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We consider a model in which massive stars form in a self-gravitating accretion disk around an
active galactic nucleus (AGN). These stars may evolve and collapse to form compact objects on
a time scale shorter than the accretion time, thus producing an important family of sources for
LISA. Assuming the compact object formation/inspiral rate is proportional to the steady-state gas
accretion rate, we use the intrinsic hard X-ray AGN luminosity function to estimate expected event
rates and signal strengths. We find that these sources will produce a continuous low-frequency
(<∼ 1 mHz) background detectable by LISA if more than ∼ 1% of the accreted matter is in the form
of compact objects. For compact objects with masses >

∼ 10M⊙, the last stages of the inspiral events
should be resolvable above a few mHz, with rates as high as a few hundred per year.

PACS numbers: 04.30.Db, 04.80.Nn, 98.54.Cm, 98.70.Sa, 98.70.Rz

I. INTRODUCTION AND MOTIVATION

Some time in the near future, the launch and operation of the Laser Interferometer Space Antenna (LISA) [1]
will issue in a new age of gravitational wave (GW) astronomy. One of the major challenges that will face GW
astronomers is the successful discrimination between instrumental noise, stochastic GW backgrounds, and individual,
resolvable GW sources. For example, the population of galactic white dwarf binaries in close orbits will provide a
major contribution to the LISA noise curve in the 0.1− 1 mHz band [2]. At the same time, this confusion “noise” can
also be treated as a signal, and its shape and amplitude will provide important information about the distribution
and properties of white dwarf binaries in the galaxy (e.g. [3]).

It has recently been proposed that, in the self-gravitating outer regions of accretion disks of active galactic nuclei
(AGN), massive stars could form and evolve, eventually collapsing into compact objects and merging with the central
black hole [4, 5]. This final inspiral stage would be an important source of GWs in the LISA band. Depending on the
specific properties of the accretion disk and the embedded compact objects, this population could contribute to the
GW background and also produce individual resolvable signals. It is therefore a matter of theoretical and practical
interest to understand the nature of such a population.

In this paper we attempt to derive a relationship between the observable electromagnetic (EM) emission and the
predicted GW emission from AGN out to cosmological distances. In particular, we use the hard X-ray luminosity
function of Ueda et al. [6] to infer the accretion history of supermassive black holes (SMBHs) out to redshifts of
z ∼ 3. Then we assume a few simple scaling factors, such as the average (Eddington-scaled) accretion rate and the
efficiency of converting accretion energy to X-rays, and derive the time-averaged GW spectrum that might be seen by
LISA. Another important model parameter is the black hole spin, which will determine the radiative efficiency for gas
accretion as well as the GW efficiency for inspirals. Based on relativistic MHD simulations of accretion disks [7, 8, 9],
as well as some recent observations [10], there is growing evidence that most AGN black holes should be rapidly (but
not maximally) spinning, with a/M ≃ 0.9 − 0.95.

Depending on the specific model parameters, we find this background could be an important class of LISA sources,
similar in strength and event rates to extreme mass-ratio inspirals (EMRIs) from captured compact objects [11]. As
in those sources, here too it is a matter of preference as to whether the steady-state background should be thought
of as signal or noise. But for higher masses (perhaps as large as m ≃ 105M⊙ [4], provided such objects are not
tidally disrupted before producing significant GW power, disk-embedded compact objects should produce individual,
resolvable inspiral events with high signal-to-noise over a wide band of frequencies.

The outline of the paper is as follows: in Sec. II we give a brief overview of notation, and describe the cosmological
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X-ray luminosity distribution from AGN. In Sec. III we discuss the parameterization of the GW signal, from a single
inspiral event to an integral of all sources over redshift and AGN luminosity. We then present the main results,
showing the predicted GW power spectra for a range of model parameters and also for parameters that may depend
on SMBH mass and redshift. In Sec. IV we estimate the expected event rates and duty cycle for LISA, which will
be used to help distinguish between stochastic signals and resolvable ones. In Sec. V we discuss implications for the
LISA mission as well as future GW observatories.

II. THE HARD X-RAY LUMINOSITY FUNCTION OF ACTIVE GALACTIC NUCLEI

We begin with a short discussion of notation. The results derived below include a number of dimensionless parame-
ters, most of which can take values between 0 and 1. We divide these parameters into three general classes: efficiencies,
fractions, and densities. Efficiencies, denoted by η, are believed to be determined by more basic physics, and typically
have more stringent lower- and upper-limits. Fractions, denoted by f , are more model-dependent parameters and
less-well known than the efficiency parameters, and thus have a larger range of acceptable values. Lastly, various
cosmological density parameters Ω are given as fractions of the critical density ρc ≡ 3H2

0/(8πG). They are most likely
constrained to very small values relative to unity. A summary of all the dimensionless parameters used in the paper
appears in Table I, along with acceptable and preferred values.

