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Preface

This thesis presents research work on novel computational approaches to
investigate and characterise the association between genes and pheno-
typic abnormalities. It demonstrates methods for organisation, integra-
tion, and mining of phenotype data in the field of genetics, with special
application to human genetics. Here I will describe the parts of this the-
sis that have been published in peer-reviewed journals. Often in modern
science different people from different institutions contribute to research
projects. The same is true for this thesis, and thus I will itemise who was
responsible for specific sub-projects.

In chapter 2, a new method for associating genes to phenotypes by
means of protein-protein-interaction networks is described. I present a
strategy to organise disease data and show how this can be used to link
diseases to the corresponding genes. I show that global network distance
measure in interaction networks of proteins is well suited for investigat-
ing genotype-phenotype associations. This work has been published in
2008 in the American Journal of Human Genetics. My contribution here was
to plan the project, implement the software, and finally test and evaluate
the method on human genetics data; the implementation part was done
in close collaboration with Sebastian Bauer. The people who manually
compiled the list of “disease gene families” are Denise Horn and Peter
Robinson.

The often-discussed problem of missing structured and computer in-
terpretable representation of human phenotypic abnormalities is the focus
of chapter 3. Replacing the free-text description of phenotypic abnormal-
ities, especially for human hereditary diseases, has long been demanded
by the research community. I was involved in developing the Human Phe-
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notype Ontology (HPO), which has demonstrated the ability to overcome
these problems (American Journal of Human Genetics, 2008). I contributed to
this by, first implementing several computer programs for automatically
constructing parts of this ontology. Secondly, I developed software for the
exploration, maintenance, and quality assessment of the HPO. The output
of my software was mostly manually curated by medical experts in the
field of human genetics, especially Peter Robinson and Sandra Dölken.

After the HPO had been established, I showed that this ontology-based
technique for representing and encoding phenotype data could help in
the process of classifying hereditary diseases (Human Mutation 2012). Fur-
thermore, I was involved in the development of novel strategies for using
the HPO for differential diagnostics in clinical genetics, and implemented
these in a web-based application (Phenomizer, American Journal of Human
Genetics, 2009). This project was planned by Peter Robinson and myself.
Furthermore, I implemented the web-based software, developed the sta-
tistical model to assign P-values to semantic similarity scores, and eval-
uated the performance of the search algorithms. Subsequently, a novel
algorithm for exact determination of the P-values was developed mainly
by Marcel Schulz and Sebastian Bauer. I was involved in this project, to-
gether with Peter Robinson. Here, the implementation and evaluation of
the novel algorithm was my main contribution. This work was published
in the Proceedings of WABI (2009) and in BMC Bioinformatics (2011). I co-
authored a review on these topics in the journal Medizinische Genetik (2010).

Finally, I participate in a research collaboration with the University
of Cambridge (Michael Ashburner, Paul Schofield, George Gkoutos), the
Lawrence Berkeley National Laboratory, California (Suzanna Lewis, Chris
Mungall), and the University of Oregon (Monte Westerfield, Barbara Ruef).
We develop and investigate novel ways of semantically integrating differ-
ent biomedical ontologies with application to genotype-phenotype associ-
ation. This is the topic of chapter 4. The main focus is the use of a semantic
representation of phenotype information from different species to build a
large-scale, integrated ontological resource. This enables researchers to
transfer phenotypic information from model organisms to human, and
allows novel biomedical hypotheses to be generated. The approach of
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introducing logical definitions for human phenotypic abnormalities was
presented in a paper for IEEE Engineering in Medicine and Biology Society
Proceedings (2009), and describes strategies to create logical definitions.
The idea of representing phenotypes in OWL and using reasoning was
developed by several other people, such as Chris Mungall, Paul Schofield,
Robert Hoehndorf, and Suzi Lewis. My projects build upon these works,
such as a paper in BMC Bioinformatics (2011), which describes how the
semantics can be used for quality control of ontologies by automatically
detecting incomplete data representations. In this work, my contribution
included the planning, implementation and evaluation. The semantic ap-
proach was also used in a project that investigated whole-phenome com-
parison between mouse and human in order to predict novel candidate
genes for human diseases (Human Mutation (2012)). Finally, I contributed
to a project (manuscript in preparation) where I created an integrated phe-
notype ontology across several species and implemented novel ways for
analysing human chromosomal aberrations (CNVs). Here, my contribu-
tion was the creation of the Uberpheno ontology and the implementation
of the analyses and visualisations.

Below is a summary of relevant publications for this thesis to which I
contributed:

• Sebastian Köhler∗, Sebastian Bauer∗, Denise Horn, and Peter N Robinson.
Walking the interactome for prioritization of candidate disease genes.
The American Journal of Human Genetics, 82(4):949–58, Apr 2008.
∗equal contribution

• Peter N Robinson, Sebastian Köhler, Sebastian Bauer, Dominik Seelow, De-
nise Horn, and Stefan Mundlos.
The Human Phenotype Ontology: A tool for annotating and analyzing hu-
man hereditary disease.
The American Journal of Human Genetics, 83(5):610–5, Nov 2008.



vi Preface

• Sebastian Köhler, Marcel H Schulz, Peter Krawitz, Sebastian Bauer, Sandra
Dölken, Claus E Ott, Christine Mundlos, Denise Horn, Stefan Mundlos,
and Peter N Robinson.
Clinical diagnostics in human genetics with semantic similarity searches in
ontologies.
The American Journal of Human Genetics, 85(4):457–64, Oct 2009.

• Marcel H Schulz, Sebastian Köhler, Sebastian Bauer, Martin Vingron, and
Peter N Robinson.
Exact score distribution computation for similarity searches in ontologies.
WABI - Springer LNCS (Algorithms in Bioinformatics), 5724:298–309, 2009.

• George V Gkoutos, Chris J Mungall, Sandra C Dölken, Michael Ashburner,
Suzanna E Lewis, John Hancock, Paul Schofield, Sebastian Köhler, and Pe-
ter N Robinson.
Entity/Quality-Based Logical Definitions for the Human Skeletal Phenome
using PATO.
Proceedings of the 31st Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, 2009.

• Sandra C Dölken, Sebastian Köhler, Sebastian Bauer, Claus E Ott, Peter
Krawitz, Denise Horn, Stefan Mundlos, and Peter N Robinson
Computational methods for the study of human disease manifestations.
The Human Phenotype Ontology.
Medizinische Genetik, 22(2):221–8, June 2010

• Sebastian Köhler, Sebastian Bauer, Chris J Mungall, Gabriele Carletti, Cyn-
thia L Smith, Paul Schofield, George V Gkoutos, and Peter N Robinson
Improving ontologies by automatically reasoning and evaluation of logical
definitions.
BMC Bioinformatics, 12:418, October 2011

• Marcel H Schulz, Sebastian Köhler, Sebastian Bauer, and Peter N Robinson
Exact Score Distribution Computation for Ontological Similarity Searches.
BMC Bioinformatics, 12:441, November 2011

• Chao-Kung Chen, Chris J Mungall, George V Gkoutos, Sandra C Dölken,
Sebastian Köhler, Barbara J Ruef, Cynthia Smith, Monte Westerfield, Pe-
ter N Robinson, Suzanna E Lewis, Paul N Schofield, Damian Smedley
MouseFinder: candidate disease genes from mouse phenotype data.
Human Mutation, 33(5):858–66, April 2012
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• Sebastian Köhler, Sandra C Dölken, Ana Rath, Ségolène Aymé, and Peter N
Robinson
Ontological Phenotype Standards for Neurogenetics.
Human Mutation, 33(5):1333–9, August 2012

• Sebastian Bauer, Sebastian Köhler, Marcel H Schulz, and Peter N Robinson
Bayesian Ontology Querying for Accurate and Noise-Tolerant Semantic
Searches.
Bioinformatics, 2012

• Sandra C Dölken∗, Sebastian Köhler∗, Chris J Mungall∗, George V Gkoutos,
Barbara J Ruef, Cynthia Smith, Damian Smedley, Sebastian Bauer, Eva Klo-
pocki, Paul N Schofield, Monte Westerfield, Peter N Robinson, Suzanna E
Lewis
Phenome-wide interspecies semantic mapping reveals phenotypic overlap
in the contribution of individual genes to CNV pathogenicity
Under review, 2012
∗equal contribution

I also contributed to other projects, that are not part of this thesis. One
of these projects dealt with the investigation of ultra-conserved regions in
the human genome with a special focus on promoter regions [Rödelsperger
et al., 2009]. In another project a new method for long-range prediction of
target genes for enhancer elements was developed [Rödelsperger et al.,
2011]. Finally I contributed to a work on next-generation sequencing for
disease gene discovery [Krawitz et al., 2010].

Thesis Contribution

Finding the molecular basis for specific phenotypes is an important topic
in genetics, cell biology, molecular biology, and developmental biology,
among others.

This thesis adds value to this topic by presenting a novel method for
correlating information on phenotypic variation with high-throughput bi-
ological data. It also describes how phenotypic information can be rep-
resented in systematic computer interpretable structures, i.e. ontologies.
This work shows how such representations pave the way for novel instru-
ments for clinical genetics.
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Utilising precise and comparable phenotypic information across dif-
ferent species is of major interest to the scientific community, since this is
critical for gaining a detailed understanding of the connections between
diseases and genes. Here, I present ways for semantic integration of phe-
notype data across species and the successful linkage of genotype informa-
tion to phenotype data, which is fundamental for novel hypothesis gener-
ation in biomedical sciences, especially human genetics.
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Chapter 1

General Introduction

1.1 Phenotypes

The word phenotype is used to specify an organism’s measurable or ob-
servable traits, such as human body height, blood pH values, or a mouse’s
reaction to a loud handclap. Phenotypes are used as criteria to differentiate
between individuals or species. Phenotypic abnormalities are important
criteria for disease diagnosis and treatment.

Starting with the ancient Greeks, scientists have been interested in the
systematic investigation, characterisation and understanding of pheno-
types, especially in abnormal phenotypes associated with disease. Finding
a detailed explanation on the origin of phenotypes, and assessing the in-
fluence of environmental conditions, is even a hard task today.

During the scientific revolution in the 16th and 17th century, mankind
was enriched with numerous major achievements. For example, micro-
scopy enabled the discovery that organisms are composed of cells – the
functional basic unit of life. Since the 19th century, one of the central ques-
tions for biologists has been finding cellular and molecular correlates of
observable traits or phenotypes. In the beginning, scientists focused on
exploring the patterns of how peculiar characteristics and qualities are
“inherited” from parents or more remote ancestors. The seminal work
of Gregor Mendel described the law of inheritance [Mendel, 1866], which
he derived by hybridising garden peas and systematically investigating
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specific traits across different generations. The first work that separated
the concept of hereditary material of cells from the actual appearance was
done by Johannsen [1909]. He made clear that there exists an organism’s
heredity on one hand and the product of this heredity on the other hand.

In medical context the word phenotype is often used in reference to
some deviation from normal morphology, physiology, or behavior [Robin-
son, 2012]. In this present thesis, the definition of Strickberger [1985] ap-
plies, in which he states that phenotypes are the manifold biological appear-
ances, including chemical, structural and behavioral attributes, that we can ob-
serve about an organism, but excludes its genetic constitution. In biology, this
or similar definitions are commonly used [Mahner and Kary, 1997].

1.1.1 DNA, Genes and Genotype

All eukaryotes are living organisms that are composed of one or mul-
tiple cells. Eukaryotic cells have a nucleus that contains the carrier of
the hereditary information in the form of deoxyribonucleic acid (DNA)
molecules. DNA consists of two long polymers and is organised in the
form of a double-helix [Watson and Crick, 1953]. It can be thought of as a
biological blueprint, since it contains the information needed to construct
other components of cells, such as proteins. The complete set of DNA
for an organism is also called the genome. A union of genomic DNA-
sequences that encode a coherent set of potentially overlapping functional
products is called a gene [Gerstein et al., 2007]. The complete constitution,
or makeup, of the genetic material belonging to a cell, or an individual, is
called the genotype. Aside from genes, the DNA contains several regula-
tory regions, for example, promoter- and enhancer regions, which control
the efficiency of gene transcription.

The completion of the sequencing of the human genome in 2001 [Ven-
ter et al., 2001, Lander et al., 2001] was only one step in a long process
to discover and examine all the variations in the DNA (e.g. in genes),
and to understand how those variations influence diseases. Subsequent
research projects have revealed new and largely unexpected levels of ge-
netic complexity in the three billion DNA bases of the human genome. It
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is estimated that at least 15 million places along the human genome can
differ from one person, or population, to the next [Pennisi, 2007]. DNA
alterations that represent only a variation of a single nucleotide are called
single-nucleotide polymorphisms (SNP). SNPs are assumed to play a ma-
jor role in causing phenotypic differences between individuals.

1.1.2 Copy Number Variations

Besides SNPs, larger structural variations, called copy number variations
(CNV), have been identified as an important source of human DNA poly-
morphism [O’Donovan et al., 2008]. In CNVs, longer stretches of DNA can
get lost, duplicated, or rearranged in the genome of an individual. These
CNVs may comprise only a few base pairs, but they may also span regions
containing millions of bases. The detection of CNVs, and the finding that
these changes alter a genome in just a few generations, revolutionised the
perception of the human genome as a stable entity.

Microdeletions and microduplications are defined as CNVs that are too
small to be seen through a microscope and typically span less than five
million base pairs. They may contain one or more contiguous genes. The
loss or duplication of these genes causes an alteration in the gene dosage,
and may cause lower or higher levels of the gene product. The altered
gene dosages often cause various phenotypic abnormalities.

Understanding the enormous complexity of genomic variations and,
in particular, explaining the phenotypic consequences and contributions
of genomic variations are important challenges for current biomedical sci-
ences.

1.1.3 Protein, Proteome and Function

The central dogma of molecular biology [Crick, 1958] assumes that, in a
process called RNA synthesis, the coded information of genes is trans-
ferred to RNA. In the following step, the RNA is processed and translated
according to the genetic code into an amino-acid chain in which the amino-
acids are connected by peptide bonds.
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The amino-acid chain subsequently folds into a functional shape: a
three-dimensional structure, called protein. Proteins are the key players
in biological activities such as enzymatic reactions or structural organi-
sation. Virtually every cellular process, from DNA-replication to signal
transduction, depends on the coordinated interplay of different proteins.
The entirety of proteins that are expressed by a genome is called the pro-
teome.

1.1.4 Hereditary Diseases

Diseases or illnesses are defined and identified by their combination of
symptoms, i.e. phenotypic abnormalities. A phenotypic abnormality is
a phenotypic feature, whose value deviates from a commonly accepted
“average” nominal value.

In 1941, Beadle and Tatum [1941] showed, for the first time, that an al-
teration in a gene’s DNA-sequence can result in an altered phenotype and,
in doing, came up with the so-called one-gene-one-enzyme hypothesis.

Hereditary diseases are diseases in which the phenotypic abnormali-
ties are caused, in a large fraction, by variations in the genome, i.e., genes
or chromosomes. They are also called genetic diseases or Mendelian dis-
eases. There are several major classes of genetic diseases, with the most
important being monogenic diseases, polygenic/multifactorial diseases,
chromosomal diseases, and mitochondrial diseases. It is important to note
that, in a lot of genetic diseases, environmental factors influence the spec-
trum of phenotypic abnormalities.

Of course, not every alteration or mutation in a gene causes altered
phenotypes, but those variations are well-distributed across the genome.
Variations that are known to predispose to or cause a specific disease are
called disease-causing mutations. An example of how a gene mutation trans-
lates to a phenotype is given in Figure 1.1.

The resolution of measurements in biological sciences has improved
enormously during the last centuries for both genotype and phenotype.
New sequencing techniques enable scientists to sequence and characterise
a complete genome within a few days. New measurement methods in
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Non-affected Affected
Gene

Protein

Function

Phenotype

TGGG C AACT TGGG A AACT

APAP

Figure 1.1: This figure illustrates an example of the mechanism by which
a genomic variation in the hereditary Hyperphosphatasia-mental retardation
syndrome (HPMR) transmits to an altered phenotype. Most affected in-
dividuals have a mutation in the gene PIGV [Krawitz et al., 2010, Horn
et al., 2011]. In individuals without this mutation, this gene encodes a pro-
tein that is part of a cellular machinery for synthesising the GPI-anchor.
This GPI-anchor is used to attach, for example, the alkaline phosphatase
(AP) protein to the cell membrane. In affected individuals, the synthesis
of the anchor fails, due to the malfunction of PIGV. Subsequently, the AP
cannot be anchored to the cell and is thus circulating in the serum. The
elevated serum levels of AP is one of the major phenotypic abnormalities
in the HPMR syndrome.
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medicine allow for fast and accurate determination of specific metabolites,
e.g. in blood or urine. Despite these advancements, various problems still
arise. Even to distinguish between SNPs and disease-causing mutations is
a hard problem. Finding the accurate mechanism for how an individual’s
disease-causing mutation propagates to varied phenotypes still remains
an even more challenging problem.

1.2 Networks

Complex networks of objects describe a wide range of real-world systems,
such as physical, biological, and social systems. There exist networks of
natural phenomena, such as food webs (who eats who) or sociological net-
works where individuals are connected by social relationships. Also, the
Internet can be seen as a network of routers and computers connected by
physical links [Albert and Barabási, 2002]. In the last decades, a lot of
these systems were better understood through investigating the mecha-
nisms underlying the topology of those complex networks. The focus here
are networks of objects in molecular biology that represent the cell’s func-
tional organisation.

1.2.1 Protein-Protein Interaction Networks

Proteins are almost always performing their functions in cooperation with
other proteins and rarely act alone. Often, they team up into “molecu-
lar machines”, forming physicochemical dynamic connections to under-
take biological functions at both cellular and systems levels [Rivas and
Fontanillo, 2010]. For example, the enzyme liver alcohol dehydrogenase is a
protein complex composed of several different subunits that, in combina-
tion, perform the task of breaking down alcohols.

In recent years, it became clear that almost all proteins are part of a
huge, connected system that makes up a cell and defines its properties
and behavior. The set of protein interactions in a cell is called the inter-
actome. There are now several different methods to detect the possible
physicochemical interactions of a particular protein. The most important



1.2 Networks 7

ones are the yeast two-hybrid system and the tandem affinity purifica-
tion followed by mass spectroscopy [Shoemaker and Panchenko, 2007].
In recent years, high-throughput screening for protein-protein interaction
was successfully performed in cells from many different organisms, even
for higher eukaryotes such as human [Stelzl et al., 2005]. This lead to
the creation of publicly accessible databases that contain the interactomes
for several species. Given that it is now becoming more and more ev-
ident that the interactions between proteins determine the outcome of
almost every cellular process, analyses based on protein interaction net-
works will pave the way for a systems-level understanding of cellular pro-
cesses. From the medical genetics point of view, those datasets gain major
importance under the assumption that the mutations in a gene’s DNA se-
quence propagate through the translation-step, cause a distortion of pro-
tein interfaces, and finally disturb the cellular network which, in turn, may
lead to the development of many phenotypic abnormalities [Shoemaker
and Panchenko, 2007].

1.2.2 Graphs

In computer science, a typical approach to represent and encode relation-
ships of interest between objects of the same domain are graphs. In this
work, graphs are used in the context of protein interactions and ontolo-
gies. In this thesis, a graph G = (V, E) is defined, in accordance to Gross
and Yellen [2006], as a mathematical structure that consists of two finite
sets: V and E. The elements of V are referred to as vertices or nodes and
represent the objects of interest. The elements of E are called edges or arcs
and express relationships between the objects. Each edge has a pair of two
(possibly non-unique) vertices associated with it, which are called the end-
points of the edge. If the pair of nodes is unordered, the edge is undirected;
if it is ordered, the edge is directed. If G contains only undirected edges,
it is referred to as undirected graph; on the contrary, if G only contains di-
rected edges, it is referred to as directed graph (see Figure 1.2). For example,
the nodes of a protein-protein interaction graph represent proteins, or the
genes that encode for the protein. An edge exists in the graph if there is
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D
A

B C

FE

D
A

B C

FE

a) b)

Figure 1.2: This figure shows examples of undirected and directed graphs.
In a) an undirected graph with six nodes and six edges is shown. Part b)
depicts a directed version of the graph, where the edges are defined as
ordered pairs of nodes.

evidence for a biophysical interaction. Protein-protein interactions graphs
are undirected in this thesis, whereas graphs representing ontologies are
directed graphs.

The representation of biological interaction networks as graphs gives
biologists and bioinformaticians several considerable advantages. First of
all, graphs can be visually presented as drawings, which is essential for
both data analysis and interpretation. Second of all, several other research
fields have worked on the study of network representations. This lead to
the development of several novel algorithms for analysis, and new theo-
ries about the structure and organisation of networks were hypothesized.
For example, in social science, the theory of networks could explain so-
cial phenomena in a wide variety of disciplines, from psychology to eco-
nomics [Borgatti et al., 2009].

1.2.3 Graph Theory

Graphs and their components (i.e., nodes and edges) can be mathemati-
cally characterised by several measures. For this thesis, only a small subset
of these attributes are required.



1.3 Knowledge Representation 9

The degree of a node v is defined as the number of edges that involve
v as endpoint. As a means to characterise a complete graph, the average
degree of its nodes and the degree distribution are often used.

The clustering coefficient of a node v (CC(v)) measures the extent of clus-
tering in a graph around that node, whereby a cluster is said to be a subset
of nodes where there is a high chance that the edges of these nodes con-
nect only nodes from this subset. The clustering coefficient of a node v is
defined as

CC(v) =
2 ∗ e

k ∗ (k− 1)
, (1.1)

where e is the number of edges that connect two neighbors of v, and k is
the number of neighbors of v. A node has a high clustering coefficient if a
lot of its neighbors are adjacent to each other as well.

A path in a graph is defined as a sequence of nodes of the graph in
which the successive nodes have an edge between them. A very impor-
tant measure in graph theory is the shortest path (SP) between two nodes.
Intuitively, it can be seen as an estimate for how long information trans-
mission between those two nodes takes.

1.3 Knowledge Representation

In the biomedical setting, computer science has focussed largely on effi-
cient analysis of huge amounts of molecular data, such as DNA sequences
or protein structures. In recent years, biomedicine has been confronted
with additional challenges caused by an unprecedented increase in the
size of the data sets due to modern high-throughput technologies. For ex-
ample, having sequenced the human genome, now even on a personalised
level, more and more research projects aim at systematically unravelling
the genomic complexity behind specific phenotypic abnormalities. Thus,
the problem of efficient and reliable retrieval and analysis of data has be-
come the most important scientific bottleneck [Soldatova and King, 2005].
This is because different databases use inconsistent naming conventions,
different intentions of users in their writing, varying definitions, and so
forth. The differences may be syntactical and semantical [Schulze-Kremer,
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1997].

These problems induced the need for sophisticated approaches for stor-
ing the generated knowledge in knowledge bases (KB) so that it is pre-
served for the future, and processable by machines in an automated way.
This brings up new problems regarding the integration, management and
interpretation of the generated information. The goal is that scientists
should, at best, be provided with methods for consistent annotation of
data and simultaneously be provided with tools for greater interoperabil-
ity among people and machines [Mabee et al., 2007]. Of course, the data
should be made available to computer-based search and to algorithmic
processing.

The study of knowledge representation (KR) to enable automated pro-
cessing by computers has been a research field since the 1970’s with the
emergence of complex, artificial intelligence systems. Representing knowl-
edge by means of symbols, and in a way that enables accurate and effective
reasoning is one of the major hallmarks of KR research. It aims to design
and apply systems for storing facts and rules about subjects.

In contrast to KR based approaches, describing knowledge in the form
of free text allows for maximal expressivity, but impedes reliable mining
of information by means of automated methods. This becomes obvious
when trying to extract information from text-based resources. Firstly, a
search in this data inventory leads to too many search results, e.g., query-
ing the internet for ventricle will return results related to both the brain
ventricles and the heart ventricles. Here, the underlying problem is the
missing context that would distinguish homonymic words. Another typ-
ical problem is the inability to capture synonymic terms, e.g., querying a
free-text resource for acrocephaly will not yield results that only match the
synonym oxycephaly. Another problem is that inconsistencies cannot be
discovered systematically, so that one can write that, e.g., the liver has the
function to store glycogen or the negation of that statement without conse-
quences. Thus text-based systems are not able to recognise inconsistencies
in the data.
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1.3.1 Semantic Web and Ontologies

The problems and ideas mentioned above induced the step to move bio-
medical KR in the direction of Semantic Web techniques, which is a pro-
posal for the next-generation of the World-Wide Web (WWW). Originally,
the WWW was created as a web of hypertext documents using hyper-
links to allow users to browse between documents located on different
web servers. Semantics is the study of deriving the sense and meaning of
complex concepts from simpler concepts, and draws upon syntax. Seman-
tics is dependent on context and pragmatics. In general, free-text descrip-
tions, be they phenotype descriptions or the content of the world wide
web, contain only implicit semantics and lack an explicit semantic repre-
sentation. The motivation to put the Semantic Web techniques forward
was that, although Web browsers can easily parse Web pages in order to
create a layout and link out to other Web pages, there is no reliable way
for a computer to recognise the meaning of the content of the Web pages
they display. The inventor of the Semantic Web, Tim Berners-Lee, defined
it as “a web of data that can be processed directly and indirectly by ma-
chines.” Thus, the Semantic Web should function as a framework in which
computers are capable of analyzing the meaning – the semantic content –
of the data on the Web in order to act as “intelligent agents.”

The ideas used in this thesis were largely influenced and developed by
the Semantic Web community. One of the initial steps towards the seman-
tic web was to represent knowledge as a list of statements, whereby each
statement is a triple that consists of a subject, a predicate, and an object. For
representing and addressing the parts of these triples, unique Uniform Re-
source Identifiers (URI)1 are used. Standardised coding and structuring of
the statements is done using the Resource Description Framework (RDF),
which is has an XML serialisation. This paves the way towards interoper-
ability, but contains only a minimal amount of semantics. Basically, RDF is
used for representing assertional knowledge (ABox), i.e. facts and knowl-
edge about instances, which corresponds to the description of actual data.

