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We derive the equations of motion of spinning compact binaries including the spin-orbit (SO) coupling
terms one post-Newtonian (PN) order beyond the leading-order effect. For black holes maximally
spinning this corresponds to 2.5PN order. Our result for the equations of motion essentially confirms
the previous result by Tagoshi, Ohashi, and Owen. We also compute the spin-orbit effects up to 2.5PN
order in the conserved (Noetherian) integrals of motion, namely, the energy, the total angular momentum,
the linear momentum, and the center-of-mass integral. We obtain the spin precession equations at 1PN
order beyond the leading term, as well. Those results will be used in a future paper to derive the time
evolution of the binary orbital phase, providing more accurate templates for LIGO-Virgo-LISA–type
interferometric detectors.
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I. INTRODUCTION

The laser interferometer gravitational-wave (GW) de-
tectors LIGO (Laser Interferometer Gravitational Wave
Observatory), Virgo, GEO 600, and TAMA300 are cur-
rently searching for GWs emitted by inspiralling compact
binaries composed of neutron stars and/or black holes.
Analyzing the data using matched filtering technique re-
quires a high-precision modeling of the inspiral waveform
[1–9]. The post-Newtonian (PN) approximation to general
relativity has been applied to build accurate theoretical
templates up to the 3.5PN precision level1 for nonspinning
compact bodies [10–12]. Post-Newtonian templates are
currently used in analyzing the data with ground-based
detectors and in the future they will be used to detect
GWs emitted by supermassive black-hole binaries with
the space-based detector LISA.

Astrophysical observations suggest that black holes can
have non-negligible spins, e.g., due to spin up driven by
accretion from a companion during some earlier phase of
the binary evolution. For a few black holes surrounded by
matter, observations indicate a significant intrinsic angular
momentum (see, e.g., Refs. [13–15] for stellar black holes
and Refs. [16,17] for supermassive black holes). The spin
may even be close to its maximal value [18]. Very little is
known however about the black-hole spin magnitudes in
binary systems [19].

To successfully detect GWs emitted by spinning, pre-
cessing binaries and to estimate the binary parameters, spin
effects should be included in the templates. For maximally
spinning compact bodies the spin-orbit coupling (linear in
the spins) appears dominantly at the 1.5PN order, while the

spin-spin one (which is quadratic) appears at 2PN order.
The spin effect on the free motion of a test particle was first
obtained in the form of a coupling to curvature by
Papapetrou et al. [20–22]. Seminal works by Barker and
O’Connell [23,24] yielded both the leading-order spin-
orbit and spin-spin contributions in the PN equations of
motion. More recently, using an effective field theory
approach [25], leading spin-orbit and spin-spin couplings
in the two-body Hamiltonian were rederived [26] and
predictions for spin-spin couplings at 3PN order in the
spin potential were obtained [27]. Based on the works
[23,24], Kidder, Will, and Wiseman [28,29] (see also
Refs. [30,31]) computed the corresponding coupling terms
in the radiation field, enabling thereby the derivation of the
orbital phase evolution, the latter being the crucial quantity
that determines the templates. Currently, only the leading-
order spin effects, i.e., the spin-orbit and spin-spin cou-
plings, have been implemented in the templates for spin-
ning, precessing black-hole binaries [8,32–35].

More recently, Tagoshi, Ohashi, and Owen [36,37]
started the computation of the 1PN corrections to the
leading spin-orbit coupling. Those corrections, linear in
the spins, appear at 2.5PN order. However, their work has
never been completed: the very important conserved inte-
grals associated to the equations of motion at 2.5PN order
and the mass quadrupole moment at the 2.5PN order were
not computed.

The aim of the present paper together with its compan-
ion [38] is to complete the work of Refs. [36,37] and get the
orbital phase evolution at 2.5PN order. In this paper we
derive the equations of motion, confirming the main result
of Ref. [37] (but correcting several important misprints)
and compute the entire set of conserved Noetherian inte-
grals of the motion associated with the Poincaré invariance,
notably the energy and the total angular momentum. In

1As usual nPN refers to terms of order �v=c�2n, where v is the
internal velocity and c is the speed of light. In this paper we
explicitly display all powers of c and of Newton’s constant G.
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Ref. [38] (henceforth paper II), we evaluate the multipole
moments and the radiation field so as to deduce the orbital
phase evolution.

The spin of a rotating body is of the order Strue �

mavspin, where m and a denote the mass and typical size
of the body, respectively, and where vspin represents the
velocity of the body’s surface. Here, by ‘‘true,’’ we mean
that the spin we are referring to is not rescaled [as in
Eq. (1.1) below]. In this paper we shall consider bodies
which are both compact, a� Gm

c2 , and maximally rotating,
vspin � c. For such objects the magnitude of the spin is
roughly Strue � Gm2

c . The previous estimate shows that the
spin goes as one power of 1=c, i.e., from the PN point of
view, it is formally of order 0.5PN. Again, such a counting
is appropriate for maximally rotating compact objects. It is
then also customary to introduce a dimensionless spin
parameter, generally denoted by �, defined by Strue �
Gm2

c �. In our computation the use of such parameter � is
not very convenient because it forces us to introduce some
unwanted powers of the mass in front of the spins. On the
other hand, it is useful to keep track of the correct PN order
by counting all the powers of 1=c. Accordingly we shall
‘‘artificially’’ make explicit the factor 1=c in front of the
spin by posing Strue � S=c, where S will be considered to
be of ‘‘Newtonian’’ order. Hence, we shall denote the spin
variable by

 S � cStrue � Gm2�: (1.1)

Such a notation displays explicitly all powers of 1=c for
maximally rotating compact objects. Notably, the spin-
orbit (SO) effect always carries a factor 1=c3 in front, so
that it is regarded as being of order 1.5PN, while the spin-
spin (SS) effect appears at order 2PN in our terminology,
and the 1PN correction to the spin-orbit is 2.5PN order.
This PN counting for spin effects corresponds to the stan-
dard practice when defining the templates of LIGO/Virgo
and LISA detectors (see Refs. [7,8]).

For slowly rotating compact objects (vspin � c), the

spin is formally of higher order, namely Strue �
Gm2vspin

c2 �

1=c2, hence the spin-orbit and spin-spin couplings are
pushed at the 2PN and 3PN levels, respectively. The 1PN
correction to the spin-orbit manifests itself at the same
level as the spin-spin coupling, namely, 3PN. Of course
all the computations in this paper and paper II [38] are still
valid in the case of slow rotation, but in this case the spin
terms are expected to be numerically smaller, and compa-
rable to higher-order PN contributions.