The rest mass in supermassive black holes is estimated as ΩSMBH ≃ 2×10−6, determined from galaxy surveys using
the scaling relation between velocity dispersion and SMBH mass (the well-known “M −σ” relation; [12, 13, 14]). The
energy density in the diffuse X-ray background between 2 keV and 10 keV is estimated as ΩX ≃ 2.6 × 10−9 [15], to
which AGN are believed to make a considerable contribution [6]. Now, assume that a fraction facc ≤ 1 of the SMBH
rest mass density is due to accreted gas of cosmic density Ωacc (as opposed to mass gained through mergers), which
releases electromagnetic radiation with an efficiency of ηem ≤ 1. We further assume that a fraction fX ≤ 1 of the
electromagnetic output is in the form of X-rays in the range 2 − 10 keV. This implies

facc ΩSMBH ≃ (1 − ηem)Ωacc (1)

and

ΩX ≃
〈

1

1 + z

〉

funobsc ηX Ωacc , (2)

where ηX ≡ fXηem ≤ 1, and the average inverse redshift of the sources
〈

(1 + z)−1
〉

≃ 0.4 is due to the redshifting of
radiation energy. The parameter funobsc in the above equation is the fraction of the intrinsic X−ray luminosity that
escapes the AGN region without obscuration or reprocessing. Since from observations ΩX/ΩSMBH ≃ 1.3 × 10−3, this
gives the constraint

〈

1

1 + z

〉

funobsc facc ηX

1 − ηem
≃ ΩX

ΩSMBH
≃ 1.3 × 10−3 . (3)

Since, for standard accretion disk theory ηem
<∼ 0.3 [16], this immediately implies

funobsc facc fX ηem
>∼ 2 × 10−3 (4)

and thus

2 × 10−3 <∼ funobsc, facc, ηX, fX, ηem ≤ 1 . (5)

The lower limit only depends on the fact that AGN contribute a considerable fraction of the observed X-ray back-
ground.

A growing consensus has been forming that SMBHs grow almost exclusively by accretion, determined by linking
luminosity distributions to the SMBH mass distribution, suggesting facc ≃ 1. [12, 14, 17, 18, 19, 20, 21]. A corollary of
this assumption is that most AGN should be rapidly spinning, with ηem ≃ 0.15−0.3 for dimensionless spin parameters
of a/M ≃ 0.9 − 0.998 [16]. As mentioned in the introduction, recent MHD simulations suggest an upper limit to
the spin parameter, due to magnetic torques that remove angular momentum from the inner edge of the disk, thus
preventing the accreted matter from spinning up the black hole to maximal spin [7, 8, 9]. Thus we set the fiducial
spin parameter at a/M = 0.95, corresponding to ηem ≃ 0.2.

For funobsc ≃ 0.3 [6], Eq. (3) would then require an X-ray efficiency of accretion of ηX ≃ 7×10−3. This would require
either that the total radiative efficiency ηem would have to be of the same order, or that most of the electromagnetic
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TABLE I: Glossary of dimensionless parameters, with allowable and preferred values

symbol min max preferred description
facc 0 1 1 fraction of SMBH mass due to accreted gas
fco 0 1 0.01 fraction of accreted matter in form of compact objects
fX 0 1 0.03 fraction of EM radiation in X-rays

fEdd 0 >
∼ 1 0.1 typical fraction of Eddington luminosity/accretion rate

funobsc 0 1 0.3 fraction of emitted X-rays not absorbed/reprocessed
ηem 0 1 0.2 accretion efficiency of converting gas to EM radiation
ηX 0 ηem 0.006 accretion efficiency of converting gas to X-rays
ηgw 0 1 0.2 accretion efficiency of converting compact objects to GW

radiation
Ωacc 0 ΩSMBH 2 × 10−6 fraction of critical density in accreted gas
ΩX 0 Ωrad 2.6 × 10−9 fraction of critical density in X-rays (2-10 keV)

ΩSMBH 0 ΩM 2 × 10−6 fraction of critical density in SMBHs
Ωgw 0 ΩSMBH 2 × 10−10 fraction of critical density in GWs
ΩM 0 1 0.3 fraction of critical density in matter
Ωrad 0 1 5 × 10−5 fraction of critical density in radiation
ΩΛ 0 1 0.7 fraction of critical density in vaccuum energy

emission is emitted in other bands. While such low radiative efficiencies are certainly possible (e.g., ADAF models
of Ref. [22]), during the periods of largest growth and thus highest AGN activity, the accretion disks should be
radiatively efficient. Indeed, the X-ray fraction fX is governed by bolometric corrections and is of the order of 0.03 if
AGN emission is dominated by infrared and optical frequencies [17, 18, 20, 23]. This is consistent with the fact that
the background energy in the X-ray band from 2 to 10 keV is dominated by AGNs, whereas the energy density in the
infrared background which is about a factor 200 higher, is dominated by ordinary galaxies.

Pending a fuller understanding of the star formation mechanism in the accretion disk, for now we simply assume
that a certain fraction fco ≤ 1 of the accreted material is in the form of compact objects which will not get tidally
disrupted before plunging into the SMBH. Since the astrophysical parameters that actually determine this fraction
are not well known, we set it to a conservative value of 0.01. If it were much higher, the disk would be entirely
fragmented and thus not efficiently emit EM radiation. And as we will see below, a value much below 1% would result
in a GW signal undetectable by LISA. We further assume that a certain fraction ηgw of the rest mass m of these
compact objects is emitted in GWs during the inspiral event. Neglecting the plunge and ringdown stages (as well as
magnetic torques in the innermost disk), we will generally set ηgw = ηem.