In order to introduce semantics, standardised knowledge representa-

1The object may also be a literal, which is not a URI.
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tion (i.e. ontologies) is introduced, which can explicitly formalise the se-
mantics. The word ontology was originally used to describe a specific
branch of metaphysics that examined the nature and relations of being.
This branch tries to answer which entities do exist, in which way there ex-
ist groupings among them, and if there exist hierarchical relationships. An
ontology can be seen as a semantic model for a domain of reality. Prob-
ably, the best known modern day definition of an ontology in computer
science from Gruber [1995] states:

An ontology is an explicit, formal specification of a shared con-
ceptualization.

This definition contains several important aspects of an ontology. First,
explicit denotes that the meaning of every concept is well defined. The
word formal refers to the fact that the information in an ontology must
be machine-readable and interpretable, and shared implies that there is
some kind of consensus regarding the information. Finally, conceptuali-
sation refers to an abstract model of the phenomenon of interest that is
represented by the ontology and that the ontology contains the relevant
concepts, which are named and defined entities of the domain of interest.
Note that, in this thesis, the words concept and term are interchangeable.
Later on, the word class is also used in the context of OWL. The main com-
ponent of ontologies is a set of axioms. Axioms are herein used to refer to
statements that say what is true in the domain.2 There are two kinds of
axioms: asserted axioms and inferred axioms.

Ontologies formally describe concepts, both by their meaning and by
their relationship to each other [Bard and Rhee, 2004]. The most impor-
tant semantic roles or relationships in this thesis are part of and is a (also
subClassOf). For this thesis it is important that ontologies enable that
the knowledge is machine interpretable, integratable across heterogenous
datasources, and applicable to automated reasoners to infer implicit knowl-
edge. Figure 1.3 shows an excerpt of what may be the most important
biomedical ontology, the Gene Ontology (GO). In this example, the protein
PIGV is annotated to the GO term GPI anchor biosynthetic process, which

2http://www.w3.org/TR/owl2-syntax/#Axioms

http://www.w3.org/TR/owl2-syntax/#Axioms
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means that there is evidence that this protein plays a role in the named
process. In the ontology, there are several more general concepts that are
semantically linked to the GO term.

The extension of RDF with RDF schema (RDFS) enables the formu-
lation of statements on classes, their hierarchical organisation, and inheri-
tance. RDFS is used for TBox axioms, which describe terminological knowl-
edge, i.e. the knowledge about classes. Its axioms describe the structure
of the domain that is to be modelled in the form of ontologies. RDF(S)3 al-
lows only for simple reasoning tasks by utilising the transitivity property
of the subClassOf and subPropertyOf relations. Also, the domain and
range restrictions of relations can be utilised. However, this kind of KR
does not allow for testing the truth-value of statements. Additionally, it is
not possible to express negations or define exclusion criteria. For this, the
combination with logics and formal knowledge modelling is required. A
logical foundation is used to supply a well-defined, formal semantics and
to enable automated systems to operate on the KB. This is required for the
important task of testing the logical entailment between statements and
drawing valid conclusions.

Typical candidates of logics include propositional logic (PL) or first or-
der logic (FOL). Although PL would be perfect in terms of decidability,
etc., it is not well-suited for KR because several important statements, such
as assertions about groups, cannot be expressed. FOL on the other hand,
has the advantage of being highly expressive, but the disadvantage of be-
ing semidecidable. This means that reasoning algorithms are not guar-
anteed to terminate.4 This resulted in the idea of using restricted subsets
of FOL for modeling. One popular subset is the Description Logic (DL)
family of languages, which has a reduced expressivity but the advantage
that most DLs are decidable. Most notably, the existential and universal
quantifications are limited by role restrictions in most DLs. The language
of choice for authoring DL KBs is the W3C5 standardised Web Ontology

3Denotes the combination of RDF and RDFS.
4Answering if something is contained will terminate if the containedness is given, but

may not terminate if it is not contained.
5World Wide Web Consortium
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Figure 1.3: This figure shows an excerpt of the graphical representation of
the Gene Ontology (GO). Here, the PIGV protein is annotated to the GO-
concept or term GPI anchor biosynthetic process. Two kinds of relationships
are shown: the is a and part of relationships.
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Language (OWL DL6), for which a serialisation based on RDF/XML exists.
Using OWL DL, complex classes can be described from simpler descrip-
tions using, for example, intersections, unions, and complements. Differ-
ent DLs are characterised by the sets of allowed constructors. For example,
in this work, the OWL 2 EL profile is used to enable efficient reasoning us-
ing the ELK reasoner [Kazakov et al., 2011].

For the interpretation of expressions the commonly accepted approach
by Tarski is based on set-theoretical constructions and formalises logic
with model-theoretic semantics [Tarski and Corcoran, 1983]. When as-
sessing the truth of statements, this approach allows proofs that are not
dependent on testing all possible interpretations, but rather apply purely
syntactic rules in order to prove statements in a formally correct way. This
is needed to test for entailment, which is a relationship between two ex-
pressions: A and B7. A model of an expression A is an interpretation for
which the expression is true. A entails B if, under any interpretation for
which A is true, B is also true. This is equivalent to stating that all the
models of A are also models of B.

The basis for efficient, automated proving for entailments is the reduc-
tion to unsatisfiability. For a specific statement or formula, one assumes that
it is a valid formula, i.e. it is true under every possible interpretation. To
show this, one simply reduces the question of validity to a question of sat-
isfiability by assuming that the negation of the statement is unsatisfiable.
If it is then possible to show a contradiction in the negated formula (e.g.
it contains a ∧ ¬a), this proves that the negated formula is indeed unsatis-
fiable, which in turn shows that the original formula is valid. Algorithms
such as the Tableau (with blocking) allow for efficient reasoning, even for
larger KBs. In the context of this thesis, it especially important that proofs
of satisfiability and subsumption are decidable. One of the simplest exam-
ples of inference is illustrated in Figure 1.4, where four terms of the GO
are linked by is a relationships. Furthermore, one inferred relationship is
shown. Here, the basis of the inference is the transitivity of the is a rela-
tionships, i.e., if class C is a D, and D is a E, then it is also true that C

6The successor of OWL DL is OWL 2 DL.
7Note that A and B must be truth-valued expressions.
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is a E. Thus, one can infer that every GPI anchor biosynthetic process is a

macromolecule modification. These kinds of inferences can be used to detect
hidden or new knowledge that has not yet been asserted in the ontology.

For this thesis, a more exhaustive introduction to description logic and
reasoning, such as decidability and complexity, is out of scope. Also, in-
troduction of the different DL flavours, such as ALC, SHOIN (D), and
SHROIQ(D), is skipped here and can be found in the books by Baader
et al. [2003] and Hitzler et al. [2009].

Several syntax representations exist for OWL ontologies, but in this
thesis, only the Manchester syntax [Horridge et al., 2006] and OBO syn-
tax8 are shown. In the actual implementation and serialisation, RDF/XML
is used. The OBO syntax is used for OBO Foundry ontologies and has
several favourable characteristics, such as human readability and mini-
mal redundancy. For dealing with OWL ontologies programmatically, the
OWL-API [Horridge and Bechhofer, 2009] and OWL-Tools [owl] are used.
Building and editing of ontologies can be done with OboEdit [Day-Richter
et al., 2007] or Protégé [pro].

Tools like the oboformat library9 for the interconversion between the
OBO format and OWL 2 have been developed and are used in this work.
In OWL, an ontology is a collection of axioms. Having created OWL on-
tologies, one can apply automatic reasoners, which are ready-to-use sys-
tems for computing the logical consequences that can be inferred from
a set of asserted axioms. As for the OBO to OWL conversion, tools for
automated reasoning in ontologies represented in OWL DL exist. Com-
monly used software includes FaCT++ [Tsarkov and Horrocks, 2006], Her-
miT [Motik et al., 2007], Pellet [Sirin et al., 2007], or ELK [Kazakov et al.,
2011]. All of the mentioned reasoners can be invoked via OWL-API.

1.3.2 OBO Foundry

The GO (see Figure 1.3) has probably been the most successful ontology in
the domain of biology. This success has lead to a “golden age” of ontolo-

8http://www.geneontology.org/GO.format.obo-1_2.shtml
9Available at http://code.google.com/p/oboformat/.

http://www.geneontology.org/GO.format.obo-1_2.shtml
http://code.google.com/p/oboformat/
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Figure 1.4: Example of a simple inference in ontologies. Using the transi-
tivity property of the subclass relationship, a reasoner infers that, if a term
T is asserted to be a subclass of a parent term P, then the term T is also a
subclass of the parents of P. Intuitively, this is the same as stating that the
ancestors of my father (which is my ancestor) are also my ancestors, since
the ancestor relationship is also transitive.
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gies in biomedical research. The fact that most of these domain-ontologies
were developed in isolation, created novel obstacles to interoperability
across these domains [Smith et al., 2007].

Thus, the OBO Foundry (The Open Biological and Biomedical Ontolo-
gies Foundry) has the goal of creating a suite of orthogonal interoperable
reference ontologies in the biomedical domain family of ontologies [Smith
et al., 2007]. There exist several different types of relationships that are
used in ontologies, such as is a, part of, contained in, instance of, and
has participant. In this work, the is a relationship is of major impor-
tance. This relationship is equivalent to the subsumption or subclass re-
lationship and means that, if a term t1 is a term t2 then t1 represents a
subclass of the more general parent term t2. The part of relationship ex-
presses a part-whole relationship.

The annotation propagation rule states that the annotated to relation is
propagated along the is a and part of relations to parent terms, and thus
to all ancestral terms. This implies that the annotation of an object O to the
term t results in the annotation of O to all the ancestor terms of t. For ex-
ample, if a gene product is annotated to a specific GO term, it is implicitly
annotated to all of its ancestors. This means that the PIGV protein in Fig-
ure 1.3 is annotated not only to GPI anchor biosynthetic process but also to all
the shown ancestors such as protein modification process. More details and
theoretical foundations of this rule are given in the book of Robinson and
Bauer [2011, chap.6] and are not included in this thesis due to the space
constraints.

1.3.3 Semantic Similarity

Ontologies can be separated by their purpose, e.g. there exist ontologies
that are used to provide a controlled vocabulary for the objects of a do-
main (domain ontologies). In this thesis, a more specific type of domain on-
tologies is introduced, which are ontologies that are used to describe the
attributes of the domain objects (attribute ontologies). Typical domain ontolo-
gies are the Foundational Model of Anatomy (FMA) [Rosse and Mejino,
2003], which provides a controlled vocabulary for anatomical entities or



1.3 Knowledge Representation 19

the Chemical Entities of Biological Interest (ChEBI) ontology [de Matos
et al., 2010] which describes objects from the domain of biologically rel-
evant chemicals. The GO is a typical attribute ontology, i.e., its terms are
used to create annotation relationships between terms and genes or proteins.
Thus, annotation is used to assign biological functions, characteristics, or
attributes to the genes.

Domain ontologies such as the FMA allow subsumption searches. This
means that, for example, a search for objects referring to skeleton of hand
will also return entries on set of carpal bones, because it is a subclass of
skeleton of hand. On the other hand attribute ontologies have the advan-
tage that they additionally allow searches for objects that are annotated to
terms of the ontology based on semantic similarity.

Information Content

Resnik [1995] presented a novel approach to calculate the semantic simi-
larity between two concepts in an ontology with is a relationships. The
first step of the method is to associate an information content (IC) value
with each of the terms of the ontology. The definition of the IC follows the
standard argumentation of information theory, and the IC of a term t is
calculated as

IC(t) = − ln(p(t)) , (1.2)

where p(t) is the probability of encountering t in a corpus, such as all the
gene products in a database. This is normally estimated by the fraction of
objects being annotated to t among all objects in the database. The annota-
tion propagation rule implies that p is a monotonically increasing function
when following the links of an ontology from bottom to top, whereby the
root r of the ontology has no information content (p(r) = 0), since all ob-
jects are annotated to the root. In general, if t1 is a t2, then p(t1) ≤ p(t2).

From this follows that the IC of the terms decreases as one moves up
the hierarchy along the links of the ontology. Taking the example of Fig-
ure 1.3 and assuming that there are 10.000 genes in the database the term
GPI anchor biosynthetic process would have an IC of − ln(1/10, 000) = 9.2
because only PIGV is annotated to this term. The IC of protein lipidation
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would then be − ln(2/10, 000) = 8.5 because two genes (PIGV and ABCA1)
are annotated to this term. In summary, very specific terms are only asso-
ciated with very few genes and, therefore, have a high IC, whereas non-
specific terms associated with many genes have a low IC.

Similarity Between Terms

In recent years, several methods have been published that can be used
to determine the similarity of two terms t1 and t2 in an ontology. Again
a comprehensive introduction to this topic would be out of scope for this
thesis and can, instead, be found in the work of Pesquita et al. [2009]. Here,
only the information-content-based measure developed by Resnik [1995]
is of particular interest. Let anc(t) be the function that returns the set of
all the nodes that are found on all paths from term t to the root, including
t. When determining the similarity between t1 and t2 the intersection be-
tween anc(t1) and anc(t2) is created and the highest IC of these terms is
taken to be the similarity value. At first, let CA(t1, t2) = anc(t1) ∩ anc(t2)

set of common ancestors of two nodes. Then, the similarity between two
terms is defined as

sim(t1, t2) = max{IC(a)|a ∈ CA(t1, t2)} . (1.3)

This means that the information content of the most-specific common an-
cestor (measured by IC) is defined as the similarity between two terms.

Similarity Between Objects

Objects like genes or diseases are in most cases annotated to multiple
terms of attribute ontologies. For example the PIGV protein from Fig-
ure 1.3 is annotated to ten different terms of the GO; one of them is shown
in the Figure. Thus, in order to assess the similarity between two objects
based on the attributes, it is necessary to define a measure between two
sets of terms. Similar to the term-wise similarity, there exist several differ-
ent methods to calculate this similarity, but a detailed discussion of these
is beyond the scope of this work. A broader treatise on this subject has
presented by Pesquita et al. [2009].
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Thus, the focus in this work lies on a measure that is referred to as
best-match average (BMA) [Pesquita et al., 2009]. Let O be an object, and
let annot(O) = TO = {t1, . . . , tn} be the function that returns all the terms
to which the object O is annotated. Then |TO| = | annot(O)| is the number
of terms to which O is annotated. The asymmetric BMA method calculates
the similarity between two objects as

BMAasym(O1, O2) =
1
|TO1 |

∑
t1∈TO1

max
t2∈TO2

sim(t1, t2) . (1.4)

Note that Equation 1.4 is not symmetric [Couto et al., 2007], i.e., it is not
necessarily true that BMAasym(O1, O2) = BMAasym(O2, O1). Sometimes,
the symmetric version of this measure is mentioned, which is then defined
as

BMAsym(O1, O2) =
1
2

BMAasym(O1, O2) +
1
2

BMAasym(O2, O1) . (1.5)

1.4 Thesis Organisation

In the past decade, our understanding of biological systems has under-
gone a revolution, mainly due to the emergence of novel, high-throughput
techniques, such as microarrays, and of genomic and systems-biological
algorithms. The growing understanding of signal transduction cascades,
metabolic pathways, and protein-protein interactions has led to the real-
isation that networks between different biological entities exist, and that
those networks pervade all aspects of biology and of human health and
disease. However, the mathematical and computational tools that have
been so successful in the analysis of biological systems have only very
recently begun to be applied to understanding human phenotypic abnor-
malities and hereditary syndromes.

This thesis involves the development of novel, bioinformatic tools de-
signed to enable the integrated analysis of the “diseasome”, which refers
to the network comprised of genes, proteins, phenotypic abnormalities,
and hereditary syndromes. It is aimed at showing new ways of analyzing
the relationships between biological networks, networks of phenotypic
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abnormalities and syndromes using ontologies and graph-theoretic algo-
rithms. An illustration of these topics and their interrelation is shown in
Figure 1.5. The goal is to exploit these networks for gaining novel insights
into the mechanism and structures underlying pathobiological processes
on a systems level. This thesis shows that these approaches can give mean-
ingful and helpful results.

Phenotypes in Cellular Networks

Following an introduction on the current approaches towards the identifi-
cation of disease genes, this chapter presents a discussion of the inherent
problems and challenges. Previous computational approaches developed
for fostering disease gene detection by utilising protein interaction net-
works are presented. A novel approach for the prioritisation of genes be-
ing related to a particular phenotype or set of phenotypes is presented,
which enables analyzing the relationships between biological networks
and disease using graph-theoretic algorithms. Finally, the novel method is
compared with other approaches, and its advantages are discussed.

Phenotypes in Ontologies

This chapter describes problems associated with the current solutions for
storing and integrating information about human phenotypic abnormali-
ties. It starts with a presentation of the Human Phenotype Ontology (HPO)
as a means to overcome these problems by embedding the knowledge on
phenotypic features into an ontology. This ontology specifies abnormal
phenotypes and the semantic relationships between them. Two applica-
tions of the HPO are presented. First, the ontology, which can be used
to automatically generate syndrome networks based on the phenotypic
spectrum of the syndromes, is described. Afterwards, a novel, HPO-based
approach for clinical diagnostics is presented. Finally, a statistically moti-
vated measure that expresses the significance of semantic similarity search
is also presented. This measure is applied to the clinical diagnostics test-
ing, and its performance is evaluated.
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Figure 1.5: A visualisation of the topics covered throughout this thesis and
the interrelations between them. In the beginning the main focus lies on
mining cellular networks in order to identify novel disease genes that under-
lie human phenotypic abnormalities. Thus, there exists a causation relation
in the figure. The next chapters of the thesis focus on semantic represen-
tation of phenotypic abnormalities associated with diseases, which are al-
most always defined by a broader spectrum of phenotypic features. This
figure shows how genes and disease are annotated to these phenotypes.
The semantics can be exploited for construction of disease networks. Finally,
a combination of disease-, phenotype- and network-based approaches are
presented in the last chapter.



24 General Introduction

Semantic Web Techniques for Genotype to Phenotype Discovery

The focus of this chapter is the integration of description logic (OWL) into
phenotypic descriptions, in order to build semantic resources across on-
tologies, across domains, and across species. At first, the approach of
bringing semantics to phenotype information is described. The subse-
quent section depicts an approach to ontological interoperability to create
a huge, cross-species phenotype ontology. Finally, the application of this
ontology to the analysis of copy number variations, which makes use of
the technologies presented in preceding chapters, is presented.



The generally superior performance of
the random-walk methods suggests that
the clustering and neighborhood
methods are too restrictive when
defining their locality.

NAVLAKHA AND KINGSFORD [2010]

Chapter 2

Phenotypes in Cellular Networks

2.1 Identification of Gene - Phenotype Associa-
tions

At the time of this writing, there are more than 3,000 well-defined mono-
genic syndromes in humans. Understanding clinical phenotypes and their
genetic origin is one of the principal objectives of genetic research. Fur-
thermore, it is widely accepted that almost all medical conditions are di-
rectly or indirectly influenced by human genetic variation. Although this
is a very important field of genetics and plenty of novel techniques have
been developed in this field, the Online Mendelian Inheritance in Man
(OMIM) database [Amberger et al., 2009] still lists over 1,500 Mendelian
phenotypes and nearly 2,000 phenotypes with suspected Mendelian ba-
sis where the underlying molecular mechanism remain unclear (see Ta-
ble 2.1).

However, the identification of those genes that influence or are even re-
sponsible for human phenotypes is a critical step towards gaining a deeper
understanding of the pathological and biochemical disease mechanisms.
Botstein and Risch [2003] indicate that the genes involved in inherited dis-
ease discovered so far were more apparent and thus easier to discover. It
could be possible that the remaining tasks are much more complicated,
due to the rarity of the phenotypes or the heterogeneity of the underlying
genes. Also, the investigation of complex diseases, where several genes
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Total Number

Phenotype description,
molecular basis known 3,231

Mendelian phenotype or locus,
molecular basis unknown 1,774

Other, mainly phenotypes with
suspected Mendelian basis 1,944

Table 2.1: Statistics from the OMIM database (August 17, 2011)

and modifiers contribute to a phenotype (e.g. in hypertension), will be
even more challenging. But still, explicit phenotype-to-gene descriptions
are essential components in order to both improve medical care and bet-
ter understand gene functions, interactions, and pathways [Brunner and
van Driel, 2004]. The identification of genes associated with phenotypic
abnormalities is thus a goal of numerous research groups.

One starting point to investigate this link is called genetic mapping
(linkage analysis or association studies), whereby disease phenotypes are
correlated with specific markers on the genomic axis to narrow down the
area of a chromosome that is associated with a specific phenotype abnor-
mality [Altshuler et al., 2008]. This approach comes up with a genomic
interval that may have a large number of candidate genes. Another ap-
proach is the functional candidate gene approach. The key ingredient is
biological knowledge about the disease phenotypes under investigation
and, if possible, also related molecular processes. This knowledge can, in
turn, be used for the generation of hypotheses about the involvement of
particular genes in the phenotype.

At any rate, most of the current efforts at disease-gene identification
result in large sets of candidate genes. E.g., approaches involving link-
age analysis or association studies result in a genomic interval of 0.5 - 10
centiMorgan containing up to 300 genes [Botstein and Risch, 2003, Glazier
et al., 2002]. Sequencing large numbers of candidate genes remains a time-
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consuming and expensive task, and it is often not possible to identify the
correct disease gene by inspection of the list of genes within the interval.
Several approaches have been put forward in order to help scientists that
are confronted with huge lists of candidate genes. These tools and meth-
ods provide a means for processing a set of genes in order to produce a
ranked or truncated list with which the wetlab scientist has a high chance
of finding the disease-causing gene as quickly as possible. The approaches
use different data sources and different mathematical ideas and methods.

2.1.1 Disease Gene Families

The term syndrome family (or disease gene family) was proposed by Spranger
[1985] as a concept for grouping clinically distinct diseases into groups
of diseases that share important phenotypic features. These groupings
are motivated by the presumed pathogenetic similarities that underlie the
phenotypic commonalities. An example of this is the Stickler-Kniest fam-
ily of skeletal dysplasias, where several years after the family had been
characterised phenotypically, researchers showed that the two syndromes
were caused by mutations in physically interacting proteins [Brunner and
van Driel, 2004].

The reason for shared phenotypes in disease gene families is assumed
to be based on shared molecular events. Different mutations of grouped
diseases may affect different functional domains of a single protein, or
they may disturb the function of proteins that in normal cells form phys-
ical complexes. Other reasons may be that proteins of one cellular path-
way or a ligand-receptor crosstalk are impaired. These disease-phenotype
groups are thus a key concept in research on the connection between phe-
notypic manifestations and their molecular pathological modifications.

For this work, 110 disease-gene families have been defined based on
entries in the Online Mendelian Inheritance in Man (OMIM) database [Am-
berger et al., 2009]. This was done for

• Genetically heterogeneous disorders in which mutations in distinct
genes are associated with similar or even indistinguishable pheno-
types (Monogenic)
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• Cancer syndromes comprising genes associated either with hered-
itary cancer, increased risk, or somatic mutation in a given cancer
type (Cancer)

• Complex disorders that are known to be influenced by variation in
multiple genes (Polygenic)

Additionally, domain knowledge and literature or database searches were
used to select all genes clearly associated with the disorder at hand. The
110 families contain a total of 783 genes. These represent 665 distinct
genes, because some genes are members of more than one disease fam-
ily. The largest family (Nonsyndromic hearing loss) contains 41 genes. The
smallest families (e.g. Achromatopsia) contain only 3 genes. Of the 110
disease gene families, 86 comprise monogenic disorders, 12 contain can-
cer syndromes, and 12 are polygenic diseases. A complete listing of the
disease-gene families, with links to the corresponding entries in the OMIM
database, can be found online.1

2.1.2 Guilt-by-Association

Guilt-by-association is a forbidden principle in the law, but due to often
fuzzy and/or incomplete data, biomedicine can be seen as a rather ’uncer-
tain’ science. Even though biomedical technologies made major progress
in both efficiency and resolution, scientists are often still unable to extract
facts with a 100 % certainty. But in order to be able to expand knowledge,
and to hopefully generate novel interesting hypotheses, scientists often
use associations, although they may be weak and may represent an un-
reliable way for gathering facts [Altshuler et al., 2000]. When using this
principle in biology, it is assumed that “associations” in the data (e.g., co-
expression or protein interaction partners) of a gene are necessary in estab-
lishing “guilt”. The procedure mostly begins by identifying some genes
that are known to be involved in a specific function that the researcher
is interested in. Subsequently, one tries to identify other genes that also
participate in the same process, pathway, or even physical complex (i.e.

1http://compbio.charite.de/genewanderer/diseaseGeneFamilies.html

http://compbio.charite.de/genewanderer/diseaseGeneFamilies.html
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the data-associations), and infers from those associations that those genes
have the same or at least a similar function [Oliver, 2000]. It can be seen as
an approach similar to the old proverb “Show me your friends, and I’ll know
who you are.”.

2.2 PPINs for Associating Genes to Disease Phe-
notype

The focus in this part of the thesis is guilt-by-association methods that make
use of protein-protein interaction networks (PPIN) in order to rank a list of
candidate disease genes (C)2, with the genes on top of the list most-likely
being responsible for the disease phenotype. The working hypothesis of
this approach is that networks form a hierarchical network of subnetworks
that cooperatively determine the cellular behavior. The list of the candi-
date genes may have been identified by linkage analysis, association stud-
ies, or other approaches. Those methods require a non-empty set K of
genes already known to be related to the biological question. A schematic
illustration of the guilt-by-association approaches towards identification
of genes related to specific phenotypes can be found in Figure 2.1. A list
of symbols that are used throughout this chapter is given in Table 2.2.