This paper is organized as follows. In Sec. II we describe
the stress-energy tensor of spinning point particles and
review some relevant features of the spin formalism before
defining our spin variables. In Sec. III we recall some
general expressions of the PN metric and equations of
motion, which are valid for arbitrary extended matter
configurations. The PN metric is parametrized by certain
elementary potentials computed in Sec. IV. Our final re-

sults for the spin-orbit terms in the equations of motion at
the 2.5PN order are presented in Sec. V in a general frame.
They are also specialized to the center-of-mass frame and
reduced to circular orbits. The precessional equations for
the spins including the 1PN relative correction are derived
in Sec. VI. Finally, in Sec. VII, we obtain the spin-orbit
contributions to the conserved integrals associated with our
2.5PN dynamics. The two Appendices are devoted to some
tests of our results.

II. STRESS-ENERGY TENSOR FOR SPINNING
POINT PARTICLES

Our calculations are based on the standard model of
point-particles with spins [20–24,39–46]. In the Dixon
formulation [42], the stress-energy tensor,

 T�� � T��
M
� T��

S
; (2.1)

is the sum of the ‘‘monopolar’’ (M) piece, which is a linear
combination of monopole sources, i.e. made of Dirac delta
functions, plus the ‘‘dipolar’’ or spin (S) piece, made of
gradients of Dirac delta functions. The four-dimensional
formulation of the monopolar part reads as

 T��
M

� c2
X
A

Z �1
�1

d�Ap
��
A u

��
A

��4��x� yA�����������
�gA
p ; (2.2)

where ��4� is the four-dimensional Dirac function. The
worldline of particle A (A � 1,2), denoted y�A , is parame-
trized by the particle’s proper time �A. The four-velocity is
given by cu�A � dy�A=d�A, and normalized to gA��u

�
Au

�
A �

�1, where gA�� � g���yA� denotes the metric at the parti-
cle’s location (the determinant of the metric at point A
being denoted by gA). The four-vector p�A is the particle’s
linear momentum satisfying Eqs. (2.4) and (2.5) below. The
dipolar or spin part of the stress-energy tensor, which
vanishes in the absence of spins, is2

 T��
S
� �c

X
A

r�

�Z �1
�1

d�AS
���
A u��A

��4��x� yA�����������
�gA
p

�
; (2.3)

where r� is the covariant derivative associated with the
metric g�� at the field point x, and the antisymmetric
tensor S��A represents the spin angular momentum for
particle A.

The momentumlike quantity p�A is a timelike solution of
the equation

 

DS��A
d�A

� cu�Ar�S
��
A � c2�p�Au

�
A � p

�
Au

�
A �: (2.4)

The equation of motion of the particle with spin, equivalent
to the covariant conservation law of the total stress-energy

2Recall that with our convention the spin variable has the
dimension of a true spin times c; the stress-energy tensor has the
dimension of an energy density.
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tensor, namely r�T�� � 0, is given by the Papapetrou
equation [20–22]

 

Dp�A
d�A

� �
1

2
S��A u

�
AR

�
A���: (2.5)

The Riemann tensor is evaluated at the particle’s position
A, R�A��� � R�����yA�. The equation of motion (2.5) can
also be derived directly from the action principle of Bailey
and Israel [43].

It is well known that a choice must be made for a
supplementary spin condition in order to fix unphysical
degrees of freedom associated with some arbitrariness in
the definition of S��. This arbitrariness can be interpreted,
in the case of extended bodies, as a freedom in the choice
for the location of the center-of-mass worldline of the
body, with respect to which the angular momentum is
defined (see e.g. [29] for discussion). In this paper we
adopt the covariant supplementary spin condition

 S��A pA� � 0; (2.6)

which allows the natural definition of the spin four-vector
SA� in such a way that

 S��A � �
1����������
�gA
p "����

pA�
mAc

SA�; (2.7)

where "���� is the four-dimensional antisymmetric Levi-
Cività symbol such that "0123 � 1. For the spin vector SA�
itself, we choose a four-vector which is purely spatial in the
particle’s instantaneous rest frame, where u�A � �1; 0�,
hence the components of SA� are �0;SA� in that frame.
Therefore, in any frame,3

 SA�u
�
A � 0: (2.8)

As a consequence of the supplementary spin condition
(2.6), we easily verify that d�S��A SA���=d�A � 0; hence, the
spin scalar is conserved along the trajectories: S��A SA�� �
const. Furthermore, we can check, using (2.6) and also the
Papapetrou law of motion (2.5), that the mass defined by
m2
Ac

2 � �p�Ap
A
� is indeed constant along the trajectories:

mA � const. Finally, the relation linking the four-
momentum p�A and the four-velocity u�A is readily deduced
from the contraction of (2.4) with the four-momentum,
which results in

 p�A �pu�A �m
2
Ac

2u�A �
1

2c2 S
��
A S��A u

�
AR

A
����; (2.9)

where �pu�A � pA�u�A. Contracting further this relation
with the four-velocity one deduces the expression of

�pu�A and inserting it back into (2.9) yields the desired
relation between p�A and u�A .

Let us from now on focus our attention on spin-orbit
interactions, which are linear in the spins, and therefore
neglect all quadratic and higher corrections in the spins,
say O�S2�. Drastic simplifications of the formalism occur
in the linear case. Since the right-hand-side (RHS) of
Eq. (2.9) is quadratic in the spins, we find that the four-
momentum is linked to the four-velocity by the simple
proportionality relation

 p�A � mAcu
�
A �O�S2�: (2.10)

Hence, Eq. (2.6) becomes

 S��A uA� � O�S3�: (2.11)

On the other hand, the equation of evolution for the spin,
also sometimes referred to as the precessional equation,
follows immediately from the relationship (2.4) together
with the law (2.10) as DS��A =d�A � O�S2�, or equivalently

 

DSA�
d�A

� O�S2�: (2.12)

This is simply the equation of parallel transport, which
means that the spin vector S�A remains constant in a freely
falling frame, as could have been expected beforehand. Of
course, Eq. (2.12) preserves the norm of the spin vector,
SA�S

�
A � const.