Following the above notation, we now write the X-ray luminosity LX as a fraction fX of the bolometric luminosity,
which in turn is a fraction fEdd of the Eddington luminosity LEdd:

LX = fXfEddLEdd(M) = fXηemṀaccc
2, (6)

where the gas accretion rate is Ṁacc. The Eddington limit is a function only of the SMBH mass: LEdd(M) =
1.3 × 1038(M/M⊙) erg/s. Over the range of redshifts and luminosities we are probing, typical accretion rates during
the period of maximum black hole growth are estimated to be fEdd ∼ 0.1, but could likely be even greater than unity
[24, 25, 26]. This rate is also derived from a comparison of the luminosity distribution and the mass distribution, via
the efficiency parameter ηem. Note that Eq. (6), together with fX ∼ 0.03 and fEdd ∼ 0.1, implies that this luminosity
function corresponds to SMBH masses 105M⊙

<∼ M <∼ 1010M⊙. This is consistent with typical SMBH masses inferred
from velocity dispersion observations. Note, however, that fEdd varies during the lifetime of an AGN and, strictly
speaking, is a distribution for each SMBH mass and redshift. In the present work, we will understand fEdd as an
average during the active periods of AGNs, when they actually contribute to the X-ray luminosity function used
below.

Emission in the infrared and hard X-rays is less obscured than in other bands and are thus more easy to observe.
Since infrared luminosity functions are more poorly known, we will use the X-ray luminosity function to obtain a
realistic picture of AGN distributions. We stress that all our luminosities are to be understood as intrinsic, i.e. as
a measure of the X-rays produced directly by the accreting gas, and before reprocessing and/or partial absorption
within the host galaxy [6, 20]. This is most natural for our purposes as we are dealing with electromagnetic and GW
emission by accretion, so we are concerned primarily with emission from the very inner-most regions of the disk.

The luminosity function is defined as the comoving number density n of objects per logarithmic luminosity interval,
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with units of Mpc−3. We parametrize the intrinsic X-ray luminosity function per comoving volume after Ref. [6],

LX
dn

dLX
(z, LX) =

A
(

LX

L∗

)γ1

+
(

LX

L∗

)γ2
×

{

(1 + z)p1 z < zc(LX) ,
(1+z)p2

[1+zc(LX)]p2−p2
z ≥ zc(LX) ,

(7)

for Lmin ≃ 1041.5 ergs s−1 ≤ LX ≤ 1046.5 ergs s−1 ≃ Lmax. For a given LX, the cut-off redshift is

zc(LX) =

{

z∗c LX ≥ La

z∗c

(

LX

La

)β

LX < La
, (8)

and the best fit parameters in Eqs. (7) and (8) are given by A = 2.2 × 10−6 Mpc−3, L∗ = 1044 ergs s−1, γ1 = 0.86,
γ2 = 2.23, p1 = 4.23, p2 = −1.5, z∗c = 1.9, La = 1044.6 ergs s−1, and β = 0.335 (note that our value for the parameter
A differs from Ref. [6] by a factor of (ln 10) due to our slightly different definitions of the luminosity function). The
distribution function defined by Eq. (7) is plotted in Fig. 1 for a range of redshifts. The “anti-hierarchical growth” of
AGN is evident from the increasing average luminosity with redshift: at early times, larger black holes were growing
fastest, and most smaller black holes (M ∼ 106 − 107M⊙) are thus relatively young [20, 21].

FIG. 1: Analytic fits to the hard X-ray luminosity function given in Ref. [6]. Note that the average intrinsic luminosity (and
thus AGN mass) increases with redshift.

With this luminosity function, we can calculate directly the diffuse energy density in hard X-rays due to AGN:

ρcΩX ≃ funobsc

∫ ∞

0

dz

∣

∣

∣

∣

dt

dz

∣

∣

∣

∣

1

1 + z

∫

dLX LX
dn

dLX
. (9)

In Eq. (9), cosmology enters through |dt/dz| = [(1 + z)H(z)]−1 and, for a flat geometry,

H(z) = H0

[

ΩM(1 + z)3 + ΩΛ

]1/2
. (10)

Throughout this paper we will assume a flat, ΛCDM Universe with ΩM = 0.3, ΩΛ = 0.7 (all other contributions to the
energy density are negligible), and H0 = 72 km s−1 Mpc−1 [27]. Typically, we will integrate the luminosity function
out to redshifts zmax ≃ 3.

Reference [6] has demonstrated that, when integrated over redshift and correcting for absorption and reprocessing,
the luminosity function (7) explains practically all of the diffuse extragalactic X-ray flux between ≃ 1 keV and a few
hundred keV measured by the HEAO1, ASCA, and Chandra observatories. Combining Eqs. (7) and Eq. (9), we obtain
ΩX ≃ 8.7 × 10−9funobsc, implying funobsc ≃ 0.3. This is consistent with the estimate that about 60% of AGNs of
luminosity LX

<∼ 1044 ergs s−1 are obscured [20]. The unobscured fraction of these AGN dominates ΩX .
More information may come from future X-ray missions such as Astro-E2/HXD, NeXT, Constellation-X, and

XEUS. With their larger collecting area and greater sensitivity, these instruments will allow us to extend the X-ray
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luminosity function to lower luminosities and higher redshifts. Future IR observatories like the James Webb Space
Telescope will greatly improve our estimates for fX and funobsc. There may also be significant AGN emission in soft
γ−rays, as recently reported from INTEGRAL observations [28]. Future γ−ray missions such as GLAST will further
help us understand the AGN energy budget at this end of the spectrum.