It is assumed that genes linked to diseases with common (patho-) bio-
chemical mechanism are interacting at the protein level in subnetworks,
or at specific pathway steps. This is motivated by the fact that proteins are
often part of larger protein machineries or complexes [Gandhi et al., 2006].
The corollary of this hypothesis is that interacting proteins often lead to re-
lated or similar phenotypes, and that those groups of genes, when related
to a particular phenotypic spectrum, show a tendency to cluster in the
interaction network [Barabasi et al., 2011]. Thus, most methods that use
PPIN for disease gene identification or related tasks (e.g. protein function
prediction) make use of these hypotheses and assume that the genes of C

2Note that in the context used here genes and proteins can be used synonymously.
Many PPIN do not distinguish isoforms of genes, so that one can say that two genes
interact with each other, although actually the gene’s products interact with each other.
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Symbol Definition

K A set of genes known to be associated with a particular
phenomenon, e.g., phenotype, cellular process, disease.

C A set of candidate genes from which one (or multiple)
genes should be extracted or listed first when the set C is
ordered by some method.

G = (V, E) A graph with m = |V| nodes and the edge set E.

gi A node of graph G, e.g. referring to a gene. The index i
denotes which row or column corresponds to this node in
the matrices A, A′, or R.

A Adjacency matrix of a graph G.

A′ The column normalised adjacency matrix of a graph G.

I The identity matrix.

~p0 m × 1 start vector with non-zero values for the nodes
where the random walk starts. For n start nodes the val-
ues at the corresponding indices are set to 1/n for equal
start probabilities for each of the nodes. The values for all
other nodes are set to zero.

~p∞ m × 1 proximity vector. The value ~p∞[i] is the probabil-
ity of the random walker being in node i after an infinite
number of time points t.

R The precomputed random walk matrix, where each entry
R[i, j] contains the probability of being in node i after an in-
finite number of steps, given that the random walk started
in node j.

Table 2.2: A summary of the symbols and notations used throughout chap-
ter 2. Short definitions are listed as well.
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Figure 2.1: The general idea of PPIN-based guilt-by-association methods,
which aim at prioritising genes for their involvement in a particular phe-
notype. A set of candidate genes C is identified, e.g., by linkage analysis
and afterwards investigated for association with genes already known (K)
to be involved. The candidates ranked first are then selected for further
investigation in wet labs.
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are likely candidates if they are located in the PPIN vicinity of the genes
from K. During the last few years, several methods to measure this vicin-
ity have been used and evaluated for their applicability in human disease
gene identification.

The hypothesis of the method developed by Oti et al. [2006] is that
disease genes tend to interact directly with other known disease genes, an
observation previously described by Gandhi et al. [2006]. If a gene from C
directly interacts with a gene from the set K, it is considered to be the gene
bearing the disease-causing mutation. Note that, in their work, the set K
is the set of all genes known to be associated with any known hereditary
disease. This means that every gene suggested by this method interacts
with a gene causing any disease, but this disease may be totally unrelated
to the disease investigated by the user.

An extension of this approach, developed by Xu and Li [2006], identi-
fies patterns of topological graph measures of the genes of K, in order to
set up associations to the genes of C. Genes from C which show similar
patterns as the genes from K are considered to be likely disease relevant.
Their method makes use of several local topological features of disease
genes, such as the degree, or the frequency of other disease genes in the
set of direct neighbors and in the set genes having a shortest-path distance
of two. Also, they calculated the average shortest path distance of disease
genes to all other disease genes. They chose the k-nearest neighbours ma-
chine learning algorithm to perform the classification, and performance
measures showed again that PPIN can be a good means for identifying
genes related to disease phenotypes.

A very similar method was developed by George et al. [2006]. One as-
pect of their work was to identify novel disease genes by finding proteins
that are linked with the product of a known disease gene in the same path-
way, or by interaction in the PPIN. In contrast to the previously mentioned
methods, they restricted K to the set of genes known to be involved in the
disease phenotype. The list K was compiled by incorporating all disease
phenotypes where at least three disease genes have been identified.

A gene interaction network was compiled by Franke et al. [2006], for
which they integrated interactions derived from protein-protein interac-
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tions, as well as regulatory, functional, and metabolic data. Their method
assumes that genes involved in a particular disease are involved in only
a few different biological pathways. Thus, it is expected that the causing
genes from different susceptibility loci are clustered in the network. Us-
ing this hypothesis, the system analyses the user-defined (at least three)
genomic intervals and prioritises the candidate genes found to be closely
related to each other in their network.

All of the previous methods use only local properties of PPIN to define
similarity or association between the network’s nodes. The hypothesis
here is that incorporating the global structure of the network will improve
the applicability of PPIN for linking genes to phenotypes. This hypothesis
can be explained, for example, by looking at Figure 2.2 and asking if the
proteins C and A are closer to each other than C and G are. The answer
of previous approaches that used the shortest-path measure would be that
both pairs of proteins are equally similar; whereas, by visual inspection,
one would say that C and G are more closely associated with each because
of the multiple paths that connect those two.

Thus, it may in reality not really be true that “Show me your friends, and
I’ll know who you are” is enough in order to reliably generate hypotheses
using the underlying networks. More sophisticated graph and network
algorithms offer tools for understanding cellular physiology on a systems
level and also for understanding cellular responses to disease.

2.3 Random Walks on PPIN

The cell’s numerous tasks and life-sustaining responses to internal and
external signals are mostly accomplished through interactions of cellu-
lar components. These components that represent the nodes of the net-
work may correspond to proteins, genes, metabolites, non-coding RNA’s
or others. The resulting networks can be used to gain deeper insight on
how complex molecular tasks are accomplished. Furthermore, they can be
used to understand what mechanisms and patterns apply when small dis-
turbances of single nodes spread along the network’s links and affect the
function in other areas of the system [Barabasi et al., 2011]. Thus, the work-
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Figure 2.2: Small exemplary protein-protein interaction network (PPIN)
consisting of seven proteins (A,B,C,D,E,F,G).

ing hypothesis here is that behind each cellular function there is a highly
interconnected area of the cellular network, and that clinical abnormali-
ties found in genetic and other diseases are the result of breakdown of one
or multiple of such functional modules. Such modules are perhaps best
described as subnetworks of a highly complex network connecting many
cellular components and functions. A major problem in using PPIN for
this task is the enormous network-complexity with the human gene net-
work having around 25,000 nodes and several orders of magnitude more
edges.

Protein-protein interaction networks can be represented as graph struc-
tures, which in turn can be visualised, as e.g. in Figure 2.2. In this Figure, a
small toy protein-protein interaction network consisting of seven proteins
(A-G) is shown. The problem is that, due to the enormous size of real cel-
lular networks, a systems-level understanding of the inherent properties
requires more sophisticated mathematical approaches. In order to enable
this, graphs are often presented as adjacency matrices, and methods from
linear algebra are used.

An adjacency matrix A for a given graph G = (V, E) is defined as the
m× m matrix, where m is the number of nodes. Each entry at row i and
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column j is defined as

A[i, j] =

{
1 if the node i and the node j are adjacent
0 otherwise

(2.1)

The adjacency matrix A for the graph shown in Figure 2.2 (with the
nodes V = {A, B, C, D, E, F, G}) thus is:

A =



A B C D E F G
A 0 1 0 0 0 0 0
B 1 0 1 0 0 0 0
C 0 1 0 1 1 1 0
D 0 0 1 0 0 0 1
E 0 0 1 0 0 0 1
F 0 0 1 0 0 0 1
G 0 0 0 1 1 1 0


. (2.2)

As the graph G is undirected, the adjacency matrix is symmetric.
From the matrix A, the column normalised adjacency matrix (A′) can

easily be computed by normalising every column so that the entries of
each column sum up to 1, i.e.

A′[i, j] =
A[i, j]

∑m
k=1 A[k, j]

. (2.3)

The matrix A′ can be used for sophisticated graph analysis, such as the
random walk analysis. The idea of the random walk computation is to
exploit the global structure of a network by simulating and tracking the
behaviour of an artificial, random (or ’drunk’) walker. The random walker
starts at a defined node (or a set of nodes) at timepoint t and randomly
visits adjacent nodes. These walking steps are performed in every tick of
time and this process is repeated for a specific fraction of time.

For each tick of time (t→ t + 1), the computation determines the prob-
ability of the random walker being located at a node gi at timepoint t and
being located at node gj at timepoint t + 1. This is done in terms of matrix
operations by defining a vector ~pt of size m with each entry ~pt[i] giving the
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probability of the random walker being at node i at timepoint t. To com-
pute the probabilities for the timepoint t + 1, a simple matrix operation is
performed:

~pt+1 = A′ × ~pt . (2.4)

Looking at the example from Figure 2.2 and assuming the random
walker is with a probability of one located at node C (i = 3), the com-
putation becomes:



0 0.5 0 0 0 0 0
1 0 0.25 0 0 0 0
0 0.5 0 0.5 0.5 0.5 0
0 0 0.25 0 0 0 0.333
0 0 0.25 0 0 0 0.333
0 0 0.25 0 0 0 0.333
0 0 0 0.5 0.5 0.5 0


×



0
0
1
0
0
0
0


=



0
0.25

0
0.25
0.25
0.25

0


. (2.5)

In this example, it is easy to see that if the walker starts at node C and is
randomly going to one of the four adjacent nodes, then there is a chance
of 1/4 for the walker to be in one of these nodes after taking this step.

A totally random exploration of the walker is not useful, since the asso-
ciation to the start nodes would be lost after a few time points. Instead, a
restart probability (r, 0 ≤ r ≤ 1) is introduced that determines the extend to
which the random walk is reset to its initial configuration. This means the
walk starts again at the defined start nodes. For a vector of starting prob-
abilities ~p0, the state probabilities ~pt+1 can be computed iteratively [Can
et al., 2005]:

~pt+1 = (1− r)A′ × ~pt + r× ~p0 . (2.6)

For t → ∞ the state probabilities converge to a stationary distribution
~p∞. In the example of Figure 2.2, the goal was to have a measure that can
discriminate the distance between node C and A compared to the distance
between node C and G. The intuitive feeling of C and G being closer, is
well reflected using the random walk method, i.e. the probability of being
in node A when starting in node C is 0.006, whereas the probability of
being in G is approximately three times higher (0.019).
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In several projects and applications, the steady-state probability vec-
tor is determined at the time of the query by performing the iteration
from equation 2.6 until the difference between the subsequent vectors ~pt

and ~pt+1 is negligible, so that the computation can be assumed to be con-
verged. Normally this is measured by the L1 (or L2) norm, and changes
of the L1 norm below a value of 10−12 are taken as an adequate thresh-
old [Can et al., 2005]. Of course, computation time is directly influenced
by this threshold, since lower thresholds take a higher number of itera-
tions until the convergence is reached. But the additional computation
time is rewarded in an increase in precision.

The data underlying PPINs is updated regularly, but only at longer
intervals. An often used resource is the Search Tool for the Retrieval of In-
teracting Genes/Proteins (STRING) [Szklarczyk et al., 2011]. The STRING
database (Version 4.0 to 9.0) has been subject to updates on average every
250 days.3 Given that PPINs are rather stable entities, a major speedup
query time can be achieved by preprocessing the network. Furthermore,
it can be shown that it is possible to provide an exact solution rather than
the iterative approximation given above. Approaches that optimise both
the preprocessing and the query time exist, but implicate a decrease of
performance in terms of precision [Tong et al., 2006]. Precision is of high
importance for the applications presented here, and the cellular network
with less than 20,000 nodes can be precomputed in an adequate time.

The strategy, thus, is to precompute a random walk matrix, that can be
used at query time. The first step is to set ~pt+1 identical to ~pt, which is the
definitional criterion of convergence. Applying this rule to equation 2.6
gives:

~pt = (1− r)A′ × ~pt + r× ~p0 (2.7)

~pt − (1− r)A′ × ~pt = r× ~p0 (2.8)

(I− (1− r)A′)× ~pt = r× ~p0 (2.9)

~pt = (I− (1− r)A′)−1 × r× ~p0 . (2.10)

Note that the matrix I denotes the identity matrix. Equation 2.10 allows

3Data taken from http://string-db.org/server_versions.html.

http://string-db.org/server_versions.html
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one to determine the exact solution of the random walk by computing:

~p∞ = (I− ((1− r)A′))−1 × r︸ ︷︷ ︸
Precomputation as R

×~p0 . (2.11)

As stated above, the strategy is to precompute a matrix R which can be
used at query time. Thus, the precomputation becomes:

R = (I− ((1− r)A′))−1 × r . (2.12)

The matrix R, thus, stores in each column j the random walk similarity of
all nodes from node j, so that each entry R[i, j] contains the probability of
a random walker starting at node j and being at node i after an infinite
number of steps. Note that this matrix is not symmetric, i.e. it must not
be true that R[i, j] = R[j, i]. This can easily be seen from the example
in Figure 2.2. There are only two outgoing edges from node B but four
edges leaving node C. Calculating R with r = 0.75 for this graph will give
R[3, 2] = 0.1 and R[2, 3] = 0.05.

In order to compute the matrix R, one can make use of highly effi-
cient libraries such as jblas (http://jblas.org), which is a light-weight
wrapper for state-of-the-art, highly optimised linear algebra implemen-
tations, namely BLAS, LAPACK, and ATLAS. Given a PPIN of around
11,500 (m = 11, 621), the precomputation requires less than 7 GB RAM
and takes less than 15 minutes to calculate.

Once this matrix is computed, it can be written to the computer’s hard
disk for later use. Due to the huge amount of nodes and the strong connec-
tivity of many real world networks [Watts and Strogatz, 1998], this matrix
is very dense and contains a large fraction of very small values. Writing
this matrix to disk may require a lot of space. Thus, it is advisable to
store the matrix in binary format or take the logarithm of each matrix ele-
ment beforehand and round this value to, e.g., four digits after the decimal
point.

In applications, the matrix R can then easily be read from hard disk
and kept in memory for fast access times. For a given set of start nodes, a
linear combination of the corresponding columns of R can then easily be

http://jblas.org
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computed. To do so, the corresponding vector ~p0, that contains the start
node probabilities, is then multiplied with R:

~p∞ = R× ~p0 . (2.13)

In the simplest setting, the probabilities of ~p0 are set to 1/n for the n start
nodes and to 0 for the others. The resulting vector ~p∞ can be used to rank
all nodes by network similarity to the set of start nodes.

Note that other measures exploring the global structure of networks
exist. For example, the PageRank-algorithm [Page et al., 1998] is used for
information propagation across the edges of a network. This method is
different from the approach presented here, in that it represents no mea-
sure of vicinity between nodes; rather, the PageRank of a node gives an
approximation of importance or centrality.

2.4 Protein-Protein Interaction Data

For disease gene identification, a major problem is the incomplete knowl-
edge about the human genes from C, because for every gene from C that
has no interaction data, no PPIN-based method can make any statement.
This motivates an attempt to increase the coverage by means of mapping
interaction knowledge from other organisms. Also, there exist methods
that expand interaction data by predicting interactions by, e.g., text min-
ing. As mentioned, completeness of interaction data is desirable, but it is
important as well to investigate the dependence of the results from those
procedures. Thus, several different PPINs were compiled. To construct
the PPINs, protein-protein interaction datasets from five organisms were
used:

• Homo Sapiens

• Mus musculus

• Drosophila melanogaster

• Caenorhabditis elegans
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• Saccharomyces cerevisiae

The datasets were downloaded from the Entrez Gene website (July
2007). These datasets comprise interactions extracted from HPRD [Peri
et al., 2004], BIND [Alfarano et al., 2005], and BioGrid [Stark et al., 2011].
Additional interactions were extracted from IntACT [Kerrien et al., 2007],
and DIP [Salwinski et al., 2004]. The protein interactions were mapped
to the genes coding for the involved proteins, and redundant interactions
stemming from multiple data sources were removed. The interaction re-
lation was modelled as a binary relation, i.e. all interactions are treated
equally as being present or not. Furthermore, self-interactions are not con-
sidered in this analysis.

Interactions stemming from the four nonhuman species were mapped
to homologous human genes identified by Inparanoid [Ostlund et al., 2010].
Inparanoid provides a score cutoff that can be raised to exclude borderline
inparalog cases [O’Brien et al., 2005]. In order to increase the reliability
of the used ortholog predictions, an Inparanoid score threshold of 0.8 was
used to filter. If both interaction partners could still be mapped to human
proteins, the interaction was used.

This work also included data from the STRING database. STRING is
a comprehensive dataset containing functional links between proteins on
the basis of both direct experimental evidence for protein-protein interac-
tions as well as interactions predicted by comparative genomics and text
mining. STRING uses a sophisticated scoring system that is intended to
reflect the reliability of predicted interactions. In this work, interactions
with a score of at least 0.4 are included. According to Szklarczyk et al.
[2011] this corresponds to a medium-confidence network. For the analy-
sis, interactions solely identified through text mining are excluded, since
those interactions are likely introducing a bias. This bias is probable be-
cause a given gene is likely to be intensively studied in the years following
its identification as a human disease gene. In Table 2.3, the different net-
works are summarised.
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Network Number of Interactors Number of Interactions

Human 9,169 35,910
Mapped:

Worm 684 (146) 831 (768)
Mouse 1,412 (78) 1,972 (853)
Fruitfly 2,176 (590) 4,930 (4,613)
Yeast 1,557 (441) 33,396 (32,855)

Total human and mapped 10,231 74,885
All Data Sources exclud-
ing text mining data

11,673 133,612

Table 2.3: Networks tested in this work. Mapped indicates protein-protein
interaction data mapped to homologous human proteins. The number of
new interactors/interactions that were added to the interaction network
by mapping is shown in parentheses. All Data Sources denotes the STRING
data, human and mapped interactions.

2.5 Comparison of Disease Gene Prediction Meth-
ods

As mentioned above, PPINs have been used for the prioritisation or identi-
fication of the phenotype related genes from C. These use the prior knowl-
edge that the genes from K are associated to the disease (or any disease).
The methods assign scores s to each of the genes of C and rank them ac-
cording to s in ascending order. Given the matrices A and R, as well as the
gene sets C and K, three approaches can be compared.

Direct interactions (DI)

As defined by Oti et al. [2006], all genes from C that directly interact with a
gene from K are considered a candidate, i.e. ranked first place. Note that
K comprises all genes associated to any disease and not only the disease
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under investigation. For each gene gi from C the score is thus defined as:

sDI(gi) =

{
1 if ∃gk(gk ∈ K ∧A[i, k] = 1)
∞ otherwise

. (2.14)

Shortest Path (SP)

The genes from C are ranked by their single shortest path distance to a gene
from K. Let SP(gi, gj) be the function that returns the shortest path dis-
tance of two genes then for each gene gi from C the similarity is calculated
as

sSP(gi) = min
gk∈K

(SP(gi, gk)) . (2.15)

Random Walk with Restart (RWR)

Intuitively, the random walk starts with equal probabilities from each of
the known disease-gene family members (C) in order to search for an addi-
tional disease gene family member (K). Each gene from C is ranked by the
random walk with restart probability. Therefore, the start vector is created
so that for each gk from K the corresponding entry ~p0[k] is set to 1/n, where
n = |K|. The steady state probabilities (~p∞) are then calculated according
to equation 2.13. For each gene gi from C, the similarity to K is then

sRWR(gi) = ~p∞[i] . (2.16)

2.5.1 Comparison Strategy

The disease-gene families described above were used for testing. For each
family, a leave one out cross validation is performed. This means that
one gene gi of the disease gene-family is left out, whereas the others were
chosen as the set K. An artificial linkage interval is constructed as the set
of genes containing the first 99 genes located nearest to gi according to
their genomic distance on the same chromosome. Note that gi was added
as well. The goal was to rank gi, which is the true disease gene, as high as
possible.
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2.5.2 Comparison Evaluation

Enrichment Score (ES)

For a set C with n genes, the enrichment score is calculated as

ES(a, n) =
n/2

a
, (2.17)

where a is the actual rank of the true disease gene that has been left out
of the disease-gene family. The reason for calculating n/2 is that, with ran-
dom ordering, a user would expect to find the sought-after gene in the
middle of the list, which would correspond to an enrichment score of 1. If
a ranking method gives the true disease gene the highest ranking and it is
sequenced first, there is an enrichment of 50-fold, since the size of C is 100
in this thesis. Disease genes for which no interaction data are available are
given a rank of 100 (and therefore an enrichment score of 0.5). The fact
that some genes of C have no interactions at the protein level was not cor-
rected. Note that two ways of determining the rank a in cases of ties are
used. In the first case, each gene is given the mean rank of all tied genes.
The second option is the worst case scenario, in which it is assumed that
the true disease gene is the last to be sequenced from the set.

In Figure 2.3 the comparison of the three methods in terms of enrich-
ment is shown. The results are split according to disease gene family
classes (monogenic, polygenic, cancer). A clear advantage of global versus
local network search algorithms can be seen. This is especially true for the
disease-gene families classified as cancer or polygenic diseases. The RWR
method ranked all genes of 43 disease gene families first. This means,
in almost 40 % of the disease gene families this method always achieves
a perfect, 50-fold, enrichment. On average, the random walk approach
achieved a 44-fold enrichment for all 783 disease genes when using all
data sources, including the text-mining data of STRING. When excluding
interactions found by text mining, this enrichment value drops to 27-fold
(shown in Figure 2.3). This is a hint towards a systematic bias towards
disease gene interactions (interactions between disease genes) introduced
by text mining data.
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Figure 2.3: Comparison of enrichment scores for the tested methods. Here
the network containing all-interactions but excluding the STRING text-
mining data is used. The disease gene families are classified into three
groups. Note that in the case of multiple genes receiving the same score,
each gene is given the mean rank of all tied genes. A clear performance
improvement of global (RWR) versus local (SP,DI) measures can be seen.
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The advantage of global network measures is achieved through an in-
creased resolution of the rankings. In the text mining filtered network,
genes have a high average degree of 22.9, which means they have almost
23 direct interaction partners in the network. In addition, there is a mean
path length of only 3.7 between randomly chosen pairs of genes. This
means, for all nodes one can expect a high number of direct interaction
partners, and pairs of nodes are rarely far apart in the interactome. A di-
rect consequence of this is that local similarity methods, such as DI and
SP, are observing a high proportion interactions that have a high chance of
being unrelated to the problem under investigation. Here, in 61 % of the
cases in which the DI method correctly identifies the true disease gene, it
additionally identifies other unrelated genes with a direct interaction to
a known disease gene. On the other hand, in only 1.4 % of the cases in
which the true disease gene is ranked in first place by the RWR method,
another unrelated gene was also given the same score. Obviously, the
RWR method is better able to discriminate among genes within a dense
network of interactions by incorporating the global network structure into
the calculations. This is true independently of how the rank of the of the
true disease gene is determined in cases of tied rankings (see Figures 2.3
and 2.4).

Receiver-Operating Characteristic (ROC)

Another often used measure of the performance of the methods is the
receiver-operating characteristic (ROC) analysis. It plots the true-positive
rate (TPR) versus the false-positive rate (FPR) subject to the decision thresh-
old separating the prediction classes. During ROC analysis every possible
decision threshold is tested. The TPR/FPR is the rate of correctly/incor-
rectly classified samples of all samples classified to class +1. For evaluating
rankings of disease-gene predictions, ROC values can be interpreted as a
plot of the frequency of the disease genes above the threshold versus the
frequency of disease genes below the threshold, where the threshold is a
specific position in the ranking [Aerts et al., 2006]. In order to compare
different curves obtained by ROC analysis, the area under the ROC curve
(AUROC) is calculated for each curve.
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In order to compare the different prioritisation methods (RWR, SP, DI),
the ROC curves were plotted in Figure 2.4. For this plot, the network that
contains all interactions but excludes the STRING text-mining component
is used. The curve labeled “random order” displays the results obtained
by the sequencing of genes within the linkage interval at random, i.e.,
without use of any prioritisation method. As for the enrichment evalu-
ation, a clear advantage of the global network similarity measure can be
seen. The random walk approach achieves an AUROC value of 91.2 %,
which is more than 7 % higher than the AUROC of the SP approach. SP
and DI achieve an AUROC of 84.1 % and 73.2 %.

These results are independently confirmed in the work of Navlakha
and Kingsford [2010]. A comparison of seven PPIN-based methods for
determining gene-to-phenotype associations is performed. It was again
found that the RWR approach individually outperforms clustering and
neighborhood approaches.

In recent years, it became more and more evident that networks per-
vade almost all aspects of human health. Instead of only looking at lists of
disease genes, it is important to examine subnetworks of the cellular sys-
tem and apply network approaches to the analysis of cellular functions.
This is necessary for a detailed understanding of complex disease mecha-
nisms [Barabasi, 2007]. Lim et al. [2006] showed an example for the com-
mon observation that proteins mutated in phenotypically similar diseases
form highly interlinked subnetworks within the larger protein interaction
network. Compared to analyses that measure only direct interactions and
shortest-path distances, random walk analyses in PPINs enable one to take
the global structure of the interactome into account. In the test case of
identifying phenotype-gene associations, these have a clear performance
advantage.

In summary, the analysis suggests that the assumption that phenotyp-
ically similar diseases are associated with disturbances of subnetworks
within the protein interactome is correct. Also, it becomes obvious that the
exploration of global network structures with appropriate graph-theoretic
algorithms is an important approach towards understanding the biologi-
cal foundations of phenotypes in PPINs.
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Figure 2.4: Rank ROC curves for the 110 disease-gene families and the
three tested approaches. Intuitively, the area under the ROC curve (AU-
ROC) reflects the false-positive rate needed in order to achieve a certain
level of sensitivity, with a perfect classifier having an AUROC of 100 %
and a random classifier having an AUROC of 50 %. Note that disease
genes with no interaction data were excluded for this evaluation. Here,
if a prioritisation method assigns an identical score to a set E of multiple
genes and the true disease gene is contained in E, it is assumed that the
true disease gene is the last to be sequenced from the set E.
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2.6 KR in Molecular Biology vs. Clinical Dys-
morphology

In this work, disease-gene families have been manually compiled by clin-
ical experts. These lists are necessary, because all guilt-by-association meth-
ods rely on some predefined set of entities for which information, e.g. on
their function, exists (here K). The properties of this set can then be used to
calculate some kind of association, in order to establish a “guilt” of other
entities with, e.g., unknown function. Besides that, these predefined sets
are also an adequate means to test and compare the performance of differ-
ent methods, e.g. by leave-one-out testing.

