up over all

34 CHAPTER 3. READ MAPPING

transcript endings T we get the occurrence probability sum of all such transcripts of length n. We

can calculate R recursively, for e = 0, ..., k, i = 1, ..., n, t = 0, ..., tmax and for all T ∈ {M,R}s(Q)

R(1, e, t, T) =

1 if e = 0, t ≤ δ(T)

0 else
(3.5)

R(i, e, t, T) = (3.6)

pMi ·R(i− 1 , e , t− δ(T), shift(M, T))

+ pRi ·R(i− 1 , e− 1, t− δ(T), shift(R, T))

with
shift(x, T) = xT2,|T | , and δ(T) =

1 if T contains a Q-match

0 else
.

Remarks

Sequencing errors in Illumina reads tend to accumulate towards the 3’ ends. From a filtering

efficiency standpoint, this makes lossy filtering very profitable, even more than with a uniform

error profile. When taking non-uniform probabilities into account, the threshold can be set to a

higher value (thereby improving filter selectivity) while maintaining the same sensitivity level as

with a uniform profile. This is demonstrated with an example in Figure 3.7 where the sensitivity

of an ungapped 11-gram for read length n = 36 and Hamming distance k = 2 is plotted (typical

values for early Illumina reads). Sensitivities were computed using the DP algorithm above. A

(11,6)-filter achieves sensitivity 95% with uniform error probabilities. In practise though, with an

Illumina error profile, one can use a (11,8)-filter and achieve the same sensitivity, thus increasing

the threshold by 2.

If one uses a gapped 11-gram, the effect is also seen but a bit less pronounced. In particular,

sensitivity drops more rapidly (from 100% with t = 5 to below 95% with t = 6). The tradeoff

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ungapped 11−gram

threshold

se
ns

iti
vi

ty

uniform error profile
Illumina error profile

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q = #####−−−#−−−−−−−#####

threshold

se
ns

iti
vi

ty

uniform error profile
Illumina error profile

Figure 3.7: Example of sensitivity as a function of threshold, given read length n = 36 with k = 2 errors
(Hamming), with and without position-dependent error probabilities, for a) the ungapped 11-gram and b) a gapped
shape with weight 11.

3.4. RAZERS - FILTER PARAMETER COMPUTATION 35

between sensitivity and selectivity (increasing threshold) is less smooth, due to the higher span of

the q-gram and therefore lower total number of q-grams that can be placed in a sequence of fixed

length.

However, for 100% sensitivity we can see in this example, that the optimal lossless threshold

t0 = 4 for the ungapped 11-gram is smaller than t0 = 5 for a gapped shape with the same

weight. Gapped shapes are thus especially valuable when 100% sensitivity is required (and only

mismatches are allowed).

3.4.2 Computing Heavy Lossless Shapes

An important feature of RazerS is that it can guarantee 100% mapping sensitivity if desired. For

this reason, and as lossless filtering is the hardest case, we are particularly interested in having

efficient filter settings for the 100% sensitivity case. For Levenshtein distance, ungapped q-grams

will be the most sensitive choice, as joker positions do not tolerate indels. For Hamming distance,

however, good gapped shapes are of importance (as seen in Figure 3.7).

We will later see that the weight of the shape, i.e. parameter q, turned out to have the greatest

impact on running time of RazerS. Therefore, we derived a greedy approach to computationally

determine heavy lossless shapes with t0 > 0, given sequence length n and up to k mismatches. We

show that in many cases the method returns a shape of maximum weight, in some cases even the

optimal shape as determined in (Burkhardt and Kärkkäinen, 2001). As complexity is exponential

in k + 1, we only use the method for n ≤ 50 and k ≤ 3.

Given a shape Q, we can naively compute the optimal threshold with the following calculations:

t = n− s(Q) + 1−max(M) (3.7)

with M =

n−s(Q)+1∑
i=1

Ii (3.8)

and Ii(j, u, ..., v) =

1 if ∃w ∈ {j, u, ..., v} : w − i ∈ Q

0, otherwise
(3.9)

where n − s(Q) + 1 gives the total number of Q-grams in a sequence of length n. M is a

k-dimensional array recording how many q-grams are destroyed when mismatches cooccur at the

indexed positions. For example, if k = 2 and M(u, v) = 3 then 3 q-grams are destroyed if the two

errors cooccur at positions u and v. Thus, we actually only need to store a part of the matrix

(the upper triangle in the two-dimensional case or
(
n
k

)
many entries in general). The maximum

entry in M describes the worst case arrangement of k errors, thus gives the maximum number of

q-matches that can be destroyed by k errors. Matrices Ii are binary indicator matrices and store

the information whether a q-gram starting at position i in the alignment transcript is destroyed

if mismatches cooccur at the indexed positions. As each possible combination of k mismatches is

inspected, formulae 3.7 to 3.9 describe an exact method for computing t0.

36 CHAPTER 3. READ MAPPING

With the help of M and Ii, we can greedily compute good shapes by iteratively adding positions

to a candidate shape Q with fixed span and keeping arrays M and Ii up to date in each iteration.

We test positions from left to right: The leftmost position is inserted if the maximum of the updated

array M remains low enough such that a minimum required threshold minT is maintained using

equation 3.7. Otherwise, the position will be a joker position, i.e, not inserted into Q, and we

move on to the next position. The algorithm is given in pseudocode in the appendix. We run the

algorithm on different spans and fix the first and the last position of Q. The output is the shape

that has 1) highest weight and 2) largest span. We test spans from dn/(k + 1)e+ 1 to n− k.

With increasing number of errors, the complexity of this method quickly becomes prohibitive.

We thus computed shapes with this method for read lengths up to 50 bp and up to 3 errors only.

In special applications of read mapping, such as the partial read mapping tools introduced in the

next chapter, the filtration criterion will be based on a seed-part of the read, i.e. independent of

the entire read length. This seed length is usually relatively small (e.g. between 12 and 30 bp)

and supposed to be of high-quality, such that values of k > 3 are uncommon, making our method

usable and valuable in practise.

Observations

The method has a tendency to produce periodic shapes, which happen to be quite frequent among

optimally weighted shapes (Kucherov et al., 2005). As a basic evaluation, we tested whether some

maximum weight shapes given in the literature could be retrieved by our method (implemented

in R).

• Given in (Kucherov et al., 2005): ###-#--###-#--###-# is the optimal weight shape for

n = 25, k = 2. Our method returns the same shape and requires < 1 second.

• Given in (Burkhardt and Kärkkäinen, 2001): #####-##---#####-## is the optimal weight

shape for n = 50, k = 4. Our method returns the same shape and requires 5.5min and 4.4 GB

of memory.

After these positive results, we additionally checked for all n = 10, ..., 30 and k = 1, ..., 3

whether there existed a shape with weight w(Qgreedy)+1, where Qgreedy is our greedily computed

shape. As we exhaustively enumerate all such (w(Qgreedy)+1)-shapes, the test becomes prohibitive

for larger values of n. However, for all cases tested, we found no shape with higher weight than

our greedily computed shape. Still, we do know that the method is not optimal, as in some cases

it provably fails to detect the heaviest shape for a fixed span. For example, for n = 20 and k = 2

there exists an 8-shape ###-#--#-#--##, but instead it returns the 7-shape ###-#--##----# for

span 14.

3.4.3 ParamChooser

We make use of the methods for filter sensitivity and lossless shape computation (described in

the previous two sections) in our tool ParamChooser. Integrated into RazerS but also usable as a

3.4. RAZERS - FILTER PARAMETER COMPUTATION 37

stand-alone tool, ParamChooser supports two basic tasks:

1. computing loss rates for a given error profile and a given set of shapes, saving results to

parameter files

2. choosing a ”best” filtering criterion (Q, t) for a given read length n, k errors, and a maximum

allowed loss rate, by parsing precomputed parameter files

In this context, ”best” means those settings that optimize the running time of RazerS while

complying to the loss rate. The parameter choosing module in RazerS makes use of the second

step only, i.e. parses precomputed parameter files and chooses the best filtering criterion. The two

steps are explained in the following two subsections.

Precomputing Parameter Files for RazerS

We compiled a set of candidate shapes from the literature (Burkhardt and Kärkkäinen, 2001; Li

et al., 2003) and by using the greedy algorithm explained in the previous section. These shapes

are hard-coded into the ParamChooser source code. Optionally, the user can specify additional

shapes through the ParamChooser command line.

Using the DP algorithm from section 3.4.1, ParamChooser then computes loss rates for the user-

specified read length n allowing an error rate of up to 10% using either Hamming or Levenshtein

distance. As a default error profile, uniform error probabilities are assumed. The results are then

recorded in parameter files that contain human-readable filtering criterion information (example

shown in Figure 3.8). Each entry (row) in these files stores a 5-tuple (e,Q, t, L, P) where e is the

number of errors, Q and t are shape and threshold, L is the computed filtering loss rate, and P

is the number of potential matches as observed on a simulation run2 of RazerS with this filter

setting.

For precomputing parameter files for RazerS, we used a typical Illumina error profile (Dohm

et al., 2008) for 32 bp reads and interpolated for other read lengths3. In the case of Levenshtein

distance, insertion/deletion errors received a 0.002 probability, independent of read base posi-

tion. Parameter files were produced for all n = 16, ..., 75, once using Hamming and once using

Levenshtein distance.

Choosing Filter Parameters

Given n, k and a user specified loss rate Luser, ParamChooser parses the corresponding parameter

file and consider among all (e,Q, t, L, P) tuples only those for which e = k and L ≤ Luser. Then

the one that is optimal with respect to the following order is chosen: 1) w(Q) is maximized 2) P

is minimized 3) t is maximized 4) s(Q) is maximized. Only if t = 1, we check whether the shape

with second best weight, i.e. w(Q)-1, has threshold > 2. This selection process is based on the

2simulating 50000 reads from a simulated 1 Mb genome and mapping them back with RazerS
3Standard read length at the time was 32 bp. Interpolation rather than extrapolation was chosen as advances in

sequencing technology producing longer reads would be accompanied by improved quality, i.e. stretching the error
profile.

38 CHAPTER 3. READ MAPPING

results_N65_L.dat

errors shape t lossrate PM

0 1111111111 55 0 18738
1 1111111111 46 0 41703
2 1111111111 37 0.1399 52567
2 1111111111 36 0 53846
...

Figure 3.8: Example of a parameter file for read length 65 bp (N65 in filename) and edit distance (L for Levenshtein
distance). The first column states the number of errors, the second column the shape, column three the threshold
and column four the computed loss rate. Column five is used to get an estimate of the filtration efficiency and
records the number of potential matches as observed on a simulation run of RazerS with the filter settings of this
row.

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4
4.4

4.2

4.0

3.8

3.6

3.4

3.2

3.0

24008.8

9096.5

4154.0

2466.8

1725.1

5033.4

2591.7

1814.4

1203.0

935.3

5511.0

3074.9

2002.9

1317.2

1046.7

7490.2

3904.7

2464.4

1670.9

1262.3

11600.2

5108.8

2861.1

1876.4

1409.1

10

11

12

13

14

1 2 3 4 5threshold

we
igh

t

14

13

12

11

10

1 2 3 4 5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Threshold

W
ei

gh
t

R
un

tim
e

sc
al

e
[lo

g 10
(s

ec
)]

Figure 3.9: Running time of RazerS in seconds using different filtering parameters, measured on a set of 1M 50 bp
reads on human chromosome X. The weight of the q-gram has the greatest influence on running time. When t=1
it pays off to use a q-gram with weight smaller by one if in that case t ≥ 3 (indicated by arrows).

observation that the weight has the greatest influence on RazerS’ running time for read lengths

and error rates typical for Illumina reads at that time. Figure 3.9 clearly shows how the weight

of the q-gram has the largest influence on running time. (Note that q ≤ 14 as RazerS uses a full

q-gram index which would consume too much memory for larger values of q.) Even if t = 1, it

does not pay off to use a lower weight q-gram unless it can be used with t > 2 (indicated by the

arrows in Figure 3.9). For thresholds higher than one, we always use the highest weight q-gram

possible.

For read lengths greater than 75, we extrapolate from shorter read lengths. To this end, we

choose a setting (ne, ke) with ne as large as possible, such that ke/ne ≥ k/n. This ensures that the

loss rate for (ne, ke) is a lower bound for the loss rate for (n, k). We can then set the threshold value

t = bte ·n/nec. This is illustrated by an example: If we extrapolate the filtering setting for (100,6)

from (50,3), we can imagine concatenating two reads of length 50 bp. Therefore we can also expect

to see at least twice as many q-grams. The extrapolated value for t is not necessarily optimal,

as q-grams crossing the concatenation point will be not considered. However, as it constitutes a

lower bound, we can still guarantee a lower bound for sensitivity.

3.5. RAZERS - RESULTS 39

3.5 RazerS - Results

We evaluated RazerS in terms of correctness of its mapping sensitivity control and its compu-

tational performance in comparison with five other read mapping tools popular at the time of

publication: Shrimp, Maq, Soap, Zoom and SeqMap (see Table 3.1). This evaluation section is

heavily based on (Weese et al., 2009).

Evaluation Data

We used two real read data sets for the evaluation:

• SRR001815 from short read archive: Drosophila melanogaster whole genome resequenc-

ing,10,760,364 reads of length 36 bp, Illumina Genome Analyzer.

• SRR006387 from short read archive: Whole genome resequencing of human HapMap indi-

vidual NA12005, 2× 7,894,743 76 bp paired-end reads, trimmed to the first 63 bp (in order

to be able to include all tools in the comparison), Illumina Genome Analyzer.

In addition, we simulated two read data sets for the evaluation of RazerS’ sensitivity estimation:

• A set of 1,000,000 36 bp reads simulated from the human X chromosome. Replacement errors

(mismatches) were introduced according to the Illumina error profile (Dohm et al., 2008)

that we used earlier for filtering parameter computation.

• A set of 1,000,000 36 bp reads simulated from the human X chromosome. In addition to

replacement errors, insertion/deletion errors were introduced with a probability of 0.002 at

each read position.

As reference sequences, we use the human reference genome hg18 (NCBI build 36.3) and the

drosophila melanogaster reference genome (FlyBase Release 5.9), both repeat masked (Smit et al.,

2004).

3.5.1 Evaluation of RazerS’ Mapping Sensitivity Estimation

In order to validate our sensitivity estimation, we compared calculated and observed mapping sen-

sitivities. We use simulated and real 36 bp read data and we test Hamming as well as Levenshtein

distance. The evaluation strategy was developed in collaboration with David Weese, evaluation

was scripted and run by the author, plots were generated by David Weese.

Evaluation Setup

To determine the observed, i.e. empirical, loss rate for a given number of errors k, we first categorize

reads according to their true error level. On the simulated sets, we know the number of errors

introduced during simulation and can therefore use the simulated error level for categorizing; on

the real data, we first run RazerS with lossless filtration parameters (100% sensitivity) and then

categorize according to the number of errors in their best alignment. We then define the empirical

40 CHAPTER 3. READ MAPPING

loss rate at error level k as the number of unmapped reads with k errors divided by the total

number of reads with k errors. We run this test for different sensitivity settings, i.e. different filter

settings, and inspect the difference of empirical loss rate to calculated loss rate, computed by the

DP algorithm with error probabilities as used during simulation in the artificial read set; for the

real data set, we use the a posteriori error profile as observed after 100% sensitivity mapping.

Results

Results are plotted for four test cases (real/simulated 36 bp data, each with Hamming/Levenshtein

distance) in Figure 3.10 (results and figures from (Weese et al., 2009)). The dashed lines shows

the mean relative difference between empirical and calculated loss rates (1− empirical loss rate
calculated loss rate) as

a means to measure sensitivity estimation accuracy.

For Hamming distance we see a very good correlation between empirical and calculated loss

rates, on simulated as well as real data sets. We are particularly interested in low loss rates (< 10%)

as these will be of most practical relevance. For Hamming distance, the mean relative difference

remains low (below 0.1%) for low loss rates < 10% and remains low (< 1%) throughout the whole

range. For Levenshtein distance on the other hand, we observe a more pronounced disagreement,

which however still stays below 10% in all cases. The higher disagreement compared to Hamming

distance is mainly explained by cross matches that contribute to the q-gram count, and thereby

lead to more parallelogram counters reaching the threshold. In Hamming distance, parallelograms

are single diagonals and thus no cross matches occur. At loss rates < 10% the mean relative

difference is < 4% for simulated data and < 2.8% for real data. For simulated data, there is the

additional aspect that reads may be mapped with less errors than they were initially simulated

with (for example, if an insertion was simulated next to a deletion).

In total, we observe that the empirical loss rate correlates well with the calculated one and

most importantly never exceeds the calculated one, i.e. serves as a good lower bound.

3.5.2 Comparison with Other Read Mappers

We evaluate RazerS’ performance in terms of running time, space consumption, and number of

mapped reads in comparison to five other read mapping tools: Zoom (Lin et al., 2008), Shrimp (Rum-

ble et al., 2009), SeqMap (Jiang and Wong, 2008), Soap (Li et al., 2008b), and Maq (Li et al.,

2008a). Again, we evaluate different settings, testing Hamming as well as Levenshtein distance and

using the two real read data sets introduced earlier in this section. For additional comparisons on

longer simulated reads and real paired-end data, see (Weese et al., 2009).

Evaluation Setup

Three test settings were used: Hamming distance 2 for the 36 bp reads from Drosophila (setting

A), Levenshtein distance 2 on the same data set (setting B), and Hamming distance 5 on the

human 63 bp reads (setting C). We run our test on a AMD Opteron 2.8 GHz machine with 64 GB

of RAM.

3.5. RAZERS - RESULTS 41

S
im

ul
at

ed
 r

ea
ds

Hamming Levenshtein

D
ro

so
ph

ila
 r

ea
ds

Figure 3.10: Comparison of empirical and calculated loss rates for varying parameter settings q = 8, . . . , 14 and
t = 1, . . . , 20. The left column shows Hamming distance, the right column Levenshtein distance results. The first row
is on simulated, the second row on real Drosophila reads. The dashed line reflects the mean of relative differences
1− empirical loss rate

calculated loss rate
of all calculated loss rates below the loss rate level given on the X-axis. Figure from (Weese

et al., 2009).

We set all tools to report only one best match. We carefully set each tools’ mapping parameter

such as to make the comparison as fair as possible. However, as all tools have slightly different

objectives this is not in all cases straightforward. For example, Shrimp uses Smith-Waterman

alignment for verification, which allows to compute Hamming distance alignments (by setting

gap penalties very high and using a score cutoff that will allow only valid semiglobal matches to

be reported), but it does not allow to exactly compute Levenshtein alignments. Still, we try to

emulate Levenshtein distance by setting gap penalties equal to mismatch penalties and requiring

a score cutoff that will guarantee not to miss valid Levenshtein alignments. Also Maq requires

special treatment, as it minimizes the sum of mismatching quality values in its verification, and

only the number of mismatches in the 28 bp prefix can be set. For setting A, we set the number

of mismatches in the prefix to 2, for setting C to 3 (the maximum possible). We then post-filter

42 CHAPTER 3. READ MAPPING

matches with a higher total number of errors > 2 for setting A and > 5 for setting C. Both Maq

and Soap do not support gapped alignment, i.e. are only used for the Hamming distance test

cases. Even though the Soap manual states 60 bp as the maximum read length, we experienced

no problems running it on 63 bp reads (without trimming taking place). Zoom has a switch to

guarantee 100% sensitivity for Hamming distance which works for k = 2 but gives an error message

for k = 5. However, requiring 100% sensitivity for matches with up to 4 errors works, so we use

this for setting C instead. We run RazerS in two sensitivity settings: 100% and 99% sensitivity.

Details on program calls are given in the appendix.

Results

The results of running all tools on the three test settings are summarized in Table 3.2. By sacrificing

1% in sensitivity (RazerS100 to RazerS99), we gain a significant speed up of at least factor 2. In

setting C (long human reads) speed is even improved by a factor of 13. For setting A (short

Drosphila reads) RazerS100 is already fast, with only Zoom being faster. Except for mapping

1M reads in setting A, where Zoom is still slightly faster, RazerS99 is the fastest tool. The other

q-gram counting based tool, Shrimp, is always slowest. In general, allowing mismatches only is

always faster for all tools, with the exception of Shrimp which anyway computes Smith-Waterman

alignments. The running time improvement in RazerS when going from Levenshtein to Hamming

distance (in the most extreme case from 163 h in setting B to 10.6 h in setting A) is mainly

explained by the use of gapped q-grams which immensely speed up the filtering phase.

In terms of memory consumption, RazerS is comparable to other tools. Setting C with the

entire ∼ 10M reads requires > 4GB of memory for all tools, except for Zoom. SeqMap is most

RazerS100 RazerS99 Zoom Shrimp SeqMap Soap Maq

(A
)
D
m

3
6
b
p

H
a
m
m
in
g 1M

time (min) 2.13 1.63 1.47 15.3 6.70 9.27 4.10
space (GB) 1.31 1.30 0.72 0.68 6.56 0.67 0.60
#mapped 505,506 503,595 505,506 505,084 505,059 506,476 503,999(605K)

all
time (min) 10.6 5.55 7.80 145 12.8 116 9.68
space (GB) 4.10 3.92 3.77 5.80 11.1 0.67 5.36
#mapped 5,353,287 5,335,554 5,353,287 5,349,007 5,348,776 5,414,337 5,338,676(6.5M)

(B
)
D
m

3
6
b
p

L
ev
en

sh
te
in 1M

time (min) 12.3 5.92 32.7 13.6 15.5 - -
space (GB) 0.48 0.53 0.72 0.68 8.38 - -
#mapped 512,477 511,695 512,139 515,080 512,477 - -

all
time (min) 163 68.45 267 146 abort - -
space (GB) 4.58 4.59 3.77 5.90 - - -
#mapped 5,431,142 5,424,088 5,427,589 5,486,467 - - -

(C
)
H
s
6
3
b
p

H
a
m
m
in
g 1M

time (h) 3.14 0.40 26.1 10.7 48.8 3.88 2.43
space (GB) 1.14 1.86 1.27 6.10 8.10 6.20 0.70
#mapped 352,725 351,767 352,617 352,742 349,721 354,020 323,893(362K)

all
time (h) 25.4 1.95 45.3 > 3 d abort 33.8 5.74
space (GB) 5.60 6.13 2.89 - - 6.2 4.38
#mapped 3,102,320 3,095,435 3,091,063 - - 3,133,920 2,817,561(3.0M)

Table 3.2: Results for mapping 1 M and ∼ 10 M (all) reads of length 36 bp onto the Drosophila genome (Dm)
allowing for up to 2 Hamming (A) or Levenshtein (B) errors, and results for mapping 1 M and ∼ 8 M reads of length
63 bp onto the human genome allowing for up to 5 Hamming errors (C). Soap and Maq do not support Levenshtein
distance. Maq also reports matches with more errors , the total count of mapped reads including reads with more
errors than allowed is shown in brackets. Table from (Weese et al., 2009).

3.5. RAZERS - RESULTS 43

space-consuming and aborted when run on the entire read sets except in setting A.

All tools report similar numbers of mapped reads. RazerS99 always recognizes between 99.62

and 99.87% of the matches found by RazerS100. As the sensitivity level applies to the highest

number of allowed errors (i.e. RazerS99 has 99% sensitivity for 5-error matches in setting C but

is most likely lossless for < 5 errors), the overall sensitivity is higher than 99%. Soap maps the

highest number of reads due to its differential treatment of ’N’s. It counts a match if ’N’ is aligned

with ’A’, a behavior that could not be switched off. Also Shrimp treats ’N’s differently, and aligns

’N’ with ’N’, therefore reporting more matches than RazerS100 in setting C. In setting B, Shrimp

finds additional matches due to its Smith-Waterman verifier which cannot be set to report valid

Levenshtein matches only. SeqMap does not detect matches that reach into reference regions

consisting of ’N’s, thereby always reporting less matches than RazerS100. Zoom reaches 100%

sensitivity in setting A only. It loses matches in setting B, as it allows only one gap; for setting C,

Zoom could not be set to 100% sensitivity for matches with 5 errors. As Maq uses a quality-based

scoring method which is more permissive in the number of alignment errors, we filtered its output

for matches conforming to our maximum error level. This produces numbers more comparable to

those of the other tools (the total count of mapped reads is shown in brackets).

In conclusion, RazerS compares very well with other read mapping tools at the time. Its fine-

grained sensitivity control is a unique feature among tools and gives a good tradeoff between

mapping sensitivity and speed. Another important conclusion from this evaluation was that com-

paring read mapping tools is not a trivial task. Most read mappers have slightly different objectives

and different parameters that can be set. For a fair comparison, and in particular a quantitative

evaluation of accuracy, a benchmarking method that compares results to a reference truth is

needed.

44 CHAPTER 3. READ MAPPING

3.6 Improved Benchmarking of Read Mapping Tools

From the evaluation of RazerS it became clear that measuring the performance of read mapping

tools is not a trivial task. In the previous section, we used the number of mapped reads as

an indicator of mapping accuracy. This is the measure commonly used to compare read mapping

tools (Li et al., 2008b; Jiang and Wong, 2008; Langmead et al., 2009), the tool mapping the highest

number of reads being the best. Obviously, this is not a very sophisticated way of comparing tools,

as 1) best matches could be missed and suboptimal matches reported instead, and 2) even false

positive matches could be reported. Also, for different variants of the read mapping problem (e.g.

all or all-best, see chapter beginning ”Semiglobal read mapping”) this measure is insufficient, as

no information about the completeness of the found match set is revealed. Ideally, we would like

to compare the result of read mapping tools to a gold standard, i.e. the perfect answer a read

mapper should find.

Therefore, we devised a method to do exactly this: a benchmarking method called Rabema (Holt-

grewe et al., 2011). This is mainly work by Manuel Holtgrewe. Own contributions are mostly in

the evaluation of results including a comparison of several read mapping tools (see section 3.6.2).

In the following we first outline the method and then show results.

3.6.1 Rabema - Generating a Gold Standard

The Rabema method computes a gold standard for a set of reads by using RazerS in 100%

sensitivity mode. However, some additional considerations and computations are necessary for

creating the gold standard and for comparing a set of reported matches to it.

First of all, given two matches we need to be able to decide if they are the same. This is

surprisingly involved and represents the core difficulty in creating a well-defined benchmarking

method. As indicated earlier in Figure 3.4, there can be some ambiguity in match begin and end

positions whenever gaps are allowed in the alignment, making it insufficient to simply check if two

matches’ begin and end positions are exactly the same. Additionally, it is not straightforward how

to treat matches in repeat regions. Repeat regions can lead to many possibilities to align a read,

all of which are essentially the same. For example it is clearly not the goal of read mapping to

report every single matching position of read ”AAA” in a long ”A” homopolymer run.

We therefore compute match-equivalent intervals within which all matches are defined as equal.

By definition, we identify each match by its end position (or interval of end positions) in the

reference genome.

Given a maximum number of allowed errors k, we define two equivalence classes that we

need in order to define such intervals: k-trace-equivalence for the first case (alignment ambiguity,

Figure 3.11A), and neighbor-equivalence for the second case (repeat regions, Figure 3.11B). We

first introduce trace-equivalence which we need in order to understand k-trace-equivalence. In

simple words, two matches are trace-equivalent if they share a part of their trace. This is the case

if their end positions trace back to the same begin position (by definition, the rightmost one). End

positions that lie between two trace-equivalent matches that have ≤ k errors are ”smoothed”, i.e.

3.6. IMPROVED BENCHMARKING OF READ MAPPING TOOLS 45

ref

re
ad

k-trace equivalent

}

ref

re
ad

neighbor equivalent

}

A) alignment ambiguity B) tandem repeats

ref ... TATCG ... TAT-C
read ... TATCC ... TATCCor ref ACTACTACTACTACTACT

read ACTACTACT
	 						ACTACTACTor

Figure 3.11: The two cases that complicate match equivalence definition: alignment ambiguity (A) and repeats
(B). They are tackled through the definitions of k-trace equivalence and neighbor equivalence. Lines represent
alignment traces with distance ≤ k

included in the k-trace-equivalent interval, even if they have more than k errors. Two matches are

neighbor-equivalent if their end positions are only separated by end positions that stay below error

level k, which is the case in short tandem repeats. With the help of these two equivalence classes,

we can finally compute our match-equivalent intervals. Formal definitions and further examples

are given in (Holtgrewe et al., 2011).

In the end, the gold standard consists of a set of match-equivalent intervals where each interval

is annotated with its error level e ≤ k. The output of a read mapper is then compared to this

set of intervals where depending on the objective either all true matches, all best true matches,

any best true match or any true match needs to be detected by the read mapper. The benchmark

is also able to identify false positive matches (which in practise are rare). These are matches not

contained in any interval, or only in an interval with error level larger than the reported one.

3.6.2 Rabema - Evaluation of Read Mapping Tools

In the following we show the results of a sample evaluation on three datasets, comparing mapping

sensitivities of four popular read mappers: BWA (Li and Durbin, 2009), Bowtie (Langmead et al.,

2009), Soap2 (Li et al., 2009b) and Shrimp2 (David et al., 2011).

Evaluation Data

All data sets are from Drosophila melanogaster which has a moderately sized genome (∼ 130 Mb).

• read set SRR026674 containing 36 bp Illumina reads.

• read set SRR049254 containing 100 bp Illumina reads.

• read set SRR034673 containing 454 reads of average length 273 bp.

From each set we use 10,000 randomly sampled reads.

46 CHAPTER 3. READ MAPPING

Evaluation Setup

On the Illumina reads, we run Bwa in default mode as advised by its author. Also Shrimp2 is run

in default, except for the use of weighted seeds (advised by the authors). For Bowtie and Soap2 we

tested different parameter settings and include in our results the most sensitive ones we found as

well as the default settings. For all tools we set the maximum number of matches to report to 100.

On the 454 reads, we only evaluate Bwa (using bwasw) and Shrimp2, because Bowtie and Soap2

do not support gaps and are therefore practically unusable on 454 reads. Details on program calls

can be found in the appendix.

To measure sensitivity we will use the measure of normalized found intervals. If a read matches

in x intervals, each found interval contributes 1/x point, such that by summing up a read can

contribute at most one point in total. We sum up all points of all reads and then divide (normalize)

by the total number of reads. Multiplying by 100 gives us the percentage of normalized found

intervals. We evaluate the all and the any-best problems.