III. THE GRAVITATIONAL WAVE SIGNAL

A. Individual inspiral spectrum

We consider the inspiral of a single compact object of mass m into a SMBH of mass M ≫ m, motivated by scenarios
such as those described in the introduction [4, 5]. It is not known whether inspiraling black holes in accreting discs
can acquire considerable eccentricity by interacting with the disc or with other orbiting masses, and if this eccentricity
will have time to decrease due to GW radiation reaction as the small body spiral in. Considering the astrophysical
uncertainties in deriving the GW spectrum, we limit the analysis to the simplest inspiraling model, i.e. the circular
equatorial one.

Using geometrized units such that G = c = 1, a geodesic particle on an equatorial, circular orbit around a Kerr
black hole has an orbital frequency (as measured by an observer at infinity) of [29]

forb(r) =

√
M

2π(r3/2 ± a
√

M)
(11)

and specific energy

E(r)

m
=

r2 − 2Mr ± a
√

Mr

r(r2 − 3Mr ± 2a
√

Mr)1/2
. (12)

We estimate the total energy emitted in gravitational waves down to a radius r as Egw(r) = m − E(r). The energy
emitted in GWs between frequency f and f + df for such an event is

dEgw

df
=

dEgw

dr

(

df

dr

)−1

. (13)

We restrict the GW emission to the leading quadrupole formula, thus we consider only GW frequencies twice the
orbital frequencies. In the Newtonian limit, we reproduce the well-known result (e.g. [30, 31]) valid for circular orbits

f
dEgw

df
(f) =

m

3
(πMf)2/3. (14)

We will generally want to restrict Eq. (13) to a range of frequencies fmin ≤ f ≤ fmax. Here, fmin ≡ T−1
obs is the

smallest resolution frequency-bin determined by the mission mission lifetime Tobs and fmax is the GW frequency at
the inner-most stable circular orbit (ISCO). The location of the ISCO is given by the radius where dEgw/df in Eq. (13)
vanishes. It strongly depends on the spin of the black hole, giving fmax ≃ 4− 20 mHz for a SMBH mass 106M⊙ [29].

Note that ηgw =
∫ fmax

0
df(dEgw/df)/m is given by Eq. (13).

In Fig. 2 we show the GW spectrum for a single inspiral event for a range of black hole masses and spins, plotting
the so-called characteristic GW amplitude hc(f) for single events, defined by

h2
c(f) =

2

π2

1

r2(z)

dEgw

df
(fz) (15)

(compare with Figs. 3-7 in Ref. [32]), where r(t) is the comoving coordinate, dr = (1 + z)dt.

B. Integrated time-averaged spectrum

To estimate the total contribution from all sources, we start by integrating the GW energy density (per logarithmic
frequency) over redshift z, averaged over time scales large compared to all physical time scales related to the sources.
Following Ref. [31], we have

dρgw(f)

d ln f
=

∫ ∞

0

dz
R(z)

1 + z

∣

∣

∣

∣

dt

dz

∣

∣

∣

∣

fz
dEgw

dfz
(fz) , (16)
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FIG. 2: Characteristic GW strain amplitudes for individual inspiral events, where a black hole with m = 10M⊙ merges with
a SMBH of mass M = 106, 107, 108M⊙ at a redshift of z = 1. For each value of M , we show the spectra for two spin values,
a/M = 0 (solid) and 0.95 (dashed). The dot-dashed and dotted lines are the sky-averaged LISA noise curves with and without
the contributions from galactic binaries, respectively.

where fz ≡ (1 + z)f , and R(z) is the rate of inspiral events per comoving volume. Note the similarity to Eq. (9), the
energy density in hard X-rays.

To derive an expression for R(z), we observe that the event rate for a single AGN is simply the X-ray luminosity
divided by the total X-ray energy emitted between inspiral events and thus for a given luminosity LX, the event rate
is

R(LX, z) =
dn

dLX

LX

EX
. (17)

Assuming equal efficiencies ηgw = ηem, this X-ray energy can be written as

EX = Egw
fX

fco
. (18)

Combining Eqs. (17), (18) and integrating over the luminosity distribution function, we get

R(z) =
fco

fX

∫

dLX
dn

d lnLX

1

Egw
. (19)

Combining with Eq. (16) and integrating over redshift, the total (time-averaged) gravitational wave spectrum is

dρgw(f)

d ln f
=

fco

fX

∫ ∞

0

∣

∣

∣

∣

dt

dz

∣

∣

∣

∣

dz

1 + z

∫ Lmax

Lmin

dLX
dn

d lnLX

1

Egw

dEgw

d ln fz
(fz). (20)

The GW spectrum Egw(f) from each individual AGN is a function of the SMBH mass, which in turn is determined
by the X-ray luminosity through Eq. (6). Note that the integrated spectrum is independent of m, as long as m is
small enough so that the inspiral waveforms cannot be individually resolved. One measure of this resolvability is the
duty cycle, described in the next section.