When performing PN expansions it is necessary to use
three-dimensional–like expressions (instead of four-
dimensional) for the stress-energy tensor. The field point
is accordingly denoted by x � �ct;x�, and similarly the
source points are denoted yA � �ct; yA�. The particle tra-
jectories are considered as functions of the coordinate time
t � x0=c, say yA�t�, and we introduce the ordinary (coor-
dinate) velocity v�A �t� � dy�A=dt, also a function of coor-
dinate time. Using Eq. (2.10) we can write the monopolar
part (2.2) of the stress-energy tensor as

 T��
M

� T��
NS

�O�S2�; (2.13)

where NST
�� is just the standard piece appropriate to point

masses without spins, which reads, in three-dimensional
form,

 T��
NS

�
X
A

mA
v�Av

�
A�������������������������������

�gA��v
�
Av

�
A=c

2
q ��x� yA�����������

�gA
p : (2.14)

We have referred to this part of the stress-energy tensor as
the ‘‘nonspin’’ contribution (NS) in spite of its implicit
dependence on the spins through the metric tensor. Here
� � ��3� is the three-dimensional Dirac function.
Similarly, the spin part of the stress-energy tensor,
Eq. (2.3), can be rewritten as

 T��
S

� �
1

c

X
A

r�

�
S���A v��A

��x� yA�����������
�gA
p

�
; (2.15)

3The alternative choice SA�p
�
A � 0 is equivalent to SA�u

�
A � 0

modulo cubic terms in the spins O�S3� (see below) which are
neglected in the present paper. Such choices are also adopted in
Refs. [28,29,36,37].
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where the spin tensor S��A �t� is now considered to be a
function of coordinate time, like for the ordinary velocity
v�A �t�. The covariant derivative r� acts on x, which ap-
pears in the argument of the delta-function as shown in
(2.15), and on time t through the time dependence of the
positions y�A �t�, velocities v�A �t�, and spins S��A �t�. It is easy
to further obtain the more explicit expression

 

�������
�g
p

T��
S

� �
1

c

X
A

f@�	S
���
A v��A ��x� yA�


� S���A ���A�� v�A��x� yA�g; (2.16)

where ��A�� � �����yA� denotes the Christoffel symbol eval-
uated at the source point A, and where one should notice
that the square root of the determinant

�������
�g
p

in the left-
hand side (LHS) is to be evaluated at the field point �t;x�,
contrarily to the factor 1=

����������
�gA
p

in the RHS of Eq. (2.15)
which is to be computed at the source point yA � �ct; yA�.
The explicit form (2.16) of the spin stress-energy tensor is
used in all our practical calculations.

In terms of three-dimensional variables the spin tensor
reads [after taking into account the spin condition (2.8),
namely SA0 � �S

A
i v

i
A=c]

 

S0i
A � �

1����������
�gA
p uA0"

ijk v
j
A

c
SAk ; (2.17a)

SijA � �
1����������
�gA
p uA0"

ijk
�
SAk �

vkAv
l
A

c2 SAl

�
; (2.17b)

where "ijk is the ordinary Levi-Cività symbol such that
"123 � 1. Here, we have
 

uA0 � u0
A

�
gA00 � g

A
0i
viA
c

�
; (2.18a)

with u0
A �

1�������������������������������
�gA��v

�
Av

�
A=c

2
q : (2.18b)

In principle we could adopt as the basic spin variable the
covariant vector (or covector) SAi . However, we shall in-
stead use systematically the contravariant components of
the vector SiA, which are obtained by raising the index on
SAk by means of the spatial metric 	ikA , which denotes the
inverse of the covariant spatial metric evaluated at point A,
	Akj � gAkj (i.e. such that 	ikA 	

A
kj � �ij). Hence, we define

(and systematically use in all our computations)

 SiA � 	ikA S
A
k()S

A
i � 	AijS

j
A: (2.19)

Beware of the fact that the latter definition of the contra-
variant spin variable SiA differs from the possible alterna-
tive choice gi�A S

A
� . The spin vector SiA as defined by (2.19)

agrees with the choice already made in Refs. [36,37].

III. POST-NEWTONIAN METRIC AND
EQUATIONS OF MOTION

The starting point is the general formulation, i.e. valid
for any matter stress-energy tensor T�� with spatially

compact support, of the PN metric and equations of motion
at 2.5PN order, as worked out in Ref. [47]. In harmonic (or
De Donder) coordinates,4 the 2.5PN metric is expressed in
terms of certain ‘‘elementary’’ potentials as
 

g00 � �1�
2

c2 V �
2

c4 V
2 �

8

c6

�
X̂� ViVi �

V3

6

�

�O

�
1

c8

�
; (3.1a)

g0i � �
4

c3 Vi �
8

c5
R̂i �O

�
1

c7

�
; (3.1b)

gij � �ij

�
1�

2

c2 V �
2

c4 V
2

�
�

4

c4 Ŵij �O

�
1

c6

�
: (3.1c)

These potentials, V, Vi, . . . , are defined by some retarded
integrals of appropriate PN iterated sources. To define
them it is convenient to introduce the matter source den-
sities
 

� �
T00 � Tkk

c2 ; (3.2a)

�i �
T0i

c
; (3.2b)

�ij � Tij (3.2c)

(with Tkk � �ijTij). Then, with ��1
R denoting the usual flat

space-time retarded operator, we have for the Newtonian-
like potential V,

 V � ��1
R f�4
G�g

� G
Z d3x0

jx� x0j
��x0; t� jx� x0j=c�: (3.3a)

The higher-order PN potentials read

 Vi � ��1
R f�4
G�ig; (3.3b)

 Ŵ ij � ��1
R f�4
G��ij � �ij�kk� � @iV@jVg; (3.3c)

 R̂ i � ��1
R f�4
G�V�i � Vi�� � 2@kV@iVk �

3
2@tV@iVg;

(3.3d)

 

X̂ � ��1
R f�4
GV�ii � 2Vi@t@iV � V@

2
t V �

3
2�@tV�

2

� 2@iVj@jVi � Ŵij@2
ijVg: (3.3e)

All these potentials are subject, up to the required PN
order, to the differential identities

4Thus, @��
�������
�g
p

g��� � 0, where g�� is the inverse of the usual
covariant metric g��, and g � det�g���.
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@t

�
V �

1

c2

�
1

2
Ŵii � 2V2

��

�@i

�
Vi �

2

c2 	R̂i � VVi

�
� O

�
1

c4

�
; (3.4a)

@tVi � @j

�
Ŵij �

1

2
�ijŴkk

�
� O

�
1

c2

�
; (3.4b)

which are consequences of the harmonic-coordinate con-
ditions; see Ref. [47].