Results

Sensitivity results for the all and any-best category are shown in Figure 3.12. Subfigures (A) and

(B) show the results for the shortest read length tested (36 bp). Here, all tools achieve high sensi-

tivities, particularly in the any-best category. The tuned versions of Soap2 and Bowtie (denoted by

Soap2* and Bowtie*) perform the same as their default versions. Finding all matches, the tuned

Soap2* performs significantly better than the default version Soap2, showing that Soap2’s default

settings are geared towards returning just one best match. For all tools, we see a slight decrease

in sensitivity with increasing error rate.

On the longer 100 bp reads (subfigures (C) and (D)) we see a more dramatic decrease in

sensitivity. Also, the difference between overall performance in the all compared to the any-best

category is more pronounced. Most notably, the default versions of Soap2 and Bowtie experience

a sudden drop in sensitivity, when error rate passes 2%. It appears that the default versions are

geared to finding matches with at most 2 errors (corresponding to 2% error rate on the 100 bp

reads). The tuned versions are able to achieve much better sensitivities (with a significant increase

in running time, around factor 3 to 4). Overall, Bwa performs best in the any-best category, while

in the all category Shrimp2 remains highly sensitive for all tested error rates.

On the 454 reads, we do not see a significant difference between the all and the any-best

category (subfigures (E) and (F)). As the reads are much longer than the Illumina reads, they

have fewer mapping locations and are thus less ambiguous, leading to less differences between all

and any-best. We consistently see Shrimp2 being 10-20 percentage points more sensitive than Bwa.

It is worth mentioning though, that Shrimp2 requires about an order of magnitude more memory

and running time.

In conclusion, it seems that Soap2 and Bowtie are geared towards short reads (and gapless

alignment), while Bwa and Shrimp2 perform well on different read lengths. Bwa is a very sensitive

mapping tool, especially well suited for quickly reporting any best match of a read. Shrimp2 is

overall the most sensitive at reporting all matches and therefore may be especially interesting in

3.6. IMPROVED BENCHMARKING OF READ MAPPING TOOLS 47

80

85

90

95

100

0 1 2 3 4 5 6 7 8

no
rm

al
iz

ed
 fo

un
d

in
te

rv
al

s
[%

]

error rate [%]

80

85

90

95

100

0 1 2 3 4 5 6 7 8

no
rm

al
iz

ed
 fo

un
d

in
te

rv
al

s
[%

]

error rate [%]

Bowtie

Bowtie*

Bwa

Shrimp2

Soap2

Soap2*

75

80

85

90

95

100

0 1 2 3 4 5 6 7 8

no
rm

al
iz

ed
 fo

un
d

in
te

rv
al

s
[%

]

error rate [%]

75

80

85

90

95

100

0 1 2 3 4 5 6 7 8

no
rm

al
iz

ed
 fo

un
d

in
te

rv
al

s
[%

]

error rate [%]

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

no
rm

al
iz

ed
 fo

un
d

in
te

rv
al

s
[%

]

error rate [%]

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

no
rm

al
iz

ed
 fo

un
d

in
te

rv
al

s
[%

]

error rate [%]

ALL ANY-BEST
A) B)

C) D)

E) F)

Ill
um

in
a

36
bp

Ill

um
in

a
10

0b
p

45
4

Figure 3.12: Comparison of second generation read mapping tools using the Rabema benchmarking method. Left
column shows results for the all mapping problem, right column for the any-best problem. Plots in the first two
rows are for Illumina reads (36 and 100 bp), and in the last row for 454 reads. Figure from (Holtgrewe et al., 2011).

studies where sensitivity is valued over running time. We note that parameterization of tools is

immensely important, as it can make a difference in sensitivity of more than 10 percentage points.

This shows the importance of a benchmarking method, which can be used prior to deciding for

a tool and a parameter setting for a certain task. Extending Rabema to other objectives in read

mapping, e.g. for paired-end reads or for partial read mapping, will be even more involved, but

might prove particularly fruitful for specific applications such as structural variant detection.

48 CHAPTER 3. READ MAPPING

3.7 Chapter Summary

In this chapter, we

• gave an overview of algorithms and tools for read mapping.

• developed a semiglobal read mapping tool RazerS based on a q-gram counting approach that

supports Hamming as well as edit distance.

• integrated a mapping sensitivity control switch, that is based on a dynamic programming

procedure for filter sensitivity calculation, and that provides controlled runtime-sensitivity

tradeoff.

• derived a heuristic for computing good (heavy) gapped shapes for Hamming distance map-

ping with 100% sensitivity.

• compared RazerS with other read mapping tools and tested its sensitivity estimation.

• introduced the benchmarking mehod Rabema that uses RazerS in 100% sensitivity mode

(plus additional calculations) to create a well-defined read mapping gold standard (Rabema).

• finally gave a sample evaluation of read mapping tools using this gold standard.

We observed that

• q-gram counting is rare among read mapping tools, most tools rely on a pigeonhole-based

filtering-and-verification approach, or use a (FM-) index backtracking procedure.

• RazerS’ sensitivity estimation method gave a good lower bound on achieved mapping sensi-

tivity.

• the speed up in read mapping was significant even when sacrificing only little in terms of

sensitivity.

• the shape computation heuristic found an optimum-weight shape for all tested cases (up to

50 bp).

• using gapped shapes for Hamming distance mapping lead to a significant speed up compared

to edit distance.

• RazerS could efficiently deal with NGS read data and was among the fastest tool, especially

in 99% sensitivity mode.

• comparing read mapping tools is not straightforward: all tools had slightly different objec-

tives and parameters.

• comparing read mapping accuracy of different tools is not trivial either and in most publica-

tions (including RazerS) simply the number of mapped reads is used as sensitivity estimate.

3.7. CHAPTER SUMMARY 49

• creating a benchmarking method is quite involved, as defining when two matches are the

same is complicated by alignment ambiguity and repeat sequences.

• many popular read mappers are lossy, especially for matches with more than 2 errors.

From this we conclude that

• RazerS’ sensitivity switch, which is a unique feature among read mapping tools, gives it an

effective sensitivity-speed tradeoff.

• RazerS can report all matches, i.e. guarantee 100% sensitivity for many different settings

and including suboptimal matches, giving it an important advantage over other tools.

• we created the first benchmarking method that takes a more sophisticated approach at

comparing the results of read mappers (compared to simply counting mapped reads).

• only in comparison to a gold standard we can quantitatively evaluate the sensitivity of read

mapping tools.

50 CHAPTER 3. READ MAPPING

Chapter 4

Partial Read Mapping and

Applications

Semiglobal read mapping, the focus of the previous chapter, assumes reads to differ only slightly

from the reference sequence. Reads that differ too much from the reference, e.g. because they

contain or intersect with a genomic variant, will remain unmapped, or in the worst case may even

be assigned to a wrong location. However, these are the reads we are especially interested in, as they

carry the potential to identify these variants. Accurate variant discovery is of major importance

for our understanding of genome evolution and for our power to identify disease-causing variants,

ultimately on a diagnostic level (Voelkerding et al., 2009). For variant-spanning reads, we require

specialized read mapping types that are tailored to the problem at hand. In addition, the type of

read data and use of reference sequence can necessitate different read mapping approaches.

Figure 4.1 gives an overview of some partial read mapping types with their diverse applications.

In prefix mapping the read alignment starts at the first read base, but does not have to extend all

the way to the last base. Prefix mapping has applications in small RNA read mapping (Emde et al.,

2010) and in SV (especially long insertion) breakpoint discovery (Suzuki et al., 2011; Karakoc

et al., 2012). Split read mapping, where the read alignment is split into parts, has become a

popular method for detecting SVs. Its main strength lies in the power to locate SVs with base

pair precision, which is crucial for downstream analysis of SVs, such as predicting the functional

impact on protein level or for studying variation formation processes (Lam et al., 2010). Usually,

the read is split into two parts that map in collinear order only interrupted by a longer gap in the

read-to-reference alignment (prefix-suffix mapping). Prefix-suffix mapping has application in indel

detection (Ye et al., 2009; Emde et al., 2012; Karakoc et al., 2012). Another prominent application

of split read mapping is in RNA-Seq for mapping reads crossing splice junctions (Au et al., 2010;

Wang et al., 2010). If the read may be split into more than two parts (multi-split mapping) and the

collinearity of mapped read parts is not enforced, we have the most generic form of split mapping.

Generic split mapping (Trappe, 2012) has the potential to reveal more complex types of SVs such

as interchromosomal rearrangements or gene fusions, which are of particular interest in cancer

51

52 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

A) Prefix Mapping

B) Prefix-Suffix Mapping

C) Generic Split Mapping

Insertion

donor

ref

Small RNA

miRNA

reads
containing
adapter

Deletion

donor

ref

Introns

donor
transcript

Translocation Multiple Introns

donor
transcript

ref

donor

ref

ref

ref

Figure 4.1: Overview of the different types of partial mapping. A) Prefix-based mapping for example finds ap-
plication in insertion breakpoint discovery or in mapping of small RNA reads containing 3’ adapter sequence. B)
Prefix-suffix mapping can identify reads that span deletions or introns in transcriptomic data. C) The most generic
form of split mapping can additionally map reads spanning complex SVs or multiple introns.

studies (Campbell et al., 2008; Maher et al., 2009).

Due to the already short read lengths and the partitioning of the read into even smaller parts,

split read mapping struggles with even more alignment ambiguity and computational complexity

challenges than semiglobal read mapping. Shorter sequence parts produce more random matches,

and the more freely and distantly these match parts are allowed to be located on the genome, the

more combinatorial explosion we face. So far split mapping has therefore been used mainly for

paired end reads, where one end is mapped and serves as an anchor, while the other end could

not be mapped, presumably because of an SV (Ye et al., 2009). We speak of one-end anchored

reads in this case. Through one-end anchoring we know where the unmapped read should map

approximately. Thus anchoring significantly reduces search space for split mapping, thereby also

reducing mapping ambiguity and uncertainty. As read lengths increase with advances in sequencing

technology, split read mapping has become and is still becoming more and more powerful, and

therefore important as a method for SV detection with base pair precision.

4.1. SMALL RNA READ MAPPING 53

In this chapter we address two methods for partial read mapping that find application in small

RNA read mapping and in indel discovery. First, we describe and evaluate the prefix mapping

approach implemented in MicroRazerS (Emde et al., 2010) for detection of miRNAs. To our

knowledge, MicroRazerS was the first tool to implement a prefix-based mapping approach that

makes adapter trimming of small RNA reads unnecessary and efficiently scales to large NGS data

sets. MicroRazerS is joint work with Marcel Grunert. Then, we will turn to the main focus of this

chapter: split read mapping with SplazerS (Emde et al., 2012) for indel detection. Here, the novelty

lies in its support for paired- as well as single-end data and especially its successful application to

indel detection in a large-scale single-end resequencing data set.

4.1 Small RNA Read Mapping

Small RNA reads are special in that the sequenced read length may surpass small RNA length

(19-25 bp in the case of miRNA). Sequencing may therefore reach into the sequencing adapter.

When mapping small RNA reads onto a reference sequence (usually genome or database of known

smallRNAs) this needs to be taken into account.

4.1.1 Strategies for Mapping Small RNA Reads

Mapping small RNA reads either requires the adapter sequence to be removed first such that

traditional semiglobal read mapping can be applied, or involves an alignment method that can

directly handle the adapter sequence. Adapter removal is far from trivial (Wang et al., 2009a;

Kong, 2011), as also the sequencing of adapter may produce sequencing errors, even more so as

sequencing qualities degrade toward the 3′ end where the adapter is located. Unrecognized adapter

will prevent the read from mapping semiglobally.

Instead of removing adapter sequence, early miRNA studies (Friedländer et al., 2008; Morin

et al., 2008) therefore used the local alignment tool Mega BLAST (Zhang et al., 2000) to map

small RNA reads, rigorously filtering its output for matches adhering to certain criteria. These

criteria include a certain minimum match length and a maximum number of errors; additionally,

the match is required to start at the first read base.

Building on these strategies, we developed MicroRazerS which uses q-gram counting for

finding a high quality prefix seed match which is then extended until the first mismatch is encoun-

tered. Adapter sequence does not have to be trimmed, thereby avoiding problems that come from

undertrimming (cannot map undertrimmed read semiglobally) or also overtrimming (cannot map

overtrimmed read uniquely). The algorithm is explained in the following.

4.1.2 MicroRazerS - Algorithm

MicroRazerS is joint work with Marcel Grunert. Marcel Grunert was mainly responsible for tool

evaluation, while own work was mainly in tool implementation. Both contributed equally through

discussion and manuscript preparation.

54 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

Given a minimum match length m and a number of allowed mismatches k, we define a valid

prefix match of read r as an alignment ar1,x for which holds:

1. m ≤ x ≤ |r|

2. d(ar1,m) ≤ k

3. d(arm+1,x
) = 0

4. d(arx+1) = 1

In other words, the first at least m bases of r need to be aligned (1). The m-prefix alignment

(which we call seed from now on) is allowed to have at most k mismatches (2). Outside the seed,

the alignment is required to be error-free (3) and the alignment needs to be maximally extended

(4). Note that we only support Hamming distance in MicroRazerS. At most one mismatch is

allowed in the seed, i.e. k ≤ 1.

If multiple such matches exist, they are ranked according to 1) the number of mismatches in

the seed (the lower the better) and 2) total alignment length x (the longer the better). All best

matches or up to a user-defined maximum number of matches are reported.

MicroRazerS’ core algorithm is very similar to RazerS (see pseudocode in appendix) and the

implementation uses many parts of the RazerS code (mostly implemented by David Weese). An

overview is given in Figure 4.2.

Parameter Choosing and Filtering

Like RazerS, MicroRazerS makes use of the parameter choosing functionality of ParamChooser

(see section 3.4.3). In contrast to RazerS, the parameter choosing part only considers the seed

of length m, independent of total read length. Parameter files were computed using a uniform

error profile, the rationale being that the seed part (usually 16-20 bp) should be high quality with

essentially equal sequencing error probabilities.

Given seed length m and k mismatches, the corresponding parameter files are searched for the

best filter criterion. The q-gram index is built over all q-grams contained in the seed part of the

reads. Filtering then proceeds in the same way as in RazerS, scanning over the genome sequence

with the SWIFT filtering method (described in section 3.3.1).

Verification

We use the simple diagonal scanning approach as in RazerS (section 3.3.2). A seed match is found

if the prefix of length m matches the reference sequence with at most k mismatches. Multiple seed

matches may exist per parallelogram. A best seed match is one that has the minimum number

of mismatches among all seed matches in the current parallelogram. Each best seed match is

extended until the first mismatch is encountered. The longest total match is returned. In case of

ambiguity, the first such match found is returned.

4.1. SMALL RNA READ MAPPING 55

Figure 4.2: Overview of the MicroRazerS algorithm. In the filtering phase, a q-gram index is built over all prefix q-
grams and the reference sequence is scanned for potential prefix seed matches. These are then verified and extended
during match verification.

4.1.3 MicroRazerS - Evaluation and Comparison with Other Tools

In the following, we provide our evaluation of MicroRazerS in comparison to other mapping tools,

as in (Emde et al., 2010).

Evaluation Data

Small RNAs were isolated from human normal heart RNA and prepared for Illumina sequencing.

Sequencing of the small RNA library yielded 9,286,222 36 bp reads. Small RNA read data sets are

highly redundant, we therefore first sorted all reads and removed redundant sequences (keeping a

count of how many times the read sequence occurred). In this way, the ∼ 9M reads were reduced

to 2,402,361 unique read sequences. As reference sequence we use the human reference genome

hg18 (NBCI build 36.1).

Evaluation Setup

We mapped the ∼ 2.4M unique reads to the reference genome using Mega BLAST, Soap2, Bowtie

and MicroRazerS. For MicroRazerS, we set the seed length to 16, not allowing any errors. We set

56 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

the maximum number of matches to report to 20 (miRNAs can appear multiple times in the

genome). Reads having more than 20 matches were discarded. Also Soap2 allows to set a seed

length which accordingly was set to 16 bp. As Soap2 and Bowtie compute semiglobal alignments,

we allow 20 mismatches (read length minus seed length) to guarantee to find all 16 bp prefix

matches regardless of the rest of the read. Mega BLAST computes local alignments and was run

in default mode. Details on program calls are given in the appendix. The output of Mega BLAST,

Soap2, and Bowtie were filtered to get the best (longest) prefix matches. Reads with more than

20 such alignments were discarded.

Of all mapped reads, we count how many reads map to sequence annotated as miRNA according

to miRBase (Release 13.0) (Griffiths-Jones et al., 2008). Additionally, we count the number of

different miRNAs that have a read count of more than 150 (as miRNAs detected with high

confidence). All running times were measured on an AMD Opteron 2384 with 32 GB memory

running a 64-bit Linux system.

Results

Our comparison of MicroRazerS with Mega BLAST, Soap2 and Bowtie is summarized in Ta-

ble 4.1. Mega BLAST is an order of magnitude slower than the other tools. Soap2 and Bowtie

are very fast but require an index construction preprocessing step that is computationally expen-

sive. Bowtie’s index construction takes even more time than the Mega BLAST search. The most

space-consuming tool is Soap2 with more than 8 GB of memory usage. Output file size is huge

(> 6 GB) for BLAST and Soap2, and filtering of their results to meet the prefix match criteria

requires an additional, time-consuming post-processing step (∼ 30min using Perl scripting). Of

note, MicroRazerS provides the most convenient handling of small RNA reads, as no pre- or post-

processing of reads is necessary. Of all programs, MicroRazerS is able to map the highest number

of reads. As argued in the previous chapter, simply counting the number of mapped reads is not

the best measure for sensitivity. However, MicroRazerS also yields the highest number of detected

miRNAs together with Soap2, indicating highest sensitivity.

MicroRazerS BLAST SOAP2 Bowtie

Running time [min] 24 194 6 5
Building index [min] - - 84 206
Output size [GB] 0.1 8.6 6.8 0.7
Memory usage [GB] 3.4 1.4 8.3 2.3

Unique sequences aligned 1,319,218 891,215 1,318,504 1,184,590
Mappable reads 7,743,516 7,001,832 7,742,266 7,410,239

Reads annotated
as miRNA 5,819,189 5,746,588 5,819,184 5,667,027

MiRNAs 381 372 381 372
(read count > 150) 101 96 101 99

Table 4.1: Evaluation of small RNA mapping tools. We used a query dataset of ∼2.4M non-redundant read
sequences (length 36 bp) representing a total of ∼9.3M reads.

4.2. OVERVIEW OF SPLIT READ MAPPING TOOLS 57

Furthermore, Cordero et al. (2012) evaluated MicroRazerS and other more recent mapping

tools specialized on, or providing a specific set of parameters for, small RNA read mapping. Their

results on miRNA spike-in data ”clearly indicate that SHRiMP and MicroRazerS provide the best

miRNA detection rate” (Cordero et al., 2012). According to Table 2 in their article, RazerS is also

the fastest tool in the comparison.

4.2 Overview of Split Read Mapping Tools

Split read alignments are alignments of reads split into two or more parts. As introduced in

section 2.2.4, split read methods are among the most popular approaches for discovering SVs using

sequencing data. Usually, only reads that are unmapped, but anchored by a confidently mapped

paired read, are considered; this technique is called anchored split-read mapping. Compared to

read pair or read depth methods (see section 2.2.4), the strength of split-read methods lies in the

potential to identify SVs at base pair resolution.

Ye et al. (2009) published the first tool, Pindel, for split mapping of short NGS reads. It

requires reads to be in paired-end layout, performing anchored split mapping only. In its initial

version, it only considered collinear prefix-suffix matches for insertion and deletion detection. Later

versions have been extended to also detect inversions and tandem duplications. Pindel is based

on a pattern growth algorithm and requires prefix and suffix match to be unique in order to be

combined into a split read match.

Two more generic read mapping tools, that also provide split read mapping functionality are

GSNAP (Wu and Nacu, 2010) and BWA (Li and Durbin, 2009). GSNAP indexes every third

12-gram in the genome and then processes each read one by one. Its filtering strategy combines

the pigeonhole principle with a q-gram counting approach and guarantees full sensitivity only for

matches containing at least an exact match of 14 contiguous base pairs. BWA, introduced in

chapter 3, uses a heuristic approach that can allow one long gap in its FM-index backtracking

procedure. Both GSNAP and BWA do not have indel calling functionality integrated, but output

collinear prefix-suffix matches which can then be used as input for an indel calling tool. Moreover,

neither tool provides direct support for anchored split mapping.

We thus developed our own split read mapping tool, SplazerS, which will be described in

detail in the following section. Its main advantage over other tools (at that time and still) is that

it has an anchored/paired-end mode as well as an unanchored/single-end mode. Especially with

increasing read lengths, single-end split read mapping is becoming more valuable, as we will see

later.

Two recent methods that were published around the same time as SplazerS are Splitread (Karakoc

et al., 2012) and SVseq2 (Zhang et al., 2012). Splitread performs an anchored split read mapping

step, artificially partitioning anchored reads into balanced and unbalanced splits. A maximum par-

simony approach is taken to find the minimum number of breakpoint events indicated by the split

reads, using a set cover approximation algorithm. Indels are required to have at least one balanced

split read, as they are more trustworthy than unbalanced ones. SVseq2 is to our knowledge the

58 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

first published tool to combine split read mapping with the read pair method. First, discordant

read pairs identify candidate deletions, which are then called if also supported by split reads.

Further methods such as SpliceMap (Au et al., 2010), MapSplice (Wang et al., 2010), or

SplitSeek (Ameur et al., 2010) follow similar approaches but are geared toward splice junction

discovery in RNA-Seq data. Typical drawbacks of these methods for indel detection are a lack of

functionality for insertion detection, or their requirement for donor/acceptor splicing patterns.

In the following, we introduce our own SeqAn tool SplazerS in detail.

4.3 SplazerS - Split Read Mapping for Indel Detection

SplazerS (Emde et al., 2012) is, as RazerS and MicroRazerS, implemented in the SeqAn library.

It detects collinear prefix-suffix matches and supports anchored as well as unanchored split read

mapping. In the anchored mode, it will only detect split matches of one-end anchored reads

within the region defined by the mapped anchoring read. In the more general case, split matches

of unanchored/single-end reads anywhere in the reference sequence will be reported. The input

reads may be of arbitrary read length, and both Hamming and Levenshtein distance are supported.

First, we define what a valid split match is in SplazerS. Then, we turn to the algorithmic details

of how these matches are found. Finally, we evaluate SplazerS’ performance in indel detection by

using its output in conjunction with a simple indel calling strategy. The remainder of this chapter

is heavily based on and in part taken from (Emde et al., 2012).

4.3.1 Split Match Definition

Given a (non-empty) prefix p of read r that aligns to genome subsequence gi,j , and a (non-empty)

suffix s of r that aligns to gu,v (see Figure 4.3). W.l.o.g. we assume our reads to only match to

the forward strand, and define a collinear prefix-suffix read alignment as an alignment where the

following holds:

1. |p|+ |s| = |r| and j + 1 < u (read indicates a deletion) or

2. |p|+ |s| < |r| and j + 1 = u (read indicates an insertion)

where 1 ≤ i ≤ j < u ≤ v ≤ |g|.
In order for the split read alignment to be a valid prefix-suffix match, SplazerS employs a

number of additional criteria. Given a minimum match length m, a maximum error rate ε, a

maximum number of prefix (suffix) errors ep (es) and a maximum gap length δ, SplazerS reports

collinear prefix-suffix matches where the following holds:

1. |p| ≥ m and |s| ≥ m

2. d(ap1,m) ≤ ep and d(as|s|−m+1,|s|) ≤ es

3.
d(ap)+d(as)
|p|+|s| ≤ ε

4. u− j − 1 ≤ δ

4.3. SPLAZERS - SPLIT READ MAPPING FOR INDEL DETECTION 59

Figure 4.3: Two examples of split read alignments. Given parameters m = 7, ep = es = 1 and ε = 0.1. a) is a
valid alignment spanning a deletion and b) spans an insertion but is not a valid match as the error rate condition
is violated.

The first condition ensures that prefix p and suffix s have at least the minimum match length

m. The second condition ensures that the number of errors in the minimum length prefix (suffix)

match is at most a certain maximum number ep (es). Condition 3 guarantees that the sum of the

number of errors in the prefix and suffix match divided by the combined length of prefix and suffix

lies within the allowed error rate ε. Note that we use an error rate instead of a number of errors

k to make the number of errors allowed depend on the actually aligned read length |p|+ |s|. The

maximum gap length δ puts a constraint on the distance of prefix and suffix match. An example

of a valid and an invalid split read match is given in Figure 4.3.

For valid anchored split read matches we further restrict the genomic region that the read is

allowed to map to. This region is defined by the location of the confidently mapped mate and the

expected insert size (e.g. insert size ±3 standard deviations).

If there are multiple split matches for a read, SplazerS ranks them according to a score. Each

match with a middle gap of length ≥ 1 receives a score sc = |p|+ |s| − 2 · (d(ap) + d(as))− c(r),
while matches without a middle gap, i.e., matches that map normally and do not indicate an indel

event, receive score sc = |p|+ |s| − 2 · (d(ap) + d(as)). The parameter c(r) puts a penalty on the

existence of a gap independent of its length and is set depending on average error probability of

the reads (by default c(r) = b0.03 · |r|c). Matches with the same score are ranked according to the

length of the middle gap (the shorter the better). We here define a read match as unique, if it is

the single match with highest score. Multiple best and also suboptimal matches can be reported.

Depending on total read length, minimum match length and numbers of errors allowed on

prefix and suffix match, the probability of a random match can get quite high; especially for

unanchored split read mapping, where the whole reference sequence is searched. We therefore

provide an estimate of the expected number of random matches, given a split match validity

criterion, which can help the user choose sensible parameters. For calculations see appendix.

4.3.2 Algorithm

Figure 4.4 shows an overview of the SplazerS algorithm. It is based on the same core algorithm

as RazerS (see appendix for pseudocode). SplazerS uses two filters in the filtering phase, one

identifying potential prefix matches, the other potential suffix matches. These are verified in the

60 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

match verification phase and combined into split matches during match combination. The steps

will be explained in detail in the next subsections.

Filtering

Like all tools in the RazerS family, SplazerS is based on a SWIFT filter (section 3.3.1). More

precisely, it is based on two filters (as originally implemented by David Weese in RazerS’ paired-

end module). The left filter detects potential prefix matches, while the right filter detects potential

suffix matches. Parameters for filtering are chosen by ParamChooser (section 3.4.3). Assuming a

uniform error profile here, we estimate the lower bound on sensitivity by the product of the

sensitivity rates of the left and the right filter, as these operate independently of each other. This

is just an approximation, as it does not take valid split match transcript frequencies into account.

It is therefore just an estimate for the sensitivity of detecting an m-prefix match with ep and an

m-suffix match with es errors at the same time.

For the two filters, we need two q-gram indices: the left index containing all q-grams of all

read prefixes of length m, and the right index containing all q-grams of all read suffixes of length

m. We start scanning the reference sequence with the right filter until we encounter a potential

suffix match of a read r. We let the left filter follow up to the current position of the right index,

recording all potential prefix matches within the allowed distance δ in a queue. If there is at least

one such potential prefix match for read r, this triggers the verification of the potential suffix match

of r. Verification proceeds as described in the next paragraph. Only if the verification returns a

valid suffix match, also all potential prefix matches are subjected to verification. In order to avoid

having to verify a potential prefix match more than once, the queue keeps track of the verification

status of each potential match. Potential prefix matches outside the allowed region as defined by

δ are removed from the queue.

Match Verification

We will describe match verification for prefix matches only, as the procedure is directly transferable

to suffix match verification by reversing read and reference subsequence. Our goal is to identify

the longest prefix match, the extended prefix match, that contains up to k = b|r| · εc errors. This is

the maximum number of errors allowed on the whole split read match. As prefix and suffix match

verification are independent from each other, we have to assume the worst case error scenario.

In the worst case for the prefix, the suffix match is error-free, such that k errors are allowed on

the prefix match (maintaining the condition of at most ep errors on the prefix of length m). A

valid extended prefix match is thus a match ar1,z with m ≤ z ≤ |r| −m where d(ar1,m) ≤ ep and

d(ar1,z) ≤ k. The longest possible read prefix match length is |r| −m as a suffix of at least length

m still needs to match.

For Hamming distance we use the diagonal scanning approach (section 3.1.3) and search for

the longest extended prefix match that maintains the above criteria. In case of ambiguity, the first

such match found is recorded. For Levenshtein distance, we first use Myers’ bit vector algorithm

to find an m-prefix match ar1,m with at most ep errors. This match is then extended using gapped

4.3. SPLAZERS - SPLIT READ MAPPING FOR INDEL DETECTION 61

Figure 4.4: Overview of the SplazerS algorithm. During filtering, the reference sequence is scanned with two q-
gram indices: the left index storing prefix q-grams and the right index storing suffix q-grams. Whenever a potential
prefix and a potential suffix match are found within the allowed distance δ, first the suffix match is verified and if
verified positively, then also the prefix match is subjected to verification. Match verification relies on a seed-and-
extend approach first verifying the minimum length prefix (suffix) and then extending maximally to the right (left).
During match combination, compatible extended prefix and suffix matches are combined into a split match and the
optimal breakpoint position is located.

62 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

Figure 4.5: Extended prefix and suffix match overlap on A) read sequence if read spans a deletion, B) on genome
sequence if read spans an insertion.

X-drop extension (Zhang et al., 1999) allowing a score drop of at most k − d(ar1,m) where we use

a Levenshtein distance scoring scheme (mismatch = gap = −1, match = 0). The extension stops

once the additionally collected errors would exceed k − d(ar1,m), or when read position |r| −m is

reached. Again, in case of ambiguity, the first such match found is returned.

Breakpoint Computation

We now want to combine an extended prefix match a
gi,j
p and an extended suffix match a

gu,v
s , where

p is a prefix and s a suffix of read r. As a
gi,j
p and a

gu,v
s have been extended as far as possible,

collecting up to k errors each, they will overlap (such as shown in Figure 4.5), if they can be

combined into a valid split read match.