Following Refs. [11, 32], we will want to compare directly the stochastic background defined in Eq. (20) to the

spectral density of the detector noise Sn(f), which has units of inverse frequency. In this case,
√

fSn(f) will have
units of dimensionless strain. Averaging over the entire sky, weighted by the LISA antenna pattern, gives

Sh(f) =
4

π

1

f3

dρav
gw(f)

d ln f
. (21)

Throughout the paper we use the so-called sky and detector averaged instrumental spectral density for LISA, given
by [11, 32]:

Sinstr(f) =
(

6.12 × 10−51 f−4 + 1.06 × 10−40 + 6.12 × 10−37f2
)

Hz−1 , (22)
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augmented by the white-dwarf galactic confusion noise

Sgal
h (f) = 1.4 × 10−44

(

f

1 Hz

)−7/3

Hz−1 , (23)

and the white dwarfs extra-galactic confusion noise

Sex−gal
h (f) = 2.8 × 10−46

(

f

1 Hz

)−7/3

Hz−1 . (24)

Thus, the total (instrumental plus confusion) noise is

Sn(f) = min
{

Sinstr(f)/exp
(

−κT−1
missiondN/df

)

, Sinstr
h (f) + Sgal

h (f)
}

+ Sex−gal
h (f) . (25)

Here, dN/df is the number density of galactic white-dwarf binaries per unit gravitational-wave frequency given by

dN

df
= 2 × 10−3 Hz−1

(

1 Hz

f

)11/3

. (26)

C. Dependence on model parameters

In this section we show the impact of each of the model parameters on the predicted GW spectrum. In this approach,
all parameters are taken as constant in time and independent of the other parameters and the AGN masses. In Fig. 3,
we show the time-averaged GW spectrum calculated from Eq. (20), for the fiducial model parameters listed in Table
I (solid black curves), along with the effects of varying the individual parameters around these baseline values.

In the top left panel of Fig. 3 we show the dependence on fEdd relative to the fiducial model. For smaller values of
fEdd, the observed luminosity function will imply a SMBH mass distribution function shifted towards higher masses
and thus lower frequencies (blue curve). Conversely, higher values of fEdd require smaller black hole masses and thus
higher frequencies (red curve).

The top right panel of Fig. 3 shows the dependence on fco, the fraction of accreted matter in the form of compact
objects. The linear dependence of Ωgw(f) on fco is reasonable: more compact objects give more signal, which is
also clear from Eq. (20). Similarly, the predicted GW power increases when the fraction fX decreases, as seen in the
bottom left panel of Fig. 3. The largest GW signal in this scenario is achieved for minimal fX. This corresponds to
only a small fraction of the total accretion activity in the Universe being observable in hard X-rays. Thus we infer
that the bolometric luminosities are actually much higher, which in turn implies more matter being accreted and thus
more compact objects for a fixed fco. The fraction fX also determines the AGN mass cutoff through Eq. (6), since
(fixing all other parameters) a smaller fX implies a larger Eddington luminosity, and thus higher mass and lower
frequency.

Motivated by Refs. [8, 9], we have used a large (yet not maximal) spin parameter of a/M = 0.95 for most of the
calculations here. The bottom right panel of Fig. 3 shows the fiducial model along with the corresponding signal
for a/M = 0, 0.7, and 1.0. Despite the significant difference between the signals from individual inspiral events (see
Fig. 2), the difference in total, time-averaged power is rather smaller. This is because rapidly spinning black holes
are more efficient (high ηem and ηgw), so for a given luminosity, there is less gas being accreted and therefore fewer
embedded compact objects, and less GW power. Similar to the results in the bottom left panel of Fig. 3, varying
a/M also changes the inferred SMBH mass for a given luminosity, in turn changing the cutoff frequency.

We should mention that the GW signal appears to depend insignificantly on the maximal redshift zmax for zmax
>∼ 3,

where the luminosity function becomes more and more uncertain. Another parameter that we have explored is the
low-luminosity cutoff of the luminosity function Eq. (7). By extending the cutoff to lower luminosities, we include
lower-mass AGN, and thus higher frequencies. After trying Lmin = 1040.5 ergs s−1 and Lmin = 1039.5 ergs s−1 we
found that, as expected, the lower luminosities give more signal at higher frequencies, but not significantly within the
LISA band. However, this may be an important factor when designing a GW observatory with more sensitivity in
the ∼ 0.1 − 10 Hz band. On the other hand, the smaller accretion disks and shorter time scales of low-mass AGN
may make them insignificant sources of disk-embedded compact objects, and thus the somewhat artificial cutoff of
Lmin = 1041.5 ergs s−1 may actually be physically justified.
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FIG. 3: Time-averaged GW spectra for the baseline model parameters listed in Table I (solid black curves), and the effects
of changing the various parameters: fEdd (top left panel), fco (top right), fX (bottom left), and a/M (bottom right). The
dot-dashed and dotted lines are the sky-averaged LISA noise curves with and without the contributions from galactic binaries,
respectively.