Setting up lists of disease-gene families was possible in this work be-
cause mainly common disorders were used, for which the molecular eti-
ology has been determined. But in reality it is very often not possible to
compile lists of genes that are known to be related to a particular disease.
In the context of genotype-phenotype associations, it may well be the case
that rare and orphan diseases are investigated. These diseases have a very
low prevalence, i.e. they affect a small percentage of the population. It
can thus be impossible to suggest candidate genes for rare and orphan
diseases without a known molecular basis. All information that scientists
or physicians have, in this case, is a list of phenotypic features of the pa-
tient(s).

One approach to enable guilt-by-association techniques for those cases
would be to make use of this information in order to identify other dis-
eases that share the phenotypic spectrum of the patient(s) and that are
better characterised in terms of their molecular basis. This information
of the molecular basis can then be used to measure “association” of candi-
date genes (C) and subsequently establish a guilt for the “most associated”
genes. The bottleneck then becomes the lack of an approach to reliably de-
termine phenotypic similarity.

In recent years, novel research techniques in biology have accumu-
lated enormous amounts of data. In order to integrate, unify, reliably re-
trieve, and compute on this data, vocabularies with a well-defined and
explicit semantics are needed. Knowledge that is stored in a structured
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way can then be linked to the molecular databases [Bard and Rhee, 2004].
In the area of cell biology, the Gene Ontology (GO) is successfully applied
to solve this problem, which in turn motivated the introduction, promo-
tion, and success of several biomedical ontologies (bio-ontologies). But
the rapid changes on the molecular biology side of genotype-phenotype
research are not reflected on the clinical side. This means that one of the
most limiting factors for the coming era of next generation sequencing for
personalised medicine will be clinical knowledge representation, i.e. the
clinical analysis of affected individuals is largely hampered by the lack of
standards.

Although abnormalities in phenotypes are among the most reliable
manifestations of altered gene functions, research using systematic anal-
ysis of phenotype relationships to study human biology is still in its in-
fancy [Lussier and Liu, 2007]. The current “standards” for representing
phenotypic features of patients in publications are mainly free text, or in
the best case, tables that summarise this information. Hence, the literature
becomes a phenotypic “database”. But standardised clinical descriptions
and systematic storing procedures are not available, so that easy tasks,
such as the identification of phenotypically overlapping syndromes, are
hampered. In conclusion, one can infer that, if a decade ago the sys-
tematic storage of molecular biological knowledge was the major bottle-
neck, it now becomes obvious that the lack of standards for phenotypic
information is currently the major bottleneck in genotype-phenotype re-
search [Biesecker, 2005]. Systems to allow for calculating similarity be-
tween and grouping of phenotypes, patients, and syndromes are essential.
This will become especially important with next generation sequencing
techniques and personalised medicine being a realistic objective for the
coming years.
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. . . that prose is a poor medium by
which developmental anomalies should
be codified and recorded, and for this
reason it is necessary to begin to
construct a standardized nomenclature
of clinical phenotyping.

BIESECKER [2005]

Chapter 3

Phenotypes in Ontologies

3.1 Bridging the Gap of Knowledge Representa-
tion

As mentioned above (see Section 2.6), there exists a huge gap between the
sophisticated methods to store, integrate, and analyse the data of molec-
ular biology and the counterpart for phenotypic knowledge. As a result,
development of phenotypic databases dramatically lags behind the rapid
advance in genomic databases [Lussier and Liu, 2007]. Thus, it is a major
requirement to develop approaches towards standardisation of phenotype
terminology, measuring and annotation techniques, and the encoding and
recording of data [Biesecker, 2005]. The development of novel appropriate
analytic tools should, of course, be part of this process.

3.1.1 Problems of Missing Standards

The great majority of human hereditary syndromes have been described in
detail in the Online Mendelian Inheritance in Man (OMIM) database [Am-
berger et al., 2009]. It is often regarded as the single most valuable re-
source of human genetics. Recently, hierarchical systems that are based on
the clinical descriptions in OMIM have been generated by automatic text
mining [van Driel et al., 2006, Masseroli et al., 2005]. But those approaches
have been hampered by the lack of controlled vocabularies. Also, the
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poor consistency of annotations and the lack of well-defined relationships
between phenotypic features obstructs progress in the field of genotype-
phenotype research.

To give an example, there are four phenotypic features for four differ-
ent syndromes in OMIM (accessed November 17th 2011):

• generalized amyotrophy (OMIM:601162)

• generalized muscle atrophy (OMIM:613561)

• muscular atrophy, generalized (OMIM:609241)

• muscle atrophy, generalized (OMIM:258450)

Computational text mining based approaches might not easily recognise
these four descriptions as synonyms.

Homonymic terms are another problem, which inherently lead to false-
positive hits during text-based searches. For example, querying OMIM
using the word “ventricle” will return both, entries mentioning abnor-
mal brain ventricles and entries containing heart ventricle abnormalities, al-
though one can assume that the user wanted only one of both classes of
abnormalities to be returned.

OMIM provides a categorisation of the phenotypic features according
to the affected organ system. For example, in the description of Marfan
syndrome (OMIM:154700), aortic root dilatation is listed under the category
cardiovascular and the subcategory vascular. But the fact that this hierar-
chy is very flat (only three levels deep) prevents more elaborate computa-
tional analyses. For example, the category nose lists the features hypoplastic
nasal septum, smooth philtrum, and hypoplastic philtrum. Cases like this pre-
vent automatic analyses from detecting that smooth philtrum and hypoplas-
tic philtrum are more closely related to one another than to hypoplastic nasal
septum.

3.1.2 Need for Standardisation

Figure 1.5 illustrates a subset of possibilities that are opened when such a
harmonisation of data is achieved. First of all, given standardised terms
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of phenotypic abnormalities, a network of phenotypic features can be con-
structed, in which the relationships and groupings between the terms are
made explicit. On the side of cellular networks, this allows one to lo-
cate modules that are correlated with specific phenotypic features. Syn-
drome networks can be created by identifying relationships among dis-
orders based on phenotypic information. This can be used to establish
syndrome families, from which functional genomic relationships can be
inferred when phenotypic similarities within disease families are assumed
to be related to dysfunction of a regulatory network, such as a signaling
pathway or a biochemical module.

In summary, phenotypic analysis is of great importance for the under-
standing of physiology and pathophysiology of cellular networks because
it can offer clues about groups of genes that, in cooperation, make up mod-
ules or pathways in which errors or dysfunction possibly lead to related
or similar phenotypic consequences. There are several unresolved issues
surrounding the computational description and analysis of human pheno-
types [Robinson et al., 2008]. In order to gain a detailed understanding of
the relationship between genotype and phenotypes, accurate, precise, and
comparable phenotypic information is of major importance. Although
free-text descriptions in natural language allow for the highest expressiv-
ity, this results in data that are very difficult to compute over [Mungall
et al., 2010].

3.2 The Human Phenotype Ontology

There are several considerations that suggest that an ontological descrip-
tion of human phenotypes has distinct advantages. Therefore, an ontol-
ogy to describe human phenotypic abnormalities was developed. The Hu-
man Phenotype Ontology (HPO) has the main goal of covering the complete
set of phenotypic abnormalities that are commonly encountered in human
monogenic syndromes.

This was done by using the file omim.txt1 from the OMIM website.

1url: ftp://ftp.ncbi.nih.gov/repository/OMIM/ARCHIVE/omim.txt.Z

ftp://ftp.ncbi.nih.gov/repository/OMIM/ARCHIVE/omim.txt.Z
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This file was parsed with a suite of Java programs and Perl scripts, and
the “Clinical Synopsis” (CS) section was extracted for each syndrome. The
basic hierarchy structure provided by OMIM was maintained. For every
syndrome, a list of free-text phenotypic features was thus obtained. Only
those features that were used at least twice in the complete omim.txt were
kept. For example the term aortic root dilatation was kept, since it is used
to describe a number of diseases such as Marfan syndrome and Ehlers-
Danlos syndrome, type I (OMIM:130000). On the other hand, terms such
as medial rotation of the medial malleolus, which is only used once as a feature
of Marfan syndrome, were excluded.

Using the software OBO-Edit [Day-Richter et al., 2007], the HPO was
initially constructed on the basis of the list of CS descriptions from the file
omim.txt. OBO-Edit is an ontology visualisation and editing tool, which
is particularly useful for the viewing, editing and creation of biomedi-
cal ontologies. An HPO-term was created for every distinct phenotypic
description of the CS-list extracted from OMIM. Synonymic descriptions
were merged into one term. For example, the four descriptions listed
in Section 3.1.1 were merged into the HPO term generalized amyotrophy
(HP:0003700).

In order to support manual curation, clusters of textually similar de-
scriptions were suggested by adopting the Smith-Waterman alignment al-
gorithm [Smith and Waterman, 1981] for this task. This approach was also
used to suggest synonymous or more specific descriptions of HPO terms
that occurred only once in the omim.txt file. In the case of more specific de-
scriptions, a child term was created during manual curation. The domain
knowledge of the manual curators was also used to define the semantic
relationships to more general terms. Due to this, the HPO has a very deep
hierarchy, compared to the three levels used by OMIM. For example, the
term aplasia/hypoplasia of the outer ear was created and the related terms
were linked there. The terms in the HPO are related to parent terms by
is a (subClassOf in OWL) relationships and the terms are allowed to have
multiple parents. This allows for the expression of various aspects of phe-
notypic features, as in, for example, the term hip dislocation in Figure 3.1. It
is possible to express that this feature is both an abnormality of the hip joint
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’Class’ of phenotype HPO examples

morphological abnormality Wide nose (HP:0000445), Arachnodactyly (HP:0001166)
abnormal process (organ) Epistaxis (HP:0000421), Ileus (HP:0002595)
abnormal process (cellular) Abnormality of amino acid metabolism (HP:0004337),

Abnormality of Krebs cycle metabolism (HP:0000816)
abnormal laboratory finding Hyperlipidemia (HP:0003077), Glycosuria (HP:0003076)
electrophysiological abnormality Decreased nerve conduction velocity (HP:0000762),

Hypsarrhythmia (HP:0002521)
abnormality by medical imaging Butterfly vertebrae (HP:0003316), Choroid plexus cyst (HP:0002190)
behavioural abnormality Nystagmus-induced head nodding (HP:0001361), Self-mutilation (HP:0000742)

Table 3.1: Different types of phenotypic abnormalities covered by the
HPO.

and a joint dislocation.

In medical contexts, the word phenotype is usually used to refer to some
deviation from “normal”, and this is the definition taken by the HPO.
Many different types of phenotypic abnormality are represented in the
HPO. This includes, besides morphological signs, also cellular, physiolog-
ical, and behavioral abnormalities. A summary of different types of ab-
normalities is shown in Table 3.1. Similar to GO, the HPO provides three
sub ontologies, whereas the major fraction of terms describe phenotypic
abnormalities. There are separate ontologies that describe the mode of in-
heritance and the onset and clinical course.

The HPO was used annotate all clinical entries of OMIM. Subsequently,
annotations to entries of the Database of Chromosomal Imbalance and
Phenotype in Humans Using Ensembl Resources (DECIPHER) [Firth et al.,
2009] database and Orphanet [Aymé, 2003] were enabled, due to semi-
automatically generated mappings from the phenotype vocabularies used
by these databases to the HPO. All of the mappings were manually con-
firmed or improved by a medical expert (Sandra Doelken, Peter Robin-
son). Using an iterative process more and more entries from those data-
bases are now integrated into the HPO repository.

All annotations are made to the most specific terms possible, and the
annotation propagation rule applies to these annotations. More details on
this rule can be found in Section 1.3.2. From this rule follows that the
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Figure 3.1: Excerpt of the Human Phenotype Ontology. A phenotypic fea-
ture of Kabuki syndrome is the congenital hip dislocation. Because of the
“annotation propagation” the syndrome is implicitly annotated to all an-
cestor terms, such as joint dislocation and abnormal joint morphology.
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annotated to relation is propagated along the is a to all ancestral terms.
For example, since Kabuki syndrome is annotated to congenital hip dislo-
cation it can be inferred that all of the ancestors of this term (e.g. joint
dislocation) also apply.

HPO annotations also include a number of metadata items that allow
the addition of further specifications. Each annotation is provided with a
datasource, in most cases the name of the biocurator. Furthermore, the ev-
idence code of an annotation indicates how the annotation to a particular
term is supported. Initially the annotations were automatically generated
from OMIM, so these were assigned the evidence code “IEA” (inferred
from electronic annotation). Since 2008, many records have been revised
and extended by expert biocuration. These annotations are given the code
“PCS” (published clinical study), and the source of the study is indicated
(usually, this is a PubMed ID). The evidence code “ICE” can be used for
annotations based on individual clinical experience. This may be appro-
priate for disorders with a limited amount of published data when anno-
tated by an experienced clinician. This must be accompanied by an entry
in the DB:Reference field denoting the individual or center performing the
annotation, together with an identifier. Additionally, the evidence code
“ITM” (inferred by text-mining) can be used to mark annotations retrieved
by text-mining efforts.

Another important characteristic of an annotation is the frequency with
which individuals with a given disease have a certain phenotypic feature.
For instance, 9 of 43 persons with the disorder sialidosis type II have as a
phenotypic characteristic a cherry red spot of the macula. This can be impor-
tant for differential diagnostic purposes. For instance, if 100 % of patients
with some other disease X have cherry red spot of the macula then, all else
being equal, a person with cherry red spot of the macula would be more likely
to have disease X than sialidosis type II. In many cases, exact numerical in-
formation on a frequency is not available, and more or less vague terms
such as “occasional” are used in medical textbooks and articles. Descrip-
tions such as these have been used in extremely variable ways in the med-
ical literature. The HPO team has defined a set of eight such categories to
describe the frequency of features (Table 3.2).
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Description % of patients

very rare 1%
rare 5%
occasional 7.5%
frequent 33%
typical 50%
common 75 %
hallmark 90 %
obligate 100 %

Table 3.2: Eight frequency categories for features in HPO annotations. For
instance, if we say that feature α is hallmark in disease X, then we mean
that 90% of individuals with disease X have feature α. Numerical values
are given for the categories to provide a rough guide.

The HPO (November 21st, 2011) contains 10,218 terms and 13,473 se-
mantic relationships. There are 56,641 annotations to 5,035 OMIM entries.
Mappings between HPO terms and the vocabulary of the LDDB and the
Orphanet [Aymé, 2003] signs and symptoms vocabulary were created.
This semantic structure of the HPO allows flexible searches for diseases
according to phenotypic abnormalities. This has been implemented in the
tool PhenExplorer2. Recently, Orphanet has made a large number of an-
notations for rare diseases available. These data are particularly valuable
because most of the phenotypic features have been assigned to one of three
frequency categories by expert annotation. This was used to explore the
annotations in the setting of neurogenetic disease in the second part of the
following chapter, where the Orphanet data has been used to supplement
data from OMIM and biocuration by the HPO team.

A summary of symbols and notations can be found in Table 3.3.

2http://compbio.charite.de/phenexplorer

http://compbio.charite.de/phenexplorer
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Symbol Definition

D A set of HPO terms that represent the phenotypic abnor-
malities associated with patients suffering from a specific
disease.

Q A query that contains a set of phenotypic abnormalities
represented by HPO terms.

q Size of the query Q, i.e. the number of HPO terms.

BMAasym Calculation of asymmetric semantic similarity between
two sets of ontology terms as explained in Section 1.3.3
(Equation 1.4).

BMAsym Calculation of symmetric semantic similarity between two
sets of ontology terms as explained in Section 1.3.3 (Equa-
tion 1.5).

FV Feature Vector. Used to calculate a similarity between Q
and D.

SD Empirical score distribution of an object for a given q.

Pest Estimated P-value. Calculated using an empirical score
distribution SD. For a given semantic similarity score (e.g.
BMAasym) the statistical significance of this score can be
determined.

n The number of Monte Carlo sampling steps used to calcu-
late the empirical score distribution used for Pest

Table 3.3: A summary of the symbols and notations used throughout chap-
ter 3. Short definitions are given as well.
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3.3 Classification of Syndromes

It can be shown that the HPO and the annotations of diseases are able to
capture phenotypic similarity. This was done by calculating the semantic
similarity between diseases that are annotated to HPO terms. In recent
work by Goh et al. [2007], diseases were classified based on the physiolog-
ical system affected. For the analysis here, 727 diseases belonging to one
of 21 classes were included. A network was constructed in which every
node represents a disease and every edge reflects the phenotypic relation-
ships between these diseases. All pairs of diseases are linked if their se-
mantic similarity score (BMAsym, see Section 1.3.3, Equation 1.5) exceeds
the threshold of 4.5.3 This network is visualised in Figure 3.2. It can be
seen that the diseases cluster according to the predefined disorder classes
that were generated independently by Goh et al. [2007]. But there also ex-
ist links between clusters reflecting the phenotypic relatedness of distur-
bances in specific organ systems. For instance, immunological and hemato-
logical disorders are strongly connected to each other. Also, bone disorders
are strongly connected to skeletal disorders, and neurological, muscular, and
psychiatric disorders are multiply linked to one another. These intercon-
nections were not visible in the disease map based only on shared disease
genes in the work by Goh et al. [2007]. Furthermore, clusters also con-
tain diseases from different classifications, but do in fact share important
phenotypic features. This can be seen, for example, in the muscular cluster
which contains four diseases classified as metabolic disorders. These four
diseases, Enolase-beta deficiency, MCardle disease, dimethylglycine dehydroge-
nase deficiency, and elevated serum creatine phosphokinase, show important
muscular symptoms.

Analysis of randomised versions of this network showed that the ob-
served correlation between network connections and disease class is highly
significant [Robinson et al., 2008]. Thus, this phenotypic network, as de-
fined by the HPO, is made up of dense clusters of shared phenotypic
features that show characteristic patterns of interconnections between se-
lected areas of the phenotypic continuum.

3This threshold was chosen to decrease the number of edges in the graph visualisation.
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Figure 3.2: 727 diseases listed in OMIM and classified according to the af-
fected physiological system by Goh et al. [2007]. The disease-nodes are
colored according to their disorder class. The thickness of the links reflects
the degree of phenotypic similarity. Abbreviations: CV, cardiovascular;
derma, dermatological; endo, endocrinological; heme, hematological; im-
muno, immunological; metab, metabolic; neuro, neurological; ophth, oph-
thalmological.
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In order to reconfirm the usability of the HPO for determining disease
similarity, a similar analysis is performed on a different dataset. Orphanet
provides, besides others, a classification of rare diseases elaborated using
existing published expert classifications. The Orphanet classification of
rare neurological diseases was downloaded4 from the orphadata.org web-
site. For every disease in this classification hierarchy, the most general
disease classification(s) (i.e. level one diseases) was assigned and taken as
the broad classification(s) of this disease. For example, the disease X-linked
distal spinal muscular atrophy is classified as both Neuromuscular disease and
Rare peripheral neuropathy. For each category, the number of diseases was
determined, i.e. the number of descendant nodes in the Orphanet classifi-
cation. The ten categories with the highest numbers of diseases were used
for the analysis and can be seen in the legend of Figure 3.3. All diseases
that belong to at least one but not more than four categories were included.

For each of the selected diseases, all annotations from Orphanet were
transferred to HPO-terms. These annotations were completed with the
HPO-annotations from the corresponding OMIM entries. To map the Or-
phanet diseases to one or multiple OMIM disorders, the Orphanet cross-
reference file5 was used. Diseases were excluded if they had less than three
HPO annotations.

Again, the symmetric similarity measure as described before (BMAsym,
see Section 1.3.3, Equation 1.5) was used to define the phenotypic simi-
larity between all pairs of diseases. If a pair of diseases had a semantic
similarity of 3.0 or higher6, an edge between the two diseases was added
to the graph shown in Figure 3.3. The resulting network consists of 354
nodes and 1,316 edges. The nodes are colored according to their classifi-
cation membership (using the MultiColoredNodes Plugin [Warsow et al.,
2010] for Cytoscape [Smoot et al., 2011]). If an edge is drawn between
two diseases that share the same category, the edge is colored using the
color for that category. Edges connecting diseases that share multiple cat-
egories are colored yellow (see legend). Also, the edge thickness is chosen

4http://www.orphadata.org/data/xml/en_product3_181.xml, accessed June 2011
5http://www.orphadata.org/data/xml/en_product1.xml, accessed June 2011
6This threshold was chosen to decrease the number of edges in the graph visualisation.

http://www.orphadata.org/data/xml/en_product3_181.xml
http://www.orphadata.org/data/xml/en_product1.xml
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proximal spinal 
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dominant 

Proximal spinal 
muscular atrophy 

type 3 

Proximal spinal 
muscular atrophy 

type 4 

Proximal spinal 
muscular atrophy 

type 1 
Proximal spinal 

muscular atrophy 

Autosomal 
dominant 

Charcot-Marie-Tooth 
disease type 2C Distal hereditary 

motor neuropathy, 
Jerash type 

Monomelic 
amyotrophy 

X-linked distal 
spinal muscular 

atrophy 

Spinal muscular 
atrophy with 

respiratory distress Distal hereditary 
motor neuropathy 

type 2 

Distal hereditary 
motor neuropathy 
type 3 and type 4 

Autosomal 
recessive lower 
motor neuron 
disease with 

childhood onset 

Distal hereditary 
motor neuropathy 

type 7 

Autosomal 
dominant 

Charcot-Marie-Tooth 
disease type 2E 

Giant axonal 
neuropathy 

Charcot-Marie-Tooth 
disease type 2B2 

Amyotrophic lateral 
sclerosis 

Amyotrophic lateral 
sclerosis-parkinsonism-dementia 

complex 

Hereditary motor 
and sensory 
neuropathy, 

Okinawa type 

Pontocerebellar 
hypoplasia type 1 

Proximal spinal 
muscular atrophy 

type 2 

Hereditary motor 
and sensory 

neuropathy type 5 

Childhood-onset 
proximal spinal 

muscular atrophy, 
autosomal 
dominant 

Charcot-Marie-Tooth 
disease type 1E 

Hereditary 
myoclonus - 

progressive distal 
muscular atrophy 

Distal hereditary 
motor neuropathy 

type 1 

Autosomal 
dominant 

Charcot-Marie-Tooth 
disease type 2F 

Autosomal 
dominant 

Charcot-Marie-Tooth 
disease type 2D 

Autosomal 
recessive 

intermediate 
Charcot-Marie-Tooth 

disease type A 

Recessive 
mitochondrial 

ataxic syndrome 

Sialidosis type 2 Congenital 
sialidosis type 2 

Juvenile sialidosis 
type 2 

Myoneurogastrointestinal 
encephalopathy 

syndrome 

Progressive 
external 

ophthalmoplegia 

Sensory ataxic 
neuropathy - 
dysarthria - 

ophthalmoparesis 

Sialidosis type 1

Figure 3.3: Network of Orphanets rare neurological diseases based on seman-
tic similarity in the HPO. The “organic layout” feature of Cytoscape was
used to create the graph. Afterwards some nodes were moved manually
to improve readability.

to correlate with the degree of semantic similarity between the connected
diseases.

The clustering shown in Figure 3.3 is a visualisation of the phenotypic
relationships that exist between the ten largest classes of rare neurological
diseases. Although the clustering procedure knew nothing of the classifi-
cation assignment of the diseases to the ten classes, the resulting network
clearly shows that the diseases cluster, in great measure, according to the
assignment by the Orphanet disease classification. This is an indirect con-
firmation of the correctness of the disease classification, in the sense that
the classification of the diseases reflects the spectrum of shared and dis-
tinct phenotypic abnormalities that characterise the diseases. In addition
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to this, there appear to be some interesting interconnections between some
of the clusters. For instance, a cluster of rare peripheral neuropathy diseases
shows a number of links to the diseases that are classified as neuromuscu-
lar diseases. This reflects the well-known similarity of muscular and neu-
rologic phenotypes in this special field of neurogenetic diseases, and con-
firms the connections shown in Figure 3.2. A phenotype such as muscle
weakness may be either caused by a primarily muscular problem or a prob-
lem of the muscular innervation, i.e. caused by a neural deficiency. The
links between those two clusters reflect the situation in clinical practice
and show that there is much more phenotypic similarity between periph-
eral neuropathies and neuromuscular diseases than between these two
and, for example, ataxias. In some cases, phenotypic similarity is present
even between diseases that belong to different Orphanet classifications. In
Figure 3.3, this is indicated by gray edges. For instance, sialidosis type 1 is
classified as a neurometabolic disease, whereas the other sialidosis types are
classified as rare intellectual deficit. Another example is Niemann-Pick dis-
ease type A, which is classified as a neurometabolic disease, rare epilepsy, and
rare movement disorder. According to the results of the analyses presented
here, this disease shows a high phenotypic similarity to Niemann-Pick dis-
ease type B which is classified as rare peripheral neuropathy and thus shares
no classification in Orphanet with the Niemann-Pick disease type A.

Thus, HPO-based phenotypic analysis can be used to point out areas
in the Orphanet classification that require curator attention. Therefore,
such approaches can be used to systematically improve the quality of the
classification. In the future, these methods might also help to place novel
neurogenetic diseases correctly. Given a set of clinical features inherent
to the novel disease, an algorithm could then place this syndrome accord-
ing to its phenotypic similarity to already existing disease ontologies and
nosologies.
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3.4 Computational Phenotype Guided Clinical Di-
agnostics

As has been shown above, the semantic structure of the HPO can well
capture phenotypic similarities between known syndromes. Clinical ge-
neticists are often in a different situation, in which patients with different
phenotypic features present and ask for a diagnosis. Note that diagnosis
can have different meanings in medicine. It may denote the process of the
identification of the exact causal nature of a patient’s syndrome. But it may
also refer to the task of assigning the patients conditions to a classification,
which can then give insight into possible ways of treatment or informa-
tion on prognoses [Pelz et al., 1996]. In this work, the second definition of
diagnosis applies.