First, we check whether the basic criteria from section 4.3.1 can be fulfilled. We use function

dg(x) to denote the maximum number of allowed gaps in x errors; we then have for Levenshtein

distance dg(k) = k, for Hamming distance dg(k) = 0. We know that a
gi,j
p and a

gu,v
s cannot be

combined into a valid split match if one of the following holds:

1. v − i > δ + dg(k) (matches are too far apart, maximum gap length δ cannot be met)

2. v − i < 2 ·m − dg(ep) − dg(es) (matches are too close together, minimum prefix and suffix

lengths m cannot be met)

3. v− i ≥ |r|+ dg(k) and |p|+ |s| < |r| (r would indicate a deletion, but matches do not touch

with respect to read sequence, maximum error criterion cannot be met)

4. v − i < |r| − dg(k) and j + 1 < u (r would indicate an insertion, but matches do not touch

with respect to genome sequence, maximum error criterion cannot be met)

In the following, we explain breakpoint computation for the case of a potential deletion. In

case of a potential insertion, we have the analogous case with r and g switched (insertion in r

corresponds to a deletion in g). Following condition (3) above, the matches overlap on the read

sequence, i.e. |p|+ |s| > |r|, such that we need to resolve the overlapping read part. Read overlap

begins at read position |r|− |s|+ 1 and ends in position |p|, so our goal is to resolve the alignment

of subsequence r|r|−|s|+1,|p|. The non-ambiguous alignment parts a
gi,j′
r1,|r|−|s| and a

gu′,v
r|p|+1,|r| are fixed.

We denote with j′ and u′ the genomic positions aligned with read positions |r| − |s| and |p| + 1,

respectively.

4.3. SPLAZERS - SPLIT READ MAPPING FOR INDEL DETECTION 63

ref

re
ad

x

i z j j‘ u z' u' v

Figure 4.6: Example for the breakpoint computation of a deletion-spanning read. The fixed prefix and suffix
alignment parts are represented by solid lines (where the prefix and suffix of minimum length m are indicated by
dark gray background) and the dashed lines show the overlapping part that is resolved through a banded alignment
procedure (light gray). Red squares represent cells with optimal scores per row.

To compute the optimal breakpoint position for Hamming distance, we again use a simple

scanning approach. By scanning along the overlapping part of the prefix and suffix alignment, we

find the read position x with |r| − |s| + 1 ≤ x ≤ |p| where d(a
gi,f
r1,x) + d(a

gh,v
rx+1,|r|) is minimal. We

denote with f and h the genomic positions aligned with read positions x and x+ 1, respectively.

In case of ambiguity, we choose the leftmost position x, which is the common choice in variant

detection methods.

For Levenshtein distance, the computation is more complex. Figure 4.6 illustrates the break-

point computation procedure with an example. It is not sufficient to scan the existing prefix/suffix

alignments, as these are not necessarily optimal with respect to the optimal breakpoint position.

Instead, we compute two global alignment matrices: F p for r|r|−|s|+1,|p| with gj′,j and F s for

r|r|−|s|+1,|p| with gu,u′ , using a Levenshtein distance scoring scheme (mismatch = gap = −1, match

= 0). Both alignment matrix computations can be banded by e = k− d(a
gi,j′
r1,|r|−|s|)− d(a

gu′,v
r|p|+1,|r|),

as at most k errors are allowed in total and d(a
gi,j′
r1,|r|−|s|) + d(a

gu′,v
r|p|,|r|) have already been consumed

by the fixed alignment parts.

We are interested in locating the combination of prefix and suffix match, i.e. read position

x, where the sum of scores in F p and F s is optimal. Note that suffix sequences are actually re-

versed to compute scores for the alignment starting in read position |p|+ 1 and genome position

u′ + 1, which we want to extend to the left. For easier notation, however, we use absolute read

and reference positions here. Thus, we are searching for read position x and genome positions z

and z′ where F px,z + F sx+1,z′ is optimal. In order to find this optimal breakpoint, we could keep

the whole matrices and for each row (i.e. each read position x), check for the best combination of

cells from F p and F s. This would require o · (2e+ 1)2 comparisons, where 2e+ 1 is the bandwidth.

However, as we are only interested in optimal combinations, i.e. those with maximal score, it

suffices to store the optimal score value per row. We therefore keep two vectors fp and fs that

store the best score for each row in F p and F s, respectively. In addition, we store in bp and bs the

64 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

corresponding genome position for each entry in fp and fs, respectively. If there is more than one

cell with maximal score, we keep the leftmost (for suffix rightmost) position for technical reasons.

This choice effectively maximizes middle gap length in the case of ambiguity. Then finding the

read position x that maximizes fpx + fsx+1 gives the optimal score and the corresponding entries

bpx and bsx+1 provide the corresponding genome positions z and z′. The number of combinations

that we need to check is thus reduced to o. As for Hamming distance, there may be multiple such

optimal breakpoint positions, and we keep the leftmost one by convention.

Remarks:

Note that if |r| − k ≤ v− i ≤ |r|+ k the prefix alignment start i and the suffix alignment end v lie

within the k-band of a semiglobal read alignment. If v − i < |r| we are more likely to be dealing

with a potential insertion, in case of v − i > |r| a deletion is more likely. However, we cannot be

sure, and we actually need to test both cases, insertion and deletion, and then store the one with

the better score.

Also note that by choosing to store the outermost position of best score in bp and bs, we favor

insertions over mismatches immediately next to the breakpoint position. Thus we may have a 1 bp

insertion next to a 100 bp deletion, rather than a mismatch next to a 99 bp deletion. This seems

reasonable as larger variants are often accompanied by micro-indels. However, this behavior is a

matter of definition and can be easily changed during match output.

Our breakpoint computation method is very similar to a method developed independently

around the same time. The AGE method (Abyzov and Gerstein, 2011) also computes two align-

ment matrices, but uses a Smith-Waterman like scoring scheme (rewarding matches). Instead of

storing the best score value per row, it computes two additional matrices that store the maximum

of the leading/trailing submatrix. It can therefore accommodate for combinations of SVs (for ex-

ample a large deletion next to a large insertion), but does not necessarily guarantee unambiguous

breakpoint placement.

4.4 SplazerS - Results

We extensively tested SplazerS and its ability to correctly detect indels in paired-end as well as

single-end data. To this end we use SplazerS in conjunction with a simple indel calling method

(using the SeqAn tool SnpStore which will be the subject of the next chapter). The indel calling

procedure considers each pair of reference position and indel length observed in the split mapped

reads as an indel candidate. All reads that overlap by a certain minimum number of base pairs with

the indel candidate are considered spanning reads. Two thresholds are then checked for each indel

candidate: a minimum number and a minimum percentage of spanning reads that are required to

support it. In our analysis we will always require at least two or three and at least 25% or 50%

supporting reads.

4.4. SPLAZERS - RESULTS 65

SplazerS Parameter Setup

There are several parameters in SplazerS that can be set. In most cases, the choice of the error

rate ε and therefore also ep and es is rather straightforward, depending mainly on the error rate

and pattern specific to the sequencing technology used and/or on the relatedness of sample and

reference genome. The choice of parameters m and δ is a matter of tradeoff between sensitivity

and specificity, and practically mainly a matter of runtime.

In the following results we set ε = 0.05, and ep = es = 1 unless stated otherwise. For the

minimum match length m, we use values between 14 bp (anchored) and 23 bp (unanchored). The

distance parameter δ will be set to values between 5, 000 and 50, 000.

Indel Comparison

Once we have a predicted set of indel variants, we measure its quality by comparing it to a

reference set of variants. For this purpose, we implemented a SeqAn tool called variantComp (see

appendix). Comparing a predicted indel with a reference indel is not trivial: indels, especially if

located in a tandem repeat, can be placed at quite large distances while still constituting the same

basic indel event. For indel rectification, we adopt the computation of the equivalent indel region,

as defined by Krawitz et al. (2010), which accounts for repeats and gives a window of possible

locations for each indel. In the following evaluation, predicted indel size is allowed to vary by 10%

of reference indel size in all real data sets, but has to be exactly the same as implanted indel size

in the simulation experiments.

We will use the measures sensitivity and PPV (positive predictive value):

Sensitivity = 1− FN
|Im| and PPV = TP

|Ip|

where true positives (TP) and false negatives (FN) are computed by comparing the set of

predicted indels Ip with the set of implanted indels Im using the indel comparison method of the

previous subsection. The F1 -measure serves as a combined measure:

F1 = 2 · Sensitivity·PPVPPV+Sensitivity

4.4.1 Evaluation Datasets

We evaluate on four different datasets of real and simulated reads. As Pindel is SplazerS’ main

competitor we compare the two tools on two data different sets. Details on program calls are given

in the appendix.

76 bp paired-end data from 1000 Genomes Project

We use two sets of Illumina reads for HapMap individual NA12878, available from the 1000

Genomes project page: One containing reads mapped or assigned to chromosome 22 and the other

containing unmapped reads that could not be assigned to a chromosome (ftp://ftp.1000genomes.ebi.

ac.uk/vol1/ftp/data/NA12878/alignment/NA12878.chrom22.ILLUMINA.bwa.CEU.high coverage.

66 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

20100311.bam and NA12878.unmapped.ILLUMINA.bwa.CEU.high coverage.20100311.bam). On

this data set we compare SplazerS with Pindel and SVseq2.

We extracted a subset1 of 76 bp reads accounting for ∼ 20x coverage and used all 952, 401 one-

end anchored reads as input for Pindel (version 2.2) and SplazerS in paired-end mode. Additionally,

we used a total of 39, 479, 705 unmapped 76 bp reads as input for SplazerS in single-end mode. For a

fair comparison, we use the same cutoff as Pindel and thus require at least 3 indel-supporting reads.

We furthermore require the indel-supporting reads to constitute at least 50% of reads spanning the

putative indel coordinate. Again similar to Pindel’s settings, we set SplazerS’ maximum distance

parameter such that deletions up to 8 kb can be detected. Anchored split-mapping was performed

with m = 14, unanchored split-mapping with m = 16. For SVseq2 (version 2.0.1), we use the whole

set of reads mapped/assigned to chromosome 22 as input, as in addition to one-end anchored split

mapping it also uses mapped read pairs to detect variants. No parameters on the number of

supporting reads or variant size can be set, so we run SVseq2 in default mode. We compare the

indel prediction results with two reference sets: 1) from the 1000 Genomes project (Durbin et al.,

2010) and 2) from a Sanger sequencing study (Mills et al., 2011).

100 bp paired-end data for HapMap individual NA18507

We downloaded a set of 100 bp paired-end reads of chromosome 21 of HapMap individual NA18507,

available from the Illumina webpage (http://www.illumina.com/truseq/tru resources/datasets.ilmn).

This file contained a total of 15,069,635 reads of which 904,616 reads are one-end anchored. Again,

we use these reads as input for anchored split mapping and indel detection with SplazerS and Pin-

del. In contrast to the previous read set, this data does not only offer longer reads but also

significantly higher quality reads (the average error rate from the alignment of mapped reads is

more than three times lower than for the previous set). Also coverage is higher with ∼ 30 x. We

use the same parameters as in the previous evaluation, but here conduct a second split-mapping

step: all one-end anchored reads still unmapped after anchored Hamming distance split map-

ping are mapped with SplazerS using Levenshtein distance, i.e. allowing additional gaps in prefix

and suffix matches. As a reference set, we use a set of indels provided by Illumina using the

Casava 1.7 pipeline. For indels larger than 100 bp we check whether our predictions are present

in DGV (Iafrate et al., 2004) or dbSNP (Sherry et al., 2001), as no high confidence reference set

particularly for this individual is available.

Simulated single-end data

For the simulation of single-end reads (details given in appendix), we first generate a manip-

ulated reference sequence by randomly choosing 1000 known indels from a reference set (db-

SNP129 (Sherry et al., 2001) and DGV (Iafrate et al., 2004)) and implanting them into human

chromosome 21. Furthermore, we add single base substitutions at a rate of 0.001 to simulate

SNPs. We then generate single-end reads from the manipulated chromosome, using the SeqAn

tool Mason (Holtgrewe, 2010) for read simulation with typical Illumina sequencing error settings.

1More precisely, we extracted 15 lanes: ERR003975-ERR003989 (consecutively numbered)

4.4. SPLAZERS - RESULTS 67

We repeated this simulation procedure with different read lengths: 100 bp, 125 bp, and 150 bp. Sim-

ulated coverages are 5, 10 and 30x. After mapping the set of simulated reads onto the whole human

reference genome with ”conventional” ungapped mapping with RazerS , we retrieve all unmapped

reads for subsequent split mapping. The unmapped reads are split-mapped with SplazerS and, for

comparison, with GSNAP (version 2010-07-27) and BWA (version 0.5.8a). For all tools, only one

gap of at most length δ = 5, 000 was allowed on each read. For BWA we tested the ”log-scaled

gap penalty for long deletions” feature, but achieved better results with the n-difference mode

which we consequently use. SplazerS was tested with different minimum match lengths, we will

focus on the results with m = 16, but also show results for m = 18 and m = 20. We then use the

same indel detection method for all three tools (snpStore, see chapter 5), as it can detect indels

of all size ranges. Only unique best hits are used for indel calling for GSNAP, and only hits with

mapping quality > 0 are used for BWA2. We set the indel detection method very sensitively: at

least two reads and 25% of spanning reads are required to support the indel.

Real single-end data

We used our method in a large-scale targeted resequencing study of 248 male patients with X-

linked intellectual disability collected by the EURO-MRX consortium (Kalscheuer et al., tted). X

chromosome exons were targeted by solution hybridization selection (SureSelect, Agilent) (John-

ston et al., 2010). Illumina sequencing of captured DNA yielded single-end reads of length 76 bp.

After mapping onto the human reference genome with RazerS using edit distance, all unmapped

reads were retrieved for mapping with SplazerS. This constituted a total of almost 1.5 billion un-

mapped reads (on average ∼6M per patient). With m = 23, split mapping was rather strict. Indel

detection was not done using SnpStore but with different post-processing scripts (implemented

by the author and by Stefan Haas). However, the same basic method was used, requiring that at

least 3 reads and 50% of spanning reads support the indel.

4.4.2 Anchored Indel Detection on 1000 Genomes Project Data

The results for comparing indels predicted by SplazerS, Pindel and SVseq2 on anchored and

unanchored paired-end reads are summarized in Table 4.2. Since we use previously mapped reads

from the 1000 Genomes Project webpage, a large part of the chromosome is already covered by

reads mapped also with small indels. Thus, our detected indels do not constitute the whole set of

chromosome 22 indels, but rather additional ones discovered through split mapping.

Using anchored reads only, the SplazerS approach yielded a total of 392 indel calls, 301 (76.8%)

of which are contained in at least one of the two reference sets (1000G (Durbin et al., 2010) and

Mills (Mills et al., 2011)). Pindel called only 209 indels of which 142 (67.9%) are in one of the

reference sets. Of the 129 variants predicted by SVseq2 only 14 are annotated (10.85%). SVseq2,

using the combined split mapping and read pair approach, is clearly geared towards larger variants.

Of all 39 detected indels ≤ 50 bp (38 of which are insertions), only one insertion is contained in the

2Mapping quality > 0 means unique best hits with respect to BWA’s quality-based scoring

68 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

Pindel SVseq2 SplazerS SplazerS
PE PE+SE

sm
a
ll
in
d
el
s Deletions 88 0 183 233

Overlap 1000G 55 0 127 161
Overlap Mills 56 0 112 142

Insertions 62 18 105 145
Overlap 1000G 35 0 58 82
Overlap Mills 42 0 83 111

m
ed

iu
m

in
d
el
s Deletions 25 1 60 83

Overlap 1000G 4 0 17 19
Overlap Mills 8 0 24 32

Insertions 24 20 28 40
Overlap 1000G 0 0 0 0
Overlap Mills 12 1 21 26

la
rg
e
d
el
et
io
n
s Deletions 10 44 13 27

Overlap 1000G 2 9 3 3
Overlap Mills 0 5 1 1

SV Deletions 0 21 3 6
Overlap 1000G 0 3 3 5
Overlap Mills 0 0 0 0

Table 4.2: Number of detected indels on 1000 Genomes Project data set for NA12878. Pindel and SplazerS PE
use anchored reads only, SplazerS PE+SE additionally uses unanchored reads. SVseq2 uses anchored paired end
reads for split mapping and read pair information. Small indels are ≤ 10 bp. Medium indels are > 10 bp,≤ 50 bp.
Large deletions are > 50 bp,≤ 1000 bp. Large SV deletions are > 1 kb,≤ 5 kb.

reference set, indicating a high false positive rate or possibly but less likely an incomplete/biased

reference set.

Pindel’s and SplazerS’ results are more comparable to each other, showing a similar distribution

of predicted variant sizes. The Pindel and SplazerS call sets overlap in 130 indels (62.2% of Pindel

call set). Of the 79 indels unique to Pindel, 44 (55.7%) correspond to an indel in the reference set.

Of the 262 indels unique to SplazerS, 195 (74.4%) are in the reference set. These results do not

only prove a significantly higher sensitivity for SplazerS, but also indicate higher specificity.

Adding SplazerS’ unanchored split mapping results, the SplazerS set of called indels increases

from 392 to 534 (last column in Table 4.2). Of the additional 142 indels, 90 (63.4%) are contained

in one of the reference sets. This indicates a slight decrease in indel calling specificity, but at the

gain of much improved sensitivity: more than 30% additional indels are attributed to single-end

split mapping.

In summary, SplazerS was able to recover 391 known indels, while Pindel could only recover

142. Our analysis suggests that Pindel’s sensitivity is less than 50% of SplazerS’ sensitivity on

anchored reads only. In the following evaluation, we compare SplazerS and Pindel on another read

data set (longer, higher quality reads and higher coverage) and look more closely into the falsely

predicted and missed indels.

4.4. SPLAZERS - RESULTS 69

4.4.3 Anchored Indel Detection on 100 bp Illumina Reads

On the set of paired-end 100 bp reads, our indel calling procedure yielded a total of 1481 indel

calls of which 1196 (80.76%) overlap with a reference set indel. Pindel predicted a total of 1232

indels with 850 (68.99%) matching a reference variant. Table 4.3 summarizes the results and shows

overlap with the Illumina and dbSNP/DGV reference set.

Again, our analyses suggests a much lower sensitivity for Pindel (∼70% of SplazerS’ sensitivity).

Also Pindel seems to be less precise than SplazerS, with percentages of predictions matching a

reference indel being lower for small and medium sized indels. For large deletions, precision is

comparable but sensitivity is lower.

Closer inspection of putative false positive (FP) indel calls of Pindel revealed a significant

decrease in precision for the short arm of chromosome 21 (21p) as compared to the long arm

(21q). Precision for called indels for Pindel is 18.43% in 21p and 79.9% in 21q; precision for

SplazerS is 44.4% in 21p and 81.56% in 21q, thus also exhibiting an enrichment of FPs in 21p.

21p is a highly repetitive and polymorphic region (Lyle et al., 2007) which leads to many low

confidence split read matches (as indicated by many multiply mapped reads in SplazerS’ mapping

output). In addition, uniquely mapped split matches are often mutually contradicting, i.e., leading

to indel candidates that do not pass the percentage filter criterion (at least 50% supporting reads)

which explains a higher precision for SplazerS. Furthermore, 21p is homologous to other regions

in the genome, possibly leading to wrongly anchored split reads, which may explain a general

enrichment of FPs in 21p.

The results for adding the Levenshtein distance split-mapped reads (”SplazerS+L”) are given

in the last column of Table 4.3. We observe a small increase (2.6%) in detected indel variants

while overlap percentage remains essentially the same. Levenshtein distance mapping also revealed

additional indel-contradicting reads: The effect can be seen for medium-sized insertions where the

number of predictions decreases by one.

As an example, Figure 4.7 shows two indels that were detected by SplazerS only and that

Pindel SplazerS SplazerS+L

sm
a
ll

Deletions 533 662 675
Overlap 375 (70.36%) 538 (81.27%) 550 (81.48%)

Insertions 532 644 665
Overlap 423 (79.51%) 580 (90.06%) 597 (89.77%)

m
ed

iu
m Deletions 64 85 87

Overlap 17 (26.56%) 37 (43.53%) 37 (42.53%)

Insertions 61 29 28
Overlap 11 (18.03%) 8 (27.59%) 8 (28.57%)

la
rg
e Deletions 42 61 63

Overlap 24 (57.14%) 33 (54.10%) 34 (53.97%)

Table 4.3: Number of detected indels by the different methods tested. Small indels are ≤ 10 bp. Medium indels
are > 10 bp,≤ 100 bp. Large indels are > 100 bp. Small and medium-sized indels were overlapped with an Illumina
reference set. Large deletions were overlapped with a set of DGV and dbSNP indels > 100 bp. Percentages in
brackets give the fraction of predictions that are contained in the reference set.

70 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

 3bp deletion: rs71996349 SNP: rs4816330 10bp insertion: rs71996349

29025932 29026035

 TAAAACTTAAAGTATAATAATAAAAAAAAAAAAAAGAAAGAATTGAGCAGTCCCTTCATGACATAGGGCTAGAGAG----------AAAAGAGAAGTGAGCAGTCCCTGGAGCC = REF

 TAAAACTTAAAGTATAATAAT---AAAAAAAAAAAGAAAGAAATGAGCAGTCCCTTCATGACATAGGGCTAGAGAGAAAAGAGAAAAAAAGAGAAGTGAGCAG READS

 AAAACTTAAAGTATAATAAT---AAAAAAAAAAAGAAAGAAATGAGCAGTCCCTTCATGACATAGGGCTAGAGAGAAAAGAGAAAAAAAGAGAAGTGAGCAGT

 AAAACTTAAAGTATAATAAT---AAAAAAAAAAAGAAAGAAATGAGCAGTCCCTTCATGACATAGGGCTAGAGAGAAAAGAGAAAAAAAGAGAAGTGAGCAGT

 aagtataataat---aaaaaaaaaaagaaagaaatgagcagtcccttcatgacatagggctagagagaaaagagaaaaaaagagaagtgagcagtccctggag

 gtataataat---aaaaaaaaaaagaaagaaatgagcagtcccttcatgacatagggctagagagaaaagagaaaaaaagagaagtgagcagtccctggagcc

Figure 4.7: Example of a complex variant region: a 3 bp deletion, a SNP and a 10 bp insertion are colocated in a
65 bp window. The shown region is chr21:29025932..29026035. dbSNP accession IDs (rs numbers) are given for each
variant. Reads in capital letters are mapped on the forward strand, while reads in small letters are mapped on the
reverse strand. Note that the placement of both indels is ambiguous. By convention, SplazerS places the indel to
the leftmost position.

SplazerS GSNAP BWA
SN PPV SN PPV SN PPV

In
s

10 - 30 bp 99.35 99.33 95.87 98.63 95.21 96.83
4 - 9 bp 98.29 98.21 97.44 96.62 100.0 76.39
1 - 3 bp 98.78 99.65 98.60 99.47 98.94 93.31

D
el

1 - 3 bp 96.03 99.80 96.00 98.74 96.99 92.30
4 - 9 bp 94.54 100.0 92.26 100.0 94.54 87.17
10 - 50 bp 92.73 99.52 85.18 98.12 87.51 93.71

S
V

D
el 51 - 500 bp 70.98 98.38 61.13 89.37 0 NA

0.5 -1 kb 94.69 100.0 92.47 97.56 0 NA
1 - 5 kb 100.0 94.44 96.67 90.61 0 NA

Table 4.4: Sensitivity (SN) and PPV results of simulations at 30x coverage with read length 125 bp, for different
indel size categories. Each category has at least 50 representatives.

were also matched with entries in the reference set. Pindel does not detect these indels, as the

10 bp insertion is close to a 3 bp deletion (53 bp upstream) and a single nucleotide polymorphism

(34 bp upstream). Both indels and also the T→A SNP are known variants contained in dbSNP. In

particular, SplazerS is thus more sensitive and robust in variant-rich regions.

4.4.4 Unanchored Indel Detection on Simulated Data

We now turn to single-end data, i.e. unanchored split mapping. On the simulated read data set,

we tested indel prediction accuracy of SplazerS, BWA and GSNAP for varying read lengths (100-

150 bp) and coverages (5-30x). Figure 4.8 shows the results in terms of sensitivity, PPV and the

combined accuracy measure, while Table 4.4 shows the results in terms of sensitivity and PPV for

125 bp reads at ∼ 30x coverage, dividing indels into different size ranges: three small indel classes

for insertions/deletions of 1−3 bp, 4−9 bp, and 10−50 bp in size; and three large structural variant

classes for sizes 51− 500 bp, 501 bp− 1 kb and > 1 kb.

Figure 4.8A shows how sensitivity increases with coverage and with read length. In all settings,

SplazerS is the most sensitive and most precise tool. At 30x, it already recovers > 90% of implanted

indels on the 100 bp reads; for the 150 bp reads sensitivity reaches > 95%. GSNAP is always a few

percentage points behind SplazerS, with SplazerS’ lead being more pronounced on longer reads

4.4. SPLAZERS - RESULTS 71

(A1) (A2) (A3)

5 10 30

SplazerS
GSNAP
BWA

100bp reads

Coverage

S
en

si
tiv

ity
 [%

]

40
50

60
70

80
90

10
0

5 10 30

125bp reads

Coverage

S
en

si
tiv

ity
 [%

]

40
50

60
70

80
90

10
0

5 10 30

150bp reads

Coverage

S
en

si
tiv

ity
 [%

]

40
50

60
70

80
90

10
0

(B1) (B2) (B3)

5 10 30

SplazerS
GSNAP
BWA

100bp reads

Coverage

P
P

V
 [%

]

40
50

60
70

80
90

10
0

5 10 30

125bp reads

Coverage

P
P

V
 [%

]

40
50

60
70

80
90

10
0

5 10 30

150bp reads

Coverage

P
P

V
 [%

]

40
50

60
70

80
90

10
0

(C1) (C2) (C3)

5 10 30

SplazerS
GSNAP
BWA

100bp reads

Coverage

F
1

[%
]

50
60

70
80

90
10

0

5 10 30

125bp reads

Coverage

F
1

[%
]

50
60

70
80

90
10

0

5 10 30

150bp reads

Coverage

F
1

[%
]

50
60

70
80

90
10

0

Figure 4.8: Sensitivity, PPV and combined F1-measure indel detection for increasing coverage and increasing read
length. (A) Read length 100 bp. (B) Read length 125 bp. (C) Read length 150 bp. Note the different axis scaling.

SnpStore Dindel Dindel-Filtered (q > 30)
Sensitivity PPV Sensitivity PPV Sensitivity PPV

SplazerS 95.0% 99.2% 96.4% 82.7% 82.0% 95.5%
GSNAP 90.7% 97.6% 92.4% 57.2% 78.1% 84.9%

BWA 82.5% 89.2% 84.1% 85.9% 69.6% 94.8%

Table 4.5: Sensitivity and PPV when replacing SnpStore with Dindel on simulated data (125 bp reads, 30x). Dindel
assigns a quality value to each predicted indel; when filtering out indels with quality lower than 30 (Dindel-Filtered)
precision increases significantly; however, this comes at the cost of much decreased sensitivity.

and higher coverage (1.8% lead on 100 bp at 5x compared to 4.3% on 150 bp at 30x). Due to its

exact 12-mer matching approach, GSNAP systematically fails to detect certain indels, even in high

coverage data. BWA is less sensitive and less precise than the other tools (Figure 4.8B). Table 4.4

shows that BWA’s sensitivity mainly suffers from missed deletions > 50 bp.With increased read

length, it can also detect larger indels and thus its overall sensitivity increases.

For indels < 10 bp BWA is the most sensitive tool, but with the lowest PPV. For indels

≥ 10 bp, SplazerS has the highest sensitivity. Furthermore, it maintains the highest PPV in all indel

categories. Most notably, SplazerS achieves the highest sensitivities in the SV deletion categories.

Both GSNAP and SplazerS exhibit a ”temporary” drop in sensitivity for the smallest SV deletion

class. The low sensitivity is due to low complexity and repeat sequences where reads are often

72 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

BWA GSNAP SplazerS SplazerS
m = 16 m = 20

ch
r2
1 index 49.8s 12.2s - -

time 44.4s 49.7s 143.5s 52.9s
space 154MB 122MB 185MB 1.2GB

g
en

o
m
e index 94.0m 16.9m - -

time 10.8m 18.2m 193.2m 57.4m
space 3.7GB 4.6GB 3.5GB 5.6GB

Table 4.6: Running time and memory measurements for 100, 000 simulated 125 bp reads. SplazerS runs are shown
for different minimum match lengths (m). BWA and GSNAP require an additional preprocessing step for index
construction.

100 bp 125 bp 150 bp
Sensitivity PPV Sensitivity PPV Sensitivity PPV

m = 16 92.80 97.48 94.93 99.06 96.55 99.13
m = 18 92.55 97.94 94.70 99.06 96.55 99.23
m = 20 91.85 98.03 94.60 99.21 96.35 99.23

Table 4.7: Sensitivity and PPV when varying parameter m on the simulation datasets.

ambiguously mappable or even wrongly mapped without a middle gap. Nevertheless, SplazerS

maintains a high PPV and higher sensitivity than GSNAP for these difficult-to-map indels. In

order to investigate whether our results are robust with respect to different indel calling programs,

we conducted an additional analysis replacing our in-house tool SnpStore with Dindel (Albers

et al., 2011). This analysis exhibits similar relative sensitivity results for SplazerS, GSNAP, and

BWA, and furthermore demonstrated that SplazerS was again the most accurate tool in terms of

sensitivity as well as PPV (see Table 4.5).

Running times and memory

Note that running time is not an issue for anchored split mapping (in the order of a few minutes

for all tools tested). For single-end reads that may map anywhere in the reference sequence,

however, running time can become prohibitive. Table 4.6 summarizes the running times for the

simulated read data set. SplazerS’ high sensitivity comes at the price of increased running time

compared with index-based heuristic mappers. However, the parameter m can be used to achieve a

significant speedup without compromising much sensitivity for high-coverage data sets and longer

read lengths (see Table 4.7). The observed memory increase with m is explained by a larger value

of q being used for q-gram index construction. Running time disadvantage nearly disappears when

mapping onto a smaller reference sequences, as demonstrated by mapping the simulation reads

onto chromosome 21 only.

4.4. SPLAZERS - RESULTS 73

4.4.5 Unanchored Indel Detection on Targeted Resequencing Data

We now turn to the hardest case: real 76 bp single-end reads from targeted exon resequencing.

Using SplazerS we predicted on average 67 indels per patient. The overlap of predicted indels with

dbSNP and DGV was between 38.89% and 71.79% per patient, with mean overlap of 54.99%.

Of the total non-redundant set of indels predicted in at least one patient 39.02% were present in

dbSNP or DGV.