D. Sensitivity to varying model parameters

Up to now we have assumed that the fiducial values of the parameters in Table I are constants independent of SMBH
mass and/or redshift. Particular parameters are, however, likely to vary throughout evolution. There is evidence, for
example, that the Eddington ratio fEdd was higher in the past than it is now, see, e.g., Refs. [23, 33]. In order to
assess the possible influence of such evolution, following Ref. [33] who studied an AGN sample from the Sloan Digital
Sky Survey, we model the dependence of the average fEdd on the SMBH mass and redshift as follows (while restricting
0.01 ≤ fEdd ≤ 1.0):

fEdd(M, z) = 0.1
( z

0.1

)γ(M)
(

M

107 M⊙

)−0.8

, (27)

where γ(M) is given by Eq. (4), Table 1, and Fig. 4 in Ref. [33]. This is, in fact, probably more realistic than
the constant fEdd ≃ 0.1 approximation, because the SMBH density resulting from the X-ray luminosity function
at small redshift z ∼ 0.01, ΩSMBH ≃ 1.3 × 10−6 is closer to the one inferred from the velocity dispersions in the
AGNs: Note that ΩSMBH ∼

∫

dLX(dn/dLX)M/ρc, where M is related to LX via the generalization of Eq. (6) to
varying fEdd, LX = fXfEdd(M, z)LEdd(M), and M is restricted to 105 M⊙

<∼ M <∼ 1010 M⊙. The time-averaged GW
spectrum resulting from Eq. (27) is shown in the left panel of Fig. 4. Compared to the fiducital model (black curve),
when varying fEdd (red curve), the slope becomes smaller, i.e. the signal at low frequency decreases whereas at high
frequencies it increases, consistent with the tendencies seen in the top left panel of Fig. 3. Overall, the spectrum
seems relatively robust with respect to variation of fEdd.

Furthermore, since the larger mass disks seem more susceptible to fragmentation into smaller mass objects, fco

might increase with M , whereas m might decrease with M . For large M , the longer accretion times also make it more
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likely for lower-mass stars to form and evolve to compact objects before reaching the inner edge of the disk. On the
other hand, the feedback into the disk from star formation may increase gravitational stability and thus decrease fco.
For purpose of illustration we consider each of the following scalings:

fco(M) = 10−3

(

M

105 M⊙

)0.5

and (28a)

fco(M) = 10−3

(

109 M⊙

M

)0.5

, (28b)

in all cases requiring fco
<∼ 0.5 to maintain a coherent gas accretion disk in order to produce the necessary X-ray flux.

The resulting time-averaged GW spectrum is shown in the right panel of Fig. 4. When fco increases with M , the
signal is considerably enhanced at low frequencies (blue curve), while the opposite occurs when fco decreases with M
(red curve).

FIG. 4: Time-averaged GW spectra for the baseline model parameters listed in Table I (solid black curves), along with models
where fEdd varies according to Eq. (27) (left panel, red curve) or the fraction fco of accreted matter in form of compact objects
varies according to Eq. (28) (right panel, red and blue curves).

IV. EVENT RATES, DUTY CYCLE AND CONFUSION NOISE

The total inspiral rate as seen from Earth at frequency f can be written as (see, e.g. Ref. [31])

Γ(f) =

∫ ∞

0

dz
R(z)

1 + z

dV

dz
=

fco

fXηemm

∫ ∞

0

dz
4πr2(z)

(1 + z)H(z)

∫ Lmax(fz)

Lmin

dLX
dn

d lnLX
, (29)

where dV/dz = 4πr2(z)/H(z) is the fractional volume element, the Hubble rate at redshift z is given by Eq. (10),
and r(z) is the comoving coordinate, dr = (1 + z)dt. In the second expression of Eq. (29) we have used Eq. (19) with
Egw = ηgwm and Lmax(f) is the maximum luminosity for which the associated SMBH mass emits to frequencies up
to f . Note that for a fixed compact object fraction fco, the rate Eq. (29) is inversely proportional to the typical mass
m of the inspiraling compact object.

The duty cycle D(f) at a given frequency is the average number of sources contributing at any given time. This
can be estimated by multiplying the integrand of Eq. (29) with the time scale over which a source radiates around the
frequency f with a coherent phase development. In the case of adiabatic, circular inspirals, the system emits GWs at
a well-defined frequency f(t) which evolves monotonically in time. In the local rest frame (i.e. ignoring cosmological
redshifts) we can estimate the coherence time as [34]:

tcoh(f) ≡ f

df/dt
≃ 5

144 M2/3 m (πf)8/3
≃ 3.5

(

106 M⊙

M

)2/3 (

102 M⊙

m

) (

10−3 Hz

f

)8/3

yr. (30)
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The duty cycle as observed at Earth will thus be estimated by multiplying the integrand of Eq. (29) with (1+z)tcoh(fz):

D(f) =
fco

fXηemm

∫ ∞

0

4πr2(z)

H(z)
dz

∫

dLX
dn

d lnLX
tcoh(fz) . (31)

Note that it is proportional to fco/(fXηemm2), with the extra power of m coming from the dependence of tcoh in
Eq. (30). Smaller m means more compact objects, and also slower inspiral rates, thus each source spends more time
around a given f .

FIG. 5: Duty cycle D(f) for the nominal parameter values and a range of compact object masses m. When D(f) <
∼ 1, the

inspiral signals should be individually resolvable. The high frequency cut-off is due to the somewhat arbitrary cut-off of the
X-ray luminosity function at low luminosities which depends on the experimental sensitivity.