The task of establishing the correct diagnosis is arguably the most im-
portant role of the physician. Especially in medical genetics, this task can
be very challenging, due to the huge number of Mendelian and chromo-
somal disorders. Each of these disorders often has numerous phenotypic
features, and these features are often shared among different diseases.
Also, variable expression and pleiotropy may affect the patient’s pheno-
typic occurrence. Thus, patients may have different, partially overlapping
combinations of clinical signs and symptoms, which complicates the pro-
cess of identifying the correct differential diagnosis. However, a prompt
and correct genetic diagnosis is essential, because thereby it is possible to
avoid unnecessary diagnostic procedures, identifying appropriate thera-
peutic measures and clinical management strategies, and providing ade-
quate genetic counseling. However, an etiological diagnosis can be made
in only about half or fewer of the children presenting with dysmorphic
signs with or without mental retardation [Köhler et al., 2009].

In order to aid clinicians in medical genetics with these tasks, sev-
eral tools and databases were developed. For example, the commercial
programs “Pictures of Standard Syndromes and Undiagnosed Malforma-
tions” (POSSUM) [Bankier and Keith, 1989] and London Dysmorphology
Database (LDDB) [Fryns and de Ravel, 2002] were created. Alternatively,
the freely accessible data repositories from the OMIM and Orphanet web-
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sites can, to some extent, be used for this purpose. In these tools and
platforms, the typical workflow starts with a user entering one or more
clinical phenotypes that the patient(s) presents with. From this, a list of
candidate diagnoses is created, each of which is characterised by some or
all of the entered phenotypes. However, these tools do not provide explicit
rankings or define measures of plausibility for the potentially long lists of
results [Pelz et al., 1996]. Also, none of the methods is able to exploit the
semantic relationships that exist between clinical phenotypes in order to
weight the candidate syndromes.

Here, it was evaluated how well ontological search routines based on
the structure of the HPO can improve this process. As introduced in Sec-
tion 1.3.3, semantic similarity measures can be used to define similarity
scores that weight clinical features on the basis of their specificity. The
strategy is that a user enters HPO terms describing the clinical abnormali-
ties observed in a patient (query) and a ranked list of the best matching dif-
ferential diagnoses (diseases) is calculated. This ranking can be calculated
using raw semantic similarity, but this measure has inherent problems.

3.4.1 Significance of Semantic Similarity Searches

There are two major problems with the commonly used semantic similar-
ity scores, e.g. the one introduced in Section 1.3.3. First of all, the raw
similarity score depends on a number of factors, including the number
and specificity of the terms both of the query and of the diseases repre-
sented in the database. It is thus not possible to say what score constitutes
a “good match” for a general query. Especially when ranking all objects of
a database by semantic similarity, one is not able to determine if the object
that achieved the highest similarity represents a meaningful result.

Second of all, semantic similarity scores are highly correlated with an-
notation length [Wang et al., 2010]. That means the more annotations an
object has, the higher will be its semantic similarity score for a given query
(protein or syndrome annotations). Together with the fact that well stud-
ied diseases and genes are having more annotations, this may introduce
an undesirable bias for a tool aimed at supporting clinical geneticists.
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In the case of the application studied here, the search is based on a
query Q consisting of q HPO-terms. Q consists of the clinical phenotypes
seen in a patient. For this patient, the most likely differential diagnosis
is sought. To find this diagnosis, every disease D in the database used to
calculate the semantic similarity s = BMAasym(Q, D), whereby D has an-
notations to HPO-terms that correspond to the signs and symptoms char-
acterising the disease.

When applying Equation 1.4, for each of the q terms the best match to
one of the terms from D is found and the average over theses scores is
determined. All disease are ranked according to this score, with the top
ranked diseases representing the suggested differential diagnosis. As can
be seen in this calculation, the score that a disease can achieve varies with
the number of annotations of D and the specificity (measured by IC) of
the annotated HPO-terms [Schulz et al., 2011]. As noted by Wang et al.
[2010], this and similar measures are biased towards domain objects that
have more annotations. Thus, the rankings of diseases that are based on
the scores alone tend to preferentially select items with higher numbers of
annotations, which may lead to wrong conclusions.

Therefore, a statistical model was developed that assigns a P-value to
each of the raw semantic similarity scores. This P-value reflects the prob-
ability of a randomly chosen query Qr of same size q obtaining the same
or a higher semantic similarity to D than Q. This P-value is calculated
by n times generating a random query Qr consisting of q HPO-terms and
calculating the similarity sr = BMAasym(Qr, D).

At first, an empirical score distribution SD of size n for a disease D
and a query size q is generated. This is done by performing a Monte Carlo
sampling to approximate the score distribution. For this, a set R is gen-
erated that consists of n randomly generated queries of size q. The score
distribution is then

SD(q, D) = {sr|sr = BMAasym(Qr, D), Qr ∈ R} (3.1)

From this empirical score distribution, one can easily determine an esti-
mated P-value by calculating the fraction of cases where a random query
Qr leads to score sr that is higher than (or equal to) the score s from the
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actual query Q:

Pest(s, q, D) =
|{sr|sr ≥ s, sr ∈ SD(q, D)}|

n
. (3.2)

This then compensates for the fact that different domain objects have
a different number of annotations and subsequently leads to the hypoth-
esis that rankings based on this P-value are better suited in the setting of
medical diagnostics.

For comparison, a simple feature vector (FV) method was implemented
as well, in which the exact overlap between Q and D is calculated. This
method is meant to be similar to text-matching methods used by POSSUM
and the London Dysmorphology Database (LDDB) [Fryns and de Ravel,
2002], as well as the search routines available with the OMIM website and
Orphanet. Note that there was no attempt to perform an explicit compari-
son with these databases because of the different clinical vocabularies used
by each of these databases and the fact that they do not provide a ranking
for the results of searches. The FV-score is thus the size of intersection
between the sets of terms Q and D, i.e.

FV(Q, D) = |{Q ∩ D}| . (3.3)

Note that the FV method does not take the semantic inheritance structure
of the HPO into account.

3.4.2 Clinical Diagnostics with Semantic Similarity Searches

It was tested how well semantic similarity searches in the HPO are suited
in the setting of clinical diagnostics, when a patient’s phenotypic features
are used to rank all entries of a disease database. Three methods are eval-
uated:

• Feature Vector (FV)

• Semantic Similarity Score (BMAasym)

• P-value of the Semantic Similarity Score (Pest)
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Strategy

It is complicated to validate such a diagnostic procedure using data from
real patients. One of the major reasons is that it is difficult to obtain phe-
notypic information on hundreds or thousands of patients. This would be
required in order to calculate statistical measures during validation. This
data would have to be collected by normalised and standardised proce-
dures and stored using controlled vocabularies for comparability. Instead,
an automated procedure was used for testing, in which “simulated pa-
tients” are generated on the basis of clinical features among persons diag-
nosed with a certain disease. Although it is not correct, an independence
between the occurrence of individual clinical features was assumed, due
to the fact that sufficient data are currently not available for modeling of
the interdependencies of clinical features.

Query Modification

The phenotypic features of the artificial patients were modified in order to
test the performance of the methods in the presence of two typical inaccu-
racies that have to be expected in day-to-day situations.

The first difficulty with clinical databases is that physicians may not
choose the same phrase to describe some clinical anomaly as that which is
used as a feature for a syndrome in the database. This can either happen
because the physician is unaware of the correct terminology or because
detailed laboratory or clinical investigations have yet to be performed and
a clinical anomaly can only be described on a general level. This type of
inaccuracy is referred to as imprecision. For the simulation, if imprecision
was applied to the query Q, every term of Q was exchanged with proba-
bility 0.5 with one of its parent terms, if possible. That means that no term
was exchanged if the parents were only the root or the direct subclass of
the root.

A second typical scenario in clinical practice is that patients not only
have phenotypic signs and symptoms that are related to some underlying
disorder but may also have several unrelated clinical problems. This will
be referred to as noise. The simulation of noise was performed by exchang-
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ing a specific fraction of terms of Q with randomly chosen HPO terms. For
3 ≤ q ≤ 5, all but 2 terms were replaced by random terms. For q in the
range of 6 to 8, only 3 terms were not replaced by randomly chosen HPO
features. For q ≥ 9, only 4 terms were kept. If q was less than 3, no noise
was introduced.

When both noise and imprecision are applied, the first step was to intro-
duce imprecision and afterwards the noise-step was applied. This is impor-
tant for cases where the first modification may lead to a reduced number of
Q, which may happen if two query terms are mapped to the same parent
term.

Methods Tested

Three methods (FV, BMAasym,Pest) were tested for their ability in ranking
the correct differential diagnosis.

Here the focus is the ranking of diseases with only a few annotations.
Thus the methods were tested with 2,727 diseases with at least two but no
more than ten annotations to an HPO-term from the phenotypic abnormal-
ity (HP:0000118) subontology of the HPO were extracted. Note that the
performance advantages shown here are also valid when all diseases irre-
spective of their annotation size are taken into account [Bauer, 2011, Bauer
et al., 2012]. For each of the diseases, an artificial patient was generated
and used as query. For testing, the query was also modified by introduc-
ing imprecision, noise, or both. The query was then used to rank all 5,035
HPO-annotated diseases using one of the measures (FV, BMAasym , Pest

with n = 103). Afterwards, the rank of the disease from which the query
was initially generated was calculated. In case of ties, the average rank
was taken. For example, if four diseases rank first with the same value, all
four diseases obtain rank 2.5. Note that for the rankings based on Pest all
diseases were ranked first by Pest and then by the score BMAasym.

As can be seen in Figure 3.4, the inclusion of the semantics of pheno-
types defined in the HPO can improve the performance of a differential
diagnosis search tool. It can be seen that the FV method has a slight ad-
vantage in the ideal situation when the query is not modified, or in the
case when only noise is introduced. The effect of imprecision simulates the
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situation when a physician enters a HPO term to describe a phenotypic
feature that is more general than the term used to describe the disease in
the database. It can be seen that the performance of the FV method greatly
suffers in this situation. On the contrary, the ontological methods intu-
itively use the semantic structure of phenotypes encoded in the ontology
to recognise that the imprecise term has a meaning similar or related to
that of the term used in the database. Thus, the methods BMAasym and Pest

show only a minimal decrease in the ranking performance.

The Pest-based ranking method, which bases the ranking on the P-value
of attaining a given score for each disease in the database, is superior to the
results of ranking on the basis of the raw similarity scores BMAasym. This
reflects the fact that the distribution of similarity scores is not the same
for all diseases in the database, and suggests that search methods that in
fact do take the local score distributions into account are superior [Schulz
et al., 2009, 2011, Köhler et al., 2009]. In sum, it was shown that ontologi-
cal approaches are especially robust in the presence of inaccuracies in the
terms used to query a database.

For the results shown in Figure 3.4, the Pest rankings were based on
quite a small number of randomisation steps, i.e. n = 103. In order to
estimate the influence of the parameter n on the ranking performance, the
results were compared to rankings based on a higher number of sampling
steps, i.e. n = 104 and n = 105. These results are shown in Figure 3.5,
where it can be seen that the performance improves with higher n. In the
work by Schulz et al. [2011], a novel algorithm was developed, which for
small q can compute the exact calculation of the P-values. This algorithm
does not use the extensive simulation procedure and largely improves the
ranking performance in the setting of HPO-based diagnosis identification.
Unfortunately, this approach again becomes computationally too expen-
sive for q larger than six.
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Figure 3.4: Rankings of correct differential diagnosis of the simulated
patients by the feature vector method (FV), semantic similarity score
(BMAasym), and the P-value of the semantic similarity score (Pest). Lower
ranks indicate superior performance, whereby the optimal rank is 1. A
boxplot of the ranks of the correct diagnosis for each of the simulated pa-
tients is shown for the three methods tested. Also, the results for the dif-
ferent combinations of adding “noise” and/or “imprecision” are shown.
Each boxplot shows 50 % of the data points surrounding the median in the
box, where the position displays the skewness of the data. The whiskers
extend to the most extreme data point that is no more than 1.5 times the
length of the box away from the box. More extreme outliers are displayed
as circles. Below the boxplots the mean of the ranks is shown. It can be
seen that the rankings based on Pest method are especially robust when
parent terms of syndrome annotations are used in the query, which is
essential in the setting of clinical diagnostics. The rankings in presence
of “noise” can be improved for the sampled Pest (here n = 103) method,
which is shown in Figure 3.5 and the publication by Schulz et al. [2011].
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Figure 3.5: Ranking performance is improved when more sampling steps
are performed when creating the empirical score distribution. In the paper
by Schulz et al. [2011], it is shown that calculating the exact score distribu-
tion improves the results even more, but this computation is still infeasible
for queries consisting of more than 6 terms.
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3.4.3 The Phenomizer

The algorithms described before are implemented in a web application
called the Phenomizer [Köhler et al., 2009], which is a GWT7-based rich
internet application, meaning that it has much of the functionality of stan-
dard desktop applications, but requires no installation. To increase func-
tionality the GWT-EXT8 library was used. One of the major aims was to
provide an easily accessible tool for physicians all over the world.

The Phenomizer was thus developed to be platform independent and
users of this tool are only required to have an internet connection and a
browser (i.e., Safari, Internet Explorer, Chrome, or Firefox). To the best
of the author’s knowledge, this is the only freely available tool for clinical
diagnostics in human genetics with semantic similarity searches in ontolo-
gies. Three years after its initial publication, the Phenomizer is still accessed
approximately 900 times per month by users all over the world.9

The Phenomizer in Clinical Practice

The usability of some of the features implemented in the Phenomizer10 in
clinical practice is delineated here in short. For this, a short example work-
flow is outlined.

It is assumed that a boy has developmental retardation as a major in-
dication. The physician in charge finds that the boy has an arachnodactyly
and furthermore notices an abnormality of the sternum. When using the cor-
responding HPO terms as a query, the similarity to each of the diseases in
the database is calculated. Therefore, the P-value is adjusted by multiple-
testing correction. The default multiple-testing correction method for the
Phenomizer is that of Benjamini and Hochberg [Benjamini and Hochberg,
1995], but users can choose among several other multiple-testing correc-
tions. The corrected P-values are calculated using R [R Development Core

7Google Web Toolkit, http://code.google.com/webtoolkit/
8http://www.gwt-ext.com
9Estimate generated evaluating one month (26th June 2012 – 26th July 2012)

using the tool available at http://www.revolvermaps.com/?target=enlarge&i=

4qfhq0flvot&color=ff0000&m=3.
10http://compbio.charite.de/phenomizer

http://code.google.com/webtoolkit/
http://www.gwt-ext.com
http://www.revolvermaps.com/?target=enlarge&i=4qfhq0flvot&color=ff0000&m=3
http://www.revolvermaps.com/?target=enlarge&i=4qfhq0flvot&color=ff0000&m=3
http://compbio.charite.de/phenomizer
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Team, 2011] on the server side.
For the query related to the young boy above, the Phenomizer will re-

turn several OMIM entries, all of them having no significant P-value. This
lack of significance reflects the fact that the clinical findings are not specific
enough, per se, to allow a diagnosis. For these situations, the Phenomizer
can be used to generate a list of clinical features that are most specific for
individual syndromes in a set of previously selected candidate diagnoses.
In the example used here, 13 top-scoring diseases were selected and the
Improve Differential Diagnosis functionality was used. In the list of specific
features the arterial tortuosity, generalized is shown, which could prompt
further investigations such as magnetic resonance imaging of the vascu-
lature. The addition of this HPO term to the list of the patient’s features
leads to a significant P-value for Loeys-Dietz syndrome (Type 1A and 1B)
and Arterial tortuosity syndrome.

The clinical features listed by the Phenomizer can suggest further exact
clinical examination (e.g., fine, brittle hair) or technical examinations (e.g.,
radiography to search for codfish vertebrae). In many cases, adding a fea-
ture from the list of specific terms results in a disease ranking, in which
only one or a few syndromes have a significant P-value. Thus, the Phe-
nomizer can function as a tool for planning of further clinical workup by
referring patients to an appropriate specialised physician, or to initiate the
appropriate genetic mutations analysis.



76 Phenotypes in Ontologies



All models are wrong, but some models
are useful.

GEORGE E. P. BOX [1979]

Chapter 4

Semantic Web Techniques for
Genotype to Phenotype Discovery

4.1 Logical Definitions of Phenotypes

With the enormous increase in biomedical data and publications, the use
of controlled vocabularies and ontologies for representing biomedical en-
tities gained in importance, with the Gene Ontology (GO) being probably
the most successful representative in the field of bio-ontologies. There ex-
ist several ontologies, each of which has evolved from a specific discipline
in biomedicine. A major problem is the lack of interoperability between
ontologies of different domains of biomedical knowledge. The elimination
of this gap is one of the major aims of the OBO Foundry (see Section 1.3.2).

In principle, a good way to develop ontologies is to define complex
classes in terms of other more elementary (atomic) classes (building blocks).
When doing so, several ontologies would use shared building block on-
tologies further increasing interoperability across a larger domain.

Unfortunately, due to historical reasons, the creation of ontologies such
as the GO, the Mammalian Phenotype Ontology [Smith et al., 2007] (MPO),
or the HPO, predated typical building block ontologies. Examples for
building block ontologies that can be used for representation of classes
of phenotypic abnormalities are given in Table 4.1. OBO Foundry ontolo-
gies, such as the GO [Mungall et al., 2011], the MPO [Smith et al., 2005],
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Domain Name (Abbreviation) Reference

biochemistry Chemical Entities of Biological Interest (ChEBI) De Matos et al. [2010]
proteins Protein Ontology (PR) Natale et al. [2011]
cell types Cell Ontology (CL) Bard et al. [2005]
anatomy (human) Foundational Model of Anatomy (FMA) Rosse and Mejino [2003]
anatomy (mouse) Mouse adult gross anatomy (MA) Finger et al. [2011]
anatomy (zebrafish) Zebrafish anatomy and development (ZFA) Sprague et al. [2008]
phenotype Phenotype, Attribute and Trait Ontology (PATO) Gkoutos et al. [2004]

Table 4.1: Examples of typical building block ontologies for the biomedical
domain. Here the focus lies on ontologies that can be used to represent
complex classes of phenotypic abnormalities.

the HPO [Robinson et al., 2008, Gkoutos et al., 2009], the Worm Phenotype
Ontology [Schindelman et al., 2011], and also the CL [Meehan et al., 2011],
are now developing logical definitions for ontology terms using terms from
other building block ontologies, with PATO, an ontology of phenotypic
qualities, being a key tool in this effort [Gkoutos et al., 2004, 2009].

To reach the goal of interoperability in biomedicine, the approach taken
here is termed EQ, which was developed for the biomedical domain. In
the EQ-approach, the main idea is that phenotypic descriptions can be ab-
stracted into two parts. First, an entity that is affected, i.e. the thing for
which observations are made. This can be entities of various types, e.g., a
protein, a cellular compartment, or an anatomical structure. Second, the
quality of that entity, which is described in a qualitative or quantitative
way [Gkoutos et al., 2004]. In the typical setting, a phenotype is described
using a class expression consisting of a PATO quality class differentiated
by a bearer entity class (from an OBO ontology) using the inheres in re-
lation (from OBO Relation Ontology) [Hancock et al., 2009].

This approach has several advantages. Firstly, consider, for example,
all the terms that deal in some way with the chemical entity glucose. E.g.

• glucose metabolic process from the GO

• abnormal glucose tolerance from the MPO

• glucose intolerance from the HPO
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• glucose 1,6-bisphosphate synthase from the PRO

A major target is now, that all those terms make use of the term glucose
(CHEBI:17234) from the Chemical Entities of Biological Interest ontology
(ChEBI) by referring to it as the entity. It is easy to see, that this would
make it trivial to query across different databases and domains for bio-
medical entities that are related to glucose.

Besides increasing interoperability, this would also imply that only a
minimum number of definitional relations would have to be asserted, be-
cause relations would then be defined in the building block ontology (here
ChEBI). These building block assertions can subsequently form the ba-
sis for inferring logical consequences in ontologies referring to it [Köhler
et al., 2011]. In the glucose example, super- and subclass relations of glu-
cose are defined in ChEBI, e.g. glucose is defined to be a subclass of aldohex-
ose (see Figure 4.1).

To give an example for logical definitions, consider the HPO term Hy-
poglycemia and its E/Q definition, specified in OBO Format:

[Term]

id: HP:0001943 ! Hypoglycemia

intersection_of: PATO:0001163 ! decreased concentration

intersection_of: qualifier PATO:0000460 ! abnormal

intersection_of: towards CHEBI:17234 ! glucose

intersection_of: inheres_in FMA:9670 ! Portion of blood

The word Hypoglycemia refers to an abnormally decreased concentra-
tion of glucose in the blood. The logical definition uses relations and fol-
lows the pattern described in previous work on defining phenotypes by
Mungall et al. [2011]. The logical semantics are made explicit when trans-
lating the definitions to the Ontology Web Language (OWL) [Motik et al.,
2008]. The translation to OWL is the subject of current research [Mungall
et al., 2010, Hoehndorf et al., 2011a, Loebe et al., 2012] and a more detailed
discussion is out of scope of this thesis. The translation is done by using
the oboformat library1 and the chosen model leads to the desired infer-
ences. The translation is shown in Manchester syntax. Note that for the

1http://code.google.com/p/oboformat

http://code.google.com/p/oboformat
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purpose of increased readability, only the term’s labels are shown and the
ontology URIs are skipped.

Class: Hypoglycemia

EquivalentTo:

has_part some:

’decreased concentration’ and

towards some ’glucose’ and

inheres_in some ’portion of blood’

and qualifier some ’abnormal’

The class Hypoglycemia is defined as being equivalent to the intersection
of all classes of things that are “A concentration which is lower relative
to the normal” (decreased concentration), “deviate from the normal or aver-
age” (abnormal), with respect to (towards) glucose , and inhering in “blood”
(using the term portion of blood from the FMA). The formal inheres in rela-
tion expresses the relationship between qualities and their bearers. In this
case the bearer of the quality is the blood. The relation towards is used to
connect the quality (here, decreased concentration) to the additional entity
type on which the quality depends (here glucose). By applying this to the
term for glucose in the ChEBI ontology, it is essentially stated that the con-
centration is a concentration “of” glucose. Thus, the term Hypoglycemia is
defined as the intersection of these four classes. The details on the exact
format specifications can be found in Mungall et al. [2010].

Given that logical definitions exist for the major fractions of classes of
an ontology, one can apply automatic reasoners. As stated in Section 1.3,
these are systems for computing the logical consequences that can be in-
ferred from a set of asserted axioms. As mentioned above, glucose is de-
fined to be a subclass of aldohexose in ChEBI. Assume that there exists an-
other HPO-term (besides Hypoglycemia) called Decreased aldohexose concen-
tration (blood), and this term is defined almost equivalent as Hypoglycemia
(only replacing the ChEBI reference to ’glucose’ by ’aldohexose’). The
reasoner is then able to automatically infer that Hypoglycemia is a subclass
of Decreased aldohexose concentration (blood). These connections are illus-
trated in Figure 4.1.
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inferred: is a

InferenceLogical Definitions

Class: Hypoglycemia
 EquivalentTo:
  has_part some:
   'decreased concentration' and
   towards some 'glucose' and
   inheres_in some 'portion of blood'
   and qualifier some 'abnormal'

Class: Decreased aldohexose
       concentration (blood)
 EquivalentTo:
  has_part some:
   'decreased concentration' and
   towards some 'aldohexose' and
   inheres_in some 'portion of blood'
   and qualifier some 'abnormal'

Decreased 
aldohexose 

concentration 
(blood)

Hypoglycemia

Building block 
(ChEBI)

aldohexose

is a

glucose

Figure 4.1: Illustration of the approach to build phenotype ontologies
based on building block ontologies. Here two classes, Hypoglycemia and
Decreased aldohexose concentration (blood), are defined equivalently, except
for the molecule that is affected (glucose vs. aldohexose). Given the two
logical definitions, a reasoner can be used to infer that the two pheno-
type classes are in a subclass relationship based on the asserted link in the
building block ontology.
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This means that reasoners are able to use computable, logical defini-
tions to infer the positions of classes in a subsumption hierarchy. Thus,
those definitions can be helpful tools for the development of ontologies
and their maintenance [Mungall et al., 2011], for example, by evaluating
the overlap and disagreement between manually asserted and automat-
ically inferred subclass relationships [Köhler et al., 2011]. This has been
implemented in a tool called GULO (Getting an Understanding of LOgical
definitions), which checks if, e.g., the link between Hypoglycemia and De-
creased aldohexose concentration (blood) would exist in both ontologies, the
manually curated HPO, and the automatically reasoned ontology, which
is based on the logical definitions.

4.2 Inference of a Cross Species Phenotype On-
tology

4.2.1 Model organism data

The use of non-human models for the understanding of human disease
has proved to be one of the most powerful approaches to understanding
the pathobiology of human disease [Rosenthal and Brown, 2007, Lieschke
and Currie, 2007, Schofield et al., 2010]. They are an important source of
data on normal and patho-biological phenomena, because many experi-
ments cannot be performed in humans for various reasons. Next gener-
ation sequencing has enabled the generation of the genome sequences of
the most important model organisms (and their strains), such as mouse,
zebrafish, and fruitfly. The amount of phenotype information on model
organism is now increasing, with the literature currently being the most
prominent source of phenotype annotations. For example, curators from
the Mouse Genome Database annotate mouse genes with terms from the
MPO based on evidence in published articles. Additionally, major inter-
national efforts were put forward recently to systematically analyse the
effect of genomic variation on the model organism’s phenotype. The In-
ternational Knockout Mouse Consortium (IKMC) has been put forward
to knockout every gene in the mouse genome and, together with, the
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pan-genomic phenotyping efforts of the International Mouse Phenotyp-
ing Consortium (IMPC), this allows the mapping of phenotypes together
with direct validation of candidate genes through the knockout pheno-
type [Schofield et al., 2012]. Similar approaches are taken in other model
organisms, such as zebrafish (Danio rerio) [Bradford et al., 2011].