Figure 4.9 shows the size distribution of all indels > 5 bp (the majority of smaller indels were

predicted with a different method using edit distance alignments). As expected, the majority of

indels is located in non-coding sequences (417 out of 456). Non-coding indels occur mostly in

tandem repeat regions in units of 2, 3, or 4. Of the 39 coding indels, 29 (74.35%) are multiples of

3, usually having lesser impact on the protein level as the open reading frame may be maintained.

Large deletions ≥ 100 bp are rather rare (61 in total). On average, 3 large deletions were

predicted per patient. Interestingly, we observed a strong variance between patients. Closer in-

spection revealed that locations of large deletions often cluster on the chromosome. Figure 4.10A

visualizes these clusters in 1Mb bins over the X chromosome. Surprisingly, deletions do not only

colocalize, but often their boundaries also coincide exactly with annotated exon-intron bound-

aries. Figure 4.10B shows one such case where 5 predicted deletions span all introns of the PQBP1

gene. These ”intron deletions” strongly suggest the presence of a retrocopy of this gene. PCR

experiments with several primer pairs confirmed a complete, possibly functional retrocopy of

PQBP1 (Vera Kalscheuer). This finding is particularly interesting, as it has been shown previ-

ously that mutations in PQBP1 cause X-linked intellectual disability (Kalscheuer et al., 2003;

Lenski et al., 2004). Additional (partial) retrocopies were predicted for FAM104B, MSN, MPP1,

EIF1AX, RBMX, and OPHN1. In the OPHN1 gene, large deletions spanned 19 introns, causing

Non−coding
Coding

Indel size

F
re

qu
en

cy

0
10

20
30

40
50

60
70

−24 −18 −12 −6 6 12 18 24 30 36

Figure 4.9: Histogram of indels of sizes > 5 bp and ≤ 40 bp. Indels are more abundant in non-coding sequences.
The majority of indels in coding sequences are multiples of three, i.e., codon-length.

74 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

(A)

(B)

Figure 4.10: (A) Histogram of predicted deletions ≥ 100 bp over their genomic coordinate on chromosome X.
Clusters of large deletions are often due to retroposed genes, where spliced introns are missing. (B) A screenshot of
the UCSC Genome Browser shows five large deletions that coincide exactly with the introns of the PQBP1 gene.
The existence of this complete retrocopy of PQBP1 was confirmed by PCR.

the large peak close to the centromer in Figure 6A.

This finding is consistent with the recent publication of the tool Splitread (Karakoc et al.,

2012). In their exome study, they also detect many gene retrocopies (processed pseudogenes) and

build a set of retrocopies which they propose to include in the reference sequence set for read

mapping.

4.5. CHAPTER SUMMARY 75

4.5 Chapter Summary

In this chapter, we

• developed a prefix-based read mapping tool MicroRazerS, based on the same core algorithm

as RazerS and specialized on mapping small RNA reads.

• compared MicroRazerS with other read alignment tools on miRNA sequencing data, mea-

suring the number of detected annotated miRNAs.

• developed a split read mapping tool SplazerS, also based on the RazerS core machinery,

specialized on prefix-suffix mapping for indel detection, supporting Hamming as well as

Levenshtein distance, and applicable to anchored paired-end as well as unanchored single-

end reads.

• applied SplazerS to anchored paired-end reads from the 1000 Genomes project, and on newer

reads from Illumina, comparing indel detection accuracy with Pindel and SVseq2.

• compared SplazerS with GSNAP and BWA on simulated single-end reads, measuring indel

detection accuracy for different read lengths and coverages.

• applied SplazerS to a large-scale targeted resequencing data set of single-end reads from 248

X-linked disability patients.

We observed that

• MicroRazerS had highest miRNA detection sensitivity in our tests and tests conducted by

others (Cordero et al., 2012), together with Soap2 and Shrimp.

• in contrast to other tools, mapping small RNA reads with MicroRazerS did not require

preprocessing (adapter-trimming) or postprocessing (read match filtering).

• SplazerS was significantly more sensitive and accurate than Pindel on anchored indel detec-

tion, especially in repeat and variant-prone genomic regions.

• SVseq2 is geared towards large deletions > 50 bp.

• on simulated single-end data, SplazerS showed highest indel detection accuracy compared

with GSNAP and BWA, especially on large deletions.

• while on large genomes SplazerS was slower than the genome-index based tools GSNAP and

BWA, on small reference sequences, such as single chromosomes, performance was similar.

• sensitivity can be effectively traded for speed through SplazerS’ minimum match length

parameter.

• on real single end data indel size distribution was as expected, with coding indels mostly

conforming to reading frame and non-coding indels occurring with higher frequency.

76 CHAPTER 4. PARTIAL READ MAPPING AND APPLICATIONS

• SplazerS discovered several variant/polymorphic gene retrocopies where spliced out introns

look like large deletions.

• we tested one retrocopy and confirmed it by PCR, as it is particularly interesting as muta-

tions in its gene of origination (PQBP1) have disease association.

From this we conclude that

• MicroRazerS’ prefix-based approach is convenient, sensitive and efficient in its handling of

small RNA reads.

• SplazerS is the first published tool (to our knowledge) that can perform anchored as well

as unanchored split mapping for indel detection, and achieves highest sensitivity in both

modes.

• single end split read mapping is feasible, even with 76 bp reads, and will become more

powerful with increasing read length, and with increasing coverage.

• there are surprisingly many retrocopies, as was also discovered by a similar study using

paired-end reads conducted around the same time (Karakoc et al., 2012)

Chapter 5

Small Variant Detection

In the previous chapter, we saw how structural variants and indels can be detected using split

read mapping. We now turn to smaller indels and single nucleotide variants (SNVs). SNVs and

small indels are the most frequent source of genomic variation (Durbin et al., 2010) and have

furthermore been shown to account for many diseases (Stenson et al., 2009). Accurate detection

and genotyping is therefore of great importance, for diagnostics as well as for our understanding

of genome evolution.

In general, small variant detection is based on inspecting columns in the multiple-read-to-

reference alignment induced by the mapped reads. One can distinguish between multi- and single-

sample variant calling. Here we only consider single-sample data, i.e. data from one individual

that is expected to be diploid. Furthermore, one differentiates between variant calling, i.e. classi-

fying a genomic variant as such, and genotyping, i.e. assigning a genotype to a variant (hetero-

/homozygous). In our tool SnpStore - like all our tools implemented in the SeqAn library - we

address both variant calling and genotyping.

In the following section, we will first point to the difficulties and challenges in small variant

calling. Next, we introduce the currently most popular tools in this field (section 5.2), and then

go into detail with SnpStore and its main features (section 5.3). Finally, we provide an evaluation

of SnpStore in comparison with other tools on a 1000 Genomes Project data set and demonstrate

its performance on a large-scale targeted resequencing data set (same data sets as used in section

4.4.2).

5.1 SNV/Indel Calling: Challenges in NGS Data

The main challenge of small variant calling and genotyping lies in distinguishing real variants

from sequencing errors. Depending on the sequencing technology, variant callers have to cope with

different types of sequencing errors (see section 2.2.1). For example, 454 sequencing is prone to

miscalling the number of incorporated nucleotides in homopolymer runs, while in Illumina se-

quencing the main source of errors is base substitution miscalling. Targeted re-sequencing studies

further suffer from preferential capture of the reference allele, leading to biases in allele distri-

77

78 CHAPTER 5. SMALL VARIANT DETECTION

Figure 5.1: An excerpt of an alignment of five reads (454 data) to a reference sequence. (A) Multiple sequence
alignment induced by mapped reads. (B) Multiple sequence alignment after read realignment.

bution (Turner et al., 2009). Additional biases can be introduced during PCR amplification of

sample DNA fragments and through read mapping (Heinrich et al., 2011).

Standard read mapping tools, as those introduced in Chapter 3, align reads independently

of each other, i.e. produce pairwise read-to-reference alignments unaware of the multiple read

context. Sequence variants may therefore not be consistently aligned among multiple reads covering

the same genomic position. In addition, sequencing errors can cause further inconsistency in the

alignment of multiple reads. Especially in repeat regions, alignment inconsistencies can complicate

variant detection. Homer and Nelson (2010) first showed that read realignment taking into account

all reads mapped to a genomic position significantly improves variant detection and genotyping

accuracy (Homer and Nelson, 2010). Figure 5.1 shows an example of a multiple read alignment,

induced by reads mapped in the standard pairwise fashion (A), and after realignment (B). After

realignment, the homozygous deletion is clearly visible, demonstrating the benefit of realignment.

The next section reviews different variant detection methods, placing focus on realignment

strategies. For a more detailed review of different SNP/genotype calling methods, the reader is

referred to (Nielsen et al., 2011).

5.2 Small Variant Detection Strategies

Variant detection tools scan the multiple read alignment for differences compared to the reference

genome. When looking at a specific variant candidate, they either use certain threshold criteria,

such as a minimum number of variant-supporting reads, to call a variant/genotype, or they use

a probabilistic approach to determine the most likely event. The threshold approach was mainly

used in earlier tools, as the probabilistic approach taking into account base quality values was

soon proven to be superior. All tools mentioned in the following belong to this latter category

employing a probabilistic framework. Other steps common to most variant detection tools include

PCR artifact removal (removal of duplicates/pile-up correction), removal of low quality bases

through read clipping, and assignment of quality (confidence) scores for post filtering. The most

popular variant detection tools to date incorporate a realignment step, which we discuss in more

detail in the following.

5.2. SMALL VARIANT DETECTION STRATEGIES 79

5.2.1 Variant Detection Tools and Their Realignment Strategies

SRMA (Homer and Nelson, 2010) is one of the first tools implementing read realignment for

improved variant detection. The algorithm is based on constructing a variant graph incorporating

all candidate variants observed in the pairwise read-to-reference alignments. Each read is then

realigned to this variant graph and if an alignment superior to the original one (i.e. with better

alignment score) exists, the original alignment is replaced with the improved one. As only a

small window of the genome needs to be inspected at a time, the variant graph remains small

and realignment can be done space-efficiently. The graph is further pruned by only maintaining

variants that are observed in a significant fraction or number of original alignments. However,

SRMA only performs realignment of reads, but does not implement a variant detection method.

The authors therefore used SRMA in conjunction with Samtools (Li, 2011), a suite of tools

for analysis and manipulation of SAM files. Samtools does SNV and indel calling, but did not

provide realignment functionality in early versions. Later versions do a simple realignment around

indels, but the algorithmic strategy is not well documented.

One of the first indel detection tools incorporating realignment is Dindel (Albers et al., 2011).

Its realignment step takes into consideration combinations of candidate variants thereby creating

up to a certain maximum number of candidate haplotypes. Reads are realigned to each candidate

haplotype and posterior probabilities of each haplotype are calculated to obtain the most probable

realignments and haplotype.

Currently, the most popular small variant detection tool with realignment method is probably

GATK, the Genome Analysis Tool Kit (DePristo et al., 2011). Similar to Dindel, it first constructs

candidate haplotypes by considering indels observed in individual read alignments (and optionally

known indel sites). Next, gapless realignment of each read to each haplotype is performed and

the most likely haplotype is chosen. Reads are then assigned to either the reference haplotype or

the alternative haplotype. Apart from realignment, GATK provides other functionality useful for

variant detection. Its base quality score recalibration, for example, has been shown to improve

variant detection accuracy (DePristo et al., 2011). GATK also performs a read clipping step that

discards the lowest quality read suffix with respect to a quality threshold value.

All realignment methods mentioned above are only empowered to detect indels that are present

in at least one initial read-to-reference alignment. In order to avoid combinatorial explosion many

tools further prune search space by discarding indels with low frequency. The realignment module

in our SeqAn tool SnpStore aims at being less restrictive by performing essentially a de-novo

multiple sequence alignment (MSA) of all reads covering a candidate position, and then realign-

ing the reference sequence to the read MSA. We started developing SnpStore in 2009 when no

other established variant calling tool was yet available. Many developments and real-data-relevant

heuristics were therefore discovered and implemented simultaneously with their development in

other tools. In the following we introduce SnpStore in detail.

80 CHAPTER 5. SMALL VARIANT DETECTION

ref

reads

..GAGACTGACTAGCAATCTTCGGCTTCA..
 AGACTGTCTA AATCTT-GG
 GACTGTCTAG ATCTT-GGCT
 TGTCTAGCAA CTA-GGCTTC

B) Pileup correction

C) Read clipping D) Realignment

E) Call SNVs and indels

A) Read parsing in windows

Figure 5.2: Overview of the SnpStore algorithm. A) Reads are parsed window by window. For each window B)
pileup correction removes likely amplification artifacts, and C) read clipping removes low-quality bases and likely
sequencing errors close to read borders. D) Each separate group of reads is realigned and finally D) SNVs and
indels are called.

5.3 SnpStore - Variant Calling Algorithm

As all our developed tools, SnpStore is implemented in SeqAn. Most importantly, SnpStore sup-

ports SNV and indel detection as well as genotyping. It essentially implements the same strategy

as Samtools/Maq for assigning posterior probabilities to genotypes assuming diploid data (sec-

tion 5.3.2). For indel calling a threshold model is used. Alternatively, the threshold approach

can also be used for SNV calling. SnpStore’s realignment procedure is based on the Anson My-

ers’ ReAligner (Anson and Myers, 1997) and will be explained in more detail in section 5.3.1.

Before realignment and subsequent variant calling, SnpStore undertakes several steps (see also

Figure 5.2):

1. Parsing reads in windows

As default, reads are parsed in genomic windows of 10, 000 bp. This is done to keep a low memory

footprint and to avoid large realignment units which would negatively impact runtime. Reads

overlapping with window borders or with other reads which overlap with window borders are

considered in both windows, in order to avoid realignment border artifacts.

2. Pileup correction

The pileup correction (or duplicate removal) procedure discards stacks of reads most likely result-

ing from PCR amplification artifacts. Of all reads mapping to the same chromosomal coordinates

and strand, only the x highest quality reads are kept, where x is specified by the user and should

be set to what is expected from sequencing coverage. Pileup correction is by default done on the

merged set of reads from all input files. When multiple read files from separately prepared samples

5.3. SNPSTORE - VARIANT CALLING ALGORITHM 81

(e.g. replicates with separate PCR amplification step) are used as input, pileup correction can be

done on each file separately.

3. Read clipping

An additional feature of SnpStore is its read clipping routine. Read clipping is applied in order

to trim low quality read ends, leading to a cleaner set of reads and hence variant calls. Clipping

positions are determined by sliding a window of length w (by default w = 10 bp) over the read

starting at the suffix (prefix, respectively). If there is at least one base with quality value lower

than a certain threshold value Qt (by default Qt = 10), the window is slid to the next position.

Once all quality values in the current window are larger or equal to Qt, the procedure is stopped

and the suffix (prefix, respectively) outside the current window is trimmed. Optionally, it can

be additionally required that there are no alignment errors within m base pairs of the clipping

position (default m = 3), otherwise clipping is extended to remove the misaligned bases. Clipping

positions are not computed within SnpStore, but are currently determined by a Perl script which

adds clip tags to the mapped read files (clipping developed and implemented by Stefan Haas).

These tags are read and applied by SnpStore.

5.3.1 Realignment

For realignment, SnpStore integrates the Anson-Myers’ ReAligner (Anson and Myers, 1997) which

was implemented in SeqAn by Tobias Rausch as part of the SeqCons tool for insert assem-

bly (Rausch et al., 2009). For each window of parsed reads, SnpStore treats each group of over-

lapping reads separately (see Figure 5.2). First, a multiple read alignment maximizing consistency

among reads with respect to the implied consensus sequence is computed. In order to be able to

call variants with respect to the reference genome, this multiple read alignment is then realigned

to the reference sequence.

Notation

We define an alphabet Σ∗ = {A,C,G, T,N,−} of alignment characters or observations. Given an

alignment column C, we denote the total number of alignment characters in this column as n. For

X ∈ Σ∗ we further use nX to refer to the number of times we observe character X. The consensus

c records the most frequent character of the column. c records multiple characters if there are ties.

Anson-Myers’ ReAligner

The ReAligner algorithm (Anson and Myers, 1997) expects as input a relatively good MSA that

is then refined by a round robin procedure, extracting one sequence at a time and realigning it

to the remaining MSA (called a profile). The extracted sequence is realigned in a band around

its original alignment, which enforces it to differ only slightly from its original alignment, i.e. the

global layout of the MSA is maintained. The scoring function used when realigning a read to a

profile in a classical dynamic programming manner is a combination of two scores: the consensus

82 CHAPTER 5. SMALL VARIANT DETECTION

score δc and the fractional score δa. When aligning observation X to alignment column C, we

compute

δc(X,C) =

0 if X ∈ c or C empty

1 otherwise
(5.1)

and

δa(X,C) =

nX/n if n > 0

0 otherwise
(5.2)

The overall score δc+a is then a combination of both scores, giving them equal weight:

δa+c(X,C) = 0.5 · δc(X,C) + 0.5 · δa(X,C) (5.3)

This realignment strategy has been shown to perform well for assembly finishing (Anson and

Myers, 1997). In contrast to the original scoring scheme which uses linear gap costs, we use affine

gap costs which assigns a higher penalty when a gap is opened, i.e. a new column is inserted or

the first gap in a column is inserted.

As we ultimately want to call variants with respect to the reference sequence, we finally realign

the reference sequence to the multi read MSA.

5.3.2 Variant Calling and Genotyping

Given the initial or realigned read alignment, our objective now is to distinguish real variants from

sequencing errors. After introducing the necessary notation, we describe our threshold model which

can be used for indel as well as SNV calling and genotyping. Next, we explain the Bayesian SNV

genotyping model that was originally developed in Maq (Li et al., 2008a) and that we integrated

into SnpStore with some adaptations. Note that while the Maq model assumes diploid data, the

threshold model can in principle be applied to multi-sample data. However, we will not evaluate

multi-sample data here. Independent of the variant calling model used, a number of heuristics for

improvement of variant detection accuracy can be employed in SnpStore, which we explain before

finally turning to the evaluation section.

Notation

In addition to the notation of the previous section, we record for each column the quality values

associated with each involved alignment character. For each possible alignment character X ∈ Σ∗,

we maintain a vector QX = {QX1 , ..., QXnX
} where QXi with 1 ≤ i ≤ nX is a Phred scaled quality

value (see section 2.2.2). These quality values are either the raw base call quality values or some

recalibrated quality values, e.g. possibly taking into account mapping quality of the respective

reads. The gap character ”−” receives the average quality value of its neighboring bases in the

respective read. Further, we have the reference sequence character τ ∈ Σ∗ = {A,C,G, T,N,−}.

5.3. SNPSTORE - VARIANT CALLING ALGORITHM 83

Threshold Method for SNV and Indel Calling

The threshold model in SnpStore is the only model offered for indel calling/genotyping. For SNV

calling, the alternative probabilistic model will be introduced later. In the threshold model, each

alignment column is checked for a number of different criteria. For the current alignment column,

we denote the most frequent non-reference character as X̂ with X̂ ∈ Σ∗ \ {τ}. A variant is called

if the following requirements are satisfied:

• the alignment column needs to be covered at least by a certain minimum number of reads

mindepth, i.e.

n ≥ mindepth (5.4)

• X̂ needs to be observed at least a certain minimum number of times mincount, i.e.

nX̂ ≥ mincount (5.5)

• X̂ needs to be observed on at least a certain minimum fraction of reads minfrac, i.e.

nX̂
n
≥ minfrac (5.6)

• X̂ needs to be observed with a certain minimum quality minqual, i.e.

∑
iQ

X̂
i

nX̂
≥ minqual (5.7)

A called variant is classified as homozygous if the variant is observed with a certain minimum

fraction mingfrac:
nX̂
n
≥ mingfrac (5.8)

Otherwise, it is classified as heterozygous.

All threshold parameters can be specified by the user and may be set for indels and SNVs

separately. On Illumina data, it makes sense to set thresholds for indels lower than for SNVs,

as indel sequencing errors are less common and in general it is harder to correctly align indel-

containing reads.

Bayesian Model for Genotyping (Maq Model)

The Bayesian model for SNV genotype calling is more involved and will be described only briefly

here. More detailed formulae are given in the appendix. Given the two most frequent bases X̂ and

Ŷ in an alignment column, we are ultimately interested in calculating the posterior probabilities

of genotypes (X̂, X̂), (Ŷ , Ŷ), and (X̂, Ŷ), given the observed data D. For each position along the

reference sequence, we therefore first determine X̂ and Ŷ . Given we observe base X̂ k times and

84 CHAPTER 5. SMALL VARIANT DETECTION

base Ŷ n− k times, we denote the homozygote likelihoods as

P (D|(X̂, X̂)) = αn,k (5.9)

P (D|(Ŷ , Ŷ)) = αn,n−k (5.10)

Values αn,k are derived by applying binomial statistics and then correcting for correlation

of sequencing errors caused by mapping biases and amplification artifacts (see appendix). Reads

mapped to different strands are modeled as being independent of each other, such that the final

value αn,k is calculated as the product of αnF ,kF and αnR,kR where the subscripts F and R

denote the corresponding value only considering the forward and reverse strand, respectively.

Furthermore, the model takes into account individual base error probabilities.

Heterozygotes in Maq are also modeled using binomial distribution, with probability 0.5 of

observing one or the other allele:

P (D|(X̂, Ŷ)) =
1

2n

(
n

k

)
(5.11)

To get to posterior probabilities, a prior needs to be set for each event. In Maq, the prior r for

heterozygotes is set to 0.001 (SNP rate in humans) by default, and each homozygote prior is set

to (1− r)/2. If we set r̂ = 2r/(1− r), we arrive at posterior probabilities

P ((X̂, Ŷ)|D) =
r̂ · P (D|(X̂, Ŷ))

r̂ · P (D|(X̂, Ŷ)) + P (D|(X̂, X̂)) + P (D|(Ŷ , Ŷ))

P ((X̂, X̂)|D) =
P (D|(X̂, X̂)

r̂ · P (D|(X̂, Ŷ)) + P (D|(X̂, X̂)) + P (D|(Ŷ , Ŷ))

P ((Ŷ , Ŷ)|D) =
P (D|(Ŷ , Ŷ))

r̂ · P (D|(X̂, Ŷ)) + P (D|(X̂, X̂)) + P (D|(Ŷ , Ŷ))

The genotype ĝ1 maximizing the posterior probability is called with a genotype quality confi-

dence value describing how likely the second best genotype ĝ2 is compared to ĝ1, i.e. P (ĝ2|D)/P (ĝ1|D)

transformed to a Phred quality.

Adapted Maq Model in SnpStore

SnpStore implements the Maq model for genotype calling with some adaptations concerning 1)

usage of quality values in computing homozygote probabilities, 2) additional computation of a

SNV quality value, and 3) its calculation of heterozygote probabilities.

Firstly, while Maq requires a mapping quality value for each read, SnpStore resorts to raw base

call qualities if no mapping qualities are given. For each base the minimum of its base quality and

the mean read base quality of the respective read is used. The rationale here is to trust no read

base more than the read it is contained in.

Secondly, SnpStore computes SNV quality values similar to genotype quality values by simply

measuring how likely the homozygous reference genotype ĝR is compared to the called genotype

5.3. SNPSTORE - VARIANT CALLING ALGORITHM 85

ĝ1, i.e. P (ĝR|D)/P (ĝ1|D), and transforming to a Phred quality value.

Finally, SnpStore offers an alternative approach for modeling heterozygote likelihoods. This

model is based on the observation that the PCR amplification process leads to broader variance

in observed allele frequency than what is expected from binomial statistics (Heinrich et al., 2011).

Heinrich et al. analysed this in exome data, seeing a mean fraction of 0.54 of the reference allele at

heterozygote positions. The shift is due to enrichment bias (reference is more likely to be captured

than variant allele) and due to read mapping (reads carrying the reference allele are more likely

to be mapped). Apart from this shifted mean, they observed that the allele frequency is best

described by a branching process. They finally derived an anaytical model, a normal distribution

with larger variance, that fits well with empirical data.

In collaboration with the authors (Peter Krawitz, Verena Heinrich and Na Zhu), we adapted

the Maq genotype calling model to incorporate this distribution. With reference allele probability

p = 0.54, the mean reference allele frequency at a position covered by n reads is µ = n · p and

the variance is σ2 = n · p · (1− p) + VarB . VarB is the asymptotic variance of a random variable

describing the allele distribution after amplification modeled with a branching process (Heinrich

et al., 2011). The variance is dependent on the number of amplification cycles K, initial number

of fragments of each allele N , and amplification probability q.

VarB =
2(1 + q)−1 − 2(1 + q)−k−1 + (1 + q)−k − 1

8N
(5.12)

We can then replace formula 5.11 with

P (D|(X̂, Ŷ)) =

k+0.5∫
k−0.5

f(k;µ, σ2)dk (5.13)

(5.14)

which we can efficiently calculate by using the cumulative distribution function of f describing

the normal distribution. As default, we use the realistic values N = 10, q = 0.3, and K = 18

(Krawitz, personal communication), but parameters can be set on the command line.

Additional Filter Criteria for Both Models

A number of additional criteria are checked for each candidate alignment column, independent of

whether the threshold or the Bayesian model is used. These criteria include

• the candidate variant needs to be observed on both strands

• a minimum number of different read positions need to be involved in the candidate obser-

vation

• additionally these positions can be required to have a minimum distance from read borders

86 CHAPTER 5. SMALL VARIANT DETECTION

• there may not be more than a certain fraction of noise reads, i.e. reads showing neither

candidate variant nor reference character

These criteria were developed through inspection of many real-data cases, where without these

heuristics wrong variant calls would be made.

5.4 SnpStore - Results

We evaluate and compare SnpStore with other tools on simulated and real data. In our evaluation

we will not be able to investigate all parameters, but will limit the analysis to key parameters,

such as whether realignment is performed or read clipping is applied. In the following, we explain

the different tool settings we test and then introduce the different data sets we use for evaluation.

Tool Setup

We will compare SnpStore, GATK and Samtools, switching on a number of key features.

For SnpStore, the default mode will be denoted as ”SnpStore”. When feature X is enabled

this will be denoted as ”SnpStore+X”. The features tested are realignment (R), read clipping

(C), variance-corrected heterozygote probability computation (H), and using the threshold model

(T) instead of the default probabilistic SNV calling model. For example, ”SnpStore+R+C+H”

then denotes that SnpStore was run with realignment, read clipping and heterozygote correction.

Analogously, for GATK we switch on realignment (R), read clipping (C) and quality value recal-

ibration (Q). Samtools is only run in its recommended default mode (which already employs a

simple realignment step).

5.4.1 Evaluation Datasets

Simulation data

We simulated read data from a manipulated chromosome to study how well SnpStore, GATK

and Samtools could retrieve the randomly implanted variants. To this end, we again use human

chromosome 21 for simulation. We implant indels (1-5bp) and SNVs at a ratio of 1:8 and simulate

diploid data with a 2/3 probability for heterozygotes. Indel length, sequence and position as well

as SNV position and base are sampled randomly. We then simulate 10 million 100 bp reads (∼ 30

x coverage) from the two generated haplotypes using the SeqAn tool Mason in Illumina default

mode (including quality value simulation). These reads are mapped onto the original chromosome

21 using RazerS (in default mode with Levenshtein distance enabled).We use the mapped reads

as input for GATK, Samtools and SnpStore. As RazerS does not assign a mapping quality, but

mapping qualities are required by GATK and Samtools, we simply assign each uniquely mapped

read a mapping quality of 254 (maximum possible value) and each non-uniquely mapped read

a mapping quality of 0. For additional comparison, we map the simulated reads with BWA, the

mapping tool probably most widely used in conjunction with GATK and Samtools.

5.4. SNPSTORE - RESULTS 87

Given a variant prediction set P and the reference set of implanted variants S, we then define

sensitivity, precision and genotyping precision as:

Sensitivity = 1− FN
|S|

Precision = TP
|P |

Genotyping precision =
TPgeno
TP

where TP denotes the number of true positive variant calls, FN the number of false negative

variant calls, and TPgeno the number of true positive variants called with the correct genotype1.

The genotype is considered correct if a predicted heterozygous variant is matched with a het-

erozygous variant in the reference set, or a predicted homozygous variant analogously with a

homozygous reference variant. For SNVs, we count all predicted variants as true positives if they

are detected at the exact same position and with the exact same base (and genotype for TPgeno)

as a reference set SNV. For indels, the predicted variant may vary slightly in position (±5 bp)

and size (10%) compared to the reference set indel. We furthermore employ the extended indel

region computation (Krawitz et al., 2010) to correct for larger indel placement uncertainty due to

repetitive sequence.

1000 Genomes Data

Next, we evaluate SNV and indel calling and genotyping on a 1000 Genomes data set from whole

genome resequencing of HapMap individual NA12878. This is the same data set as used in sec-

tion 4.4.2, but instead of extracting unmapped reads, we use the whole data set of 38,632,492

reads mapped to chromosome 22. Again, we compare SnpStore with the two popular variant de-

tection tools GATK and Samtools. In order to measure performance we compare our detected

variants with the high confidence variants detected and published by the 1000 Genomes Project

for NA12878 (daughter of CEU trio). Our NA12878 data set constitutes a good evaluation set, as

1) it contains reads from different Illumina sequencing instruments and with different read lengths

and 2) a high confidence variant reference set is available from the 1000 Genomes Project (Durbin

et al., 2010). Note, that the 1000 Genomes Project used both GATK and Samtools to compile

the SNV reference set, keeping the intersection of the two prediction sets. For indels, they used

Dindel, which is very similar to the indel calling algorithm implemented in GATK. The obvious

circularities should give GATK and Samtools an advantage over SnpStore. However, they used

earlier versions of the tools (and additional filtering and knowledge from Mendelian segregation),

and most importantly used a different read data set (including 454 as well as Illumina reads).

This read data set was produced from earlier sequencing machines (yielding shorter, exclusively

single end reads) and the covered portion of the genome was estimated to be 80% (Durbin et al.,

2010). Thus, the reference set is not complete and we expect to see additional variants in the

prediction sets. However, it gives us high confidence genotype calls, as calls were made from trio

1Note that for SNVs we have TP + FN = |S|. For indels this does not have to hold necessarily, as more than
one predicted indel may match the same reference set indel.