In Fig. 5 we show the duty cycle for the fiducial model parameters and a range of compact object masses m. The
cutoff around 20 mHz is due to the somewhat artificial low-end cutoff in the luminosity function, corresponding to
a minimum value for M and thus maximum attainable frequency. When the duty cycle is <∼ 1, a detector will see a
non-gaussian, non-continuous signal which rather has a “popcorn” character [35]. Provided the signal to noise ratio
(SNR) is sufficiently large, the detector will then be able to resolve individual events of duration tcoh(f), occurring at
a rate Γ(f) < t−1

coh(f).
When the duty cycle is ≥ 1, several sources are present at any given time at a frequency f in a bandwidth ∆f ∼ f .

However, the number of sources in the smallest resolution frequency-bin, which corresponds to 1/Tobs ∼ 10−8 Hz, is
not larger than one. Thus, our background is in principle subtractable if the SNR is sufficiently high.

Let us estimate, as done in Ref. [11], the unsubtractable portion which will constitute the confusion noise Sconf(f)
[or dρconf

gw (f)/df related to Sconf
h (f) by the analogue of Eq. (21)]. For each inspiral source observed over the LISA

mission lifetime, we evaluate the SNR defined by

SNR2 =

∫ fmax

fmin

d ln f
h2

c(f)

f Sn
, (32)

where hc(f) is the characteristic strain defined in Eq. (15) and Sn is given by Eq. (25). This integral is performed
over the frequency range fmin ≤ f ≤ fmax through which the system sweeps during the mission lifetime Tobs. While
in principle the inspiraling object may reach fISCO and then plunge sometime in the middle of the LISA mission, for
concreteness we only consider systems that are active throughout Tobs. In Fig. 6 we show SNRs for a few typical cases
as a function of the time t remaining to plunge (as of the end of the observation). We then insert a step-function
factor Θ (SNRthr − SNR) in the integrand of Eq. (20) to obtain dρconf

gw (f)/df . This assures that only events with SNR
too small to be subtracted out contribute to this confusion noise.

We note in passing that, strictly speaking, unresolvable events contribute to the Sn noise and thus the SNR in
Eq. (32) should be obtained by an iterative procedure in which Sn includes events that could not be subtracted out.
This becomes important when the merger noise of events whose SNR is smaller than the threshold SNR is comparable
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FIG. 6: Signal to noise ratio for the inspiral of a compact object of masses (left panel) 10M⊙ and (right panel) 100M⊙ onto a
SMBH of mass M = 105 M⊙ (solid line), M = 106 M⊙ (dashed line), and M = 107 M⊙ (dot-dashed line) at 1 Gpc distance, as
a function of the time left to the ISCO at the end of the observation time Tobs = 3yr. Also shown is the threshold of SNR=15
(dotted line).

or larger than the instrumental noise. In this case we will slightly underestimate the fraction of the true unsubtractable
background.

With the SNR calculation in hand, we can also estimate the inspiral rate above a given threshold. In the left panel
of Fig. 7, we show both the total inspiral rate in the Universe (solid curves), as well as the rate of detectable signals
for SNR ≥ 15 (dashed curves), for m = 1 − 103M⊙. The total rate, which here can be thought of as the rate of
compact objects reaching the ISCO, is given at each redshift as

Γ(z) =
R(z)

1 + z

dV

dz
. (33)

We have also defined [see Eq. (29)] an inspiral rate as a function of frequency Γ(f), which is a measure of the number
of chirping systems that passes through a frequency f per unit time. To distinguish these rates, we will refer to Γ(z)
as the “plunge rate” and Γ(f) as the “chirp rate.”

While the plunge rate is proportional to m−1, the SNR increases with m, so the smaller mass inspirals are only
resolvable out to smaller distances. Also, at a given redshift, the integrated SNR generally decreases with increasing
M as the lower fISCO resides in the region of higher instrumental noise. By integrating the area under the dashed
curves in Fig. 7, we find the resolvable event rates to be ∼ 150yr−1 for m = 1− 10M⊙ and ∼ 50yr−1 for m = 100M⊙.
Inspirals with m = 103M⊙, while observable out to high redshifts, would be relatively rare, with rates ∼ 15yr−1.
From Eq. (29), we see that these plunge rates are proportional to fco, so could potentially be used to constrain that
poorly-known parameter.

In the right panel of Fig. 7 we plot the chirp rate Γ(f) for the same range of compact object masses. At low
frequencies, the chirp rate funtion is nearly flat, due to a steady-state “flux conservation” as each inspiraling object
enters a frequency bin, another will leave it. Then, at higher frequencies, systems begin to drop out altogether as
they reach the plunge frequency for a given mass M , up to the final cut-off frequency due to the lower limit end of
the SMBH mass function (compare with the duty cycle D(f) in Fig. 5).

Note that these event rates are, within orders of magnitude, consistent with independent estimates of EMRIs based
on loss cone calculations. Such estimates give inspiral rates of “captured” compact objects per galaxy ranging from
∼ 10−7 [36] to ∼ 10−5 yr−1 [37]. With a few billion galaxies out to z ∼ 1, this corresponds to rates between ∼ 100
and ∼ 104 yr−1.

In Fig. 8 we show the unresolvable portion of the GW power spectrum for the fiducial model and a range of m,
subtracting out all contributions from systems with SNR¿15. Clearly, for larger values of m, the threshold SNR is
reached at an earlier time and thus lower frequency in the inspiral, reducing the confusion noise at higher frequencies.
We notice that even the subtracted events can increase the total noise (25) by an amount proportional to Sn [38],
because information used to subtract the events cannot be used to detect other events. However, in our case, we have
found that this increase in negligible.