In this paper we shall specialize the latter PN metric to
systems of particles with spin. In this case, as we have
reviewed in Sec. II, the stress tensor is the sum of the
nonspin piece given by (2.14) and of the spin part (2.15),
thus T�� � NST

�� � ST
��. Henceforth we often do not

indicate the neglected O�S2� terms. Hence, the source
densities (3.2) will be of the form ��� � NS��� � S���,
and all the potentials will thus admit similar decomposi-
tions, say
 

V � V
NS
� V

S
; . . . ; (3.5a)

Ŵij � Ŵ
NS
ij � Ŵ

S
ij; � � � : (3.5b)

The equations of motion of spinning particles are obtained
from the covariant conservation of the total stress-energy
tensor,

 0 � r�T
�� � r�T

��

NS
�r�T

��

S
�O�S2�: (3.6)

To get the acceleration of the Ath particle, we insert into the
conservation law (3.6) the expressions (2.14) and (2.15) of
the stress tensor, integrate over a small volume surrounding
the particle A (excluding the other particles B), and use the
properties of the Dirac delta function. More precisely, in
order to handle the delta function, we systematically apply
the rules appropriate to Hadamard’s partie finie regulari-
zation and given by Eq. (4.6) below. As a result we obtain
the equations of motion of the particle A and find useful to
write them in the form

 

dPA�
dt
� FA�; (3.7)

where both the ‘‘linear momentum density’’ PA� and ‘‘force
density’’ FA� (per unit mass) involve a nonspin piece (NS)
and the spin part (S),
 

PA� � PA
NS
� � PA

S
� (3.8a)

and FA� � FA
NS
� � FA

S
�: (3.8b)

The nonspin parts correspond to the geodesic equations
and read

 PA
NS
� �

v�Ag
A
���������������������������������

�gA��v
�
Av

�
A=c

2
q ; (3.9)

 FA
NS
� �

1

2

v�Av
�
A�@�g���A�������������������������������

�gA��v
�
Av

�
A=c

2
q : (3.10)

Their complete expressions in terms of the elementary
potentials (3.3) were given in Ref. [47]. We shall need
them for a spatial index (� � i) and for completeness we
report here the result [see Eqs. (8.3) in [47]]
 

PA
NS
i � viA �

1

c2

�
�4Vi � 3Vvi �

1

2
v2vi

�
A

�
1

c4

�
�8R̂i �

9

2
V2vi � 4Ŵijvj � 4VVi

�
7

2
Vv2vi � 2v2Vi � 4vivjVj �

3

8
viv4

�
A

�O

�
1

c6

�
; (3.11a)

FA
NS
i � �@iV�A �

1

c2

�
�V@iV �

3

2
v2@iV � 4vj@iVj

�
A

�
1

c4

�
4@iX̂� 8Vj@iVj � 8vj@iR̂j �

9

2
v2V@iV

� 2vjvk@iŴjk � 2v2vj@iVj �
7

8
v4@iV �

1

2
V2@iV

� 4vjVj@iV � 4vjV@iVj

�
A
�O

�
1

c6

�
: (3.11b)

These expressions are still valid in the present situation, but
we have to remember that the elementary potentials therein
do involve contributions from the spins, e.g. V � NSV �

SV. Therefore it is crucial to compute the spin parts of the
potentials and to insert them into the nonspin (geodesic-
like) contributions to the equations of motion, Eqs. (3.11).

Now the purely spin parts, SP
A
� and SF

A
�, will produce a

deviation from the geodesic motion which is induced by
the effect of spins. We have found that they admit the
following expressions,
 

mAcP
A
S���

1

2c
d
dt
�gA��S

0�
A ��

1

2
�@�g���AS

��
A

�
1

2
gA����A��S

�0
A
v�A
c
�

1

2
gA���0A

��S
��
A
v�A
c
; (3.12a)

mAcFAS��
1

2
�@��g���AS

��
A v

�
A�

1

2
�@�g���A��A��S

��
A v

�
A:

(3.12b)

To compute them is relatively straightforward because all
the metric coefficients and Christoffel symbols therein take
their standard nonspin expressions (since we are looking
for an effect linear in the spins), and these have already
been computed in Ref. [47].

As a check of our calculations, we have also used an
alternative formulation of the equations of motion, which
is directly obtained from the Papapetrou equations of
motion (2.5) and reads, at linearized order in the spins,

 mAc
Du�A
d�A

� �
1

2
S��A u

�
AR

�
A��� �O�S2�: (3.13)

We lower the free index � so as to use the convenient
relation DuA�=d�A � duA�=d�A �

1
2u

�
Au

�
A�@�g���A. The re-
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sulting equation takes the same form as Eq. (3.7),

 

dP A
�

dt
� F A

�; (3.14)

but with some distinct linear momentum and force den-
sities P A

� and F A
�. It is clear that the nonspin parts,

corresponding to geodesic motion, can be taken to be
exactly the same as in our previous formulation, namely,
Eqs. (3.11). However, the spin parts are different; they are
given in terms of the Riemann tensor RA���� � R�����yA�
as follows:
 

mAcP
A

S
� � 0; (3.15a)

mAcF A

S
� �

RA����"
����

2
������������������������
gAgA
�v
Av

�
A

q v�Ag
A
�!v!AS

A
� ; (3.15b)

where SA� is the covariant spin covector appearing in (2.19).
The difference with Eqs. (5.1–5.3) in Tagoshi et al. [37] is
due to the fact that these authors work on the contravariant
version of the Papapetrou equation. The advantage of the
formulation (3.15) over the previous one (3.12) is of course
that it is manifestly covariant. This advantage is however
relatively minor in practical PN calculations, since the
manifest covariance of the equations is anyway broken
from the start. It remains that the two formulations are
very useful, and their joint use provides a very good check
of the calculations.

The quantity (3.15) can be computed from the 2.5PN
metric, by inserting it into the curvature tensor RA����, but
we may also express them directly by means of the ele-
mentary potentials (3.3). Let us give here the complete
result at the required PN order,

 mAcF A

S
i �

1

c3 f"ijk�@j@tV � v
l@jlV�Sk � 2"jkl@il�Vvj � Vj�SkgA �

1

c5

�
"ijk

�
�@j@tV � vl@jlV�

�
SkV �

1

2
v2Sk � �Sv�vk

�

� �@2
t V � vl@l@tV�vjSk � 2@lV�@lVkSj � Sk@jVl � vjSk@lV� � @jV�@tV � vl@lV�Sk

�
� "jkl	2�2@jV@lVi

� 2Vj@ilV � 2@iV@lVj � V@ilVj � 2vj@lV@iV � v
jV@ilV � v

jvm@lmVi � v
jvm@ilVm � v

j@l@tVi

� vl@i@tVj � vm@ilŴjm � vm@lmŴij � @l@tŴij � 2@ilR̂j�Sk � v2��@ilVj � vj@ilV�Sk � 2�Sv�vk@ilVj

�
A
:

(3.16)

IV. COMPUTATION OF THE SPIN PARTS OF
ELEMENTARY POTENTIALS

We shall compute all the spin parts of the elementary
potentials listed in Eqs. (3.3), which are needed for inser-
tion into the ‘‘nonspin’’ parts of the momentum and force
densities as defined by Eq. (3.11). Here we do not compute
the nonspin parts of the potentials since they are known
from Ref. [47].