88 CHAPTER 5. SMALL VARIANT DETECTION

data where mother and father genotypes help to accurately assign child genotypes. We therefore

use this set for sensitivity estimation and genotyping precision only and estimate precision with

respect to variants contained in dbSNP (sensitivity, precision and genotyping precision definitions

as in previous section).

Targeted Resequencing Data

Here, we use the same targeted resequencing data set of 248 male X-linked intellectual disability

patients (Kalscheuer et al., submitted) as described in section 4.4.1. We call variants on the RazerS

and SplazerS mapped reads using SnpStore, and further inspect them with respect to functional

classes, e.g. synonymous or non-synonymous mutation (see section 2.1.2).

5.4.2 Comparison with Other Tools on Simulation Data

Table 5.1 summarizes the results for calling SNVs on the simulation data, comparing SnpStore,

GATK and Samtools. For all tools we show results for the default mode and with realignment

switched on where possible. For SnpStore we additionally test the threshold model as an alternative

Sensitivity (FN) Precision (FP) Genotyping prec.

SnpStore+T 99.45% (132) 99.17% (199) 99.92%
SnpStore 99.79% (51) 98.31% (411) 99.95%
SnpStore+R 99.78% (52) 99.85% (37) 99.99%
SnpStore+R (BWA) 99.72% (68) 99.86% (34) 99.97%

GATK 99.49% (122) 99.34% (159) 99.93%
GATK+R 99.50% (120) 99.40% (145) 99.91%
GATK+R (BWA) 99.41% (141) 99.46% (130) 99.95%

Samtools 99.75 % (60) 99.89 % (26) 99.98 %
Samtools (BWA) 99.61 % (94) 99.88 % (28) 99.97%

Table 5.1: Sensitivity, precision and genotyping precision results for SNV calling on simulation data set.
”SnpStore+T” uses the threshold model for SNV calling, ”SnpStore” the default probabilistic model, ”+R” means
that realignment was performed before SNV calling. The additional ”(BWA)” indicates that results are based on
Bwa-mapped reads, otherwise RazerS-mapped reads were used.

Sensitivity (FN) Precision (FP) Genotyping prec.

SnpStore 62.17% (1135) 39.37% (2,941) 89.11%
SnpStore+R 90.56% (283) 93.69% (183) 97.79%
SnpStore+R (BWA) 86.40% (408) 93.95% (167) 99.30%

GATK 56.07% (1318) 47.20% (1,932) 94.09%
GATK+R 88.60% (342) 85.05% (484) 91.94%
GATK+R (BWA) 87.63% (371) 99.34% (18) 93.33%

Samtools 74.87 % (754) 82.39% (480) 99.42%
Samtools (BWA) 96.93% (92) 97.70%(67) 98.52%

Table 5.2: Sensitivity, precision and genotyping precision results for indel calling on simulation data set. For legend
on tool settings see Table 5.1.

5.4. SNPSTORE - RESULTS 89

to the probabilistic SNV calling model. To test how the choice of read mapper affects results, we

show results for each tool’s best setting on BWA- instead of RazerS-mapped reads. Table 5.2

compiles the corresponding results for indel calling. Note that there is no additional entry for

”SnpStore+T” as indel calling is anyway done with the threshold model.

For SNV calling we see that all tools generally achieve very high sensitivity (> 99.4%). For all

tools, using the RazerS mapped reads as input gives higher sensitivity than using BWA mapped

reads. However, GATK’s and SnpStore’s precision increases slightly with BWA mapped reads. The

overall most sensitive setting is SnpStore without realignment and using RazerS mapped reads.

But here we also see the significantly lowest precision (98.31% while all other precision values are

> 99%). When switching on realignment in SnpStore, SNV calling sensitivity essentially stays the

same (losing only one true positive SNV call), while the number of false positive calls drops by a

factor of more than 10 (37 compared to 411 false positives). The gain through realignment is also

seen for GATK, but less drastically than for SnpStore. Using RazerS mapped reads and SnpStore

with realignment or Samtools seem to be the best choices for SNV calling, where SnpStore is

slightly more sensitive and Samtools slightly more precise. Interestingly, GATK shows lowest

sensitivity and lowest precision. All tools perform well in genotyping (with genotyping precisions

> 99.9%). Genotyping on this simulation data set is easy because reads were sampled uniformly

and with random errors, and no sequencing biases or amplification artifacts complicate genotyping.

For indel calling, we see much lower sensitivity and precision values than for SNV calling.

For both GATK and SnpStore we see the realigned versions perform significantly better than the

unrealigned ones. While Samtools with BWA mapped reads is the most sensitive combination,

GATK with BWA is the most precise one. For all tools, precision is higher when using the BWA

mappings as input. However, both GATK and SnpStore are more sensitive on RazerS than BWA

mappings. Genotyping is also harder than for SNVs, indicating that indel-containing reads are

harder to map and align correctly.

While unidentified SNVs are generally due to repetitive regions that make unique mapping

difficult or impossible, unidentified indels are in addition due to mapping biases. In general, SNV

identification is much more robust, while indel identification is quite vulnerable to the used map-

ping tools and the indel calling tool’s setting.

Now we turn to real data, where we expect to see more difficulties, especially on indels as they

tend to be in repetitive region.

5.4.3 Comparison with Other Tools on 1000 Genomes Data

On the 1000G data, we show results for SnpStore in five different modes. In addition to the

ones tested previously, we test two more features that are mainly of relevance on real read data:

read clipping (C) and variance-corrected heterozygote probability computation (H). GATK and

Samtools were run in the same modes as before, but GATK additionally with quality recalibration

(Q).

Table 5.3 compiles the results for SNV, Table 5.4 for indel calling. There are fewer rows in the

indel calling table, as the heterozygote correction (+H) only concerns SNV calling and again there

90 CHAPTER 5. SMALL VARIANT DETECTION

|P | Sensitivity (FN) Precision (FPdbSNP) Genotyping prec.

SnpStore+T 46,768 97.67% (766) 92.43% (3,541) 99.39%
SnpStore 48,255 98.53% (485) 93.16% (3,303) 99.42%
SnpStore+R 47,673 98.51% (491) 93.81% (2,952) 99.36%
SnpStore+R+C 46,336 98.37% (538) 94.90% (2,363) 99.29%
SnpStore+R+C+H 46,931 98.45% (509) 94.33% (2,659) 99.32%

GATK 48,763 98.62% (456) 94.45% (2,704) 99.56%
GATK+R 48,139 98.57% (472) 95.09% (2,364) 99.55%
GATK+R+Q 48,303 98.61% (458) 94.97% (2,429) 99.55%

Samtools 44,260 97.31% (885) 97.64% (1,043) 99.53%

Table 5.3: SNV calling results on NA12878 data set.

|P | Sensitivity (FN) Precision (FPdbSNP) Genotyping prec.

SnpStore 4,898 64.17% (1,433) 70.25 % (1,457) 81.83%
SnpStore+R 4,194 71.24% (1,150) 80.04% (837) 92.74%
SnpStore+R+C 3,898 69.57% (1,217) 83.50% (643) 92.60%

GATK 4,031 67.17% (1,313) 90.03% (402) 97.06%
GATK+R 4,928 75.52% (979) 88.84% (550) 96.52%
GATK+R+Q 4,934 75.52% (979) 88.79% (553) 96.53%

Samtools 4,030 71.52% (1,139) 88.96% (445) 95.73%

Table 5.4: Small indel calling results on NA12878 data set.

is only one calling model for indel calling (threshold-based) as opposed to the two alternatives in

SNV calling (default probabilistic or threshold-based). For SNV calling, we see high sensitivity

(> 97%) and precision (> 92%) for all tools and settings. For indel calling on the other hand

we see significantly lower sensitivities (for all tools > 20% lower sensitivity than for SNVs) and

also considerably lower precision (between ∼ 4 and 20% lower). Also genotyping is more precise

for SNVs (> 99.3% for all tools) than for indels (∼92-97% with exception of SnpStore without

realignment).

For both SnpStore and GATK there is a significant increase in indel calling sensitivity (> 7%)

when realignment is switched on. This comes with a slight decrease (< 0.06%) in sensitivity for

SNVs but also a more significant increase in SNV calling precision (> 0.6%). Interestingly, the

total number of predicted indels increases with realignment for GATK but decreases for SnpStore.

SnpStore seems to handle the BWA-mapped reads less accurately than GATK and produces many

spurious indel calls as well as multiple calls for the same indel (called at slightly different positions

due to inconsistency in the unrealigned reads).

As expected, SnpStore’s default probabilistic SNV calling model is clearly superior to the

threshold approach. Inspecting the other features tested, we see that SnpStore’s read clipping is

very effective for increasing precision for both SNVs and indels. At the same time sensitivity is

decreased especially for indels. This implies that clipping discards read bases spanning or reaching

into indels that are aligned as mismatches but carry potential for identifying indel variants. We

also switched on GATK’s read clipping procedure, but as BWA performs essentially the exact

5.4. SNPSTORE - RESULTS 91

same clipping procedure as GATK, this had no effect on variant calling results (not shown in

tables). Also, quality recalibration did not exhibit a great influence on variant calling outcome,

which is explained by the fact that 1000 Genomes Project reads available for download already

come quality-recalibrated. Still, switching on quality recalibration has a small influence on GATK’s

results: we see a slight increase in SNV sensitivity at the cost of a slight decrease in precision.

Finally, SnpStore’s heterozygote correction effectively adds more false positive than true positive

SNV calls. Also, the increase in genotyping precision is only marginal.

All in all, SnpStore is the least precise tool for genotyping, especially for indels where no

sophisticated probabilistic model is implemented. When taking into consideration the nature of

the reference set (for SNVs computed by GATK and Samtools, and for indels computed by a

method similar to GATK), it is surprising that SnpStore achieves higher SNV calling sensitivities

than Samtools. However, precision is higher for Samtools pointing to Samtools’ default being

stricter than that of SnpStore. Overall, GATK is the most sensitive method for both SNVs and

indels, not only with respect to the reference sets, but also considering total number of predicted

variants.

The Venn diagrams in Figure 5.3 show how the call sets of the three tools (SnpStore+R+C,

GATK+R, Samtools) overlap. There is a much larger overlap between all three tools on SNVs

than on indels. Samtools and SnpStore show the lowest overlaps with each other while GATK

shares high overlap with both other tools. In SNV calling, SnpStore has the highest number of

calls unique to itself, whereas in indel calling it has the lowest number. Again, this indicates that

SnpStore is stronger in SNV calling where a probabilistic model is used than on indel calling where

the simple threshold model is used. All in all, however, there is surprisingly much discordance on

indels between the three tools showing that there is room for method improvement for indel

detection.

In Figure 5.4, we see the tools’ behavior at different read depths (SnpStore+R+C, GATK+R,

Samtools). SNV calling reaches full sensitivity at read depth 20-30 and remains fully sensitive for

SnpStore GATK

Samtools

460 717

568

2565

83562

811

SnpStore GATK

Samtools

1805 1696

377

41581

2107195

2755

A) SNVs B) Indels

Figure 5.3: Venn diagrams comparing SNV (A) and indel (B) calling results of SnpStore (SnpStore+R+C), GATK
(GATK+R) and Samtools.

92 CHAPTER 5. SMALL VARIANT DETECTION

higher depths, apart from some outliers where the total number of calls is low. Samtools reaches

its peak sensitivity a bit slower than GATK and SnpStore. Indels are obviously harder to identify,

with sensitivity increasing much slower than for SNVs and read depths of more than 50 required

for full sensitivity. Even at high read depth, we see more outliers that show low sensitivity.

SNV calling precision is highest at depths 20-60 and decreases/destabilizes at higher depths,

with Samtools consistently maintaining the highest precision. While real SNVs are unlikely to be

missed at high read depth, also more artifacts accumulate (such as amplification artifacts and

mapping artifacts due to repetitive regions), leading to decreased precision. The lower precision

may also be due to a lesser power to ascertain SNVs in ambiguous/repetitive regions, i.e. true

variants may simply be missing in the reference set. Especially, this may also be the case for indels

where there is generally a lower level of completeness in the reference set. For indels, we see lower

precision, with highest confidence for indels called at read depths 30-50.

SNV genotyping can be done with very high confidence for read depths larger than 20. For

indels, this confidence is only achieved at depths larger than 50, again indicating the stronger

mapping bias for the reference allele than for SNVs.

Mostly, differences between the tools are explained by their behavior in low coverage regions

(< 15). Also, very high coverage regions give rise to differences (as seen in precision plots), but

low coverage accounts for a much larger fraction of the dataset, giving rise to most false positives

and false negatives.

Running times

All running times are roughly in the same order of magnitude. SnpStore’s runtime is around

22 min without realignment, and increases by a factor of ∼ 3 when doing realignment (71 min).

GATK requires approximately 15 min, and an additional 20 min for realignment and 14 min for

recalibration. Samtools takes about 28min.

5.4. SNPSTORE - RESULTS 93

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SNV calling sensitivity over read depth

read depth

se
ns

iti
vi

ty

SnpStore
GATK
Samtools

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Indel calling sensitivity over read depth

read depth

se
ns

iti
vi

ty

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SNV calling precision over read depth

read depth

pr
ec

is
io

n

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Indel calling precision over read depth

read depth

pr
ec

is
io

n

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SNV genotyping precision over read depth

read depth

pr
ec

is
io

n

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Indel genotyping precision over read depth

read depth

pr
ec

is
io

n

Figure 5.4: Precision and sensitivity of the three tested SNV/indel calling methods over read depth at calling
positions. Results are for SnpStore with realignment and read clipping (SnpStore+R+C), GATK with realignment
(GATK+R), and Samtools default (Samtools).

94 CHAPTER 5. SMALL VARIANT DETECTION

|P | overlap dbSNP novel and unique to one individual

Non-coding 4605 2795 (60.69%) 1468 (31.88%)

Synonymous 1108 864 (77.98%) 235 (21.21%)

Non-synonymous 1570 1018 (64.84%) 531 (33.82%)

Missense 1438 962 (66.90%) 461 (32.06%)

Nonsense 23 10 (43.48%) 13 (56.52%)

In-frame indels 36 17 (47.22%) 18 (50.00%)

Frameshift indels 51 19 (37.25%) 29 (56.86%)

Splice-sites 22 10 (45.45%) 10 (45.45%)

Table 5.5: Small variant calling results on targeted resequencing data, split into functional categories.

5.4.4 Application to Targeted Resequencing Data

On the large-scale targeted resequencing data, SnpStore identified a total of 7283 distinct variants

within target regions. Of this non-redundant set of variants called in at least one patient 35.6 % are

novel (not contained in dbSNP), whereas in the redundant set (or per patient) we find on average

only 17.4% novel variants. This is due to the fact that variants that are recurrent in the patient

cohort are more likely to be in dbSNP, whereas variants unique to one patient are more likely to be

novel and hence overrepresented in the non-redundant set. Table 5.5 separates the set of variants

into functional categories (based on Table 2 from Kalscheuer et al. (manuscript submitted)). The

majority of variants is in non-coding region. Focusing on variants in coding sequence only, we

can distinguish between synonymous variants that do not lead to a change in amino acid and

non-synonymous that (presumably) alter the amino acid sequence. Non-synonymous variants are

less likely to be contained in dbSNP than synonymous ones. While the 1000 Genomes Project

found an approximate 1:0.8 ratio of non-synonymous to synonymous variants in exon capture

experiments (Durbin et al., 2010), we see non-synonymous variants with a higher frequency in

our data set (1:0.7 ratio). However, as we are looking at X chromosome exons from X-linked

intellectual disability patients, we expect this ratio to be higher. In total, several novel candidate

genes for X-linked intellectual disability were identified (Kalscheuer et al., submitted).

5.5. CHAPTER SUMMARY 95

5.5 Chapter summary

In this chapter, we

• developed a small variant detection tool SnpStore incorporating a read realignment step.

• introduced additional features of SnpStore such as read clipping, heterozygote variance cor-

rection in the Maq-like genotype probability calculation, and several filter criteria inspired

by inspection of real data.

• applied SnpStore to simulated as well as real 1000 Genomes Project data and compared

with the two popular variant detection tools Samtools and GATK

• applied SnpStore to large-scale targeted resequencing data of 248 X-linked intellectual dis-

ability patients.

We observed that

• SnpStore showed performance similar to GATK and Samtools.

• read realignment significantly increased the number of correctly called indels and reduced

false positive SNV calls.

• SnpStore’s read clipping effectively reduced the number of false positives for SNVs as well

as indels, but also decreased sensitivity.

• variance corrected heterozygote probability calculation slightly improved sensitivity and

genotyping accuracy, but also increased the number of false positive SNV calls significantly.

• on simulated data, SnpStore with RazerS mapped reads was the most sensitive tool on SNVs,

while Samtools with BWA mapped reads was most sensitive and precise on indels.

• GATK showed highest sensitivity on 1000 Genomes Project data, but lowest sensitivity on

simulated data.

• SNV calling was most accurate at read depths 20 to 60, while accurate indel calling required

read depths > 50.

• the tested tools exhibited high agreement (overlap) on SNV calls but low agreement on indel

calls.

From this we conclude that

• we developed a generic small variant calling tool that successfully employs the Myers’ re-

aligner algorithm on large-scale NGS data and offers several real-data relevant heuristics.

• especially when considering expected biases in the 1000 Genomes Project reference set and

dbSNP towards GATK and Samtools, SnpStore is highly sensitive particularly for SNVs.

• the choice of read mapper plays a key role, especially in indel detection accuracy.

96 CHAPTER 5. SMALL VARIANT DETECTION

• there is still much room for improvement in indel detection, as indicated by high discordance

in indel call sets.

Chapter 6

Discussion and Conclusions

Next generation sequencing has truly lead to a revolution in genomics research. Not only is this

visible from the large number of scientific publications (currently Illumina lists 3360 and Roche

2380 peer-reviewed sequencing publications on their websites), but also from the broad spec-

trum of topics addressed ranging from genome resequencing (Bentley et al., 2008; Wheeler et al.,

2008; Durbin et al., 2010) to transcriptomics (Mortazavi et al., 2008; Sultan et al., 2008b) or

metagenomics (Qin et al., 2010; Gilbert and Dupont, 2011), and from fundamental research to

diagnostics (Voelkerding et al., 2009). Furthermore, the crucial role that computational analysis

plays becomes obvious when looking at the multitude of software tools that are publicly available.

For example, a very active NGS-centered forum (SEQanswers, 2012) currently lists 578 different

tools for NGS data analysis, and this list is likely incomplete. The length of the list owes in part

to the variety of NGS applications but also to the fact that sequencing technologies are advancing

rapidly and thus new tools are continuously developed. However, this also points to the impor-

tance of methods that remain applicable with changes in sequencing characteristics. For example,

increasing read length and changing error rates are factors that can be taken into account early

on in method development.

In this work, we addressed a broad range of key computational aspects of resequencing appli-

cations, where a reference genome sequence is known and heavily used for interpretation of the

newly sequenced sample. We developed tools for read mapping (Weese et al., 2009) and bench-

marking (Holtgrewe et al., 2011), for partial read mapping of small RNA reads (Emde et al., 2010)

and for structural variant/indel detection (Emde et al., 2012), and finally tools for detecting and

genotyping SNVs and short indels. All methods are generic in that they can handle arbitrary read

lengths and variable error rates. Furthermore, they are implemented in the SeqAn library (Döring

et al., 2008) making them open-source, easily available and potentially adaptable for the bioinfor-

matics community.

Concerning semiglobal read mapping, we saw that the many published tools can be roughly

divided into two generations. The earlier generation mainly makes use of the two-seed pigeon-

hole principle, as pioneered in Eland (Cox, unpublished) and Maq (Li et al., 2008a), and usually

uses an index built on the read sequences. Later tools usually build an index of the genome

97

98 CHAPTER 6. DISCUSSION AND CONCLUSIONS

(most commonly the space-efficient FM-index) and use index searching strategies to map the

reads (Langmead et al., 2009; Li and Durbin, 2009). While this later generation of tools is com-

putationally very efficient, it is, however, more likely to output best matches only and is thus not

as robust in the face of mapping ambiguity. Our SeqAn tool RazerS, as introduced in Chapter

3, uses a quite different strategy than most other tools and is based on a q-gram counting fil-

ter. Its novelty lies in its fine scale sensitivity switch which allows to set a lower bound on the

desired mapping sensitivity. Most other read mappers use heuristics to speed up alignment and

cannot guarantee 100 % sensitivity, at least not for many different error rates, read lengths and

Hamming as well as Levenshtein distance. That most read mappers are not fully sensitive can be

seen by comparing read mapping results to a gold standard, as we did with our benchmarking

method Rabema in Chapter 3. Benchmarking turned out to be difficult, not only because tools

have a variety of different parameters but also because the definition of match equivalence is not

trivial. This difficulty has also been realized by others (Fonseca et al., 2012). Our benchmarking

results showed that the currently most popular read mappers are not fully sensitive and especially

loose sensitivity for matches with more than 2 errors. Depending on the application, this can have

potentially harmful effects in downstream analyses. For example, multi-read assignment meth-

ods (Hashimoto et al., 2009; Ji et al., 2011), especially important for transcript quantification in

RNA-seq (Wang et al., 2009b), rely on a complete set of possible mapping positions in order to

assign multi-reads to their most likely location. In variant detection, wrongly mapped multi-reads

can lead to wrong variant calls. The problem of mapping ambiguity becomes less with longer reads;

in other words, as sequencing technologies advance and reads become longer, they become easier

to assign. However, ambiguity in the human genome remains considerably high even with read

lengths > 100 bp (Whiteford et al., 2005). Also, while sequencing error rates tend to decrease with

sequencing chemistry improvements, longer reads will invariably have to be mapped with more

than 2 errors. Thus many currently still popular tools will not scale well with technology advances.

On the other hand, RazerS should remain sensitive and especially in its newer, parallelized version

efficient enough to be applied to the increasing amounts of read data (Weese et al., 2012). Current

limitations of the benchmark and also of RazerS are a lack of support for quality-value based

mapping. However, Weese et al. (2012) show that quality values do not necessarily improve read

placement, but may even decrease mapping accuracy of variant-spanning reads.

Increasing read lengths also make partial read mapping more powerful. In chapter 4 we saw

two different applications of partial read mapping. The first one, based on read prefix mapping,

is specifically designed for small RNA read mapping. As one of the first high-performance small

RNA mappers at the time, our SeqAn tool MicroRazerS achieved highest sensitivities compared

to other tools. Also in a more recent study involving different miRNA-specialized tools (Cordero

et al., 2012), MicroRazerS was shown to be the most sensitive and computationally efficient small

RNA mapping tool. The prefix-based strategy is apparently an excellent approach to small RNA

mapping, as it avoids errors made during adapter trimming that can prevent reads from mapping

with their whole length. However, partial read mapping is especially interesting in SV detection,

where reads spanning variants can only be mapped if split into two (or more) local match parts

that map to the breakpoint-flanking sequences. Split mapping of these breakpoint-spanning reads

99

therefore carries the potential to identify SVs with base pair precision. In this work, we developed a

strategy for split read indel detection that, in contrast to other methods, works not only on paired-

end, but also on single-end read data. On paired-end read data, our split-mapping tool SplazerS

significantly outperformed the state-of-the-art tool Pindel (Ye et al., 2009) in variant detection

sensitivity. In our evaluation, we also included the recently published tool SVseq2 (Zhang et al.,

2012) which uses a combination of two SV detection strategies: first discordant paired-end reads

are used to identify SV candidates and then split mapping is performed in candidate regions. Our

results indicate that this combination of read pair and split read approach works well for large

deletions, but is unsuitable for small to medium-sized indels (< 50 bp); presumably because read

pairs are not classified as discordant. For these variants, the split read approach alone thus remains

more powerful. Possibly a different way of combining the split-read approach with a different SV

detection strategy can lead to a broader range of detectable variants and improved accuracy, but

this remains for future work.

An advantage of SplazerS over other tools is its versatility. To our knowledge, SplazerS is still

the only split mapping tool to be designed specifically for large deletion detection in single-end

read data. While computational resource requirements are greater on single-end reads, as the

whole genome and not just a target region needs to be searched, SplazerS still remains applicable

to large-scale data sets. On the large-scale targeted-resequencing single-end read data of X-linked

intellectual disability patients, we observed an interesting type of variation quite rarely described

in humans: gene retroposition. Of particular interest is a retrocopy of PQBP1, a gene previously

linked to intellectual disability, which if functional could have a dosage effect. In any case, the

discovery of several retrocopies, some of which seem to be polymorphic in humans, was surprising

and was also published by Karakoc et al. (2012) around the same time as SplazerS.

Used for indel calling on SplazerS’ split reads previously, we finally evaluated our SNV and

indel calling tool SnpStore. As shown by Homer and Nelson (2010), performing a read realignment

step before variant calling leads to a significant improvement in calling accuracy. We can clearly

confirm this for SnpStore’s realignment feature. Additionally, SnpStore incorporates a number

of heuristics that were developed in close inspection of real sequencing data. For example, read

clipping turned out to be an effective real-data heuristic for reducing the number of false positive

variant calls. Compared to other variant callers (DePristo et al., 2011; Li, 2011), that were mostly

developed as part of the 1000 Genomes Project (Durbin et al., 2010), SnpStore performs similarly

and is even among the most sensitive ones for SNV calling as observed on real as well as simulated

data. In this work, we evaluated variant calling tools by using a 1000 Genomes Project data set

and overlapping with 1000 Genomes Project calls and the dbSNP variant database (Sherry et al.,

2001). This way of evaluation is biased, as 1000 Genomes Project variant call sets are contained

in the most recent versions of dbSNP and these calls were generated by tools that were part of the

evaluation. A better way of evaluating would be to calculate agreement with SNP array variant

calls. However, first of all, SNP array data needs to be available, and secondly, this strategy only

works well for SNVs and not for indels. And especially indel detection seems to require more

attention: While SNV calling results are quite similar between different tools, indel results are

astonishingly dissimilar (even with the same mapped read input). This indicates that further

100 CHAPTER 6. DISCUSSION AND CONCLUSIONS

improvement in indel variant detection is necessary.

In summary, the methods developed in the course of this work are valuable to advance com-

putational analysis of NGS data. They are real-world applicable and are part of the SeqAn C++

library and therefore have to adhere to certain coding standards. Their development took place

simultaneously with other groups developing similar methods, as NGS data analysis has been a

quickly advancing field. In fact, MicroRazerS, SplazerS and SnpStore were developed out of direct

necessity, because there were no other established methods available at the time. In all our meth-

ods, we placed key emphasis on sensitivity and in our evaluations we saw that compared to other

tools, our methods usually excel in this realm. Our methods furthermore aim at being compatible

with different sequencing technologies and different reads lengths, hence aiding in the compatibility

with sequencing technology advances. However, with coming technological advances (Schadt et al.,

2010; Branton et al., 2008; Rothberg et al., 2011) we expect novel computational approaches to

emerge. Quite likely, assembly-based methods (Li et al., 2011; Simpson and Durbin, 2012) that can

reconstruct novel or difficult parts of a sample genome without the help of a reference sequence

will receive more and more attention, especially with increased fragment insert sizes becoming

available for read pair sequencing. In addition, we anticipate that methods for comparing multi-

ple genomes (Darling et al., 2010; Angiuoli and Salzberg, 2011), that can then directly compare

(de-novo) assembled genomes, will gain importance. Further in the future, integrative approaches

combining diverse sources of information, e.g. genomic, epigenetic, and transcriptomic, in a com-

mon framework promise a more sophisticated, unified view of genomics (Hawkins et al., 2010).

The wide range of high throughput sequencing applications has already enabled significant

insights into fundamental genome research (Johnson et al., 2007; Green et al., 2010; Durbin et al.,

2010) and especially disease diagnostics (Ng et al., 2010b; Johnston et al., 2010; Voelkerding

et al., 2009). With sequencing costs decreasing, we can anticipate further great advancements,

particularly in the active field of cancer genomics (International Cancer Genome Consortium

et al., 2010), that will truly fuel the shift toward personalized medicine.

6.1 Outlook

Building on the SplazerS split mapping tool, we are currently working on a new approach to multi

split mapping for SV detection and for RNA-Seq read mapping. First evaluation of this method

in the scope of a master thesis by Kathrin Trappe show promising results (Trappe, 2012). The

proposed method uses a different, more generic approach to detect split matches and will have

much wider application, e.g. also for alignment of assembled contigs. First, local matches of reads

(or contigs) are computed using STELLAR (Kehr et al., 2011), a fully sensitive local aligner with

respect to Levenshtein distance. Next, we construct a read-centric compatibility graph for each

read. In this graph, local matches are nodes and edges between nodes represent breakpoints. Exact

breakpoints are computed with the dynamic programming method described in section 4.3.2. By

traversing the graph from artificial start to end node, we obtain chains of local matches, i.e. (multi)

split matches. Edges carry weights that represent penalties for chaining two adjacent matches. For

example, if two adjacent nodes, i.e. two compatible matches according to read coordinates, map

6.1. OUTLOOK 101

onto two different chromosomes they will receive a higher penalty than two collinearly mapped

matches. Furthermore, if many reads support the same breakpoint, corresponding edges will be

penalized less than unsupported edges. The main difficulties in this approach concern the handling

of repeat regions and designing a sensible scoring scheme for edge weights.

102 CHAPTER 6. DISCUSSION AND CONCLUSIONS

Appendix

Expected Number of Random Split Matches

The following formulae were derived together with Marcel Schulz. Given a set of reads R containing

reads r all of the same length |r|. At a given position in a random DNA sequence s, the probability

of a split read match with minimum match length m, maximum number of prefix errors ep,

maximum number of suffix errors es, and maximum number of total errors k = max(bε·|r|c, es+ep),
can be calculated as

p(|r|,m, ep, es, k) =

ep∑
i1=0

es∑
i2=0

k−i1−i2∑
i=0

(
m
i1

)(
m
i2

)(|r|−2m
i

) (
3
4

)i+i1+i2 (1
4

)|r|−(i+i1+i2) (6.1)

Equation (6.1) assumes identical frequency= 1
4 for each DNA character. We denote the number

of possible breakpoint positions on the read as

cuts(|r|,m) = |r| − 2m+ 1 (6.2)

In the following, we calculate the expected number of deletion-indicating matches Edel and the

expected number of insertion-indicating matches Eins separately. Both Eins and Edel are reported

to the user when running SplazerS in verbose mode.