From the dependence D(f) ∝ fco/m2 and from Fig. 5, we can deduce that for fixed fEdd and ηem and m <∼
102 (fco/0.01)1/2 M⊙, the duty cycle is larger than unity and, therefore, the background can basically be treated as
gaussian at all frequencies where a detectable signal is predicted. For m >∼ 102 (fco/0.01)1/2 M⊙, the frequency where
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FIG. 7: In the left panel we show the inspiral rate Γ(z) as a function of redshift for m = 1−103M⊙. The solid curves represent
the total plunging rate in the Universe irrespective of frequency, while the dashed curves represent the resolvable fraction with
maximal SNR ≥ 15 In the right panel we show the total inspiral chirp rate Γ(f) of Eq. (29) for the same range of masses, again
distinguishing between the total rate in the Univers (solid curve) and the resolvable portion (dashed curves).

FIG. 8: Unresolvable GW spectra for a range of compact object masses m, after subtracting out individual events with
integrated SNR above a threshold of 15. The solid black curve corresponds to the total time-averaged spectrum, including the
resolvable portion.

the duty cycle crosses unity is in a range where D(f) roughly scales as f−8/3 (see Fig. 5), because the inspiral rate
Γ(f) varies much more weakly (see Fig. 7), and the coherence time, Eq. (30), tcoh ∝ f−8/3. As a result, the GW
background becomes gaussian when

f <∼ fgauss ≃ 2 × 10−3

(

fco

0.01

)3/8 (

102 M⊙

m

)3/4

Hz (34)

Note from Fig. 8 that the frequency below which the background becomes unsubtractable, and thus contributes
to confusion noise, is lower by a factor ∼5–10 compared to the frequency Eq. (34) below which the noise becomes
gaussian because the duty factor becomes larger than unity. Figure 8 also shows that the compact object mass above
which inspirals tend to become resolvable, m >∼ 10 M⊙, is comparable to the compact object mass above which the
signal consists of individual events (i.e. the duty cycle is smaller than unity). In other words, there is indeed a range
of frequencies and compact object masses giving a quasi-continuous signal which may still be resolved into individual
events given an improved detector. However, when the duty cycle is much greater than unity, even a perfect detector
will not be able to resolve the individual sources, as is the case for most of the galactic white dwarf population [3].
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V. CONCLUSIONS

Assuming scaling relations between accretion rates, intrinsic bolometric and X-ray luminosities, and supermassive
black hole mass on the one hand, and rates and masses of compact object inspirals on the other hand, one can predict
GW spectra from AGN sources. When part of these scaling relations are constrained observationally, one obtains
amplitudes detectable by LISA if the fraction of material accreted in the form of compact objects is >∼ 1%. The GW
signal depends relatively little on the accretion and emission parameters, as long as these are within the observational
constraints. It increases with the fraction of the observed mass density of supermassive black holes that is due to
accretion (fEdd), and is thus largest for accretion dominated growth.

Our scenarios are well within existing observational upper limits. For example, for the highest flux shown in
Fig. 3 one obtains Ωgw(10−8 Hz)h2

0
<∼ 10−12 (fco/0.01), compared to the msec pulsar timing limit Ωgw(10−8 Hz)h2

0
<∼

10−8 [39]. This class of sources is not important for future missions sensitive around 1 Hz, such as BBO [40].
If LISA establishes a detection or upper limits on Ωgw(f), this may be translated into constraints on the parameters

fco, m, ηgw, fX, fEdd, and ηem used in the present parametrization. Since fX, fEdd, and ηem are rather well constrained
by AGN astronomy, and ηgw is rather well determined by theory, LISA will mainly constrain fco and m. A more
detailed study where these parameters depend on luminosity and/or different AGN classes may allow for more detailed
predictions, but is beyond the scope of the present exploratory study.

For compact object masses m <∼ 102 (fco/0.01)1/2 M⊙, where fco is the fraction of material accreted in form
of these compact objects, the background is gaussian at nearly all frequencies where a detectable signal is pre-
dicted. In contrast, for m >∼ 102 (fco/0.01)1/2 M⊙, the GW background is gaussian only at frequencies f <∼
2 × 10−3 (fco/0.01)3/8 (102 M⊙/m)3/4 Hz, above which the duty cylce is smaller than unity. The frequency below
which the GW background becomes confusion noise because the signal to noise ratio becomes too small to subtract
out individual events is smaller than this gaussian frequency by a factor ∼5–10. At higher frequencies one would ob-
serve individual coherent signals of typical duration ≃ 0.2 (102 M⊙/m) (10−3 Hz/f)8/3 yr which occur at a typical rate
∼ 102 (fco/0.01) (102 M⊙/m) yr−1. This is typical for supermassive binary inspiral discussed before in the literature.

While the time-averaged GW background described in this paper will be similar to other EMRI backgrounds
(e.g. [11]), the resolvable waveforms should provide information that allows us to distinguish between the circular,
equatorial inspirals of disk-embedded objects and the highly inclined, eccentric orbits predicted for capture inpirals.
When combined with knowledge of the electromagnetic properties of active galactic nuclei, LISA should be able to
constrain primarily the fraction of accretion in form of compact objects and the mass of these compact objects, and
thus provide fundamental new insights into the problem of star formation in AGN disks.
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