A typical approach to predict the function of a human gene or its in-
volvement in a pathological process using model organism data is to trans-
fer the knowledge from model organism genes to its ortholog counterpart
in human. The orthology relationships between model organism genes
and human genes have extensively been studied and although this is still
an active area of research it is assumed here that orthology relations to hu-
man genes from the considered model organisms are given [Fang et al.,
2010]. Also, it is assumed that orthologous genes are involved in ortholo-
gous pathways and that this scaffold can then be used to transfer informa-
tion on a particular gene in a model organism to its ortholog human coun-
terpart [Schofield and Hancock, 2012]. The increasing influence of system-
atic phenotype-guided studies (IMPC, ZFIN) has led to a growing inter-
est in phenotypic data, but has also revealed several challenges regarding
the determination of a particular phenotype as well as the computational
representation of phenotypic data. Besides the need of standardised phe-
notyping procedures, it is crucial to develop appropriate ontologies to de-
scribe phenotypes, so that phenotypic descriptions can be related to each
other in a systematic and coherent way, even between species [Rosenthal
and Brown, 2007].

A major problem is the lack of common semantics across databases,
because previously mostly free-text descriptions or different vocabular-
ies were used. This impedes sophisticated interoperable datasets, which
consequently implies that the orthology scaffold can’t be used in its full
potential, since phenotype data is not easily transferrable from model or-
ganisms to human. As can be seen in Figure 4.2, there is a huge amount of
data in model organisms that scientists wish to harvest, and the discrep-
ancy between small number of human genes with phenotype information
and the number of systematically phenotyped model organism genes is
expected to increase even more in the near future.
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1843 Human genes
with ortholog in mouse/zebrafish and 

HP annotation

6535 Mouse genes
with human ortholog and 

MP annotation

1625 Zebrafish genes
with human ortholog and 

ZFIN annotation

50

435

4460 526

332

717

1026

Figure 4.2: A Venn diagram illustrating the amount of human, mouse,
and zebrafish orthologous genes with phenotypic information. One can
see that there are 5,703 (4,460 + 717 + 526) genes with phenotype data in
mouse or zebrafish for which the human ortholog gene has no phenotype
data.
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Cross-species ontology-based approaches offer a promising new meth-
odology to reliably detect phenotypic similarities between human disease
manifestations and model organism phenotypes [Washington et al., 2009,
Hoehndorf et al., 2011b, Chen et al., 2012]. They can pave the way to gain
clinically relevant insights from the over 5,000 genes for which, currently,
only mouse and zebrafish phenotypic information is available (see Fig-
ure 4.2).

4.2.2 Uberpheno construction

In this thesis, the above mentioned EQ-approach is used to generate a sin-
gle cross-species phenotype ontology (Uberpheno) for human, mouse, and
zebrafish phenotypes. When defining phenotypes using the EQ-model,
the affected entity can either be a biological function or process from GO,
or an anatomical entity. Some of the ontologies used to create the defini-
tions are largely species independent (GO, ChEBI). However, anatomical
entities are mostly defined by referring anatomy ontologies that are spe-
cific for one species. In order to enable reasoning across these vertebrate
anatomies, the metazoan, species independent Uberon ontology is used
in constructing anatomically-based cross-products [Mungall et al., 2012,
Schofield and Hancock, 2012]. In order to construct Uberpheno, an equiv-
alence axiom was generated between every class in Uberon that contains
a cross-reference to a species anatomy ontology class. Note that very gen-
eral terms from Uberon such as tissue were excluded. These terms were
identified by their membership to the subset upper level in Uberon.

Logical definitions have been developed for GO [Mungall et al., 2011],
MPO [Mungall et al., 2010], and HPO [Gkoutos et al., 2009]. Almost all
logical definitions refer to classes from other ontologies. A set of logi-
cal definitions is again an ontology itself. These bridging ontologies (also
called cross-product files) are available on the main OBO Foundry web-
site2, as well as from the individual repositories for each of the projects.

An example for a logical definition is presented in the previous section.
A total of 4,874 such EQ definitions were created for HPO terms and used

2http://www.obofoundry.org/index.cgi?show=mappings

http://www.obofoundry.org/index.cgi?show=mappings
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Ontology File Size

HPO logical definitions hp-equivalence-axioms.obo 4,874
MPO logical definitions mp-equivalence-axioms.obo 6,679
GO logical definitions using Uberon biological process xp uber anatomy.obo 1,484
Behavior xp behavior xp.obo 110

Table 4.2: HPO and MPO files downloaded from http://code.

google.com/p/phenotype-ontologies. Behaviour files downloaded
from http://code.google.com/p/behavior-ontology. GO-xp file
downloaded from http://obofoundry.org/cgi-bin/detail.cgi?id=

biological_process_xp_uber_anatomy.

for this project. A summary of the logical definitions used can be found in
Table 4.2. The phenotype ontology logical definitions provide axioms that
connect phenotype classes to multiple classes in most of the ontologies
listed in Table 4.3.

The HPO and MPO logical definitions were augmented with pairwise
equivalence axioms generated by lexical matching. These mappings are
represented in a file mp hp-align-equiv.owl (see the project code archive3

or the phenotype ontologies archive on Google code4). A total of 1,064
such lexically derived equivalence axioms were derived in this way and
used to supplement the semantic analysis.

One of the files (see Table 4.2) defines GO process terms by the anatomy
term to which the process is related. For example

id: GO:0048069 ! eye pigmentation

intersection_of: GO:0043473 ! pigmentation

intersection_of: occurs_in UBERON:0000970 ! eye

In order to use these definitions, the different relationships used therein,
such as occurs in, have to be made interpretable for the reasoner. For
this project, an additional ontology called extra equiv.owl was created in
which these relationships are made a subPropertyOf of inheres in.

3https://compbio.charite.de/svn/hpo/trunk/misc/uberpheno
4http://code.google.com/p/phenotype-ontologies

http://code.google.com/p/phenotype-ontologies
http://code.google.com/p/phenotype-ontologies
http://code.google.com/p/behavior-ontology
http://obofoundry.org/cgi-bin/detail.cgi?id=biological_process_xp_uber_anatomy
http://obofoundry.org/cgi-bin/detail.cgi?id=biological_process_xp_uber_anatomy
https://compbio.charite.de/svn/hpo/trunk/misc/uberpheno
http://code.google.com/p/phenotype-ontologies


4.2 Inference of a Cross Species Phenotype Ontology 87

For zebrafish, no pre-composed ontology of phenotypic abnormalities
exists (e.g. there exists no phenotype term such as decreased width of dor-
sal aorta). Instead, the ZFIN project makes use of so-called post-composed
annotations, using a combination of classes in the EQ model. Thus, a trans-
lation table was implemented, as described in the publication by Mungall
et al. [2010], to generate the ontology zp.owl. For every modified gene, a
set of post-composed phenotype annotations is stored in a file (ZFIN phe-
notype annotation file). For every unique annotation for zebrafish genes,
a class in the ZP identifier space is created. Again, the aforementioned
translation to OWL is applied. For example, a zebrafish gene annotation
with

Entity=ZFA:0000014 (dorsal aorta),

Quality=PATO:0000599 (decreased width) and

Qualifier=PATO:0000460 (abnormal)

generates an OWL class:

Class: ZP_0013789

Annotations: label "abnormally decreased width dorsal aorta"

EquivalentClassOf:

has_part some:

PATO_0000599 and

inheres_in some ZFA_0000014 and

qualifier some PATO_0000460

Beside generating the ZP-ontology, the annotation relation between the
zebrafish genes and ZP-term is written to a file called zp.annot. These
annotations are used later (see Section 4.3.1).

The ontologies used to construct Uberpheno are summarised in Table 4.3.
The ontologies that are contained in the OBO Foundry5 were downloaded
on February 15, 2012.

At first, a single, merged OWL ontology is created from all the ontolo-
gies and bridging axioms. The ELK reasoner [Kazakov et al., 2011] was
used to calculate subclass and equivalence relationships between classes.

5http://www.obofoundry.org/

http://www.obofoundry.org/
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Ontology Description File

IMR Molecule role (INOH Protein-/family name ontology) MoleculeRoleOntology.obo
MA Mouse adult gross anatomy adult mouse anatomy.obo
BFO Basic Formal Ontology bfo-1.1.owl
CL Cell Ontology cell.obo
ChEBI Chemical Entities of Biological Interest chebi.obo
GO Gene Ontology gene ontology.1 2.obo
HPO Human Phenotype Ontology human-phenotype-ontology.obo
FMA Foundational Model of Anatomy (adult human) fma2 obo.obo
MPO Mammalian Phenotype Ontology mammalian phenotype.obo
NBO Neuro Behavior Ontology behavior.obo
MPATH Mouse Pathology mouse pathology.obo
PR Protein Ontology pro.obo
PATO Phenotypic Qualities quality.obo
BSPO Spatial Ontology spatial.obo
UBERON Multi-species anatomy uberon.obo
ZFA Zebrafish anatomy and development zebrafish anatomy.obo

Table 4.3: Ontologies used to generate the Uberpheno ontology. The GO
files were downloaded from http://www.geneontology.org. The files re-
lated to the NBO were downloaded from http://code.google.com/p/

behavior-ontology.

These steps are implemented within the GULO framework [Köhler et al.,
2011]. After the ontology has been reasoned, the Ontologizer API [Bauer
et al., 2008] was used to merge all clusters of equivalent classes together
into a single class. The HPO identifier is taken as the primary identifier if
present.

An excerpt of the Uberpheno ontology is shown in Figure 4.3. There
one can see how the phenotypic descriptions from different ontologies
are combined and automatically organised into a single hierarchy. For
instance, the fact that the mouse term ventricular hypoplasia is inferred to
be a subclass of the human term Hypoplastic heart can be used to transfer
the information that the mouse gene Wasf2 is known to cause ventricular
hypoplasia. In this case, it is possible combine this knowledge with the an-
notation of the human gene TBX5 to the HPO term Hypoplastic heart.

http://www.geneontology.org
http://code.google.com/p/behavior-ontology
http://code.google.com/p/behavior-ontology
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abnormally 
hypoplastic heart Hypoplastic heart

abnormally increased duration 
circadian sleep/wake cycle, sleep

prolonged 
circadian period

 Sleep-wake cycle 
disturbance

annotated to

TBX5

annotated to

cdc73

Zebrafish term (ZP)

HPO term

MPO term

Zebrafish gene

Human gene

Mouse gene

Legend:

inferred: 
annotated to
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Figure 4.3: Excerpt of the Uberpheno ontology to illustrate how informa-
tion on phenotypic abnormalities in different organisms can be combined.
It also illustrates how the annotations of genes can be transferred across
different species by means of orthology relationships of genes.
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4.3 Cross Species Analysis of CNV Phenotypes

In section 1.1.2, copy number variations (CNVs) are introduced as an im-
portant source of human DNA polymorphism. Sequencing of individuals
often reveals hundreds of CNVs, but it is often difficult to interpret their
phenotypic consequences. Reliable interpretation of CNV data is often
difficult and requires expertise.

In assessing a patient with a range of phenotypes and an identified
CNV, it is essential to ascertain whether the CNV is causative for the dis-
ease or merely incidental. If the CNV is, in fact, the cause of the disease, it
is then important to know which of the genes located within the CNV are
associated with which of the phenotypic features.

Because phenotypes for mutations in single genes are often not avail-
able from human studies, the approach presented here mobilises model
organism mutant phenotype data using the Uberpheno ontology described
in the previous section. This approach makes it possible to connect human
disease symptoms and observations made in model organisms. The whole
approach is based upon the established premise that pathogenetic mech-
anisms are evolutionarily conserved [Schofield et al., 2011]. The project
presented here investigates the relationship between human phenotypes
associated with recurrent CNV disorders, and phenotypic abnormalities
associated with human and model organism single-gene diseases whose
(orthologous) genes are located within the CNVs. An overview of the
complete approach presented here is given in Figure 4.4.

4.3.1 Data for CNV Analysis

In order to perform the analysis, three major data sets have to be compiled.
First, the orthology relationships between model organism genes and hu-
man genes have to be set up. Secondly, the annotation of the genes with
phenotype terms are required. Finally, the CNV disorders have to be an-
notated by the phenotypic abnormalities associated with the disorder and
the set of genes affected within the aberration has to be defined.



4.3 Cross Species Analysis of CNV Phenotypes 91

Orthology Data

For mouse genes, the file HMD HumanPhenotype.rpt from the MGI website
was used to define the orthology relations to human genes [Blake et al.,
2011]. MGI provides a curated set of mammalian orthologs which is con-
structed through an iterative process using both computational and man-
ual approaches6.

In order to assign zebrafish genes to their human ortholog, ortho.txt
was used to determine those relations. The orthology relationships are
manually defined by ZFIN biocurators. This file is available from the ZFIN
website7.

Annotation Data

A phenotypic annotation is a statement that a given disease is charac-
terised by a phenotypic feature. The HPO has been used to annotate
5,035 diseases listed in OMIM. The HPO annotation file was downloaded
from http://www.human-phenotype-ontology.org. Because the HPO an-
notates hereditary syndromes rather than genes directly, phenotype anno-
tations are transferred to the genes that, if mutated, are known to cause the
disease. For this purpose, the genemap file from OMIM was used, which
associates human genes with OMIM diseases [Amberger et al., 2009]. Po-
sitional information for the human genes was obtained from NCBI Entrez
Gene.

Similarly as for HPO, the MPO has been used to annotate genetically
modified mice at the Mouse Genome Informatics (MGI) Project. The file
MGI PhenoGenoMP.rpt8 was used to obtain mouse gene phenotype anno-
tations [Smith et al., 2005].

As described above, EQ annotations have been used to describe the
phenotypes of genetically modified zebrafish at ZFIN. Phenotypic anno-
tations were downloaded from ZFIN9. In this project, the file zp.annot

6http://www.informatics.jax.org/orthology.shtml
7http://zfin.org/data_transfer/Downloads/ortho.txt
8ftp://ftp.informatics.jax.org/pub/reports/index.html
9http://zfin.org/zf_info/downloads.html

http://www.human-phenotype-ontology.org
http://www.informatics.jax.org/orthology.shtml
http://zfin.org/data_transfer/Downloads/ortho.txt
ftp://ftp.informatics.jax.org/pub/reports/index.html
http://zfin.org/zf_info/downloads.html
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(generated by the program described in Section 4.2) was used to obtain
zebrafish phenotype annotations [Sprague et al., 2008].

Note that annotations of model organism genes were included only if
they applied to a gene with an identified human ortholog. The amount
of genes in the three organisms, and the fractions of those that have phe-
notype annotations, is shown in Figure 4.2. In summary, there are 6,535
mouse genes with phenotype information for which a human ortholog
could be identified using information from the MGI sequence group, and
there were 1,653 zebrafish genes. Additionally, there were 1,843 human
genes with phenotype information on monogenic diseases in the HPO. In
all, there were 7,546 human genes with either phenotypic information in
human or a phenotypic annotation associated with the ortholog gene in
one of the model organisms.

CNV Data

Finally, phenotype annotations for the 27 recurrent CNV diseases analysed
in this work were created by manual curation by domain experts using
Phenote10. The incorporated CNV syndromes are listed in Table 4.5. The
annotation lists can be downloaded from the SourceForge project web-
site11.

To define which genes are affected by the CNV, a conservative ap-
proach was chosen, which means that all genes in a maximal critical re-
gion as stated by DECIPHER [Firth et al., 2009] were included. For some
diseases, a gene that was not included by DECIPHER was added by the
curator to the list for the corresponding CNV because of evidence from re-
cent publications stating involvement of the gene. The complete gene lists
for the intervals of all 27 CNV disorders are available online12.

10http://phenote.org
11http://obo.svn.sourceforge.net/svnroot/obo/phenotype-commons/

annotations/OMIM/by-disease/annotated
12http://compbio.charite.de/svn/hpo/trunk/misc/deciphergenes

http://phenote.org
http://obo.svn.sourceforge.net/svnroot/obo/phenotype-commons/annotations/OMIM/by-disease/annotated
http://obo.svn.sourceforge.net/svnroot/obo/phenotype-commons/annotations/OMIM/by-disease/annotated
http://compbio.charite.de/svn/hpo/trunk/misc/deciphergenes
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Figure 4.4: Overview of the CNV analysis performed in this chapter. Different
ontologies and logical definitions are used to generate the Uberpheno cross-species
ontology. Then the genes affected by the CNV are retrieved together with the phe-
notypic abnormalities related to the CNV disease. The phenotypes of the genes
are collected from single-gene disorders in humans as well as the phenotypes re-
lated to the orthologous genes in model organisms. This data is then analysed in a
phenome systems manner and visualised in so called phenograms. The phenograms
are used to generate hypotheses, such as the concept of phenotypic multiplicities,
in which multiple genes are said to influence one of the multiple phenotypic fea-
tures. Thus, a so called genome systems analysis is performed to try to confirm
the hypotheses generated before.
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4.3.2 Phenograms for CNV Interpretation

For the analysis of copy number variant diseases (CNVs) by means of
model organism phenotype data, so called phenograms are created. These
phenograms link the genes of a CNV with one or more of the various phe-
notypic features seen in patients with this disease. The goal is to use this
network of links in order to predict which gene or combination of genes
may be responsible for which part of the phenotypic spectrum of a CNV
disease. The symbols and their definition used throughout this part of this
thesis are given in Table 4.4.

The analysis of a CNV disorder starts with the set of genes GCNV that are
located within the corresponding genomic region. For each of the genes
g ∈ GCNV, there is a set Tg of associated phenotype terms from human
single-gene disorders and of available mouse and zebrafish models. Phe-
notype annotations for humans, mouse, and zebrafish are mapped to the
corresponding terms in Uberpheno. Similarly, TCNV represents the set of
phenotypes associated with the CNV. The manual phenotype curation of
CNV disorders also included the frequency information with which a phe-
notypic features is seen in patients with a given CNV. For the analysis
presented here, phenotypic features that are only rarely associated with
the CNV (i.e., less than 15 % of affected persons show the feature) were
removed before further analysis.

An important concept for the phenogram construction is the informa-
tion content (IC) of terms in the Uberpheno ontology. The information con-
tent (IC) of a term t is defined as the negative logarithm of the frequency
of annotations to the term [Resnik, 1995] (see Section 1.3.3). Here, the IC of
a term in Uberpheno is calculated based on the number of genes annotated
to the term in humans, mice, and zebrafish. As introduced in Section 1.3.3,
the function anc(t) returns the set of ancestral terms for a given term. Ad-
ditionally, ancs(T ) returns the ancestors of a set of terms, i.e.

ancs(T ) =
⋃

t∈T
anc(t) . (4.1)

The set of common ancestors of an Uberpheno term tg associated with gene
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Symbol Definition

g A gene.

GCNV The set of genes located within the CNV.

Tg The set of associated phenotype terms associated with
gene g.

t A term of Uberpheno.

IC(t) Information content of term t.

anc(t) A function that returns the set of ancestral terms for a
given term t.

ancs(T ) A function that returns the set of ancestral terms for a
given set of terms T .

CA(tg, TCNV) The set of common ancestors of an Uberpheno term tg asso-
ciated with gene g and the set of Uberpheno terms associ-
ated with the CNV.

tmax(tg, TCNV) The term with the highest information content from the set
CA(tg, TCNV).

D The disorder/CNV phenotypes that are explained
((in)directly connected to a gene) in the phenogram.

U The Uberpheno common ancestors shown in phenograms
(gray).

E The edges that connect elements from G, U , and D.

Gp = {g1, . . . , gn} A pheno-cluster; a set of n genes associated with one partic-
ular phenotypic feature.

Table 4.4: A summary of the symbols and notations used throughout the
chapter 4. Short definitions are given as well.
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g and the set of Uberpheno terms associated with the CNV is defined as

CA(tg, TCNV) = {t|t ∈ ancs(TCNV) ∩ anc(tg)} . (4.2)

The term from the set CA(tg, TCNV) with the highest information content
is returned by the function tmax(tg, TCNV). In cases where multiple terms
have the same maximal IC, one of them is randomly chosen.

Using these concepts introduced above, a phenogram is defined as a
structure (G,U ,D, E , `), where G refers to the genes that are annotated
to phenotypic features (in one of the organisms). Each of these features
has a common ancestor in Uberpheno with a CNV feature d. Note that
this common ancestor may be the root of the ontology for terms with no
similarity. These common ancestors must have an IC above ` in order to
be a member of the set U . The IC threshold ` is introduced to exclude
associations to relatively non-specific phenotypic features. Here, ` is set to
a value of 2.5. The CNV features d that lead to the common ancestor are
defined to be members of the set D. The set E contains directed edges that
connect genes with phenotypes of U and edges linking phenotypes of U to
phenotypes of D. In summary, G consists of all genes for which a single-
gene phenotype tg shares a common ancestor (U ) with a phenotype of the
CNV (set D), whereby the common ancestor has an information content
above the threshold `, i.e., IC(tmax(tg, TCNV)) ≥ `.

These phenograms can be nicely visualised using the Gephi-toolkit li-
brary [Bastian et al., 2009], whereby the genes are colored blue, the ex-
plained CNV phenotypes (D) are colored red, and the above threshold
common ancestors (U ) are shown in gray. The genes are connected to one
or more phenotype terms tmax. For visualisation purposes, the thickness of
edges between genes and phenotypes reflect the number of phenotype an-
notations (tmax) that support this link. Also, these edges are labeled with
the amount of supporting phenotype annotations in HP (HS for Homo
Sapiens), MP (MM for Mus Musculus), or ZP (DR for Danio Rerio). Note
that every path that leads from a gene to a CNV phenotype represents a
possible explanation, i.e. it can be hypothesised that the gene plays a role
or is causative in the development of this particular phenotype of the CNV.

A representative phenogram is shown for Williams-Beuren syndrome
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Syndrome MIM ID Genes Phenogram matches

1q21.1 susceptibility locus (TAR) 274000 19 (3) ITGA10, TXNIP, HFE2
1p36 microdeletion syndrome 607872 70 (12) SKI, GABRD, HES5, DVl1, GNB1, PEX10,

TP73, VWA1, NOC2L, AGRN, PRDM16,
PRKCZ

3q29 microduplication syndrome 611936 22 (2) DLG1, NCBP2
9q subtelomeric deletion syndrome 610253 8 (2) EHMT1, CACNA1B
15q24 microdeletion syndrome 613406 36 (8) CYP11A1, CSPG4, PTPN9, CSK, STRA6,

CAX5A, MPI, NEIL1
15q26 overgrowth syndrome D:81 29 (4) IGF1R, ALDH1A3, PCSK6, CHSY1
17q21.3 microdeletion syndrome 610443 6 (2) MAPT, CRHR1
Angelman syndrome 105830 50 (7) UBE3A, OCA2, GABRB3, SNRPN, NDN,

NIPA1, GABRA5
Cri du Chat syndrome 123450 42 (11) SLC9A3, SLC6A3, NKD2, TERT, IRX1, CCT5,

SDHA, SLC6A19, MTRR, SLC12A7, NDUFS6
Familial Adenomatous Polyposis 175100 3 (1) APC
Leri-Weill dyschondrostosis 127300 1 (1) SHOX
Miller-Dieker syndrome 247200 37 (14) ABR, CRK, DPH1, HIC1, MNT, PAFAH1B1,

PITPNA, YWHAE
NF1-microdeletion syndrome 613675 13 (2) NF1, ATAD5
Pelizaeus-Merzbacher disease 312080 9 (2) PLP1, GLRA4
Phelan-Mcdermid syndrome 606232 4 (3) SHANK3, ARSA, MAPKBIP2
Potocki-Lupski syndrome 610883 47 (10) RAI1, ULK2, TOM1L2, MYO15A, ALDH3A2,

ATPAF2, PEMT, SREBF1, MAPK7, EPN2
Potocki-Shaffer syndrome 601224 15 (4) ALX4, EXT2, CD82, SLC35C1
Prader-Willi syndrome 176270 50 (8) GABRB3, HERC2, NDN, NIPA1, OCA2,

UBE3A, GABRA5, SNRPN
RCAD (renal cysts and diabetes) 137920 11 (3) HNF1B, ACACA, LHX1
Rubinstein-Taybi syndrome 180849 1 (1) CREBBP
Smith-Magenis syndrome 182290 47 (13) RAI1, SREBF1 MYO15A, LLGL1, PEMT,

ALDH3A2, ATPAF2, TNFRDF13B, FLCN,
MAPK7, TOM1L2, ULK2, B9D1

Sotos syndrome 117550 39 (6) NSD1, SLC34A1, SNCB, PROP1, B4GALT7,
CPLX2

Split hand/foot malformation 1 183600 6 (2) DLX5, DLX6
WAGR 11p13 deletion syndrome 194072 5 (2) PAX6, WT1
Williams-Beuren syndrome 194050 34 (11) ELN, BAZ1B, LIMK1, GTF2IRD1, STX1A,

NCF1, ABHD11, FZD9, CLIP2, MLXIPL,
FKBP6

Wolf-Hirschhorn syndrome 194190 36 (7) WHSC1, FGFRL1, FGFR3, IDUA, CTBP1,
TACC3, PDE6B

Xq28 (MECP2) duplication D:45 23 (6) MECP2, BGN, L1CAM, ABCD1, AVPR2,
SLC6A8

Table 4.5: Phenogram results for the 27 CNV diseases summarising candidate
genes, as well as references to known genotype-phenotype associations from the
literature. The column MIM ID shows the ID for the Online Mendelian Inheri-
tance in Man database [Amberger et al., 2009] where available. Otherwise, the
DECIPHER ID [Firth et al., 2009] is shown as “D:xx”. The “genes” column shows
the number of genes located within the CNV, and the number of genes for which a
phenogram match was obtained is shown in parentheses. “phenogram matches”
shows genes identified by our method as candidates for individual phenotypic
features of the CNV disorders. Previously known associations are indicated by
literature citations.
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in Figure 4.5. Williams-Beuren is a multisystem disorder caused by a
microdeletion of 34 genes. Patients with this disorder have numerous
clinical features affecting the cardiovascular, endocrine, gastrointestinal,
musculoskeletal, and neurological system. They also show developmen-
tal, dentitional, ophthalmologic, behavior, and skin phenotypes [Pober,
2010]. For this CNV, 39 associations between 11 candidate genes and 26
phenotypic abnormalities were found. Following that, manual curation
of literature showed that 16 of those have previously been reported by
Pober [2010], and that 23 associations represent novel gene to phenotype
links. For Williams syndrome, the analysis yields that many phenotypic
features are predicted to be associated with more than one possible candi-
date gene. This can be seen, for example, in the lower part of the pheno-
gram where CNV phenotype Cutis laxa is associated with both genes ELN
and GTF2IRD1.