Deletions:

To compute the expected number of random matches indicating a deletion of length ≤ δ, with

δ+ |r| < |s|, in the read sequence, we first determine the number of possible mapping locations of

the read within s. Recall that we assume independence between the mapping locations.

del(|r|, |s|, δ) =
δ∑
i=1

|s| − |r| − i+ 1

= δ · (|s| − |r|+ 1)− δ(δ+1)
2

(6.3)

To get the total number of mapping configurations we can multiply cuts(|r|,m) by del(|r|, |s|, δ).
The expected number of random deletion-indicating matches for the whole set of reads then is

103

104 CHAPTER 6. DISCUSSION AND CONCLUSIONS

Edel = |R| · p(|r|,m, ep, es, k) · cuts(|r|,m)

· del(|r|, |s|, δ)
(6.4)

Insertions:

The maximum size of an insertion in the read sequence is |r| − 2m. An insertion of length i

essentially shortens the read by i characters. Therefore, the number of possible insertion break-

points on the read, given by cuts(|r| − i,m), depends on |r| − i rather than |r|. Also, the prob-

ability of a random read match now depends on |r| − i and the total number of errors then is

e = max(bε · (|r| − i)c, es + ep). For a read indicating an insertion of length i, the total number of

different mapping positions in the DNA sequence is |s| − |r| − i − 1. Hence, for the whole set of

reads we expect to see Eins many insertion-indicating matches:

Eins = |R| ·
|r|−2m∑
i=1

(|s| − |r| − i− 1)

· p(|r| − i,m, ep, es, k)

· cuts(|r| − i,m)

(6.5)

Variant Comparison Tool

SeqAn tool variantComp:

VariantComp takes three input files: a file containing predicted variants (GFF), a file containing

reference set variants (GFF), and a reference sequence (Fasta). It can compare SNVs, insertions,

deletions, inversions and duplications (intrachromosomal events) and compute statistics about

true positives, false positives, and false negatives, optionally for variants of different size ranges

separately (SNVs are always treated separately). The most important parameters to set are

• Computation of the equivalent indel region, eir, as defined in (Krawitz et al., 2010), to

account for indel/SV placement ambiguity (for indels, inversions, duplications), requires

inserted sequence to be supplied in input files.

• Position tolerance, allowing variant positions to be inexact by the specified number of base

pairs. This is especially important if indel breakpoints are not necessarily expected to be

exact, or insertion sequence is not given.

• Size tolerance, allowing predicted and reference variant to vary in size by the given percent

of reference variant size.

Additionally, a file with variant size ranges for which to output statistics may be specified.

6.1. OUTLOOK 105

Implementation

As the most notable implementation detail, variantComp makes use of interval trees to quickly

look up intersecting variants. The tool proceeds as follows:

1. File parsing: read input GFF files and reference sequence as well as range file if specified.

SNVs are stored separately from other variants.

2. Compare variants (except for SNVs): for each chromosome build an interval tree of reference

variants

for each predicted variant on this chromosome query it against the interval tree (allowing

position tolerance/eir)

for each potentially matching pair of predicted/reference variant, check if all criteria

are met

3. Compare SNVs: for each chromosome

sort and stream over reference and predicted variants simultaneously, and check if called

SNV matches reference SNV

Indel Simulator

The SeqAn tool indelSimulator was originally developed to only simulate indels in haploid data.

Indels are either simulated at random positions and with random lengths (uniformly within bins)

or from a given GFF file with indels (as used in Chapter 4). Later, SNV simulation and diploid

data simulation were added (as used in Chapter 5). IndelSimulator takes as input a reference

sequence/chromosome, and optionally a GFF file containing indel variants to draw from. Another

optional input is a file describing which size ranges of indels should be simulated. If no insertion

sequences are given, they are in half of the cases generated randomly with a 1/4 probability for

each nucleotide, and in the other half of cases generated through duplication of the upstream

sequence (emulating tandem duplication). The output is the manipulated reference sequence and

a file of indels and SNVs that were implanted (with their coordinates with respect to the original

sequence).

Implementation

Given a number of SNVs and indels to simulate, the indelSimulator tool proceeds as follows:

• File parsing: a reference sequence and optionally a GFF file containing reference indels is

parsed.

• SNVs are placed randomly in a manipulated copy of the reference sequence. In case of diploid

simulation, we have two copies of th reference sequence and the SNV is with 1/3 probability

applied to both copies.

106 CHAPTER 6. DISCUSSION AND CONCLUSIONS

• A set of indels is either randomly generated or randomly drawn from the set of parsed refer-

ence variants. If multiple size ranges are specified, each such range receives equal probability.

For each indel we check that it maintains a certain minimum distance from the next indel.

The final list of indels is then sorted according to genome position.

• Indels are introduced one by one into the manipulated chromosome, updating the manipu-

lated sequence from left to right.

• SNVs and indels are written into a file, writing out the original reference sequence positions.

6.1. OUTLOOK 107

Single-end read simulation

Simulation procedure and experiment design

We performed our simulation experiments according to the following steps (taken from (Emde

et al., 2012), supplement):

1. Choose 1000 indels from dbSNP130+DGV and implant these into chromosome 21. Indels are

drawn uniformly from range buckets: [−30,−10], [−9,−1], [1, 9], [10, 30] and [31, 3000], where

negative numbers indicate insertions. Each bucket has approximately 200 representatives. ”Nat-

ural” distribution of indel sizes is only retained within range buckets. Note that our sampling

procedure does not represent a realistic indel distribution, but gives us sufficient sample size for

testing different indel size ranges, in particular medium sized to large indels. Maximum inser-

tion length thus is 30 bp, maximum deletion length 3,000 bp. Insertion sequences are generated

randomly. Indels are simulated at a distance such that no read will contain two indels. Single

base substitutions are added at a rate of 0.001 to simulate SNPs. This yields the manipulated

chromosome chrm and a set of reference indels Im.

2. Simulate a set of single-end reads R from chrm, using the Mason read simulator1 and using

typical Illumina sequencing error settings: an average substitution rate of 0.005 (with error

probabilities increasing from 5’ to 3’ end) and an insertion and deletion rate of 0.0002 each.

The total number of reads |R| is such that the coverage is approximately 30x. Remark: Indel

sequencing errors in Illumina data have been observed to be strongly biased towards long

homopolymer runs (Albers et al., Genome Research, 2010). The current version of the read

simulator does not take this into account, but simulates indels at constant rates independent

of sequence context. .

3. Map the whole set of reads onto the human reference genome (NCBI build 36) with an error

rate of at most 5%. Only mismatches, i.e. Hamming distance, are allowed. To this end, we use

RazerS in 100% sensitivity mode.

4. Map unmapped reads using Splazers, setting the minimum match length to 16 bp, allowing for

one error in both prefix and suffix (i.e. ep = es = 1) and requiring an overall sequence identity

of ≥ 95% (ε = 0.05). The maximum gap length δ is set to 5 kb.

5. Call indels with snpStore. An indel is called whenever an absolute number of at least 2 reads,

and a relative number of at least 30% of reads spanning the position support the indel event.

Only unique matches are considered, i.e. only matches with single best scores. This yields a set

of predicted indels Ip.

6. Compare Im with Ip, counting the number of true positives (TP), false positives (FP) and

false negatives (FN). In order to determine whether two indels are the same, we calculate the

extended indel region as defined in (Krawitz et al., 2010).

1www.seqan.de/projects/mason

108 CHAPTER 6. DISCUSSION AND CONCLUSIONS

SnpStore

Maq Model for genotype likelihoods of homozygotes

The following formulae are in large part taken form the Maq supplementary material. Given the

two most frequent bases X and Y in an alignment column, we want to calculate the probabilities

of homozygotes (X,X) and (Y, Y). To derive these probabilities, we first need to calculate the

probability of observing exactly k errors in n bases. We denote this probability as αnk and

αnk = (1− βnk)

k−1∏
i=0

βni (6.6)

where βnk is defined as

βnk=̂

P (at least k+1 errors|at least k errors in n bases) if k > 0

P (at least 1 error in n bases) if k = 0
(6.7)

The probability of seeing exactly k errors is the product of the probability of seeing at least

k errors in n bases (
∏k−1
i=0 βni) and the probability of not seeing the (k+1)-th error (1− βnk). As

βnn = 0, it holds that

n∑
k=0

αnk =

n∑
k=0

(1− βnk)

k−1∏
i=0

βni = 1 (6.8)

and

βnk = 1− αnk

1−
∑k−1
i=0 αni

=
1−

∑k
i=0 αni

1−
∑k−1
i=0 αni

(6.9)

Now, based on binomial distribution with n realizations (read bases) and k observations of an

event (errors) that arise with probability ε, i.e. random variable X ∼ B(n, ε), the probability of

seeing k errors in n bases is

ᾱnk(ε̄) =

(
n

k

)
ε̄k(1− ε̄)n−k

with uniform base error rate ε̄. Furthermore:

β̄nk(ε̄) =
1−

∑k
i=0 ᾱni

1−
∑k−1
i=0 ᾱni

In real sequencing data, the error independence does not hold due to amplification and mapping

artifacts, which make errors accumulate. In Maq, βnk is therefore modeled by

βnk(ε̄) = β̄fknk(ε̄)

6.1. OUTLOOK 109

where fk = 0.85k in practise. Thus we have

αnk(ε̄) = (1− β̄fknk(ε̄))

k−1∏
i=0

β̄fini(ε̄) = (1− β̄fknk(ε̄))

k−1∏
i=0

(
β̄ni(ε̄)

ε̄
)fi · ε̄fi = cnk(ε̄) ·

k−1∏
i=0

ε̄fi

with

cnk(ε̄) = (1− β̄fknk(ε̄))

k−1∏
i=0

(
β̄ni(ε̄)

ε̄
)fi

Finally, individual base error probabilities are then incorporated by approximating

αnk(ε1, ..., εk; εk+1, ..., εn) = cnk(ε̄) ·
k−1∏
i=0

εfii (6.10)

where

log(ε̄) =

∑k−1
i=0 filog(εi+1)∑k−1

i=0 fi
(6.11)

110 CHAPTER 6. DISCUSSION AND CONCLUSIONS

Pseudocode for Computing Heavy Lossless Shapes

For an alignment of two sequences of length n with exactly k mismatches, we can compute a lossless

shape bestShape with optimal threshold t0 ≥ minT given a minimum allowed span minSpan and

maximum allowed span maxSpan:

1: function heaviestShape(n, k,minSpan,maxSpan,minT)

2: for span in minSpan : maxSpan do

3: shape = (1, span) // first and last position ofshape are fixed

4: for i in 1:n-span+1 do

5: initialize k-dimensional Ii with shape

6: end for

7: pos = 2

8: while (pos < span) do

9: tempShape = shape.insert(pos)

10: for i in 1:n-span+1 do

11: tempIi = Ii

12: add 1s to tempIi for each entry indexed with pos

13: end for

14: M = sum(tempIi)

15: t = n - span+ 1 - max(M)

16: if t ≥ minT then

17: shape = tempShape

18: for i in 1:n - span+1 do

19: Ii = tempIi

20: end for

21: end if

22: pos = pos+1

23: end while

24: if (length(shape)≥length(bestShape)) then

25: bestShape = shape

26: end if

27: end for

28: return sort(bestShape)

29: end function

6.1. OUTLOOK 111

Pseudocode for RazerS, MicroRazerS and SplazerS

The following pseudocodes give a very high-level description of the RazerS, MicroRazerS and

SplazerS algorithms. We denote with G our reference genome sequence and with R our set of

reads. We assume here that all reads have the same length readlength and denote with k the

maximum allowed number of errors. Other variables and functions are named such that they are

self-explanatory.

RazerS

1: function RazerS(G,R, k,maxHits)

2: chooseParameters(readlength, k)

3: S = SwiftFinder(R)

4: for each g ∈ G do

5: while (hit = nextHit(S)) do

6: if (match = verifyMatch(hit)) then

7: matches.insert(match)

8: end if

9: end while

10: end for

11: output matches

12: end function

Remark: Line 6 evaluates as ”false” if function verifyPrefixMatch returns invalid.

1: function verifyMatch(swiftHit)

2: r = swiftHit.read

3: g = swiftHit.gInfix

4: a = semiglobalAlignment(r,g)

5: if (distance(a)≤ k) then

6: return a

7: end if

8: return invalid

9: end function

112 CHAPTER 6. DISCUSSION AND CONCLUSIONS

MicroRazerS

In addition to the parameters above, MicroRazerS has a prefix seed length parameter seedLen.

1: function MicroRazerS(G,R, seedLen, k,maxHits)

2: chooseParameters(seedLen, k)

3: S = SwiftFinder(prefixes(R,seedLen))

4: for each g ∈ G do

5: while (hit = nextHit(S)) do

6: if (match = verifyPrefixMatch(hit,seedLen,k)) then

7: matches.insert(match)

8: end if

9: end while

10: end for

11: output matches

12: end function

1: function verifyPrefixMatch(swiftHit, seedLen, k)

2: r = swiftHit.read

3: g = swiftHit.gInfix

4: seed = semiglobalAlignment(prefix(r,seedLen),g)

5: if (distance(seed)≤ k) then

6: a = extendSeedRight(seed,0) // allow 0 errors in extension

7: return a

8: end if

9: return invalid

10: end function

6.1. OUTLOOK 113

SplazerS

Here we will denote the minimum match length as m, the maximum number of prefix errors as ep,

the maximum number of suffix errors as es and the maximum distance of prefix and suffix match

as δ.

1: function SplazerS(G,R,m, ep, es, k,maxHits)

2: chooseParameters(m, ep)

3: Sp = SwiftFinder(prefixes(R, m))

4: chooseParameters(m, es)

5: Ss = SwiftFinder(suffixes(R, m))

6: for each g ∈ G do

7: Q = empty queue

8: while (hits = nextHit(Ss)) do

9: clean(Q, δ) // remove out of window prefix hits

10: while ((hitp = nextHit(Sp)) & (hitp.pos < hits.pos)) do

11: if (hitp within allowed distance δ of hits) then

12: Q.insert(hitp)

13: end if

14: end while

15: for each potential prefix match hitp in Q do

16: if (hits not yet verified) then

17: if (!(matchs = verifySuffixMatch(hits, m, es, k))) then

18: break

19: end if

20: end if

21: if (hitp not yet verified) then

22: if (!(matchp = verifyPrefixMatch(hitp, m, ep, k))) then

23: remove hitp from Q

24: continue

25: end if

26: end if

27: if (match = combineMatches(matchp, matchs, k, δ)) then

28: matches.insert(match)

29: end if

30: end for

31: end while

32: end for

33: output matches

34: end function

114 CHAPTER 6. DISCUSSION AND CONCLUSIONS

1: function verifyPrefixMatch(swiftHit, m, ep, k)

2: r = swiftHit.read

3: g = swiftHit.gInfix

4: seed = semiglobalAlignment(prefix(r, m), g)

5: if (distance(seed)≤ ep) then

6: a = extendSeedLeft(seed, k - distance(seed))

7: return a

8: end if

9: return invalid

10: end function

1: function verifySuffixMatch(swiftHit, m, es, k)

2: r = swiftHit.read

3: g = swiftHit.gInfix

4: seed = semiglobalAlignment(suffix(r, m), g)

5: if (distance(seed)≤ es) then

6: a = extendSeedRight(seed,k - distance(seed))

7: return a

8: end if

9: return invalid

10: end function

The following function describes the breakpoint computation function as described in sec-

tion 4.3.2. Remember that the two vectors fp and fs store the best score for each row in the

banded alignment matrices for the prefix and suffix, respectively. The vectors bp and bs store the

corresponding projected alignment end/begin position for each entry in fp and fs, respectively.

Function rev reverses a sequence.

1: function combineMatches(matchp, matchs, k, δ)

2: if (matchs and matchp do not overlap) then // or criteria from section 4.3.2 violated

3: return invalid

4: end if

5: if (matchs and matchp share largest overlap on read sequence) then

6: seq1p = read infix that overlaps

7: seq2p = reference infix aligned to seq1p through matchp

8: seq1s = seq1p

9: seq2s = reference infix aligned to seq1s through matchs

10: else if (matchs and matchp share largest overlap on reference sequence) then

11: seq1p = reference infix that overlaps

12: seq2p = read infix aligned to seq1p through matchp

13: seq1s = seq1p

6.1. OUTLOOK 115

14: seq2s = read infix aligned to seq1s through matchs

15: end if

16: fixedp = fixed alignment part of matchp

17: fixeds = fixed alignment part of matchs

18: band = k - distance(fixedp) - distance(fixeds)

19: (fp, bp) = bandedGlobalAlignment(seq1p, seq2p, band)

20: (rev(fs),rev(bs)) = bandedGlobalAlignment(rev(seq1s), rev(seq2s), band)

21: set x such that fp[x] + fs[x+ 1] is minimal

22: if ((fp[x] + fs[x+ 1] + distance(fixedp) + distance(fixeds)) > k) then

23: return invalid

24: end if

25: z = bp[x]

26: z′ = bs[x+ 1]

27: set matchp end positions according to x and z

28: set matchs begin positions according to x and z′

29: return splitMatch(matchp,matchs)

30: end function

116 CHAPTER 6. DISCUSSION AND CONCLUSIONS

Detailed program command lines

RazerS

Commands are given in the order: 1. Experiment A (Drosophila 36 bp, up to 2 Hamming errors),

2. Experiment C (Human 63 bp, up to 5 Hamming errors), and (if applicable) 3. Experiment B

(Drosophila 36 bp, up to 2 Levenshtein errors).

RazerS with 100% sensitivity was run with:

razers -rr 100 -i 92 -m 1 genome.fa reads.fa -o razers.out

razers -rr 100 -i 92 -m 1 genome.fa reads.fa -o razers.out

razers -id -rr 100 -i 92 -m 1 genome.fa reads.fa -o razers.out

RazerS with 90% sensitivity was run with:

razers -rr 99 -i 92 -m 1 genome.fa reads.fa -o razers.out

razers -rr 99 -i 92 -m 1 genome.fa reads.fa -o razers.out

razers -id -rr 99 -i 92 -m 1 genome.fa reads.fa -o razers.out

SeqMap was run with:

seqmap 2 reads.fa genomeFasta seqmap.out /output_top_matches:1

seqmap 5 reads.fa genomeFasta seqmap.out /output_top_matches:1

seqmap 2 reads.fa genomeFasta seqmap.out /allow_insdel:2 /output_top_matches:1

Zoom was run with:

zoom -i reads.fa -g genome.fa -o zoom.out -mk 1 -mm 2

zoom -i reads.fa -g genome.fa -o zoom.out -mk 1 -mm 5 -sv r4

zoom -i reads.fa -g genome.fa -o zoom.out -mk 1 -ed 2

Shrimp was run with:

shrimp -m 1 -i 0 -e -100 -f -100 -g -100 -q -100 -h 34 -o 1 reads.fa genome.fa

shrimp -m 1 -i 0 -e -100 -f -100 -g -100 -q -100 -h 58 -o 1 reads.fa genome.fa

shrimp -m 1 -i -1 -e -1 -f -1 -g -1 -q -1 -h 32 -o 1 reads.fa genome.fa

Soap was run with:

soap -v 2 -a reads.fa -d genome.fa -f 2 -o soap.out

soap -v 5 -a reads.fa -d genome.fa -f 5 -o soap.out

Maq was run with:

maq map -n 2 -e 80 maq.out genome.bfa reads.bfq

maq map -n 3 -e 200 maq.out genome.bfa reads.bfq

6.1. OUTLOOK 117

Rabema

Let K denote the allowed number of errors.

Bowtie was run with (default and improved parameterization):

bowtie --sam -q -k 100 genome.fa reads.fq out.sam

bowtie --sam -q -k 100 --maxbts 800 --seedmms 3 -y --best --maqerr 400 \

genome reads.fq out.sam

On Illumina reads, Bwa was run with:

bwa aln -f out.sai -n K genome reads.fq

bwa samse -n 99 -f out.sam -n K genome out.sai reads.fq

and on 454 reads with:

bwa bwasw -f out.sam -n K genome.fa reads.fq

Soap2 was run with (default and improved parameterization):

soap2 -v K -a reads.fq -D genome -o out.soap

soap2 -l 60 -r 2 -v K -a reads.fq -D genome -o out.soap

Shrimp was run with:

gmapper -E -o 100 reads.fa genome.fa -H -s w16 > output.sam

More detailed information about parameterization is given in the supplementary material

in (Holtgrewe et al., 2011).

MicroRazerS

MicroRazerS was run with:

micro_razers -m 20 -pa -sL 16 Hs.dna.fa reads.fa -o reads.out

SOAP2 was run with:

soap2 -I 16 -M 0 -v 20 -a reads.fa -D genomeIndex -o soap.out

Bowtie was run with:

bowtie -e 500 --strata --best -n 0 -l 16 genomeIndex reads.fq

For Bowtie and SOAP2 the outputs were filtered keeping the longest hits only with at most

20 mapping positions.

118 CHAPTER 6. DISCUSSION AND CONCLUSIONS

SplazerS - 1000 Genomes Data NA12878

In the 1000 Genomes Project data analysis, Pindel (version 2.2) was run with:

pindel -x 4 -u 0.05 -e 0.05 -c 22 -f chr22.fa -p pindelIn -o pindelOut

SVseq2 (version 2.0.1) was run with:

SVseq2 -c 22 -r /project/general/Genomes/Hs/GRCh37/Hs.dna.fa -b reads.bam --o delsOut

SVseq2 -insertion -c 22 -b reads.bam --o insOut

Output files containing predicted deletions and insertions were then converted to a sorted GFF

file for subsequent overlap computation.

SplazerS in paired-end mode was run with:

splazers -an -sm 14 -ep 1 -es 1 -i 95 -s 11011011011 -t 1 -maxG 8092 -ll 300 -le 280 \

-m 3 chr22.fa reads.sam -o splitMapped.gff

In single-end mode, SplazerS was run with:

splazers -sm 16 -ep 1 -es 1 -i 95 -s 11011011011011 -t 1 -maxG 8092 -pc 4 -m 3 \

-o unanchoredSplitMapped.gff Hs19.dna.fa reads.fa

Subsequent indel detection was performed with snpStore:

snpStore -mp 1 -oa -it 3 -ipt 0.5 -mc 3 -ebi 6 -id indels.gff chr21.fa \

"splitMapped.gff unanchoredSplitMapped.gff"

SplazerS - Paired-end 100 bp NA18507

Pindel was run with:

pindel -x 4 -u 0.05 -e 0.03 -c 21 -f chr21.fa -p pindelIn -o pindelOut

SplazerS was run with:

splazers -an -sm 16 -ep 1 -es 1 -i 95 -s 11011011011011 -t 1 -maxG 8092 -ll 312 \

-le 57 -m 3 chr21.fa reads.sam -o splitMapped.gff

For the edit distance mapping step, SplazerS was run with:

splazers -an -sm 16 -ep 1 -es 1 -i 95 -s 11111111 -t 1 -maxG 8092 -ll 312 \

-le 57 -m 3 chr21.fa unmapped.sam -o splitMapped_edit.gff

Subsequent indel detection was performed with snpStore:

snpStore -mp 1 -oa -it 3 -ipt 0.5 -mc 3 -ebi 6 -id indels.gff chr21.fa \

"splitMapped_edit.gff splitMapped.gff"

6.1. OUTLOOK 119

SplazerS - Simulation Data Analysis

SplazerS was run with:

splazers -i 95 -sm 16 -ep 1 -es 1 -maxG 5000 -m 5 -o run01.100.split.gff \

-s 11011011011011 -t 1 Hs.dna.fa run01.100.indeled.reads.unmapped.fa

GSNAP (version 2010-07-27) was run with:

gsnap -i 0 -m 5 -y 30 -z 5000 -d NHGD_R36 -D NHGD_R36 -n 5 -t 4 -A sam \

run01.100.indeled.reads.unmapped.fa > run01.100.gsnap.split.sam

BWA (version 0.5.8a) was run with:

bwa aln -i 20 -l 20 -k 1 -n 5 -o 1 -e 5000 -d 1000 -t 4 -R 5 \

hg18 run01.100.indeled.reads.unmapped.fa -f run01.100.bwa.split.bam

Formats are converted to snpStore input, i.e. GFF files. For GSNAP, a match is tagged as

”unique” if the 0x100 bit (secondary alignment) is not set in the SAM flag. For BWA, matches

with mapping quality > 0 are tagged as unique. Only unique reads are used for subsequent indel

calling.

SnpStore was called with:

snpStore -it 2 -ipt 0.25 -mc 2 -id run01.100.indels.gff Hs.dna.fa \

"run01.100.split.gff run01.100.indeled.reads.gff"

SplazerS - Targeted Resequencing Data

SplazerS was run with:

splazers -m 1 -pa -of 3 -i 95 -sm 23 -s 111001110011100111 -t 2 \

-maxG 50000 genome.fa reads.fa -o splazers.out

Indel calling on split mapped reads was done with Perl scripts.

SnpStore - Simulation Data

RazerS mapping with:

razers genome.fa reads.fa -rr 100 -id -i 93 -m 2 -of 4 -o mapped_read.sam

Bwa (version 0.6.2) mapping was done with:

bwa aln genome reads.fq > aln.sai

bwa samse genome aln.sai reads.fq > mapped_reads.sam

GATK (version 1.4-37) realignment was run with:

120 CHAPTER 6. DISCUSSION AND CONCLUSIONS

java -jar GenomeAnalysisTK.jar -T RealignerTargetCreator -I mapped_reads.bam \

-R genome.fa -o intervals.out

java -jar GenomeAnalysisTK.jar -T IndelRealigner -I mapped_reads.bam \

-R genome.fa -targetIntervals intervals.out -o mapped_reads.realigned.bam

GATK SNV and indel calling was run with:

java -jar GenomeAnalysisTK.jar -T UnifiedGenotyper -R genome.fa \

-I mapped_reads.realigned.bam -o snvs.out

java -jar GenomeAnalysisTK.jar -T UnifiedGenotyper -R genome.fa \

-I mapped_reads.realigned.bam -o indels.out -glm INDEL

Samtools (0.1.18) was run with:

samtools mpileup -ug -m 1 -F 0.002 -d8000 -f genome.fa mapped_reads.fa \

| bcftools view -bvcg - > var.raw.bcf

bcftools view var.raw.bcf | vcfutils.pl varFilter -D180 > variants.out

SnpStore was run (without and with realignment):

snpStore genome.fa mapped_reads.sam -o snvs.out -id indels.out -mc 2 \

-if 1 -oa -dp 2 -eb 2 -of 1 -hq -it 2 -ipt 0.15 -mpr 10 -bsi

snpStore genome.fa mapped_reads.sam -o snvs.out -id indels.out -mc 2 \

-re -if 1 -oa -dp 2 -eb 2 -of 1 -hq -it 2 -ipt 0.15 -mpr 10 -bsi

SNV calls were filtered to have at least read depth 3.

SnpStore - 1000 Genomes Data NA12878

SnpStore, Samtools and GATK were run with the same commands as in the previous section.

Additionally, GATK quality recalibration was run after realignment with:

java -jar GenomeAnalysisTK.jar -T CountCovariates -R genome.fa \

-I mapped_reads.realigned.bam -recalFile reads.table.recal.csv \

-knownSites dbsnp

java -jar GenomeAnalysisTK.jar -T TableRecalibration -R genome.fa \

-I mapped_reads.realigned.bam -recalFile reads.table.recal.csv \

-o mapped_reads.realigned.recalib.bam

SnpStore’s heterozygote correction was switched on with option ”-ch”. Read clipping was done

with default values Qt = 10, w = 10 and m = 3 using a Perl script.

SnpStore - Targeted Resequencing Data

SnpStore was run on the merged read data for each individual with:

snpStore -fc 10 -mc 3 -oa -mp 1 -mmq 10 -re genome.fa reads.gff

List of Figures

2.1 Genomic variation can be divided into small variants (A), and balanced (B) and

unbalanced (C) structural variants. Irrelevant sequence here is shown as solid lines,

whereas variable sequence segments are shown as yellow boxes. Small variants com-

prise single nucleotide variants (SNVs) and short indels smaller than 50 bp. Struc-

tural variants are variants larger than 50 bp. Unbalanced variants lead to a loss or

gain of genetic material, whereas for unbalanced ones there is no such loss or gain. 6

2.2 Functional impact of variants on the protein level can be divided into alteration

in the coding sequence (A), disruption of the gene structure (B), and altered gene

dosage (C). Small variants in the coding sequence can at the same time disrupt the

gene structure (shown as overlap), for example when a splice site is mutated or a

frameshift mutation disrupts the reading frame. 8

2.3 Sequencing applications can be divided into reference-guided applications (A) where

a reference sequence is known and de-novo genome sequencing (B) where a new or-

ganism is sequenced. The probably most common reference-guided applications are

resequencing of genomic sequence (DNA-Reseq), transcriptome sequencing (RNA-

Seq), and sequencing of chromatin immunoprecipitated DNA (ChIP-Seq). The di-

verse reference-guided applications all employ a read mapping step, while the main

computational step in de-novo sequencing is an assembly step. 10

2.4 A typical Illumina error profile along read positions. Figure from (Dohm et al.,

2008), courtesy of Juliane Dohm. 12

2.5 Uniqueness of single and paired-end reads for the E. coli and H. sapiens genomes

plotted over read length. Paired uniqueness is shown for a fragment size of 300 bp.