Let us start by deriving a few lowest-order results. First,
it is immediate to see that the nonspin parts of the matter
source densities �, �i, and �ij, Eqs. (3.2), start at
Newtonian order, and that their spin parts start at 0.5PN
order �1=c in the cases of the vectorial �S

i and tensorial
densities �S

ij, and only at 1.5PN order�1=c3 in the case of
the scalar density �S. Here we are using our counting for
the PN order of spins [see Eq. (1.1)], which is physically
appropriate to maximally rotating compact objects. With
lowest-order precision the expressions of the source den-
sities for two spinning particles read
 

�
S
� �

2

c3 "ijkv
i
1S

j
1@k�1 � 1$ 2�O

�
1

c5

�
; (4.1a)

�
S
i � �

1

2c
"ijkS

j
1@k�1 � 1$ 2�O

�
1

c3

�
; (4.1b)

�
S
ij � �

1

c
"kl�iv

j�
1 S

k
1@l�1 � 1$ 2�O

�
1

c3

�
: (4.1c)

The symbol 1$ 2 means adding the same terms but
corresponding to the other particle. The Dirac delta func-
tion is denoted by �1 � ��x� y1�, and @k�1 means the
spatial gradient of �1 with respect to the field point x. The
lowest-order potentials are then straightforward to obtain
from the fact that ��1=r1� � �4
�1 (where r1 � jx�
y1j), and we get
 

V
S
� �

2G

c3 "ijkv
i
1S

j
1@k

�
1

r1

�
� 1$ 2�O

�
1

c5

�
; (4.2a)

V
S
i � �

G
2c
"ijkS

j
1@k

�
1

r1

�
� 1$ 2�O

�
1

c3

�
; (4.2b)

Ŵ
S
ij � �

G
c
"kl�iv

j�
1 S

k
1@l

�
1

r1

�
�
G
c
�ij"klmvk1S

l
1@m

�
1

r1

�

� 1$ 2�O

�
1

c3

�
; (4.2c)

Ŵ
S
kk �

2G
c
"klmv

k
1S

l
1@m

�
1

r1

�
� 1$ 2�O

�
1

c3

�
: (4.2d)

At the dominant level, only some compact-support terms
(proportional to the source densities �S

��) contribute to the
potentials—notably the noncompact-support term
�@V@V in the spin part of the potential Ŵij, Eq. (3.3c),
turns out to be negligible.

To find all the spin terms in the equations of motion up to
2.5PN order, we see from Eq. (3.11) that we need V to
2.5PN order and Vi at 1.5PN order [i.e. 1PN beyond what is
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given by (4.2b)], together with Ŵij, R̂i, and X̂ at order
0.5PN. As we see, the potential Ŵij is already given by
Eq. (4.2c) with the right precision. Our first problem is to
obtain the compact-support Newtonian potential V to the
2.5PN order. Definition (3.3a) shows that the mass density
�, source of V, admits at an arbitrary high PN order the
structure

 

� � � ~�1 � ~�
S

1��1 �
1�������
�g
p @t��

S
1�1� �

1�������
�g
p @i��i

S
1�1�

� 1$ 2: (4.3)

The factors ~�A, S ~�A, S�A, and S�
i
A are functions of the

spins and the velocities viA, and functionals of the metric
components or, equivalently at 2.5PN, of the elementary
potentials (3.3). Note that though g���x; t�, by contrast to
S��A �t�, depends on the field point, this is not the case of the
momentlike quantities entering the square brackets of
Eq. (2.15). Each of them, being multiplied by the Dirac
distributions �A, is indeed evaluated at point x � yA, after
the Hadamard procedure described below. Thus, it depends
on time only (via the point-mass positions yA and velocities
vA). The index S indicates an additional linear dependence
in the spin components, but of course, the full spin depen-
dence is more complicated due to the implicit occurrence
of S��A in the potentials themselves. Notably, the effective
mass ~�1 whose expression in terms of V, Vi, Ŵii, and v2

1
can be found in Ref. [47] contains a net contribution due to
the spin at the 2.5PN order and given by

 � ~�1�S � m1

�
�

1

c2 VS
�

1

c4 	�4V
S
ivi1 � 2Ŵ

S
ii


�
1
�O

�
1

c6

�
;

(4.4)

where the value at the particle’s location is meant in the
sense of Eq. (4.6a). The expressions of the other moments
will not be provided here. It is in fact sufficient for our
purpose to observe that, as shown by Eq. (4.4), we have
� ~�1�S � S ~�1 � O�1=c5�, and that S�1 is at least of order
O�1=c7� whereas S�

i
1 is of order O�1=c3�.

As the spin contribution in �, say S�, is already of order
1:5PN� 1=c3, see Eq. (4.1a), we need to expand the
retardations in V only at relative 1PN order, hence

 

V
S
� G

Z d3x0

jx� x0j
���x0; t��S �

G
c

Z
d3x0

�
@
@t
��x0; t�

�
S

�
G

2c2

Z
d3x0jx� x0j

�
@2

@t2
��x0; t�

�
S
�O

�
1

c5

�
: (4.5)

We then substitute the value of � following from Eq. (4.3).
The integrals are evaluated with the help of the formulas

 Z
d3x0F�x0���x0 � y1� � �F�1; (4.6a)

Z
d3x0F�x0�@0i��x

0 � y1� � ��@iF�1; (4.6b)

where the values at point y1 are denoted by parentheses as
for �F�1. These formulas extend the usual formulas of
distribution theory, which are valid for a smooth function
F with compact support, to singular functions with a finite
number of singular points and deprived of essential singu-
larities (see Ref. [48] for full explanations about this gen-
eralization). The formulas (4.6) are part of Hadamard’s
self-field regularization which is systematically employed
in the present approach and the one of [49,50].5 In the end
we are led to
 

V
S
�x; t� �

G
r1
	 ~�

S
1�t� � � ~�1�S�t�


�G�i
S

1�t�
�
@0i

�
1�������������������

�g�x0; t�
p

jx� x0j

��
1

�
G

2c2 @
2
t ��i

S
1@ir1� �

G

2c2 m1�ai1�S@ir1

� 1$ 2�O

�
1

c6

�
: (4.7)

The final result for V is obtained by replacing the moments
and the determinant of the metric at the 2.5PN level by
their explicit values derived from the lowest-order approxi-
mation of the potentials. The computation of SVi is similar
to that of SV, though slightly simpler since the counterpart
of ~� for �i does not depend implicitly on the spin at the
1.5PN order.