There exist other examples, such as the phenogram of Pelizaeus-Merz-
bacher disease shown in Figure 4.6. In contrast to the phenogram shown
for Williams-Beuren Syndrome, 10 of the phenotypic features could be as-
signed to a single gene (PLP1 [Boespflug-Tanguy et al., 1994]).

In total, this study identified 802 candidate genes for individual phe-
notypic features of the 27 investigated recurrent CNV disorders. From
these associations, manual curation (Sandra Doelken, Barbara Ruef) sug-
gests that 346 of these represent novel associations that have previously
not been reported in the literature. It is furthermore interesting to inves-
tigate which organism presented the source of the explanations for the
phenotypic features. The Venn diagram in Figure 4.7 shows that 431 of
the 802 predictions were made only on the basis of model organism data
(54 %), with the mouse being the most influential source of phenotype in-
formation.

In order to asses the statistical significance of the results of the analysis,
a simple null hypothesis is introduced, which allows one to calculate P-
values for the phenograms. This is achieved by generating a randomised
CNV model. For this purpose, the set of CNVs and their phenotypic ab-
normalities is kept fixed while a randomly selected interval of genes (Gr)
is used to replace the original set of genes G. Note that Gr and G are the
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Figure 4.5: Phenogram for Williams-Beuren Syndrome. The blue nodes
represent genes that are deleted or duplicated in the CNV. The red nodes
represent phenotypic features that patients with this CNV show (D) and
that could be assigned to a gene. The gray nodes show the above threshold
common ancestors (U ) in the Uberpheno. The size of a node correlates with
the number of edges that are associated with the node. The size of the
edges correlate with the amount of supportive data such as the number of
mouse models.
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Figure 4.6: Phenogram for Pelizaeus-Merzbacher disease. The blue nodes
represent genes that are deleted or duplicated in the CNV. The red nodes
represent phenotypic features that patients with this CNV show (D) and
that could be assigned to a gene. The gray nodes show the above threshold
common ancestors (U ) in the Uberpheno. The size of a node correlates with
the number of edges that are associated with the node. The size of the
edges correlate with the amount of supportive data such as the number of
mouse models.
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Figure 4.7: Sources of the explanations of the 802 predicted phenotypic
features of the 27 CNV disorders examined in this work. 431 of the 802
predictions were made only on the basis of model organism data (54 %).
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same size. From this model, two empirical P-values are calculated by per-
forming and evaluating the random CNVs 5,000 times.

The first P-value is used to assess the overall utility of the approach.
For this it is assumed that each of the phenotypic matches displayed in
the phenograms represents a potential explanation of a phenotypic feature
of the CNV. That means if a CNV-phenotype can be reached by traversing
along the edges from one of the genes, it is postulated that this gene is
responsible for the phenotype. Although it may be possible that individ-
ual matches may be due to chance, the total number of above-threshold
matches in all CNVs is assumed to provide a useful measure of the utility
of the method. The P-value is calculated by summing the size of D over
all of the 27 CNVs. Then it was recorded how often this value was ex-
ceeded in each of the 5,000 randomisations. For the real CNVs, the set D
contained 482 phenotypic features. This value was never reached during
randomisation, which corresponds to P-value of less than 0.0002. These
results are visualised in Figure 4.8 (A).

For the second P-value, it is essential to be able to quantify the pheno-
grams for further analysis and statistical evaluation. Here, for each gene
g ∈ GCNV, a phenomatch score Sg is defined based on the IC of the terms
in U , i.e. the matching terms with an IC above `:

Sg(g, TCNV) = ∑
tg∈Tg

IC(tmax(tg,TCNV))≥`

[
IC(tg)

]k . (4.3)

By choosing k > 1, matches based on terms with higher information con-
tent are given a higher weighting. In this analysis, k was set to 5. The full
phenogram score across all genes located in the CNVs13 is then calculated
as

Spg(GCNV, TCNV) = ∑
g∈GCNV

Sg(g, TCNV) . (4.4)

The second P-value is calculated to investigate individual phenograms

13OMIM contains some entries that correspond to CNV diseases such as Rubinstein
Taybi Deletion syndrome (MIM:610543). These OMIM entries are connected to the cor-
responding genes in genemap as well. To avoid bias, the HPO annotations for these syn-
dromes were excluded from the analysis.
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Figure 4.8: Histograms (A),(B) and (C) illustrate the distribution of phe-
notypes, with phenogram matches for the 27 CNVs investigated in this
study (red arrow) versus randomly chosen CNVs (blue bars). (A) Number
of phenotypes explained by one gene for randomly generated versus real
CNVs (B) Number of phenotypes explained by multiple genes (pheno-
clusters) for randomly generated versus real CNVs (C) Percentage of phe-
notypes explained by multiple genes as a percentage of all matching can-
didate genes for randomly generated versus real CNVs. All results are
statistically significant including (C) which supports the conclusion that
pheno-clusters are not a characteristic of randomly chosen chromosomal
segments (P = 0.021).
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of one of the 27 CNVs and their associated score (Spg). In other words, a
P-value for the null hypothesis that a phenogram score of Spg or greater
for a specific CNV has been observed by chance is calculated. This is calcu-
lated by evaluating how often Spg(GCNV, TCNV) is equal to or exceeded by
Spgr

(GCNV, TCNV). The results of this analysis are represented in Table 4.6.
From the 27 investigated CNV syndromes, 14 have a statistically sig-

nificant phenogram score (Spg) with a significance threshold of 0.05. Note
that a non-significant Spg doesn’t imply that the result isn’t useful for in-
terpretation of the genotype to phenotype relationships. This lack of sig-
nificance in a statistical sense could be related to several factors. These fac-
tors include limitations of our computational approach, inadequate phe-
notypic annotations, or incomplete knowledge about the genes located
within the CNV. It is thus investigated if specific patterns may explain
the drop in the P-values.

It is easy to see that the current approach, as described above, is de-
pendent upon the granularity of the phenotype descriptions. Unspecific,
broadly used phenotype terms such as intellectual disability will not lead
to statistical significant hits, because they are so frequently used in anno-
tations. The provided P-values are directly dependent on the IC of the
phenotypic features. For example, the term intellectual disability has a very
low IC of 3.2 and will thus not contribute strongly to the overall Spg, and
randomly chosen intervals are very likely to contain genes that are anno-
tated to those general terms. As can be seen in Figure 4.9 (A), the P-values
of the phenogram scores reported in Table 4.6 correlate linearly (R2 = 0.28)
with the granularity of the phenotypic descriptions of the CNV disorders.
The granularity is hereby measured using the average IC of the CNV phe-
notypes.

The same effect can be seen when correlating the P-values with the
size of the CNV. The size is thereby measured as the total number of genes
located within the CNV region. In Figure 4.9 (B), one can see that this
correlates as well with an R2 of 0.28.

Many recently characterised CNV disorders that have been delineated
on the basis of Array-CGH screening in contrast to clinical studies have
substantially less specific clinical pictures. Given those nonspecific clin-
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Disease name Annotations
( f > 15 %)

Genes
(+phen)
(+match)

Spg P-value

Xq28 (MECP2) duplication 31 (14) 23 (12) (6) 1.08× 105 < 0.0002
NF1-microdeletion syndrome 32 (27) 13 (3) (2) 3.97× 105 < 0.0002
Leri-Weill dyschondrostosis 26 (13) 1 (1) (1) 1.56× 105 0.0002
Familial Adenomatous Polyposis 19 (4) 3 (1) (1) 5.25× 104 0.0002
WAGR 11p13 deletion syndrome 14 (9) 5 (2) (2) 1.10× 105 0.0004
Pelizaeus-Merzbacher disease 26 (21) 9 (3) (2) 6.80× 104 0.0004
Potocki-Shaffer syndrome 25 (23) 15 (9) (4) 9.83× 104 0.0026
Split hand/foot malformation 1 11 (9) 6 (3) (2) 2.89× 104 0.0050
Sotos syndrome 38 (21) 39 (14) (6) 8.01× 104 0.0122
Rubinstein-Taybi syndrome 112 (73) 1 (1) (1) 2.10× 104 0.0138
Angelman syndrome 34 (25) 50 (9) (7) 7.88× 104 0.0184
RCAD (renal cysts and diabetes) 23 (14) 11 (4) (3) 2.41× 104 0.0216
Williams-Beuren syndrome 92 (68) 34 (13) (11) 1.24× 105 0.0316
Wolf-Hirschhorn syndrome 81 (64) 36 (13) (7) 1.38× 105 0.0478

Potocki-Lupski syndrome 32 (28) 47 (22) (10) 5.06× 104 0.0628
9q subtelomeric deletion syndrome 38 (29) 8 (2) (2) 1.33× 104 0.0662
Phelan-Mcdermid syndrome 54 (43) 4 (4) (3) 8.19× 103 0.0728
Prader-Willi syndrome 66 (52) 50 (9) (8) 9.39× 104 0.0788
17q21.3 microdeletion syndrome 51 (37) 6 (2) (2) 6.93× 103 0.1094
Miller-Dieker syndrome 42 (41) 37 (21) (14) 5.70× 104 0.1192
15q26 overgrowth syndrome 37 (31) 29 (5) (4) 1.89× 104 0.2028
1p36 microdeletion syndrome 86 (60) 70 (22) (12) 9.42× 104 0.2762
Smith-Magenis syndrome 46 (40) 47 (22) (13) 3.41× 104 0.2916
15q24 microdeletion syndrome 65 (56) 36 (15) (8) 3.80× 104 0.2938
1q21.1 susceptibility locus (TAR) 44 (16) 19 (5) (3) 5.08× 103 0.3178
Cri du Chat syndrome 68 (48) 42 (21) (11) 3.29× 104 0.3374
3q29 microduplication syndrome 22 (14) 22 (6) (2) 1.31× 103 0.5156

Table 4.6: Summary of the 27 CNV disorders used in the analysis. Included
are the total number of phenotypic annotations as well as the number of
annotations per disease above a frequency threshold of 15 % ( f > 15 %),
the number of genes per interval and the corresponding number of genes
with phenotype information (+phen), the number of phenogram matches
identified in our study (+match), as well as the phenogram score (Spg)
and the empirical P-values of Spg for 5,000 randomisations.
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ical phenotypes and high phenotypic variability, the diagnostic process
may be complicated. This may represent an explanation as to why dis-
eases associated with micro-duplications of 3q29 [Ballif et al., 2008] and
micro-deletions of 15q24 [Andrieux et al., 2009] do not obtain statistical
significant scores compared to more distinct CNV disorders. Of course,
the target here was to identify statistically significant phenotypic matches.
But again it should be noted that non-significant results for individual
CNVs do not imply futility of the results. When transferrering the pre-
sented methods to a clinical decision support system, this would probably
still be designed to present users the best match or matches for both spe-
cific and less specific phenotypic abnormalities.

4.3.3 Phenotypic Multiplicities of CNV Genes

In the phenogram analysis described before, groups of genes Gp located
in the same CNV were found to be associated with the same phenotypic
abnormality. Note that the size of Gp (|Gp| = n) must be at least 2. In
terms of the visualisation (e.g. Figure 4.5), this means that one of the phe-
notypes in red can be reached by traversing along the edges emanating
from two or more different genes. An example for this in the Williams-
Beuren syndrome are the two genes NCF1 and FZD9 which are predicted
to be involved in the Joint laxity phenotype. The genes of these groups
were shown to be associated with a similar phenotypic abnormality in
isolation. A group of genes associated with one phenotypic features are
termed a pheno-cluster.

These physical clusters of genes associated with particular shared phe-
notypes in the genome might be causative for a larger subset of the phe-
notypes observed in a CNV. Even genes that do not show dosage effects
in isolation may contribute to a particular phenotypic abnormality if one
or more pathway members are simultaneously affected. A well-known
example has been described for the SHFM1 locus. There, the genes DLX5
and DLX6 are known to cause split-hand/split-foot malformation (SHFM).
It has been shown that mouse models possess the SHFM-phenotype only if
both genes are knocked out [Merlo et al., 2002, Robledo et al., 2002]. Thus,
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Figure 4.9: The statistical significance of the phenogram score Spg is cor-
related with several measures. Here, the correlation for two examples is
shown. Note that the negative logarithm of the P-value is taken, meaning
that high values on the y-axis represent higher significance.
In A, it can be seen that the P-values correlate with an R2 of 0.28 with
the specificity of the phenotype information of the CNV disorders. The
specificity is measured by the average information content (IC) of the CNV
phenotypes. Thus, unspecific phenotypic annotations, i.e. terms with low
IC, lead to less significant phenogram scores.
In B, the correlation to the number of genes that are affected by the CNV
is shown. The correlation coefficient (R2) amounts again to 0.28. Thus,
a higher number of genes in a CNV interval is associated with a lesser
degree of statistical significance of the phenogram.
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interaction or vicinity of different genes affected by a CNV may be an im-
portant determinant of clinical severity. It was thus investigated whether
such phenotypic summation effects due to pheno-clusters are encountered
in the analysis more often than would be expected by chance.

The total number of pheno-clusters found in our analysis was more than
twice that of the randomised data, which is visualised in the histogram of
Figure 4.8 (B). This corresponds to P-value of less than 0.0002. One could
argue that this may be, in part, a consequence of the lower overall number
of genes and phenotypes identifed in the randomised data. It was thus
additionally examined if the percentage of phenotypes in the randomised
data explained by multiple genes is also higher than expected by chance.
Even here, the percentage of pheno-clusters was significantly greater for
the 27 analysed CNVs than expected according to the randomised model
(P = 0.02; Figure 4.8 (C)).

In all, pheno-clusters were predicted for 220 phenotypes, corresponding
to 135 gene clusters (in some cases, the same genes were associated with
more than one phenotype). It is known that the chromosomal location of
genes can be related to their function.

It was therefore investigated, if the hypothesis is true that these pheno-
clusters of genes Gp = {g1, . . . , gn} are not only related to the same phe-
notypic feature but also share similarity based on other biological mea-
sures. Here, the similarity based on Gene Ontology (GO) annotations of
the genes in Gp is calculated. Furthermore, was is examined if the genes
are located in close vicinity to one another within protein-protein interac-
tion networks (PPIN) using the random-walk-based analysis presented in
Chapter 2.

The homogeneity of Gp based on GO is computed using the average
pairwise similarity for all unique pairs of genes in Gp:

HOM
GO

(Gp) =
2

n(n− 1)

n

∑
i=1

n

∑
j=i+1

simGO(gi, gj) . (4.5)

For a pair of genes, the symmetric semantic similarity simGO(gi, gj) as in
Equation 1.5 is calculated. The annotations of genes with GO-terms were
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taken from the NCBI data repository14 without filtering by evidence code.
To determine a P-value for a given homogeneity score HOMGO(Gp), an
empirical score distribution is computed by randomly generating 10,000
random gene groups Gr with the same number of genes. For these ran-
dom groups HOMGO(Gr) is computed, and from the distribution of these
scores the P-value can be estimated. For this, the fraction of cases in which
HOMGO(Gr) ≥ HOMGO(Gp) is computed.

In order to test the hypothesis that genes in the same pheno-cluster
also tend to cluster in the human protein interaction network, a network
(N ) containing 11,302 nodes was analysed. The nodes correspond to hu-
man genes coding for proteins with known interactions. The network was
taken from the NCBI data repository15 and six genes were excluded be-
cause they had more than 250 interactions16.

The network similarity is calculated as described in Chapter 2. The
random-walk matrix R is calculated as described in Section 2.3. Recall
from this section that every entry Ri,j represents the probability of a ran-
dom walker starting at node i and being at node j after an infinite number
of steps. For a group of genes Gp, the average global network proximity
GNP(Gp) is computed by:

GNP(Gp) =
1
n ∑

gi∈Gp

~p i
∞[gi] , (4.6)

whereby ~p i
∞ is calculated as R× ~p i

0 (see Equation 2.13). For every gene gi
in the pheno-cluster, a different start vector ~p i

0 is defined. To determine this
vector, the start probability of a network node k is defined as:

~p i
0 [gk] =

{
1

n−1 if gk ∈ {Gp \ gi}
0 otherwise

. (4.7)

14ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz
15ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz
16This was mainly done for visualisation purposes. These hubs (nodes with a huge

number of interactions) tended to occur in almost every plot (e.g. UBC or CREBBP).
The results were hardly affected (only some P-values were increased, i.e. the signal was
weaker).

ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz
ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz
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pheno-cluster (Gp) Phenotype (CNV) P-value for
GNP(Gp)

P-value for
HOMGO(Gp)

SRR, CRK, PAFAH1B1,
YWHAE, MYO1C

Lissencephaly (Miller-Dieker Syndrome) 0.0056 0.0009

TP73, PEX10 Dilatation of lateral cerebral ventricles
(1p36 Deletion Syndrome)

0.028 0.19

NDN, OCA2, GABRA5,
GABRB3, SNRPN

Hyperactivity (Angelman Syndrome) 0.17 0.0008

Table 4.7: Examples for the secondary analysis of pheno-clusters.

Put simply, when analysing a particular gi, the random walker starts with
equal probability from all nodes in Gp except from gi. Then the random
walk distance from all the start nodes to gi is computed and the average
over all gi ∈ Gp is taken as GNP.

Similar to the GO analysis, a P-value for a given score GNP(Gp) is de-
termined by setting up the empirical score distribution. This is done by
randomly generating 10,000 random gene groups Gr of the same size and
computing GNP(Gr). Afterwards, the P-value is estimated as the fraction
of cases in which GNP(Gr) ≥ GNP(Gp).

For evaluation, a significance threshold of 0.05 was applied. When
analysing the functional similarity of genes within each of the 136 pheno-
clusters based on Gene Ontology criteria, it was shown that 48 of them
demonstrated a statistically significant intracluster similarity. The random-
walk analysis showed that in 24 of the pheno-clusters the genes are in closer
proximity in the protein interactome than expected by chance. Note that
19 phenoclusters could not be analysed using the random-walk approach,
because too many genes lacked interaction data, i.e. |Gp| = n < 2 . In sum,
43 % of the analysable pheno-clusters were shown to have a significant intr-
acluster similarity in one of the two methods. Examples for pheno-clusters
and the P-values are given in Table 4.7.

To further investigate the utility of the approaches presented in this
thesis, one example of an identified pheno-cluster is depicted. During the
analysis, a set Gp containing the five genes SRR, CRK, PAFAH1B1, YWHAE,
MYO1C was found to be involved in the Lissencephaly phenotype in Miller-
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pheno-cluster gene Example Mouse Phenotype annotation

SRR decreased susceptibility to neuronal excitotoxicity (MP:0008236)
CRK abnormal cerebral cortex morphology (MP:0000788)
PAFAH1B1 abnormal neuronal migration (MP:0006009)
YWHAE abnormal hippocampus morphology (MP:0000807)
MYO1C abnormal vestibular hair cell physiology (MP:0004438)

Table 4.8: Examples for the mouse phenotype annotations that led to
these genes being predicted as a pheno-cluster for Lissencephaly. Note that
vestibular hair cells are sensory neurons.

Dieker Syndrome. Lissencephaly (smooth brain) is a phenotype where the
patient’s brain shows a lowered number of neurons. This can be seen as a
dramatic decrease in the number of gyri in the cortex [Hatten, 1999]. Ex-
amples for the underlying phenotype annotations of these genes in mouse
are given in Table 4.8. The five genes of this Gp have a significant GO
homogeneity score (HOMGO(Gp)) and are additionally found to be in sig-
nificantly close proximity in the protein interactome (see Table 4.7). It was
then investigated if the members of the PPI-subnetwork connecting these
genes are as well related to biological phenomenon of Lissencephaly so that
this may be used as a tool to find novel hypothesis regarding gene-to-
phenotype connections. For instance, genes in the network-vicinity of the
pheno-clusters could be members of the same pathways or represent factors
that influence related pathways by crosstalk with other cellular processes.

For this analysis, the pheno-cluster subnetwork of N is defined by re-
trieving all neighbors (in N ) of the members of Gp and all edges between
them. Note that the genes of Gp are part of the subnetwork as well. The re-
sulting network for the Lissencephaly genes is shown in Figure 4.10. There,
it can be seen that genes already known to cause Lissencephaly are present,
i.e. TUBA1A and PAFAH1B1, together with two other genes coding for
subunits of Platelet-activating factor (PAF). Note that TUBA1A and the
subunits of PAF were not part of the initial pheno-cluster.

It was now investigated whether this subnetwork, i.e. the surrounding
nodes of Gp, represent an interesting biological signal. The following anal-
ysis was performed with the colored (blue or red) nodes of Figure 4.10, i.e.
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the ones with more than one edge in the subnetwork.
At first, these 204 nodes were imported into the Ontologizer [Bauer

et al., 2008] for investigation of enriched GO terms. Using the method
Topology-Elim the top hit from the “biological process” sub-ontology is
nerve growth factor receptor signaling pathway (GO:0048011), with P-value
of 1.24e−27 after Bonferroni correction. 28 genes in the analysis were an-
notated to this GO term. This reflects well the known biological connec-
tion to disturbed neuronal migration, which is assumed to be a cause of
Lissencephaly [Dobyns et al., 1996]. The enrichment of genes annotated to
this pathway adds further value to the results of the analysis based on
model organism phenotypes and interaction networks.

A second analysis investigated the tissue expression patterns of the
genes in the subnetwork, because genes that are not expressed in the cells
or organs related to Lissencephaly would argue against the hypothesis that
the subnetwork is meaningful for this phenotype. Using Biomart17 [Haider
et al., 2009], the attributes HGNC symbol and GNF/Atlas organism part were
extracted for the complete set of human genes. The downloaded file maps
14,818 genes to one or multiple tissues in which the genes are expressed.
The GNF Gene Expression Atlas uses a vocabulary of 60 organ descrip-
tions, which were manually mapped to FMA terms. From the subnetwork,
a total of 180 nodes were assigned to at least one GNF/Atlas organism part.
For each of these genes, it was checked if they are expressed in an anatom-
ical structure that is an asserted or inferred subclass of Brain (FMA:50801)
or Segment of brain (FMA:55676). 114 (63 %) of the nodes are found to be
expressed in one of these structures. The Fisher-exact test revealed a P-
value of 0.008. Also, investigating the individual anatomical structures in
which the genes of the subnetwork are expressed reveals a strong bias to-
wards the brain. Again the Fisher-exact test was used, but accompanied
with Bonferroni correction for multiple testing. Except for one, all of the
significantly affected anatomical structures (indicated by * in Figure 4.11)
are part of the brain18.

17Biomart Portal, Version 0.7, accessed May 2012.
18Cerebellum peduncles are not a subclass of the used brain-terms and are a subclass

(inferred) of Cell part cluster of neuraxis (FMA:83143). The brain is a regional part of the
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Figure 4.10: The subnetwork connecting the genes predicted to be in-
volved in the Lissencephaly phenotype of Miller-Dieker Syndrome.
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Figure 4.11: Analysis of the colored genes shown in Figure 4.10, which are
hypothesised to play a role in the development of Lissencephaly.
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The combination of cross-species phenotype analysis with the analy-
sis of high-throughput biological data, such as PPIN and gene expression
data thus represents a novel approach for assessing the contribution of
single genes to individual phenotypic features of a broader spectrum of
phenotypes. From these relations, combinatorial effects can be discovered,
in which multiple genes affect one phenotype. These multiplicities could
be shown to correlate well with other measures such as GO similarity and
PPIN vicinity. Especially the combination with PPINs can be a promising
novel tool for the discovery of novel modules of molecular players related
to specific cellular processes that are disrupted.

There exist other approaches to computational cross-species phenotype
comparison. For example, PhenomicDB [Groth et al., 2007] uses only lex-
ical matching. Also, there exists an approach that is predominantly based
on lexical comparisons and aimed at mapping the UMLS Metathesaurus
to the MPO and concepts of human disease [Sardana et al., 2010]. A draw-
back of this method is that it disregards different conceptions of a disease
and a phenotype in humans and mice [Hoehndorf et al., 2011b].

The Uberpheno ontology presented here is different, and probably su-
perior, to previous methods based on text mining. For instance, the Uber-
pheno method recognises that a Nasal hypoplasia in humans is a subclass of
the mouse phenotype abnormal snout morphology. The major drawback of
textual methods is that they do not utilise the complete semantic informa-
tion contained in the relevant building block ontologies.

Similar to Hoehndorf et al. [2011b], the approach presented in this the-
sis uses the complete phenotypic repertoire of mouse and zebrafish, and
applies automated reasoning over all of the phenotype ontologies to gen-
erate a representation that can be explored through measures of pheno-
typic similarity. Novel in the construction of the Uberpheno is that it is as-
sisted by equivalence relations between HPO and MPO, which were iden-
tified by lexical matching. Additionally, logical definitions of GO terms are
used. In these, GO cellular processes are defined by the anatomical struc-
tures that these processes affect (e.g. inheres in). For example, ZFIN uses
an annotation to disruption of the GO process lens development in camera-

Neuraxis (FMA:55675).
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type eye (GO:0002088). Since the GO process is defined to be a develop-
mental anomaly that inheres in the lens (UBERON:0000965), the reasoner
infers correctly that the zebrafish phenotype is a subclass of the mouse
phenotype abnormal lens development (MP:0005545).