Figure from (Chikhi and Lavenier, 2009), courtesy of Rayan Chikhi. 15

2.6 The three main read mapping-based strategies for SV detection using sequencing

data. Read pair methods are able to detect all types of SVs (indicated by green

boxes), read depth methods can only detect unbalanced SVs, but no novel insertions

or balanced SVs (red boxes), and split read methods can theoretically identify all

SV types but have limited power for novel insertions due to read length (yellow box). 17

121

122 LIST OF FIGURES

3.1 Many read mapping algorithms are based on two steps: a fast filtering step that

identifies potential matches and a slow alignment verification method that evaluates

the potential match and classifies it as true (valid) or false (invalid). 23

3.2 Example of filtering techniques for k = 2. The first row shows an alignment of length

12 with Levenshtein distance 2. A) Following the pigeonhole principle there must

be at least one matching contiguous (ungapped) 4-gram or B) following the q-gram

counting approach with overlapping q-grams there must be at least 4 matching

3-grams. The second row shows an alignment of length 12 with Hamming distance

2. C) According to the two-seed pigeonhole principle, which uses an ungapped and

two gapped shapes, there must be at least one matching (gapped or ungapped) 6-

gram or D) according to the gapped q-gram counting approach there is at least one

gapped 4-gram of shape ##---#-#. Note that the gapped shape would not tolerate

insertion or deletions errors. 25

3.3 The q-gram index data structure. The dictionary dict provides fast lookup of q-

grams in the sorted occurrence table occ. 26

3.4 A semiglobal alignment within a band of the dynamic programming matrix. Branches

of the alignment trace (black line) indicate ambiguity among ending positions. . . 28

3.5 RazerS consists of three steps: a parameter choosing step followed by the two typical

read mapping steps filtering and verification. During parameter choosing a shape

Q and threshold t that guarantee the desired mapping sensitivity are chosen. Next,

in the filtering phase, a q-gram index is built and the reference sequence is scanned

for potential matches using the Swift algorithm. Potential matches are then verified

by an alignment method. 30

3.6 SWIFT filtering in overlapping parallelograms. Each parallelogram keeps a counter

of matching 3-grams. The parallelogram with counter 8 holds a valid read align-

ment with Levenshtein distance k=4 which contains seven 3-matches. An addi-

tional random match contributes to the corresponding parallelogram counter. Fig-

ure from (Weese et al., 2009). 32

3.7 Example of sensitivity as a function of threshold, given read length n = 36 with

k = 2 errors (Hamming), with and without position-dependent error probabilities,

for a) the ungapped 11-gram and b) a gapped shape with weight 11. 34

3.8 Example of a parameter file for read length 65 bp (N65 in filename) and edit distance

(L for Levenshtein distance). The first column states the number of errors, the

second column the shape, column three the threshold and column four the computed

loss rate. Column five is used to get an estimate of the filtration efficiency and

records the number of potential matches as observed on a simulation run of RazerS

with the filter settings of this row. 38

3.9 Running time of RazerS in seconds using different filtering parameters, measured

on a set of 1M 50 bp reads on human chromosome X. The weight of the q-gram has

the greatest influence on running time. When t=1 it pays off to use a q-gram with

weight smaller by one if in that case t ≥ 3 (indicated by arrows). 38

LIST OF FIGURES 123

3.10 Comparison of empirical and calculated loss rates for varying parameter settings

q = 8, . . . , 14 and t = 1, . . . , 20. The left column shows Hamming distance, the right

column Levenshtein distance results. The first row is on simulated, the second row

on real Drosophila reads. The dashed line reflects the mean of relative differences

1− empirical loss rate
calculated loss rate of all calculated loss rates below the loss rate level given on the

X-axis. Figure from (Weese et al., 2009). 41

3.11 The two cases that complicate match equivalence definition: alignment ambiguity

(A) and repeats (B). They are tackled through the definitions of k-trace equivalence

and neighbor equivalence. Lines represent alignment traces with distance ≤ k . . . 45

3.12 Comparison of second generation read mapping tools using the Rabema benchmark-

ing method. Left column shows results for the all mapping problem, right column

for the any-best problem. Plots in the first two rows are for Illumina reads (36 and

100 bp), and in the last row for 454 reads. Figure from (Holtgrewe et al., 2011). . 47

4.1 Overview of the different types of partial mapping. A) Prefix-based mapping for

example finds application in insertion breakpoint discovery or in mapping of small

RNA reads containing 3’ adapter sequence. B) Prefix-suffix mapping can identify

reads that span deletions or introns in transcriptomic data. C) The most generic

form of split mapping can additionally map reads spanning complex SVs or multiple

introns. 52

4.2 Overview of the MicroRazerS algorithm. In the filtering phase, a q-gram index is

built over all prefix q-grams and the reference sequence is scanned for potential

prefix seed matches. These are then verified and extended during match verification. 55

4.3 Two examples of split read alignments. Given parameters m = 7, ep = es = 1 and

ε = 0.1. a) is a valid alignment spanning a deletion and b) spans an insertion but

is not a valid match as the error rate condition is violated. 59

4.4 Overview of the SplazerS algorithm. During filtering, the reference sequence is

scanned with two q-gram indices: the left index storing prefix q-grams and the

right index storing suffix q-grams. Whenever a potential prefix and a potential

suffix match are found within the allowed distance δ, first the suffix match is veri-

fied and if verified positively, then also the prefix match is subjected to verification.

Match verification relies on a seed-and-extend approach first verifying the minimum

length prefix (suffix) and then extending maximally to the right (left). During match

combination, compatible extended prefix and suffix matches are combined into a

split match and the optimal breakpoint position is located. 61

4.5 Extended prefix and suffix match overlap on A) read sequence if read spans a

deletion, B) on genome sequence if read spans an insertion. 62

124 LIST OF FIGURES

4.6 Example for the breakpoint computation of a deletion-spanning read. The fixed

prefix and suffix alignment parts are represented by solid lines (where the prefix

and suffix of minimum length m are indicated by dark gray background) and the

dashed lines show the overlapping part that is resolved through a banded alignment

procedure (light gray). Red squares represent cells with optimal scores per row. . . 63

4.7 Example of a complex variant region: a 3 bp deletion, a SNP and a 10 bp insertion

are colocated in a 65 bp window. The shown region is chr21:29025932..29026035.

dbSNP accession IDs (rs numbers) are given for each variant. Reads in capital

letters are mapped on the forward strand, while reads in small letters are mapped

on the reverse strand. Note that the placement of both indels is ambiguous. By

convention, SplazerS places the indel to the leftmost position. 70

4.8 Sensitivity, PPV and combined F1-measure indel detection for increasing coverage

and increasing read length. (A) Read length 100 bp. (B) Read length 125 bp. (C)

Read length 150 bp. Note the different axis scaling. 71

4.9 Histogram of indels of sizes > 5 bp and ≤ 40 bp. Indels are more abundant in non-

coding sequences. The majority of indels in coding sequences are multiples of three,

i.e., codon-length. 73

4.10 (A) Histogram of predicted deletions ≥ 100 bp over their genomic coordinate on

chromosome X. Clusters of large deletions are often due to retroposed genes, where

spliced introns are missing. (B) A screenshot of the UCSC Genome Browser shows

five large deletions that coincide exactly with the introns of the PQBP1 gene. The

existence of this complete retrocopy of PQBP1 was confirmed by PCR. 74

5.1 An excerpt of an alignment of five reads (454 data) to a reference sequence. (A)

Multiple sequence alignment induced by mapped reads. (B) Multiple sequence align-

ment after read realignment. 78

5.2 Overview of the SnpStore algorithm. A) Reads are parsed window by window. For

each window B) pileup correction removes likely amplification artifacts, and C)

read clipping removes low-quality bases and likely sequencing errors close to read

borders. D) Each separate group of reads is realigned and finally D) SNVs and

indels are called. 80

5.3 Venn diagrams comparing SNV (A) and indel (B) calling results of SnpStore (SnpStore+R+C),

GATK (GATK+R) and Samtools. 91

5.4 Precision and sensitivity of the three tested SNV/indel calling methods over read

depth at calling positions. Results are for SnpStore with realignment and read

clipping (SnpStore+R+C), GATK with realignment (GATK+R), and Samtools

default (Samtools). 93

List of Tables

2.1 Next-generation sequencing technologies and their throughput, 2008 compared to

2012. Data collected from (Mardis, 2008a) and sequencing company websites. . . . 11

3.1 Short read mapping tools with their characteristics. Extends Table 1 from (Weese

et al., 2009). 29

3.2 Results for mapping 1 M and ∼ 10 M (all) reads of length 36 bp onto the Drosophila

genome (Dm) allowing for up to 2 Hamming (A) or Levenshtein (B) errors, and

results for mapping 1 M and ∼ 8 M reads of length 63 bp onto the human genome

allowing for up to 5 Hamming errors (C). Soap and Maq do not support Levenshtein

distance. Maq also reports matches with more errors , the total count of mapped

reads including reads with more errors than allowed is shown in brackets. Table

from (Weese et al., 2009). 42

4.1 Evaluation of small RNA mapping tools. We used a query dataset of ∼2.4M non-

redundant read sequences (length 36 bp) representing a total of ∼9.3M reads. . . . 56

4.2 Number of detected indels on 1000 Genomes Project data set for NA12878. Pin-

del and SplazerS PE use anchored reads only, SplazerS PE+SE additionally uses

unanchored reads. SVseq2 uses anchored paired end reads for split mapping and

read pair information. Small indels are ≤ 10 bp. Medium indels are > 10 bp,≤ 50 bp.

Large deletions are > 50 bp,≤ 1000 bp. Large SV deletions are > 1 kb,≤ 5 kb. . . . 68

4.3 Number of detected indels by the different methods tested. Small indels are ≤ 10 bp.

Medium indels are > 10 bp,≤ 100 bp. Large indels are > 100 bp. Small and medium-

sized indels were overlapped with an Illumina reference set. Large deletions were

overlapped with a set of DGV and dbSNP indels > 100 bp. Percentages in brackets

give the fraction of predictions that are contained in the reference set. 69

4.4 Sensitivity (SN) and PPV results of simulations at 30x coverage with read length

125 bp, for different indel size categories. Each category has at least 50 representatives. 70

4.5 Sensitivity and PPV when replacing SnpStore with Dindel on simulated data (125 bp

reads, 30x). Dindel assigns a quality value to each predicted indel; when filtering out

indels with quality lower than 30 (Dindel-Filtered) precision increases significantly;

however, this comes at the cost of much decreased sensitivity. 71

125

126 LIST OF TABLES

4.6 Running time and memory measurements for 100, 000 simulated 125 bp reads. Splaz-

erS runs are shown for different minimum match lengths (m). BWA and GSNAP

require an additional preprocessing step for index construction. 72

4.7 Sensitivity and PPV when varying parameter m on the simulation datasets. 72

5.1 Sensitivity, precision and genotyping precision results for SNV calling on simulation

data set. ”SnpStore+T” uses the threshold model for SNV calling, ”SnpStore” the

default probabilistic model, ”+R” means that realignment was performed before

SNV calling. The additional ”(BWA)” indicates that results are based on Bwa-

mapped reads, otherwise RazerS-mapped reads were used. 88

5.2 Sensitivity, precision and genotyping precision results for indel calling on simulation

data set. For legend on tool settings see Table 5.1. 88

5.3 SNV calling results on NA12878 data set. 90

5.4 Small indel calling results on NA12878 data set. 90

5.5 Small variant calling results on targeted resequencing data, split into functional

categories. 94

Bibliography

Abyzov, A. and Gerstein, M. (2011). Age: defining breakpoints of genomic structural variants

at single-nucleotide resolution, through optimal alignments with gap excision. Bioinformatics,

27(5), 595–603.

Aird, D., Ross, M. G., Chen, W.-S., Danielsson, M., Fennell, T., Russ, C., Jaffe, D. B., Nus-

baum, C., and Gnirke, A. (2011). Analyzing and minimizing pcr amplification bias in illumina

sequencing libraries. Genome Biol , 12(2), R18.

Albers, C. A., Lunter, G., MacArthur, D. G., McVean, G., Ouwehand, W. H., and Durbin, R.

(2011). Dindel: accurate indel calls from short-read data. Genome Res, 21(6), 961–973.

Albert, T. J., Molla, M. N., Muzny, D. M., Nazareth, L., Wheeler, D., Song, X., Richmond, T. A.,

Middle, C. M., Rodesch, M. J., Packard, C. J., Weinstock, G. M., and Gibbs, R. A. (2007). Direct

selection of human genomic loci by microarray hybridization. Nat Methods, 4(11), 903–905.

Alkan, C., Coe, B. P., and Eichler, E. E. (2011). Genome structural variation discovery and

genotyping. Nat Rev Genet , 12(5), 363–376.

Ameur, A., Wetterbom, A., Feuk, L., and Gyllensten, U. (2010). Global and unbiased detection

of splice junctions from rna-seq data. Genome Biol , 11(3), R34.

Angiuoli, S. V. and Salzberg, S. L. (2011). Mugsy: fast multiple alignment of closely related whole

genomes. Bioinformatics, 27(3), 334–342.

Anson, E. L. and Myers, E. W. (1997). ReAligner: A program for refining DNA sequence multi-

alignments. pages 9–16.

Applied Biosystems (2012). Capillary sequencing systems.

Au, K. F., Jiang, H., Lin, L., Xing, Y., and Wong, W. H. (2010). Detection of splice junctions

from paired-end rna-seq data by splicemap. Nucleic Acids Res, 38(14), 4570–4578.

Bailey, T. L. (2011). Dreme: motif discovery in transcription factor chip-seq data. Bioinformatics,

27(12), 1653–1659.

127

128 BIBLIOGRAPHY

Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G.,

Hall, K. P., Evers, D. J., Barnes, C. L., Bignell, H. R., et al. (2008). Accurate whole human

genome sequencing using reversible terminator chemistry. Nature, 456(7218), 53–9.

Bignell, G. R., Huang, J., Greshock, J., Watt, S., Butler, A., West, S., Grigorova, M., Jones, K. W.,

Wei, W., Stratton, M. R., Futreal, P. A., Weber, B., Shapero, M. H., and Wooster, R. (2004).

High-resolution analysis of dna copy number using oligonucleotide microarrays. Genome Res,

14(2), 287–295.

Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., Di Ventra,

M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S. B., Krstic, P. S., Lindsay, S., Ling, X. S.,

Mastrangelo, C. H., Meller, A., Oliver, J. S., Pershin, Y. V., Ramsey, J. M., Riehn, R., Soni,

G. V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., and Schloss, J. A. (2008). The potential

and challenges of nanopore sequencing. Nat Biotechnol , 26(10), 1146–1153.

Burkhardt, S. and Kärkkäinen, J. (2001). Better filtering with gapped q-grams. In CPM ’01:

Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching , pages 73–85,

London, UK. Springer-Verlag.

Burrows, M. and Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm.

Technical Report 124.

Campbell, P. J., Stephens, P. J., Pleasance, E. D., O’Meara, S., Li, H., Santarius, T., Stebbings,

L. A., Leroy, C., Edkins, S., Hardy, C., Teague, J. W., Menzies, A., Goodhead, I., Turner,

D. J., Clee, C. M., Quail, M. A., Cox, A., Brown, C., Durbin, R., Hurles, M. E., Edwards, P.

A. W., Bignell, G. R., Stratton, M. R., and Futreal, P. A. (2008). Identification of somatically

acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing.

Nat Genet , 40(6), 722–729.

Chamberlain, J. S., Gibbs, R. A., Ranier, J. E., Nguyen, P. N., and Caskey, C. T. (1988). Deletion

screening of the duchenne muscular dystrophy locus via multiplex dna amplification. Nucleic

Acids Res, 16(23), 11141–11156.

Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., McGrath,

S. D., Wendl, M. C., Zhang, Q., Locke, D. P., et al. (2009). Breakdancer: an algorithm for

high-resolution mapping of genomic structural variation. Nat Methods, 6(9), 677–681.

Chen, Y.-A., Lin, C.-C., Wang, C.-D., Wu, H.-B., and Hwang, P.-I. (2007). An optimized procedure

greatly improves est vector contamination removal. BMC Genomics, 8, 416.

Chikhi, R. (2012). Computational Methods for de novo Assembly of Next-Generation Genome

Sequencing Data. Ph.D. thesis, École Normale Supérieure de Cachan.

Chikhi, R. and Lavenier, D. (2009). Paired-end read length lower bounds for genome re-sequencing.

BMC Bioinformatics, 10(Suppl 13), O2.

BIBLIOGRAPHY 129

Collins, F. S., Morgan, M., and Patrinos, A. (2003). The human genome project: lessons from

large-scale biology. Science, 300(5617), 286–290.

Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., Andrews, T. D.,

Barnes, C., Campbell, P., Fitzgerald, T., Hu, M., Ihm, C. H., Kristiansson, K., Macarthur, D. G.,

Macdonald, J. R., Onyiah, I., Pang, A. W. C., Robson, S., Stirrups, K., Valsesia, A., Walter, K.,

Wei, J., , W. T. C. C. C., Tyler-Smith, C., Carter, N. P., Lee, C., Scherer, S. W., and Hurles,

M. E. (2010). Origins and functional impact of copy number variation in the human genome.

Nature, 464(7289), 704–712.

Cordero, F., Beccuti, M., Arigoni, M., Donatelli, S., and Calogero, R. A. (2012). Optimizing a

massive parallel sequencing workflow for quantitative mirna expression analysis. PLoS One,

7(2), e31630.

Cox, A. J. (2006). Eland: efficient local alignment of nucleotide data. unpublished.

Darling, A. E., Mau, B., and Perna, N. T. (2010). progressivemauve: multiple genome alignment

with gene gain, loss and rearrangement. PLoS One, 5(6), e11147.

David, M., Dzamba, M., Lister, D., Ilie, L., and Brudno, M. (2011). Shrimp2: Sensitive yet

practical short read mapping. Bioinformatics.

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis,

A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M.,

Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., and Daly, M. J. (2011). A

framework for variation discovery and genotyping using next-generation dna sequencing data.

Nat Genet , 43(5), 491–498.

Dohm, J., Lottaz, C., Borodina, T., and Himmelbauer, H. (2008). Substantial biases in ultra-short

read data sets from high-throughput dna sequencing. Nucleic Acids Res., 36.

Döring, A., Weese, D., Rausch, T., and Reinert, K. (2008). SeqAn an efficient, generic C++

library for sequence analysis. BMC Bioinf., 9, 11.

Durbin, R. M., Abecasis, G. R., Altshuler, D. L., Auton, A., Brooks, L. D., Durbin, R. M., Gibbs,

R. A., Hurles, M. E., and McVean, G. A. (2010). A map of human genome variation from

population-scale sequencing. Nature, 467(7319), 1061–1073.

Emde, A.-K., Grunert, M., Weese, D., Reinert, K., and Sperling, S. R. (2010). Microrazers: rapid

alignment of small rna reads. Bioinformatics, 26(1), 123–124.

Emde, A.-K., Schulz, M. H., Weese, D., Sun, R., Vingron, M., Kalscheuer, V. M., Haas, S. A.,

and Reinert, K. (2012). Detecting genomic indel variants with exact breakpoints in single- and

paired-end sequencing data using splazers. Bioinformatics, 28(5), 619–627.

Ewing, B. and Green, P. (1998). Base-calling of automated sequencer traces using phred. ii. error

probabilities. Genome Res, 8(3), 186–194.

130 BIBLIOGRAPHY

Fonseca, N. A., Rung, J., Brazma, A., and Marioni, J. C. (2012). Tools for mapping high-

throughput sequencing data. Bioinformatics.

Franklin, R. E. and Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate.

Nature, 171(4356), 740–741.

Friedländer, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajew-

sky, N. (2008). Discovering micrornas from deep sequencing data using mirdeep. Nat Biotechnol ,

26(4), 407–415.

Fu, Y. H., Pizzuti, A., Fenwick, Jr, R., King, J., Rajnarayan, S., Dunne, P. W., Dubel, J., Nasser,

G. A., Ashizawa, T., and de Jong, P. (1992). An unstable triplet repeat in a gene related to

myotonic muscular dystrophy. Science, 255(5049), 1256–1258.

Gilbert, J. A. and Dupont, C. L. (2011). Microbial metagenomics: beyond the genome. Ann Rev

Mar Sci , 3, 347–371.

Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li,

H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., Malaspinas, A.-S., Jensen, J. D.,

Marques-Bonet, T., Alkan, C., Prfer, K., Meyer, M., Burbano, H. A., Good, J. M., Schultz, R.,

Aximu-Petri, A., Butthof, A., Hber, B., Hffner, B., Siegemund, M., Weihmann, A., Nusbaum, C.,

Lander, E. S., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic,

D., Kucan, Z., Gusic, I., Doronichev, V. B., Golovanova, L. V., Lalueza-Fox, C., de la Rasilla,

M., Fortea, J., Rosas, A., Schmitz, R. W., Johnson, P. L. F., Eichler, E. E., Falush, D., Birney,

E., Mullikin, J. C., Slatkin, M., Nielsen, R., Kelso, J., Lachmann, M., Reich, D., and Pbo, S.

(2010). A draft sequence of the neandertal genome. Science, 328(5979), 710–722.

Greshock, J., Feng, B., Nogueira, C., Ivanova, E., Perna, I., Nathanson, K., Protopopov, A., Weber,

B. L., and Chin, L. (2007). A comparison of dna copy number profiling platforms. Cancer Res,

67(21), 10173–10180.

Griffiths-Jones, S., Saini, H. K., van Dongen, S., and Enright, A. J. (2008). mirbase: tools for

microrna genomics. Nucleic Acids Res, 36(Database issue), D154–D158.

Hajirasouliha, I., Hormozdiari, F., Alkan, C., Kidd, J. M., Birol, I., Eichler, E. E., and Sahinalp,

S. C. (2010). Detection and characterization of novel sequence insertions using paired-end

next-generation sequencing. Bioinformatics, 26(10), 1277–1283.

Handsaker, R. E., Korn, J. M., Nemesh, J., and McCarroll, S. A. (2011). Discovery and genotyping

of genome structural polymorphism by sequencing on a population scale. Nat Genet , 43(3),

269–276.

Hashimoto, T., de Hoon, M. J. L., Grimmond, S. M., Daub, C. O., Hayashizaki, Y., and Faulkner,

G. J. (2009). Probabilistic resolution of multi-mapping reads in massively parallel sequencing

data using mumrescuelite. Bioinformatics, 25(19), 2613–2614.

BIBLIOGRAPHY 131

Hawkins, R. D., Hon, G. C., and Ren, B. (2010). Next-generation genomics: an integrative ap-

proach. Nat Rev Genet , 11(7), 476–486.

Heinrich, V., Stange, J., Dickhaus, T., Imkeller, P., Krger, U., Bauer, S., Mundlos, S., Robinson,

P. N., Hecht, J., and Krawitz, P. M. (2011). The allele distribution in next-generation sequencing

data sets is accurately described as the result of a stochastic branching process. Nucleic Acids

Res.

Herms, I. and Rahmann, S. (2008). Computing alignment seed sensitivity with probabilistic

arithmetic automata. In WABI , pages 318–329.

Hollox, E. J., Huffmeier, U., Zeeuwen, P. L. J. M., Palla, R., Lascorz, J., Rodijk-Olthuis, D., van

de Kerkhof, P. C. M., Traupe, H., de Jongh, G., den Heijer, M., Reis, A., Armour, J. A. L.,

and Schalkwijk, J. (2008). Psoriasis is associated with increased beta-defensin genomic copy

number. Nat Genet , 40(1), 23–25.

Holtgrewe, M. (2010). Mason – a read simulator for second generation sequencing data. Technical

Report TR-B-10-06, Institut für Mathematik und Informatik, Freie Universität Berlin.

Holtgrewe, M., Emde, A.-K., Weese, D., and Reinert, K. (2011). A novel and well-defined bench-

marking method for second generation read mapping. BMC Bioinformatics, 12, 210.

Homer, N. and Nelson, S. F. (2010). Improved variant discovery through local re-alignment of

short-read next-generation sequencing data using srma. Genome Biol , 11(10), R99.

Hormozdiari, F., Alkan, C., Eichler, E. E., and Sahinalp, S. C. (2009). Combinatorial algorithms

for structural variation detection in high-throughput sequenced genomes. Genome Res, 19(7),

1270–1278.

Huang, X. and Madan, A. (1999). Cap3: A dna sequence assembly program. Genome Res, 9(9),

868–877.

Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., Scherer, S. W.,

and Lee, C. (2004). Detection of large-scale variation in the human genome. Nat Genet , 36(9),

949–951.

Illumina Inc. (2012). Hiseq systems.

Ingram, V. M. (1957). Gene mutations in human haemoglobin: the chemical difference between

normal and sickle cell haemoglobin. Nature, 180(4581), 326–328.

International Cancer Genome Consortium, Hudson, T. J., Anderson, W., Artez, A., Barker, A. D.,

Bell, C., Bernabé, R. R., Bhan, M. K., Calvo, F., Eerola, I., Gerhard, D. S., Guttmacher, A.,

Guyer, M., Hemsley, F. M., Jennings, J. L., Kerr, D., Klatt, P., Kolar, P., Kusada, J., Lane,

D. P., Laplace, F., Youyong, L., Nettekoven, G., Ozenberger, B., Peterson, J., Rao, T. S.,

Remacle, J., Schafer, A. J., Shibata, T., Stratton, M. R., Vockley, J. G., Watanabe, K., Yang,

H., Yuen, M. M. F., Knoppers, B. M., Bobrow, M., Cambon-Thomsen, A., Dressler, L. G.,

132 BIBLIOGRAPHY

Dyke, S. O. M., Joly, Y., Kato, K., Kennedy, K. L., Nicolás, P., Parker, M. J., Rial-Sebbag,

E., Romeo-Casabona, C. M., Shaw, K. M., Wallace, S., Wiesner, G. L., Zeps, N., Lichter, P.,

Biankin, A. V., Chabannon, C., Chin, L., Clément, B., de Alava, E., Degos, F., Ferguson, M. L.,

Geary, P., Hayes, D. N., Hudson, T. J., Johns, A. L., Kasprzyk, A., Nakagawa, H., Penny, R.,

Piris, M. A., Sarin, R., Scarpa, A., Shibata, T., van de Vijver, M., Futreal, P. A., Aburatani,

H., Bays, M., Botwell, D. D. L., Campbell, P. J., Estivill, X., Gerhard, D. S., Grimmond, S. M.,

Gut, I., Hirst, M., Lpez-Otn, C., Majumder, P., Marra, M., McPherson, J. D., Nakagawa, H.,

Ning, Z., Puente, X. S., Ruan, Y., Shibata, T., Stratton, M. R., Stunnenberg, H. G., Swerdlow,

H., Velculescu, V. E., Wilson, R. K., Xue, H. H., Yang, L., Spellman, P. T., Bader, G. D.,

Boutros, P. C., Campbell, P. J., Flicek, P., Getz, G., Guig, R., Guo, G., Haussler, D., Heath,

S., Hubbard, T. J., Jiang, T., Jones, S. M., Li, Q., Lpez-Bigas, N., Luo, R., Muthuswamy, L.,

Ouellette, B. F. F., Pearson, J. V., Puente, X. S., Quesada, V., Raphael, B. J., Sander, C.,

Shibata, T., Speed, T. P., Stein, L. D., Stuart, J. M., Teague, J. W., Totoki, Y., Tsunoda, T.,

Valencia, A., Wheeler, D. A., Wu, H., Zhao, S., Zhou, G., Stein, L. D., Guig, R., Hubbard, T. J.,

Joly, Y., Jones, S. M., Kasprzyk, A., Lathrop, M., Lpez-Bigas, N., Ouellette, B. F. F., Spellman,

P. T., Teague, J. W., Thomas, G., Valencia, A., Yoshida, T., Kennedy, K. L., Axton, M., Dyke,

S. O. M., Futreal, P. A., Gerhard, D. S., Gunter, C., Guyer, M., Hudson, T. J., McPherson,

J. D., Miller, L. J., Ozenberger, B., Shaw, K. M., Kasprzyk, A., Stein, L. D., Zhang, J., Haider,

S. A., Wang, J., Yung, C. K., Cros, A., Cross, A., Liang, Y., Gnaneshan, S., Guberman, J.,

Hsu, J., Bobrow, M., Chalmers, D. R. C., Hasel, K. W., Joly, Y., Kaan, T. S. H., Kennedy,

K. L., Knoppers, B. M., Lowrance, W. W., Masui, T., Nicols, P., Rial-Sebbag, E., Rodriguez,

L. L., Vergely, C., Yoshida, T., Grimmond, S. M., Biankin, A. V., Bowtell, D. D. L., Cloonan,

N., deFazio, A., Eshleman, J. R., Etemadmoghadam, D., Gardiner, B. B., Gardiner, B. A.,

Kench, J. G., Scarpa, A., Sutherland, R. L., Tempero, M. A., Waddell, N. J., Wilson, P. J.,

McPherson, J. D., Gallinger, S., Tsao, M.-S., Shaw, P. A., Petersen, G. M., Mukhopadhyay,

D., Chin, L., DePinho, R. A., Thayer, S., Muthuswamy, L., Shazand, K., Beck, T., Sam, M.,

Timms, L., Ballin, V., Lu, Y., Ji, J., Zhang, X., Chen, F., Hu, X., Zhou, G., Yang, Q., Tian, G.,

Zhang, L., Xing, X., Li, X., Zhu, Z., Yu, Y., Yu, J., Yang, H., Lathrop, M., Tost, J., Brennan,

P., Holcatova, I., Zaridze, D., Brazma, A., Egevard, L., Prokhortchouk, E., Banks, R. E., Uhln,

M., Cambon-Thomsen, A., Viksna, J., Ponten, F., Skryabin, K., Stratton, M. R., Futreal, P. A.,

Birney, E., Borg, A., Brresen-Dale, A.-L., Caldas, C., Foekens, J. A., Martin, S., Reis-Filho,

J. S., Richardson, A. L., Sotiriou, C., Stunnenberg, H. G., Thoms, G., van de Vijver, M., van’t

Veer, L., Calvo, F., Birnbaum, D., Blanche, H., Boucher, P., Boyault, S., Chabannon, C., Gut, I.,

Masson-Jacquemier, J. D., Lathrop, M., Pauport, I., Pivot, X., Vincent-Salomon, A., Tabone,

E., Theillet, C., Thomas, G., Tost, J., Treilleux, I., Calvo, F., Bioulac-Sage, P., Clment, B.,

Decaens, T., Degos, F., Franco, D., Gut, I., Gut, M., Heath, S., Lathrop, M., Samuel, D.,

Thomas, G., Zucman-Rossi, J., Lichter, P., Eils, R., Brors, B., Korbel, J. O., Korshunov, A.,

Landgraf, P., Lehrach, H., Pfister, S., Radlwimmer, B., Reifenberger, G., Taylor, M. D., von

Kalle, C., Majumder, P. P., Sarin, R., Rao, T. S., Bhan, M. K., Scarpa, A., Pederzoli, P., Lawlor,

R. A., Delledonne, M., Bardelli, A., Biankin, A. V., Grimmond, S. M., Gress, T., Klimstra, D.,

Zamboni, G., Shibata, T., Nakamura, Y., Nakagawa, H., Kusada, J., Tsunoda, T., Miyano,

BIBLIOGRAPHY 133

S., Aburatani, H., Kato, K., Fujimoto, A., Yoshida, T., Campo, E., Lpez-Otn, C., Estivill, X.,

Guig, R., de Sanjos, S., Piris, M. A., Montserrat, E., Gonzlez-Daz, M., Puente, X. S., Jares, P.,

Valencia, A., Himmelbauer, H., Himmelbaue, H., Quesada, V., Bea, S., Stratton, M. R., Futreal,

P. A., Campbell, P. J., Vincent-Salomon, A., Richardson, A. L., Reis-Filho, J. S., van de Vijver,

M., Thomas, G., Masson-Jacquemier, J. D., Aparicio, S., Borg, A., Brresen-Dale, A.-L., Caldas,

C., Foekens, J. A., Stunnenberg, H. G (2010). International network of cancer genome projects.