Next we explain how to compute the noncompact (NC)
support terms, and we take the example of the particular
NC term in the potential R̂i given by

 R̂ �NC�

S
i � ��1	�2@kV@iV

S
k
 �O

�
1

c3

�
: (4.8)

In the source of this term we have to insert the Newtonian
approximation of the potential V, which is simply V �
Gm1

r1
� Gm2

r2
�O�c�2�, together with the leading-order spin

term SVk given previously in Eq. (4.2b). The source being
known, we are then able to integrate (using the same
techniques as in Ref. [47]) and we get

5Hadamard’s regularization is known to yield some ambiguous
coefficients in the equations of motion and the radiation field of
nonspinning point particles at 3PN order. When using dimen-
sional regularization these ambiguities are seen to be associated
with the appearance of poles / 1=" (or ‘‘canceled’’ poles) in the
dimension of space d � 3� " [12]. The PN order considered in
the present paper is merely 1PN, since we are computing the
1PN correction to the leading spin-orbit effect. At this order
there are no poles; therefore dimensional and Hadamard’s reg-
ularizations are equivalent.
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R̂�NC�

S
i �

G2m1

8c
"iklS

k
1@l

�
1

r2
1

�
�
G2m2

c
"klmS

k
1@1il
@
2
mg

� 1$ 2�O

�
1

c3

�
; (4.9)

in which

 g � ln�r1 � r2 � r12� (4.10a)

satisfies

 �g �
1

r1r2
: (4.10b)

The crucial fact which enables the latter integration in
closed analytic form is the existence of the function g (first
introduced by Fock [51]). This function and its general-
izations are extremely useful in the computation of the
spinless equations of motion at 2PN and 3PN orders
[47,50].

Finally, all the necessary spin parts of the potentials are
computed by PN iteration, ready for insertion into the
nonspin contribution of the equations of motion as given
by Eqs. (3.11). For all the potentials we are in agreement
with the results reported by Tagoshi et al. [37] in their
Appendix.6

V. THE 2.5PN EQUATIONS OF MOTION WITH
SPIN-ORBIT EFFECTS

A. Equations in a general frame

In addition to the spin parts of the potentials computed in
Sec. IV and inserted into Eqs. (3.11), we add the required
spin corrections to the geodesic motion as given by either
the formulation of Eqs. (3.12) or that of (3.15) and (3.16).
The latter corrections are computed by inserting into them
the nonspin parts of the potentials taken from [47]. We find
that the two formulations [respectively given by (3.12) and
(3.15) and (3.16)] are equivalent and agree on the result.
Finally the 2.5PN equations of motion with spin-orbit
effects are obtained in the form

 

dv1

dt
� AN �

1

c2 A1PN �
1

c3 A
S

1:5PN �
1

c4 	A2PN �A
SS

2PN


�
1

c5
	A2:5PN �A

S
2:5PN
 �O

�
1

c6

�
: (5.1)

Here the Newtonian acceleration is AiN � �
Gm2

r2
12
ni12, and

we denote by AiN, Ai1PN, Ai2PN, and Ai2:5PN the standard
nonspin contributions (in harmonic coordinates) which
are well known, see Eqs. (8.4) in [47] and earlier works
reviewed in [52]. In particular, Ai2:5PN represents the stan-
dard radiation reaction damping term. (For simplicity we
henceforth suppress the subscript NS on nonspin-type
contributions.)

The leading-order spin effect is the 1.5PN spin-orbit
term. For this term we recover the standard expression,
known from Refs. [23,24] and given in [28,29] in the
center-of-mass frame, and in [37] in a general frame. In
the following we shall sometimes use some formulas relat-
ing the ‘‘mixed products’’ of three vectors in three dimen-
sions,

 

�U1; U2; U3�U � �UU1�U2 � U3 � �UU2�U3 � U1

� �UU3�U1 � U2 (5.2a)

� �U;U2; U3�U1 � �U1; U;U3�U2

� �U1; U2; U�U3; (5.2b)

valid for any vectors U, U1, U2, U3 (in 3 dimensions). Here
the vectorial product of ordinary Euclidean vectors is in-
dicated with the � symbol, for instance �U1 � U2�

i �

"ijkUj
1U

k
2; parentheses denote the usual Euclidean scalar

product, �UU1� � UiUi
1 � U � U1; and the mixed product,

or determinant between three vectors, is denoted
�U1; U2; U3� � U1 � �U2 � U3� � "ijkUi

1U
j
2U

k
3. This

yields

 

A
S

1:5PN �
Gm2

r3
12

��
6
�S1; n12; v12�

m1
� 6
�S2; n12; v12�

m2

�
n12

� 3�n12v12�
n12 � S1

m1
� 6�n12v12�

n12 � S2

m2

� 3
v12 � S1

m1
� 4

v12 � S2

m2

�
: (5.3a)

We use, whenever convenient, the notation v12 � v1 � v2

for the relative velocity.
The next-order spin correction is the spin-spin (SS) at

2PN order. We do not give this term since we are concerned
here with spin-orbit effects which are linear in the spins.
The SS term is quadratic in the spins, O�S2�, and can be
found in Refs. [23,24] and e.g. in Eq. (5.9) of [37]. Now the
1PN correction to the spin-orbit effect, which is the aim of
this paper and the work [37], reads

6We have, however, noticed the following misprints in
Ref. [37]: in Eq. (A1h) for SR̂i, the third term in the first
parentheses of the first line should be �m2=�r12s

2�; in
Eq. (A1i) for SX̂, the first term in the parentheses following
�n12v2� in the third line must be read �m2=�r12s

2�.