The application of Uberpheno differs from other approaches, which were
focused on the ranking of disease relevant genes. When doing this, the
task is rather to completely match two phenotypic profiles consisting of
two sets of phenotypic features. In this thesis, the focus is the assignment
of single genes from a bigger group of genes to one particular phenotypic
feature. These phenotypic features are part of a broader phenotypic spec-
trum that makes up a disease. This means the focus is not to find a gene
that explains everything, rather the task is to explain each candidate genes
individual contribution to a disease.

In summary, the herein presented methods facilitate the automated
computational integration of phenotype information from the many model
organism databases and several other ongoing projects aiming at genotype-
phenotype analysis and model-organism research. Sophisticated knowl-
edge representation approaches for phenotypic abnormalities enable the
detection of inconsistencies and contradictions in the data. This approach
enables the exploitation of the great potential of the information produced
by systematic genome-wide phenotyping efforts, such as the IMPC, in or-
der to assist gene to phenotype research.



Chapter 5

Discussion

Networks have long being assumed to be essential for understanding bi-
ological systems, and recently it has become more and more evident that
human diseases result from perturbations of cellular systems such as molec-
ular networks. In this thesis, it could be shown that network algorithms
that measure not only direct and shortest-path interactions but also take
the global network structure into account have a clear performance advan-
tage in the prioritisation of candidate disease genes. These findings add
weight to the assumption that phenotypically similar diseases are asso-
ciated with disturbances of subnetworks within the protein interactome,
and that exploration of global network structures with appropriate graph-
theoretic algorithms will become an important resource for understanding
the biology of disease.

The publication of the random-walk method applied to disease gene
prediction has had quite a large impact1 on the community, and also be-
cause of this it seems valuable to extend the ideas presented therein. The
results have been confirmed, for example, in a publication by Navlakha
and Kingsford [2010]. Li and Patra [2010] extend the random-walk ideas
by including a network of disease similarities and performing the anal-
ysis on a so called heterogenous network, in which the PPIN has been
augmented by a network of disease similarities calculated by text min-
ing. Other ideas are to include multiple genome-wide data sets, such as

1According to Google Scholar there are 174 citations. (Accessed July 2012)
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GO similarity or co-expression, into the adjacency matrix in the beginning.
For these methods, it will have to be tested how much the ranking perfor-
mance is influenced by each data source, and if sophisticated weighting
schemes are required in order to integrate the results obtained by differ-
ent data sources. This is currently work in progress. Also, the GeneWan-
derer application may profit from some extensions in the functionality of
the web interface. At the moment, only Entrez Gene gene identifiers are
allowed when defining the genes known to be related to the investigated
phenotypes. Being allowed to use identifiers from other gene-centric data-
bases has been requested by users as an improvement.

One drawback of the presented method is that it requires at least some
knowledge of the molecular background of the disease being investigated.
This a property inherent to all guilt-by-association approaches, because if an
algorithm wants to establish guilt, there has to be something to which the
unknown data can be compared against. In the setting of disease gene
prioritisation a set of genes known or suspected to be part of the patho-
biological process underlying the investigated phenotypes has to be set
up. Very often, such a list of known genes has to be compiled manually,
which is often time consuming or even impossible. In particular, there ex-
ist a huge amount of orphan diseases for which no molecular information
is available. Thus, it is desirable to develop automated methods that may
replace this manual procedure to assist users. The herein presented HPO
may help in this task, because users should be able to define a set pheno-
typic features of interest. This set of HPO terms can, in turn, be used to
retrieve highly similar diseases and then filter out those diseases for which
the molecular cause is known. These ideas, of course, have to be evaluated
in terms of usability and performance, which is again work in progress.

The HPO is a standardized, controlled vocabulary that enables phe-
notypic information to be described in an unambiguous fashion in med-
ical publications and databases [Robinson and Mundlos, 2010]. As with
other biomedical ontologies, the HPO specifies the meaning of terms in
a vocabulary so that humans and machines can understand and process
the nature of the data [Hoehndorf et al., 2011b]. The HPO is now widely
adopted in the genetics community. International consortia, such ISCA,
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dbGAP, NCBI’s Genetic Testing Registry, or DECIPHER, are now annotat-
ing all their data with terms from the HPO [Riggs et al., 2012]. Especially,
given the constantly growing number of logical definitions of terms, the
HPO can be a valuable tool for efficient detection of associations between
genotype and phenotype.

Furthermore, it was shown that the HPO can be used in practice, by
using an ontological semantic similarity analysis for clinical diagnostics.
The differential diagnosis in clinical genetics can often be challenging,
because of the large number of distinct syndromes and phenotypic fea-
tures that need to be considered. Also, the fact that pathognomonic signs
are rare, and in many cases combinations of more or less specific clini-
cal features are needed for a diagnosis, complicates this process. For this
reason, a number of commercial and freely available computational tools
have been developed, including the LDDB [Fryns and de Ravel, 2002],
POSSUM [Bankier and Keith, 1989], OMIM [Amberger et al., 2009], and
Orphanet [Aymé, 2003]. These rely mainly on identifying lists of syn-
dromes characterized by at least a certain number of phenotypic features
entered by the user. Also, these have not provided a means of determining
whether any given match is significant in a statistical sense. The method
presented in this thesis procedure makes use of the semantic structure of
the HPO in order to weight the importance of the query and disease terms
according to their clinical specificity. Also, it was shown that the rank-
ings of the differential diagnoses can be improved by introducing a sim-
ple statistical model, which assigns a P-values to each obtained similarity
score. A freely available tool called the Phenomizer was presented. Dur-
ing one month in the summer 20122 the Phenomizer was accessed by 900
users from 38 different countries and had approximately 30 visitors per
day. The tool is now being extended so that users may integrate the al-
gorithms easily into their pipeline and retrieve Phenomizer results from
a web service, where the input is part of a URL. Such a service prevents
users from being forced to manually define their query using the webin-

2Statistics generated from 26th June to 26th July 2012 ( 3 years following publi-
cation) using a tool available at http://www.revolvermaps.com/?target=enlarge&i=

4qfhq0flvot&color=ff0000&m=3.

http://www.revolvermaps.com/?target=enlarge&i=4qfhq0flvot&color=ff0000&m=3
http://www.revolvermaps.com/?target=enlarge&i=4qfhq0flvot&color=ff0000&m=3
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terface, which is adequate for clinicians. Unfortunately, this prevents the
programmatic integration of the Phenomizer in large-scale projects or ex-
ternal tools that wish for an automated solution. These ideas are already
realised in a preliminary version developed in cooperation with Decipher.
The Phenomizer was developed using the GWT-EXT library3, which has
not been further developed or extended since 2009. Thus, one should start
replacing this legacy API by actively developed alternatives such as smart-
gwt4.

Besides this, one of the most important implications will be the abil-
ity of automated, or at least computer-guided, classification of novel syn-
dromes, based on the spectrum of phenotypic characteristics [Köhler et al.,
2012]. Especially for orphan diseases the presented methods may provide
a helpful tool, in particular when it is possible to identify phenotypically
similar diseases, for which knowledge on pathobiology or treatment ex-
ists. Advances in high-throughput technologies in molecular genetics and
the computational analysis of networks led to the concept of the disea-
some [Goh et al., 2007, Barabasi, 2007], which refers to the network of
complex relationships between biochemical, genetic, cellular, phenotypic,
and other networks. The importance of diseasomics has become ever more
obvious in the field of human genetics with the identification of biochem-
ical or protein interaction networks whose dysfunction underlies groups
of phenotypically related diseases [Brunner and van Driel, 2004, Lim et al.,
2006]. Recent computational projects have shown the potential of incorpo-
rating human phenotypic data into the analysis of cellular networks [Goh
et al., 2007, Gottlieb et al., 2011, Bayés et al., 2011].

However, the wide acceptance and usage of ontologies introduces novel
obstacles. Also, ontologies of the biomedical domain are becoming in-
creasingly interdependent (see Chapter 3). Thus it is advisable for the
HPO developers to occupy themselves with state of the art ontological
engineering strategies. This refers especially to the activities regarding
the development process of the ontology and its life cycle. With growing
complexity, it will be essential that tools for automatic quality control and

3http://code.google.com/p/gwt-ext/
4http://code.google.com/p/smartgwt/

http://code.google.com/p/gwt-ext/
http://code.google.com/p/smartgwt/
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release management are tightly integrated into the iterative development
process in the near future. Otherwise, mistakes by individual curators
may stay undetected for longer periods and propagate to other users and
tools. Already being applied are ready to use systems for continuous in-
tegration such as Hudson5 or Jenkins, which are web-based environments
for running integration checks. This already does and will in the future
largely improve the whole ontology and annotation process.

In recent years, systematic genome-wide phenotyping efforts such as
the IMPC for mouse or the phenotyping efforts in zebrafish [Wang et al.,
2007, Kettleborough et al., 2011] have been started. The data provided by
those efforts are of great potential for gaining novel insights into patho-
biology and for uncovering new candidates for genes involved in human
disease.

As noted in a paper by Aitman et al. [2011], novel sequencing technolo-
gies promise a new golden age for human genetics. Even if it will be easier
to identify new human disease genes and candidate disease genes, it will
not be easier to answer the question how mutations in these genes cause
disease and what biological processes are affected. In case a poorly charac-
terized gene is linked to a human disease it does not per se make this gene
better understood it just makes it ’more interesting’ [Aitman et al., 2011].
This is where model organisms research can show its strength, given that
reliable information extraction across species is possible. The methods pre-
sented in this thesis may represent a valuable tool in this tasks.

In general, the presented approaches may be a key ingredient of auto-
mated tools that aim towards filtering and interpreting the huge amount
of variations found by comprehensive sequencing of patients. By utilis-
ing species-agnostic ontological representations in the logical definitions,
phenotype-based analysis across species and domain are enabled. For ex-
ample, simple queries such as the following are basically built-in features
of the data provided by HPO:

“Generate a list of all NGS-sequenced patients in my database
that have a genomic variant in a gene that is related to zinc ion

5See http://compbio.charite.de/hudson

http://compbio.charite.de/hudson
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homeostasis (GO:0055069)”.

For this, a program has to identify all the HPO-terms that are defined
by referring to the given GO-term or a more specific one. In this case, it
will be only Abnormality of zinc homeostasis (HP:0008277). Afterwards, one
can simply extract all the genes related to this HPO-term and additionally
make use of available model organism phenotype data. Note that this will
also return genes annotated to descendants of the HPO-term, such as In-
creased serum zinc (HP:0011424). The program finally returns the patients
found to have a genomic variation in one of the genes.

In this thesis, it was shown that the application of ontologies for phe-
notype annotation can give highly significant explanations of the complex
interplay between a set of aberrated genes and specific phenotypic con-
sequences of this aberration. Using the EQ method for the phenotypic
annotations facilitates the use of a common language required for system-
atic comparison of phenotypes [Washington et al., 2009]. It was shown
that logical definitions in combination with automated reasoning can be
used to improve ontology development and facilitate the construction of
consistent knowledge representation across multiple ontologies [Mungall
et al., 2010, Köhler et al., 2011]. The herein presented methods make use
of semantic similarities between human and model organisms. This will
facilitate the computational integration of information from different phe-
notyping projects and enable the harvest of these rich resources in an
automated way. The presented algorithms can easily be adapted to as-
sist with interpretation and understanding of the diagnostic results from
Array-CGH analyses. The ideas presented here could also be applied to
the interpretation of Next-Generation-Sequencing data, thereby moving
closer to the objective of a personalised genetic approach to medical care.
In summary, the approach for representation of phenotype information
provide a means to improve downstream analyses with the ultimate goal
of uncovering molecular disruptions that cause and influence human dis-
ease.

Of course, there is space for improvement of cross-species analysis. In
the near future, the Uberpheno will be extended by incorporating Least
Common Subsuming (LCS) class expressions. This means that more classes
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are added to the Uberpheno based on the knowledge represented in the
building block ontologies used by the logical definitions. For example, if
a zebrafish gene is annotated to increased concentration of copper, the Uber-
pheno should then also contain the class increased concentration of divalent
metal cation, whereby divalent metal cation is a superclass of copper in ChEBI.
This should increase the sensitivity of all methods utilising the Uberpheno.
A similar approach was already applied in the publication by Chen et al.
[2012].

Of course, the found effect of the phenotypic multiplicities in CNVs
(Chapter 3) represents an interesting biological signal, which needs to be
further analysed. For example it may be tested if aberrated enhancer ele-
ments are underlying those effects. It will also be interesting to investigate
the network structure of the affected subnetworks in context of the larger
PPIN.

In summary, this thesis presented novel methods for making use of dif-
ferent networks, be it cellular PPIN or the network defined by the seman-
tic relationships between phenotype or other biomedical concepts. These
networks are used for generating possible explanations of biological phe-
nomena such as hereditary diseases and the effect of CNVs. The combina-
tion of different network-based methods was presented in the last chapter
and shown to be a valuable novel tool for unraveling the molecular basis
of phenotypic abnormalities.



124 Discussion



Bibliography

OWL tools. URL http://code.google.com/p/owltools/.
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S. Aymé. Orphanet, an information site on rare diseases. Soins; la revue de
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Appendix A

Glossary

Asserted axiom
An axiom that was manually asserted by a curator.

Axiom
In the context of KR used to refer to statements that say what is true
in the domain (see http://www.w3.org/TR/owl2-syntax/#Axioms).

CNV
Genomic variation in that a segment of DNA has an abnormal num-
ber of copies. The segment can be deleted, inverted (turned around),
or added (duplicated) in an individuals genome.

Diagnosis
Assigning the patient’s conditions to a classification, which can then
give insight into possible ways of treatment or information on prog-
noses [Pelz et al., 1996].

Disease gene family
A concept for grouping clinically distinct diseases into small groups
of diseases that share important phenotypic features. Pathogenetic
similarities are assumed to underlie the phenotypic commonalities.

DNA
Encodes the heritable information.

http://www.w3.org/TR/owl2-syntax/#Axioms
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EQ-approach
Description schema in which a phenotype can be abstracted into two
parts. First, an entity that is affected (e.g. an enzyme, an anatomical
structure) and the quality of that entity. In the typical setting, a phe-
notype is described using a class expression consisting of a PATO
quality class differentiated by a bearer entity class (a term from an
OBO ontology) using the inheres in relation [Hancock et al., 2009].

Gene
A union of genomic sequences encoding a coherent set of potentially
overlapping functional products [Gerstein et al., 2007].

Genome
The complete set of genetic material of an organism.

Genotype
The complete constitution or makeup of the genetic material belong-
ing to a cell or an individual.

Graph
A graph G = (V, E) is defined as a mathematical structure that con-
sists of two finite sets V and E. The elements of V are referred to as
vertices or nodes. The elements of E are called the edges or arcs.

Inferred axiom
An axiom that was deduced by automated reasoning (based on as-
serted axioms).

Interactome
The complete set of interactions and interactants of cellular networks.

Mendelian disease
Phenotypes that are mostly determined by a mutation (or mutations)
in a single gene and that follow a dominant, recessive, or X-linked
inheritance pattern.
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Mutation
Alteration within the DNA.

Ontology
An ontology is an explicit, formal specification of a shared conceptual-
ization [Gruber, 1993].

Phenotype
The manifold biological appearances, including chemical, structural
and behavioral attributes, that we can observe about an organism
but excludes its genetic constitution [Strickberger, 1985].

Pleiotropy
Condition in which a gene affects more than one phenotype.

Reasoning
Inference of implicitly represented knowledge from the knowledge
that is explicitly contained (asserted) in the knowledge base [Baader
et al., 2003].

RNA
Polymeric, single stranded nucleic acid, involved as intermediate for
transmission of the DNA information to the protein level. Also in-
volved in the control of several chemical processes.

SNP
Change in the DNA of one single base pair (nucleotide).
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Appendix B

Acronyms

AUROC Area under the ROC curve.

BMA Best-match average (used for semantic simi-
larity).

ChEBI Chemical entities of biological interest ontol-
ogy.

CNV Copy number variation.

DECIPHER Database of Chromosomal Imbalance and
Phenotype in Humans Using Ensembl Re-
sources.

DI Direct interaction (method for disease gene
prioritisation).

DNA Deoxyribonucleic acid.
DR Danio rerio (Zebrafish).

EQ Entity/Quality approach.

FMA The Foundational Model of Anatomy ontol-
ogy.

FPR False-positive rate.
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GNF Genomics Institute of the Novartis Research
Foundation.

GO The Gene Ontology.

HPO The Human Phenotype Ontology.
HS Homo sapiens (Human).

IC Information content (used for semantic sim-
ilarity).

IKMC International Knockout Mouse Consortium.
IMPC International Mouse Phenotyping Consor-

tium.

KB Knowledge Base.
KR Knowledge Representation.

LDDB London Dysmorphology Database.

MA Mouse adult gross anatomy ontology.
MGI Mouse Genome Informatics.
MM Mus musculus (House mouse).
MPO The Mammalian Phenotype Ontology, also

MP.

NCBI National Center for Biotechnology Informa-
tion.

OMIM Online Mendelian Inheritance in Man.
OWL Web Ontology Language.

PATO Phenotype, Attribute and Trait Ontology
(Currently Phenotypic Quality Ontology).

POSSUM Pictures of Standard Syndromes and Undi-
agnosed Malformations.

PPIN Protein-protein interaction network.
PRO Protein Ontology.

RDF Resource Description Framework.
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RDFS RDF Schema.
RNA Ribonucleic acid.
ROC Receiver-operating characteristic.
RWR Random Walk with restart.

SNP Single nucleotide polymorphism (pro-
nounced as ’snip’).

SP Shortest path (method for disease gene pri-
oritisation).

STRING Search Tool for the Retrieval of Interacting
Genes/Proteins.

TPR True-positive rate.

UMLS Unified Medical Language System.

XML Extensible Markup Language.

ZFA Zebrafish anatomy and development ontol-
ogy.

ZFIN Zebrafish Information Network (Now: The
Zebrafish Model Organism Database).
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Appendix C

Abstract

Understanding the relationships between human phenotypic abnormal-
ities and their underlying genes is an important subject in biomedicine.
Comprehensive data sets on interactions between gene products enable
novel systems approaches to be applied for elucidating those associations.
Recently, neighborhood approaches, analysing the local shortest-path dis-
tances between network nodes, have been applied to the problem of dis-
ease gene prediction. Here it is shown that a global network-similarity
measure based on random walks, is well suited for analysing vicinity in
protein-protein interaction networks, and that this boosts the performance
of guilt-by-association approaches for gene-to-phenotype research.

Analysing disease information has long been hampered by the lack
of standards and semantics in knowledge representation on associated
phenotypic abnormalities. Often, phenotype descriptions were stored as
a part of free text, making automated mining very difficult. This work
presents the Human Phenotype Ontology (HPO) and its application to
disease similarity calculation based on semantic similarity between phe-
notypic spectra. A tool is presented that uses the HPO to aid with clinical
diagnostics in medical genetics and makes use of a novel statistical model
assigning P-values to semantic similarity scores.

Motivated by the aim of revealing genotype-to-phenotype associations
directly, high-throughput projects are now exploring complete phenomes
of model organisms such as mouse. Especially the transfer of knowledge
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across species is important to understand the relations between genotypes
and phenotypes in model organisms on the one hand, and those seen in
human diseases on the other hand. Cross-species phenotype analysis is of
major importance, given that there are currently more than 5,000 human
genes with no phenotype information, but for which detailed phenotypes
are available for their mouse and/or zebrafish orthologs.

In this work, the development of cross-species, harmonised, semantic
representation of phenotype information is presented. A computational
framework is developed to comprehensively harvest phenotypic informa-
tion from model organisms and single-gene human hereditary disorders
annotated to HPO terms. It is exemplified how this can speed the in-
terpretation of the complex phenotypes of CNV disorders, and how this
ontology-based approach is used to identify similarities between human
phenotypes and the mutational phenotypes in known model organism
genes.

Using this approach, phenotypic multiplicities are identified as com-
mon characteristic of CNVs, in which multiple genes are said to influ-
ence a particular phenotypic feature of a broader spectrum of phenotypes.
Often, the association between the genes of these multiplicities represent
novel hypotheses and are supported by correlation with Gene Ontology
similarity and random walk vicinity in protein interaction networks.
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Zusammenfassung

Das Verständnis der Beziehungen zwischen menschlichen Phänotypen und
den zugrunde liegenden Genen ist ein zentrales Thema der modernen
Biomedizin. Umfangreiche Datensätze über Interaktionen zwischen Gen-
Produkten ermöglichen neue Ansätze zur Untersuchung dieser Beziehun-
gen, indem die Zellen als komplexe Systeme bzw. Netzwerke betrachtet
werden. Bisherige Ansätze betrachten dabei die lokale Nachbarschaft zu
identifizierten Krankheitsgenen mittels Berechnung der kürzesten Pfade,
um Krankheitsgene vorherzusagen. In dieser Arbeit wird hingegen gezeigt,
dass Maße, die die gesamte Netzwerkstruktur einbeziehen, sehr gut für
diese Problemstellung geeignet sind. Dafür wird eine Methode basierend
auf dem Random-Walk vorgestellt und verglichen.

Die Analyse von Krankheiten und deren Symptomen wird seit langem
durch das Fehlen von Standards behindert. Phänotypische Beschreibun-
gen wurden bisher lediglich in Textform abgelegt, wodurch automatisierte
computerbasierte Analysen behindert werden. Diese Arbeit stellt die Hu-
man Phenotype Ontology (HPO) vor und beschreibt deren Anwendung
auf Ähnlichkeitsberechnungen zwischen Krankheiten auf Basis von se-
mantischer Ähnlichkeit zwischen den phänotypischen Spektren der Krank-
heitsbilder. Des Weiteren wird ein Programm vorgestellt, welches mit
Hilfe der HPO das Finden von klinischen Diagnosen in der Humangenetik
unterstützt. Dieses wurde mit einem neuen statistischen Modell unterlegt,
welches die Zuweisung von P-Werten für semantische Ähnlichkeiten er-
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laubt.
Motiviert durch das Ziel, Genotyp-zu-Phänotyp Assoziationen direkt

zu finden, sollen neue Hochdurchsatz-Projekte nach und nach alle Gene
von Modellorganismen ausschalten und die phänotypischen Konsequen-
zen aufzeichnen. Vor allem die speziesübergreifende Übertragung von
solchen phänotypischen Daten ist wichtig, um die Beziehungen zwischen
den Genotypen und Phänotypen beim Menschen besser zu verstehen. Spe-
ziesübergreifende Phänotyp-Analysen sind von enormer Bedeutung, da
es derzeit mehr als 5.000 menschliche Gene ohne Phänotyp-Informationen
gibt, für die es allerdings detaillierte Phänotypen-Information für die or-
thologen Gene in Maus und/oder Zebrafisch gibt.

In dieser Arbeit wird die Entwicklung einer speziesübergreifenden,
harmonisierten, semantischen Repräsentation von phänotypischen Abnor-
malitäten vorgestellt. Es wird beschrieben, wie man dadurch systematisch
phänotypische Informationen von Modellorganismen und menschlichen
monogenen Krankheiten integrieren kann. Weiterhin wird gezeigt, wie
dies genutzt werden kann, um komplexe Phänotypen in Krankheiten, die
durch Copy-Number-Variations (CNV) ausgelöst werden, einzelnen be-
troffenen Genen zuzuordnen.

Mit diesem Ansatz wurden phänotypische ”Vervielfachungen“ als Cha-
rakteristikum von CNVs gefunden, bei denen mehrere Gene ein bestimm-
tes phänotypisches Merkmal beeinflussen. Häufig stellen diese ”Verviel-
fachungen“ neuartige Hypothesen für die gemeinsame Funktion der be-
teiligten Gene dar. Diese Hypothesen werden durch Korrelation mit Gene
Ontology-Ähnlichkeit unterstützt und zeigen eine statistisch signifikante
Nähe im Protein-Interaktions-Netzwerk, welche durch die Random-Walk-
Methode ermittelt wurde.
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Software Availability

In chapter 2, a new method to prioritise genes that are a involved in par-
ticular human phenotyes is described. In order to make this easily acces-
sible for the community, the GeneWanderer was implemented as a web-
tool [Köhler et al., 2008]. The homepage is located at http://compbio.
charite.de/genewanderer and allows user-defined genomic intervals to
be analysed by different methods and data sets.

A new strategy to represent abnormal human phenotypes in described
in chapter 3. The Human Phenotype Ontology (HPO) itself, as well as tools
for exploration and navigation of the ontology, can be found on the web-
site http://www.human-phenotype-ontology.org. This chapter addition-
ally describes new ways of applying the HPO in the setting of clinical ge-
netics. The PhenExplorer, a tool to explore the HPO, disease genes, and
diseases, is available at http://compbio.charite.de/phenexplorer. The
software that implements semantic similarity searches in the HPO in order
to support clinical diagnostics is called The Phenomizer. It is freely available
at http://compbio.charite.de/phenomizer.

Semantic integration of phenotype data across domain and species is
the topic of chapter 4. Therein, a novel method for consistency and com-
pleteness of inspections of ontologies is depicted. This tool is also used for
constructing the Uberpheno ontology. The software called GULO is avail-
able at https://compbio.charite.de/svn/hpo/trunk/src/tools/gulo as
an executable jar-file.

http://compbio.charite.de/genewanderer
http://compbio.charite.de/genewanderer
http://www.human-phenotype-ontology.org
http://compbio.charite.de/phenexplorer
http://compbio.charite.de/phenomizer
https://compbio.charite.de/svn/hpo/trunk/src/tools/gulo
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