Nature, 464(7291), 993–998.

International HapMap Consortium (2003). The international hapmap project. Nature, 426(6968),

789–796.

Iyer, M. K., Chinnaiyan, A. M., and Maher, C. A. (2011). Chimerascan: a tool for identifying

chimeric transcription in sequencing data. Bioinformatics, 27(20), 2903–2904.

Ji, Y., Xu, Y., Zhang, Q., Tsui, K.-W., Yuan, Y., Norris, Jr, C., Liang, S., and Liang, H. (2011).

Bm-map: Bayesian mapping of multireads for next-generation sequencing data. Biometrics,

67(4), 1215–1224.

Jiang, H. and Wong, W. H. (2008). Seqmap: mapping massive amount of oligonucleotides to the

genome. Bioinformatics, 24(20), 2395–2396.

Johnson, D. S., Mortazavi, A., Myers, R. M., and Wold, B. (2007). Genome-wide mapping of in

vivo protein-dna interactions. Science, 316, 1497–1502.

Johnston, J. J., Teer, J. K., Cherukuri, P. F., Hansen, N. F., Loftus, S. K., N. I. H. Intramural

Sequencing Center (NISC), Chong, K., Mullikin, J. C., and Biesecker, L. G. (2010). Massively

parallel sequencing of exons on the x chromosome identifies rbm10 as the gene that causes a

syndromic form of cleft palate. Am J Hum Genet , 86(5), 743–748.

Jokinen, P. and Ukkonen, E. (1991). Two algorithms for approximate string matching in static

texts. Lecture Notes in Comp. Sci., 520(06), 240–248.

Kalscheuer, V., Hu, H., Haas, S. A., Chelly, J., Esch, H. V., Raynaud, M., de Brouwer, A.,

Zemojtel, T., Weinert, S., Froyen, G., Frints, S. G., Laumonnier, F., Love, M. I., Richard, H.,

Emde, A.-K., Bienek, M., Jensen, C., Hambrock, M., Langnick, C., Feldkamp, M., Wissink-

Lindhout, W., Lebrun, N., Castelnau, L., Shaw, M., Corbett, M. A., Gardner, A., Willis-Owen,

S., Tan, C., Friend, K. L., Belet, S., van Roozendaal, K. E., Jimenez-Pocquet, M., Moizard, M.-

P., Ronce, N., Sun, R., O’Keeffe, S., Chenna, R., Mysickova, A., Göke, J., Hackett, A., Field, M.,

Haan, E., Nelson, J., Turner, G., Baynam, G., Gillessen-Kaesbach, G., Müller, U., Steinberger,

D., Budny, B., Badura-Stronka, M., Latos-Bielenska, A., Ousager, L. B., Wieacker, P., Criado,

G. R., Bondeson, M.-L., Dufke, A., Cohen, M., Maldergem, L. V., Vincent-Delorme, C., Echenne,

B., Simon-Bouy, B., Raymond, L., Kleefstra, T., Willemsen, M., Fryns, J.-P., Devriendt, K.,

Vingron, M., Wrogemann, K., Ullmann, R., Gecz, J., Tzschach, A., van Bokhoven, H., Wienker,

T. F., Jentsch, T. J., Chen, W., and Ropers, H.-H. (submitted). Draining the pond: 14 novel

candidate genes for x-linked intellectual disability.

134 BIBLIOGRAPHY

Kalscheuer, V. M., Freude, K., Musante, L., Jensen, L. R., Yntema, H. G., Gécz, J., Sefiani, A.,

Hoffmann, K., Moser, B., Haas, S., et al. (2003). Mutations in the polyglutamine binding protein

1 gene cause x-linked mental retardation. Nat Genet , 35(4), 313–315.

Karakoc, E., Alkan, C., O’Roak, B. J., Dennis, M. Y., Vives, L., Mark, K., Rieder, M. J., Nickerson,

D. A., and Eichler, E. E. (2012). Detection of structural variants and indels within exome data.

Nat Methods, 9(2), 176–178.

Karlić, R., Chung, H.-R., Lasserre, J., Vlahovicek, K., and Vingron, M. (2010). Histone modifi-

cation levels are predictive for gene expression. Proc Natl Acad Sci U S A, 107(7), 2926–2931.

Kehr, B., Weese, D., and Reinert, K. (2011). Stellar: fast and exact local alignments. BMC

Bioinformatics, 12 Suppl 9, S15.

Kelley, D. R., Schatz, M. C., and Salzberg, S. L. (2010). Quake: quality-aware detection and

correction of sequencing errors. Genome Biol , 11(11), R116.

Kent, W. (2002). Blat – the blast-like alignment tool. Genome Res., 12(4), 656–64.

Kong, Y. (2011). Btrim: a fast, lightweight adapter and quality trimming program for next-

generation sequencing technologies. Genomics, 98(2), 152–153.

Korbel, J. O., Abyzov, A., Mu, X. J., Carriero, N., Cayting, P., Zhang, Z., Snyder, M., and

Gerstein, M. B. (2009). Pemer: a computational framework with simulation-based error models

for inferring genomic structural variants from massive paired-end sequencing data. Genome

Biol , 10(2), R23.

Krawitz, P., Rödelsperger, C., Jäger, M., Jostins, L., Bauer, S., and Robinson, P. N. (2010).

Microindel detection in short-read sequence data. Bioinformatics, 26(6), 722–729.

Kucherov, G., No, L., and Roytberg, M. (2005). Multiseed lossless filtration. IEEE/ACM Trans

Comput Biol Bioinform, 2(1), 51–61.

Lam, H. Y. K., Mu, X. J., Sttz, A. M., Tanzer, A., Cayting, P. D., Snyder, M., Kim, P. M., Korbel,

J. O., and Gerstein, M. B. (2010). Nucleotide-resolution analysis of structural variants using

breakseq and a breakpoint library. Nat Biotechnol , 28(1), 47–55.

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar,

K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann,

L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J. P., Miranda,

C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C.,

Stange-Thomann, N., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J.,

Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman,

R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S.,

Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L.,

Mercer, S., Milne, S., Mullikin, J. C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims,

BIBLIOGRAPHY 135

S., Waterston, R. H., Wilson, R. K., Hillier, L. W., McPherson, J. D., Marra, M. A., Mardis,

E. R., Fulton, L. A., Chinwalla, A. T., Pepin, K. H., Gish, W. R., Chissoe, S. L., Wendl,

M. C., Delehaunty, K. D., Miner, T. L., Delehaunty, A., Kramer, J. B., Cook, L. L., Fulton,

R. S., Johnson, D. L., Minx, P. J., Clifton, S. W., Hawkins, T., Branscomb, E., Predki, P.,

Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J. F., Olsen, A., Lucas, S., Elkin,

C., Uberbacher, E., Frazier, M., Gibbs, R. A., Muzny, D. M., Scherer, S. E., Bouck, J. B.,

Sodergren, E. J., Worley, K. C., Rives, C. M., Gorrell, J. H., Metzker, M. L., Naylor, S. L.,

Kucherlapati, R. S., Nelson, D. L., Weinstock, G. M., Sakaki, Y., Fujiyama, A., Hattori, M.,

Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach,

J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C.,

Wincker, P., Smith, D. R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H. M.,

Dubois, J., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J.,

Wang, J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R. W., Federspiel,

N. A., Abola, A. P., Proctor, M. J., Myers, R. M., Schmutz, J., Dickson, M., Grimwood, J.,

Cox, D. R., Olson, M. V., Kaul, R., Raymond, C., Shimizu, N., Kawasaki, K., Minoshima, S.,

Evans, G. A., Athanasiou, M., Schultz, R., Roe, B. A., Chen, F., Pan, H., Ramser, J., Lehrach,

H., Reinhardt, R., McCombie, W. R., de la Bastide, M., Dedhia, N., Blcker, H., Hornischer, K.,

Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J. A., Bateman, A., Batzoglou, S., Birney, E.,

Bork, P., Brown, D. G., Burge, C. B., Cerutti, L., Chen, H. C., Church, D., Clamp, M., Copley,

R. R., Doerks, T., Eddy, S. R., Eichler, E. E., Furey, T. S., Galagan, J., Gilbert, J. G., Harmon,

C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L. S., Jones,

T. A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W. J., Kitts, P., Koonin, E. V., Korf, I., Kulp,

D., Lancet, D., Lowe, T. M., McLysaght, A., Mikkelsen, T., Moran, J. V., Mulder, N., Pollara,

V. J., Ponting, C. P., Schuler, G., Schultz, J., Slater, G., Smit, A. F., Stupka, E., Szustakowski,

J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf,

Y. I., Wolfe, K. H., Yang, S. P., Yeh, R. F., Collins, F., Guyer, M. S., Peterson, J., Felsenfeld,

A., Wetterstrand, K. A., Patrinos, A., Morgan, M. J., de Jong, P., Catanese, J. J., Osoegawa,

K., Shizuya, H., Choi, S., Chen, Y. J., Szustakowki, J., and , I. H. G. S. C. (2001). Initial

sequencing and analysis of the human genome. Nature, 409(6822), 860–921.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. (2009). Ultrafast and memory-efficient

alignment of short dna sequences to the human genome. Genome Biol , 10(3), R25.

Lee, S., Hormozdiari, F., Alkan, C., and Brudno, M. (2009). Modil: detecting small indels from

clone-end sequencing with mixtures of distributions. Nat Methods, 6(7), 473–474.

Lenski, C., Abidi, F., Meindl, A., Gibson, A., Platzer, M., Kooy, R. F., Lubs, H. A., Stevenson,

R. E., Ramser, J., and Schwartz, C. E. (2004). Novel truncating mutations in the polyglu-

tamine tract binding protein 1 gene (pqbp1) cause renpenning syndrome and x-linked mental

retardation in another family with microcephaly. Am J Hum Genet , 74(4), 777–780.

Li, H. (2011). A statistical framework for snp calling, mutation discovery, association mapping

136 BIBLIOGRAPHY

and population genetical parameter estimation from sequencing data. Bioinformatics, 27(21),

2987–2993.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with burrows-wheeler

transform. Bioinformatics, 25(14), 1754–1760.

Li, H., Ruan, J., and Durbin, R. (2008a). Mapping short DNA sequencing reads and calling

variants using mapping quality scores. Genome Res., 18(11), 1851–1858.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,

and Durbin, R. (2009a). The sequence alignment/map format and samtools. Bioinformatics,

25(16), 2078–2079.

Li, M., Ma, B., Kisman, D., and Tromp, J. (2003). Patternhunter II: highly sensitive and fast

homology search. Genome Inform., 14, 164–175.

Li, R., Li, Y., Kristiansen, K., and Wang, J. (2008b). Soap: short oligonucleotide alignment

program. Bioinformatics, 24(5), 713–714.

Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., and Wang, J. (2009b). Soap2: an

improved ultrafast tool for short read alignment. Bioinformatics, 25(15), 1966–1967.

Li, Y., Zheng, H., Luo, R., Wu, H., Zhu, H., Li, R., Cao, H., Wu, B., Huang, S., Shao, H., Ma,

H., Zhang, F., Feng, S., Zhang, W., Du, H., Tian, G., Li, J., Zhang, X., Li, S., Bolund, L.,

Kristiansen, K., de Smith, A. J., Blakemore, A. I. F., Coin, L. J. M., Yang, H., Wang, J.,

and Wang, J. (2011). Structural variation in two human genomes mapped at single-nucleotide

resolution by whole genome de novo assembly. Nat Biotechnol , 29(8), 723–730.

Lin, H., Zhang, Z., Zhang, M. Q., Ma, B., and Li, M. (2008). Zoom! zillions of oligos mapped.

Bioinformatics, 24(21), 2431–2437.

Lunter, G. (2007). Probabilistic whole-genome alignments reveal high indel rates in the human

and mouse genomes. Bioinformatics, 23(13), i289–i296.

Lupski, J. R., Reid, J. G., Gonzaga-Jauregui, C., Rio Deiros, D., Chen, D. C. Y., Nazareth, L.,

Bainbridge, M., Dinh, H., Jing, C., Wheeler, D. A., McGuire, A. L., Zhang, F., Stankiewicz, P.,

Halperin, J. J., Yang, C., Gehman, C., Guo, D., Irikat, R. K., Tom, W., Fantin, N. J., Muzny,

D. M., and Gibbs, R. A. (2010). Whole-genome sequencing in a patient with charcot-marie-tooth

neuropathy. N Engl J Med , 362(13), 1181–1191.

Lyle, R., Prandini, P., Osoegawa, K., ten Hallers, B., Humphray, S., Zhu, B., Eyras, E., Castelo,

R., Bird, C. P., Gagos, S., et al. (2007). Islands of euchromatin-like sequence and expressed

polymorphic sequences within the short arm of human chromosome 21. Genome Res, 17(11),

1690–1696.

BIBLIOGRAPHY 137

Maher, C. A., Kumar-Sinha, C., Cao, X., Kalyana-Sundaram, S., Han, B., Jing, X., Sam, L.,

Barrette, T., Palanisamy, N., and Chinnaiyan, A. M. (2009). Transcriptome sequencing to

detect gene fusions in cancer. Nature, 458(7234), 97–101.

Manber, U. and Myers, E. (1993). Suffix arrays: A new method for on-line string searches. SIAM

J. Comput., 22(5), 935–948.

Manzini, G. and Ferragina, P. (2004). Engineering a lightweight suffix array construction algo-

rithm. Algorithmica, 40(1), 33–50.

Mardis, E. R. (2008a). The impact of next-generation sequencing technology on genetics. Trends

Genet , 24(3), 133–141.

Mardis, E. R. (2008b). Next-generation dna sequencing methods. Annu Rev Genomics Hum

Genet , 9, 387–402.

Medvedev, P., Stanciu, M., and Brudno, M. (2009). Computational methods for discovering

structural variation with next-generation sequencing. Nat Methods, 6(11 Suppl), S13–S20.

Mills, R. E., Pittard, W. S., Mullaney, J. M., Farooq, U., Creasy, T. H., Mahurkar, A. A., Kemeza,

D. M., Strassler, D. S., Ponting, C. P., Webber, C., and Devine, S. E. (2011). Natural genetic

variation caused by small insertions and deletions in the human genome. Genome Res, 21(6),

830–839.

Mitelman, F., Johansson, B., and Mertens, F. (2007). The impact of translocations and gene

fusions on cancer causation. Nat Rev Cancer , 7(4), 233–245.

Morin, R. D., O’Connor, M. D., Griffith, M., Kuchenbauer, F., Delaney, A., Prabhu, A.-L., Zhao,

Y., McDonald, H., Zeng, T., Hirst, M., Eaves, C. J., and Marra, M. A. (2008). Application

of massively parallel sequencing to microrna profiling and discovery in human embryonic stem

cells. Genome Res., 18, 610–621.

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and

quantifying mammalian transcriptomes by rna-seq. Nat Methods, 5(7), 621–628.

Muntoni, F., Torelli, S., and Ferlini, A. (2003). Dystrophin and mutations: one gene, several

proteins, multiple phenotypes. Lancet Neurol , 2(12), 731–740.

Myers, E. W. (1994). A sublinear algorithm for approximate keyword searching. Algorithmica,

12(4-5), 345–374.

Myers, E. W. (1999). A fast bit-vector algorithm for approximate string matching based on

dynamic programming. JACM , 46(3), 395–415.

NCBI (2012). Entrez genome project.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J. Molecular Biol., 48, 443–453.

138 BIBLIOGRAPHY

Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A. W., Lee, C., Shaffer, T.,

Wong, M., Bhattacharjee, A., Eichler, E. E., et al. (2009). Targeted capture and massively

parallel sequencing of 12 human exomes. Nature, 461(7261), 272–276.

Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve,

H. I., Beck, A. E., Tabor, H. K., Cooper, G. M., Mefford, H. C., Lee, C., Turner, E. H., Smith,

J. D., Rieder, M. J., Yoshiura, K.-I., Matsumoto, N., Ohta, T., Niikawa, N., Nickerson, D. A.,

Bamshad, M. J., and Shendure, J. (2010a). Exome sequencing identifies mll2 mutations as a

cause of kabuki syndrome. Nat Genet , 42(9), 790–793.

Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., Huff, C. D.,

Shannon, P. T., Jabs, E. W., Nickerson, D. A., Shendure, J., and Bamshad, M. J. (2010b).

Exome sequencing identifies the cause of a mendelian disorder. Nat Genet , 42(1), 30–35.

Nicolas, F. and Rivals, E. (2005). Hardness of optimal spaced seed design. In Proceedings of CPM

2005 , LNCS, pages 187–209. Springer Verlag.

Nielsen, R., Paul, J. S., Albrechtsen, A., and Song, Y. S. (2011). Genotype and snp calling from

next-generation sequencing data. Nat Rev Genet , 12(6), 443–451.

Ning, Z., Cox, A. J., and Mullikin, J. C. (2001). Ssaha: a fast search method for large dna

databases. Genome Res, 11(10), 1725–1729.

O’Brien, S. J. (1994). Genetic and phylogenetic analyses of endangered species. Annu Rev Genet ,

28, 467–489.

Orr, H. T. and Zoghbi, H. Y. (2007). Trinucleotide repeat disorders. Annu Rev Neurosci , 30,

575–621.

Park, P. J. (2009). Chip-seq: advantages and challenges of a maturing technology. Nat Rev Genet ,

10(10), 669–680.

Pop, M. and Salzberg, S. L. (2008). Bioinformatics challenges of new sequencing technology.

Trends Genet , 24(3), 142–149.

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N.,

Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang,

H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J.-M., Hansen, T., Le Paslier,

D., Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K.,

Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang,

J., Brunak, S., Dor, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach,

J., , M. I. T. C., Bork, P., Ehrlich, S. D., and Wang, J. (2010). A human gut microbial gene

catalogue established by metagenomic sequencing. Nature, 464(7285), 59–65.

Rasmussen, K., Stoye, J., and Myers, G. (2005). Efficient q-gram filters for finding all epsilon-

matches over a given length. In Proceedings of the Nineth Conference on Research in Compu-

tational Molecular Biology , pages 189–203. Springer.

BIBLIOGRAPHY 139

Rausch, T., Koren, S., Denisov, G., Weese, D., Emde, A.-K., Döring, A., and Reinert, K. (2009).

A consistency-based consensus algorithm for de novo and reference-guided sequence assembly

of short reads. Bioinformatics, 9(25), 1118–1124.

Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero,

M. H., Carson, A. R., Chen, W., Cho, E. K., Dallaire, S., Freeman, J. L., Gonzlez, J. R.,

Gratacs, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J. R., Marshall, C. R.,

Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M. J., Tchinda, J.,

Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad,

D. F., Estivill, X., Tyler-Smith, C., Carter, N. P., Aburatani, H., Lee, C., Jones, K. W., Scherer,

S. W., and Hurles, M. E. (2006). Global variation in copy number in the human genome. Nature,

444(7118), 444–454.

Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., Zeitlinger, J., Schreiber,

J., Hannett, N., Kanin, E., Volkert, T. L., Wilson, C. J., Bell, S. P., and Young, R. A. (2000).

Genome-wide location and function of dna binding proteins. Science, 290(5500), 2306–2309.

Rios, J., Stein, E., Shendure, J., Hobbs, H. H., and Cohen, J. C. (2010). Identification by whole-

genome resequencing of gene defect responsible for severe hypercholesterolemia. Hum Mol

Genet , 19(22), 4313–4318.

Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., Leamon, J. H.,

Johnson, K., Milgrew, M. J., Edwards, M., Hoon, J., Simons, J. F., Marran, D., Myers, J. W.,

Davidson, J. F., Branting, A., Nobile, J. R., Puc, B. P., Light, D., Clark, T. A., Huber, M.,

Branciforte, J. T., Stoner, I. B., Cawley, S. E., Lyons, M., Fu, Y., Homer, N., Sedova, M., Miao,

X., Reed, B., Sabina, J., Feierstein, E., Schorn, M., Alanjary, M., Dimalanta, E., Dressman,

D., Kasinskas, R., Sokolsky, T., Fidanza, J. A., Namsaraev, E., McKernan, K. J., Williams, A.,

Roth, G. T., and Bustillo, J. (2011). An integrated semiconductor device enabling non-optical

genome sequencing. Nature, 475(7356), 348–352.

Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A., and Brudno, M. (2009). Shrimp:

Accurate mapping of short color-space reads. PLoS Comput Biol , 5(5), e1000386.

Salmela, L. (2010). Correction of sequencing errors in a mixed set of reads. Bioinformatics,

26(10), 1284–1290.

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating

inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467.

Schadt, E. E., Turner, S., and Kasarskis, A. (2010). A window into third-generation sequencing.

Hum Mol Genet , 19(R2), R227–R240.

Schmieder, R., Lim, Y. W., Rohwer, F., and Edwards, R. (2010). Tagcleaner: Identification and

removal of tag sequences from genomic and metagenomic datasets. BMC Bioinformatics, 11,

341.

140 BIBLIOGRAPHY

Schwartz, S. L. and Farman, M. L. (2010). Systematic overrepresentation of dna termini and

underrepresentation of subterminal regions among sequencing templates prepared from hydro-

dynamically sheared linear dna molecules. BMC Genomics, 11, 87.

SEQanswers (2012). Next-generation sequencing community forum.

Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., and Sirotkin,

K. (2001). dbsnp: the ncbi database of genetic variation. Nucleic Acids Res, 29(1), 308–311.

Shumway, M., Cochrane, G., and Sugawara, H. (2010). Archiving next generation sequencing

data. Nucleic Acids Res, 38(Database issue), D870–D871.

Simpson, J. T. and Durbin, R. (2012). Efficient de novo assembly of large genomes using com-

pressed data structures. Genome Res, 22(3), 549–556.

Smeds, L. and Künstner, A. (2011). Condetri–a content dependent read trimmer for illumina

data. PLoS One, 6(10), e26314.

Smit, A. F. A., Hubley, R., and Green, P. (1996-2004). Repeatmasker open-3.0.

http://www.repeatmasker.org.

Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R., Heiner, C., Kent,

S. B., and Hood, L. E. (1986). Fluorescence detection in automated dna sequence analysis.

Nature, 321(6071), 674–679.

Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular subsequences. J.

Molecular Biol., 147, 195–197.

Stenson, P. D., Mort, M., Ball, E. V., Howells, K., Phillips, A. D., Thomas, N. S., and Cooper,

D. N. (2009). The human gene mutation database: 2008 update. Genome Med , 1(1), 13.

Sultan, M., Schulz, M. H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M., Boro-

dina, T., Soldatov, A., Parkhomchuk, D., Schmidt, D., O’Keeffe, S., Haas, S., Vingron, M.,

Lehrach, H., and Yaspo, M.-L. (2008a). A global view of gene activity and alternative splicing

by deep sequencing of the human transcriptome. Science, 321(5891), 956–960.

Sultan, M., Schulz, M. H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M., Boro-

dina, T., Soldatov, A., Parkhomchuk, D., Schmidt, D., O’Keeffe, S., Haas, S., Vingron, M.,

Lehrach, H., and Yaspo, M.-L. (2008b). A global view of gene activity and alternative splicing

by deep sequencing of the human transcriptome. Science, 321, 956–960.

Sun, R., Love, M. I., Zemojtel, T., Emde, A.-K., Chung, H.-R., Vingron, M., and Haas, S. A.

(2012). Breakpointer: using local mapping artifacts to support sequence breakpoint discovery

from single-end reads. Bioinformatics, 28(7), 1024–1025.

Suzuki, S., Yasuda, T., Shiraishi, Y., Miyano, S., and Nagasaki, M. (2011). Clipcrop: a tool for

detecting structural variations with single-base resolution using soft-clipping information. BMC

Bioinformatics, 12 Suppl 14, S7.

BIBLIOGRAPHY 141

Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). Tophat: discovering splice junctions with

rna-seq. Bioinformatics, 25(9), 1105–1111.

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg,

S. L., Rinn, J. L., and Pachter, L. (2012). Differential gene and transcript expression analysis

of rna-seq experiments with tophat and cufflinks. Nat Protoc, 7(3), 562–578.

Trappe, K. (2012). Multi-Split Mapping of NGS Reads for Variant Detection. Master’s thesis,

Freie Universität Berlin.

Turner, E. H., Lee, C., Ng, S. B., Nickerson, D. A., and Shendure, J. (2009). Massively parallel

exon capture and library-free resequencing across 16 genomes. Nat Methods, 6(5), 315–316.

Tuzun, E., Sharp, A. J., Bailey, J. A., Kaul, R., Morrison, V. A., Pertz, L. M., Haugen, E., Hayden,

H., Albertson, D., Pinkel, D., Olson, M. V., and Eichler, E. E. (2005). Fine-scale structural

variation of the human genome. Nat Genet , 37(7), 727–732.

Valouev, A., Johnson, D. S., Sundquist, A., Medina, C., Anton, E., Batzoglou, S., Myers, R. M.,

and Sidow, A. (2008). Genome-wide analysis of transcription factor binding sites based on

chip-seq data. Nat Methods, 5(9), 829–834.

Venter, J. C., . . ., Reinert, K., et al. (2001). The sequence of the human genome. Science, 291,

1145–1434.

Voelkerding, K. V., Dames, S. A., and Durtschi, J. D. (2009). Next-generation sequencing: from

basic research to diagnostics. Clin Chem, 55(4), 641–658.

Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., He, X., Mieczkowski, P.,

Grimm, S. A., Perou, C. M., et al. (2010). Mapsplice: accurate mapping of rna-seq reads for

splice junction discovery. Nucleic Acids Res, 38(18), e178.

Wang, W.-C., Lin, F.-M., Chang, W.-C., Lin, K.-Y., Huang, H.-D., and Lin, N.-S. (2009a). mir-

express: analyzing high-throughput sequencing data for profiling microrna expression. BMC

Bioinformatics, 10, 328.

Wang, Z., Gerstein, M., and Snyder, M. (2009b). Rna-seq: a revolutionary tool for transcriptomics.

Nat Rev Genet , 10(1), 57–63.

Wang, Z., Gerstein, M., and Snyder, M. (2009c). Rna-seq: a revolutionary tool for transcriptomics.

Nat Rev Genet , 10(1), 57–63.

Watson, J. D. and Crick, F. H. C. (1953). Molecular structure of nucleic acids. Nature.

Weese, D., Emde, A.-K., Rausch, T., Döring, A., and Reinert, K. (2009). RazerS–fast read mapping

with sensitivity control. Genome Res, 19(9), 1646–1654.

Weese, D., Holtgrewe, M., and Reinert, K. (2012). Razers 3: Faster, fully sensitive read mapping.

Bioinformatics, 28(20), 2592–2599.

142 BIBLIOGRAPHY

Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen,

Y.-J., Makhijani, V., Roth, G. T., et al. (2008). The complete genome of an individual by

massively parallel dna sequencing. Nature, 452(7189), 872–876.

Whiteford, N., Haslam, N., Weber, G., Prgel-Bennett, A., Essex, J. W., Roach, P. L., Bradley, M.,

and Neylon, C. (2005). An analysis of the feasibility of short read sequencing. Nucleic Acids

Res, 33(19), e171.

Wu, T. D. and Nacu, S. (2010). Fast and snp-tolerant detection of complex variants and splicing

in short reads. Bioinformatics, 26(7), 873–881.

Xie, C. and Tammi, M. T. (2009). Cnv-seq, a new method to detect copy number variation using

high-throughput sequencing. BMC Bioinformatics, 10, 80.

Yang, X., Chockalingam, S. P., and Aluru, S. (2012). A survey of error-correction methods for

next-generation sequencing. Brief Bioinform.

Ye, K., Schulz, M. H., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel: a pattern growth

approach to detect break points of large deletions and medium sized insertions from paired-end

short reads. Bioinformatics, 25(21), 2865–2871.

Yoon, S., Xuan, Z., Makarov, V., Ye, K., and Sebat, J. (2009). Sensitive and accurate detection

of copy number variants using read depth of coverage. Genome Res, 19(9), 1586–1592.

Zang, C., Schones, D. E., Zeng, C., Cui, K., Zhao, K., and Peng, W. (2009). A clustering approach

for identification of enriched domains from histone modification chip-seq data. Bioinformatics,

25(15), 1952–1958.

Zerbino, D. R. and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using

de bruijn graphs. Genome Res, 18(5), 821–829.

Zhang, J., Wang, J., and Wu, Y. (2012). An improved approach for accurate and efficient calling

of structural variations with low-coverage sequence data. BMC Bioinformatics, 13 Suppl 6,

S6.

Zhang, L., Miles, M. F., and Aldape, K. D. (2003). A model of molecular interactions on short

oligonucleotide microarrays. Nat Biotechnol , 21(7), 818–821.

Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C.,

Myers, R. M., Brown, M., Li, W., and Liu, X. S. (2008a). Model-based analysis of chip-seq

(macs). Genome Biol , 9(9), R137.

Zhang, Z., Berman, P., Wiehe, T., and Miller, W. (1999). Post-processing long pairwise alignments.

Bioinformatics, 15(12), 1012–1019.

Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. (2000). A greedy algorithm for aligning dna

sequences. J Comput Biol , 7(1-2), 203–214.

BIBLIOGRAPHY 143

Zhang, Z.-F., Ruivenkamp, C., Staaf, J., Zhu, H., Barbaro, M., Petillo, D., Khoo, S. K., Borg, A.,

Fan, Y.-S., and Schoumans, J. (2008b). Detection of submicroscopic constitutional chromosome

aberrations in clinical diagnostics: a validation of the practical performance of different array

platforms. Eur J Hum Genet , 16(7), 786–792.

144 BIBLIOGRAPHY

Selbstständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebe-

nen Quellen und Hilfsmittel angefertigt habe.

Berlin, den 30.10.2012 (Anne-Katrin Emde)

145

146 BIBLIOGRAPHY

Curriculum Vitae

For reasons of data protection, the Curriculum vitae is not published in the online version.

147

148 BIBLIOGRAPHY