FAYE, BLANCHET, AND BUONANNO PHYSICAL REVIEW D 74, 104033 (2006)

104033-8



 

A
S

2:5PN �
Gm2
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�6�n12; v1; v2�

�
�v1S1�
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�
�v2S2�

m2

�
�
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�
15�n12v2�

2 � 6�v12v2� � 26
Gm1
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Gm2

r12

�

�
�S2; n12; v12�
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�
15�n12v2�
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2

Gm1

r12
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Gm2

r12

��
� v1

�
�3
�S1; n12; v1�

m1
��n12v1� � �n12v2��

� 6�n12v1�
�S1; n12; v2�

m1
� 3
�S1; v1; v2�

m1
� 6�n12v1�

�S2; n12; v1�

m2
�
�S2; n12; v2�

m2
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�
� v2

�
6�n12v1�

�S1; n12; v12�

m1
� 6�n12v1�
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�
3�n12v12�
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� 4
Gm1

r12

�n12S2�
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�
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�
6�n12v12�

�v2S2�
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� 4

Gm1

r12

�n12S2�

m2

�
� v1 � v2

�
3
�v1S1�

m1
� 4
�v2S2�

m2

�

�
n12 � S1

m1

�
�

15

2
�n12v12��n12v2�

2 � 3�n12v2��v12v2� � 14
Gm1

r12
�n12v12� � 9

Gm2

r12
�n12v12�

�

�
n12 � S2

m2

�
�15�n12v12��n12v2�

2 � 6�n12v1��v12v2� � 12�n12v2��v12v2� �
Gm1

r12

�
�

35

2
�n12v1� �

39

2
�n12v2�

�

� 16
Gm2

r12
�n12v12�

�
�

v12 � S1

m1

�
�3�n12v1��n12v2� �

15

2
�n12v2�

2 �
G
r12
�14m1 � 9m2� � 3�v12v2�

�

�
v12 � S2

m2

�
6�n12v2�

2 � 4�v12v2� �
23

2

Gm1

r12
� 12

Gm2

r12

��
: (5.3b)

Surprisingly, we find that our expression has substantial
differences with the result given in Eq. (5.10) of [37].
However, since we recovered in the last section exactly
the same potentials as given in the Appendix of [37], and
since as we shall see below we find perfect agreement with
the equations of motion computed in [37] in the case of the
center-of-mass frame, we believe that the latter differences
can only be due to some trivial misprints (and most proba-
bly to some mixup of MATHEMATICA files) in the last stage
of the work [37].7

In Appendix A we shall prove that the equations of
motion stay invariant under global Poincaré transforma-
tions. Such a verification is quite important to test the
correctness of the equations (it played an important role
during the computation of the 3PN nonspin terms in
[49,50]). Furthermore, we show in Appendix B that the
test-mass limit of the equations of motion is identical with
the geodesic equations around a Kerr black hole (for
simplicity we restrict ourself to circular orbits). Both ver-
ifications have already been made in Ref. [37] but we
present some alternative ways to do the checks.

B. Equations in the center-of-mass frame

Let us now present the result in the center-of-mass (CM)
frame, defined by the nullity of the center-of-mass vector,
equal to the conserved integral associated with the boost
invariance of the equations of motion, which will be
checked in Appendix A. We shall derive the center-of-
mass integral at the 2.5PN order in the next section; how-
ever, for the present computation we need it only at the
1.5PN order. When working in the CM frame, we find it
convenient to introduce the same spin variables as chosen
by Kidder [29] (except that we denote by � what he calls
�), namely

 

S � S1 � S2; (5.4a)

� � m
�

S2

m2
�

S1

m1

�
: (5.4b)

Mass parameters are denoted by m � m1 �m2, �m �
m1 �m2, and � � m1m2=m2 (such that 0< � 
 1=4).
At the leading order in the spins we have the following
relation between the positions y1 and y2 in the CM frame
and the relative position x � y1 � y2 and velocity v �
dx=dt � v1 � v2 � v12 (see e.g. Ref. [37]):

 

y1 �

�
m2

m
�

�

2c2

�m
m

�
v2�

Gm
r

��
x�

�

mc3 v��; (5.5a)

y2 �

�
�
m1

m
�

�

2c2

�m
m

�
v2�

Gm
r

��
x�

�

mc3 v��: (5.5b)

7For completeness we indicate here all the misprints in
Eq. (5.10) of [37]: in order to recover the correct acceleration,
the last term before the closing curly brackets on the fifth line of
Eq. (5.10), �12"jklnjvk1v

l
2�v1S1�=m1, must be replaced by

�6"jklnjvk1v
l
2	�v1S1�=m1 � �v2S2�=m2
; the term before the last

one in the seventh line has to be read �6njvk2�nv12��v2S2�=m2
instead of �6njvk2�nv12��v1S1�=m1; and the very last term
�7vj1v

k
2�v1S1�=m1 must be modified as �vj1v

k
2	3�v1S1�=m1 �

4�v2S2�=m2
.
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In addition to the spin-orbit effect at order 1:5PN� 1=c3

(last term in these relations), we have included the well-
known 1PN� 1=c2 nonspin term. This term is obviously
needed here because, during the reduction of the equations
of motion to the CM frame at order 2.5PN in the spins, we
shall need to take into account the 1PN nonspin term
coupled to the lowest-order 1.5PN spin term; such coupling
evidently produces some 2.5PN spin terms. In the CM
frame the equation of the relative motion reads

 

dv
dt
� BN �

1

c2 B1PN �
1

c3 B
S

1:5PN �
1

c4 	B2PN � B
SS

2PN


�
1

c5
	B2:5PN �B

S
2:5PN
 �O

�
1

c6

�
; (5.6)

where we recognize all the various terms similarly to
Eq. (5.1). We find that the spin-orbit term and the 1PN
correction to the spin-orbit are given, in terms of the spin
variables (5.4), by
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: (5.7b)

We find perfect agreement with Eqs. (5.18) and (5.20) of
Tagoshi et al. [37].8

C. Reduction to quasicircular orbits

Finally, we present the case where the orbit is nearly
circular, i.e. whose radius is constant apart from small
perturbations induced by the spins (as usual we neglect
the gravitational radiation damping at 2.5PN order).
Following Ref. [29], we introduce an orthonormal triad
fn;�; ‘g defined by n � x=r as before, ‘ � LN=jLNj,
where LN � �x� v denotes the Newtonian angular mo-
mentum, and � � ‘� n. The orbital frequency ! is de-
fined for general, not necessarily circular orbits,
v � _rn� r!�, where _r � �nv�. The components of the
acceleration a � dv=dt along the basis fn;�; ‘g are then
given by
 

n � a � �r� r!2; (5.8a)

� � a � r _!� 2 _r!; (5.8b)

‘ � a � �r!
�
� �

d‘
dt

�
: (5.8c)

We project out the spins on this orthonormal basis, defining
S � Snn� S��� S‘‘ and similarly for �. Next we im-
pose the restriction to circular orbits which means �r � 0 �
_r and v2 � r2!2 (neglecting radiation reaction damping
terms). In this way we find that the equations of motion
(5.6) with (5.7) are of the type

 

dv
dt
� �!2rn� a‘‘�O

�
1

c6

�
: (5.9)

There is no component of the acceleration along �.
Comparing with Eqs. (5.8) in the case of circular orbits,
we see that ! is indeed the orbital frequency, while a‘ �
�r!�� � d‘=dt� is proportional to the variation of ‘ in the
direction of the velocity v � r!�. We find that!2 is of the
form
 

!2 �
Gm

r3

�
1�

1

c2 �1PN �
1

c3 �
S

1:5PN �
1

c4 	�2PN � �
SS

2PN


�
1

c5
�
S

2:5PN

�
�O

�
1

c6

�
; (5.10)

where �1PN and �2PN denote the standard nonspin contri-
butions,9 and where
 

�
S

1:5PN �

�
Gm
r

�
3=2 1

Gm2

�
�5S‘ � 3

�m
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�‘

�
; (5.11a)
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�
21

2
�

11

2
�
�
�m
m

�‘

�
; (5.11b)

8Note that the spin variables adopted in [37] are defined by
�s �

1
2 �

S1

m2
1
� S2

m2
2
� and �a �

1
2 �

S1

m2
1
� S2

m2
2
� and differ from our own.

We have

 S � m2

�
�1� 2���s �

�m
m
�a

�
and

� � m2

�
�
�m
m
�s � �a

�
:

9They are given by �1PN �
Gm
r ��3� �� and �2PN � �

Gm
r �

2�
�6� 41

4 �� �
2� in harmonic coordinates.
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with, e.g. S‘ � �S‘� � S � ‘. On the other hand, we get

 a‘ �
1

c3 
S 1:5PN �
1

c4 
SS
2PN �

1

c5


S

2:5PN �O

�
1

c6

�
; (5.12)

with spin-orbit coefficients
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; (5.13a)
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�
: (5.13b)

We see that the resulting motion cannot be exactly
circular for general orientations of the spins. Let us show
however that the time-averaged acceleration coincides
with the acceleration of a particle that rotates uniformly
about the origin. In a first step, we must make explicit the
time dependence of the dynamical variables x, S, and �.
As the motion is uniformly circular in the absence of spin,
the position x decomposed along a fixed orthonormal basis
fe1; e2; ‘g reads

 x �t� � e1r cos�!NSt� � e2r sin�!NSt�; (5.14)

with !NS being the orbital frequency when the spins are
turned off.

The spin variables are computed by means of the pre-
cession equations, which decouple in the case of a pure
spin-orbit interaction. The spin 1, for instance, obeys an
equation whose right-hand side is polynomial in Gm=r �
v2, �nS1�, and �vS1�. For dimensional reasons, it must then
have the form (for circular orbits, up to say the 2PN order)

 

dS1

dt
�

X
k�1;2

�
Gm

rc2

�
k
	a�k;n�S1

�vS1�n� a
�k;v�
S1
�nS1�v


�O

�
1

c5

�
; (5.15)

and similarly for dS2=dt. The functions of m1=m, m2=m
denoted by a�k;n�S1

and a�k;v�S1
may be obtained from the

results of the next section (see also paper II). They allow
us to define dimensionless coefficients like a�n�S1

�P
k�1;2�Gm=r�

ka�k;n�S1
. The key point is that the latter coef-

ficients are constant, which suggests to solve the above
differential equations in the moving basis fn;�; ‘g. Indeed,
the time derivative of a spin component in this basis, say
S1
n � �nS1�, is given by a relation of the type

 

dS1
n

dt
� �n _S1� � � _nS1� (5.16)

with _n � _x=r � !NS�. This results, after eliminating _S1

by means of Eq. (5.15), in a linear differential equation
with constant coefficients for S1

n. Proceeding in the same
way for the other components of the first spin, we arrive at
the following system:

 

dXS1

dt
�MS1

�XS1
; (5.17)

where MS1
is a 3� 3 constant matrix and XS1

�

�S1
n; S1

�; S
1
‘�. The relations ‘ � dS1=dt � ‘ � dS2=dt � 0

(since ‘ is constant because we neglect the SS terms) imply
that �0; 0; 1� is an eigenvector associated with the eigen-
value �0 � 0. There remain two eigenvalues, say ��1 and
��1 ; but since the trace of MS1

vanishes because �nv� � 0,
we have ��1 � ��

�
1 . In the end, we notice that the spins

are almost constant at Newtonian order in the basis
fe1; e2; ‘g, which means that they precess about ‘ with
angular velocity �!NS in the moving frame. Therefore,
��1 is purely imaginary and reduces to �i!NS at
Newtonian order. At higher order we shall have ��1 �
�i�!NS ��1� where �1 � O�1=c2� represents the pre-
cession frequency. The components S1

n and S1
� solving

Eq. (5.17) are then linear combinations of cos	��!NS �
�1�t
 and sin	��!NS ��1�t
.

10 As for the component S1
‘,

it is constant neglecting terms quadratic in the spins.
We complete our proof by time averaging the term a‘ in

the acceleration (5.9). We first observe that the conserva-
tive part of the dynamics involves three different angular
frequencies (!NS, �1, and �2), so that it cannot be peri-
odic in general. Therefore, it is not appropriate to average
the particle motion on the orbital period. Instead, the time
average will be achieved on infinite time. Defining

 hS1
ni � lim

T!�1

1

T

Z t�T

t
dt0S1

n�t
0�; (5.18)

we find hS1
ni � 0. We next notice that the orbital frequency

! is actually constant (neglecting SS terms), for it depends
on the spin through S1

‘ and S2
‘ only, which are constant. The

average of a‘ is a linear combination of hSni � h�nS�i � 0
and h�ni � h�n��i � 0; hence it does not contribute:
ha‘i � 0.

VI. THE 2PN SPIN-ORBIT EQUATIONS OF
PRECESSION

In this section we give the equations of evolution of the
spins, or precession equations, at relative 2PN order, i.e.
one PN order beyond the dominant term. The precession
equations are quite simple to derive from the equation of
parallel transport (2.12), which we recall is valid at the
linear order in the spins [neglecting O�S2�], but at any PN
order in that term which is linear in the spins. The PN
corrections are easily computed from the nonspin part of
the metric and Christoffel symbols computed in Ref. [47].
The precession equations in a general frame take the form

10This can also be deduced immediately from introducing a
different spin variable Sc

1 with constant magnitude (described in
Sec. VII of paper II) and obeying dSc

1=dt � �1 � Sc
1; noticing

that the components of Sc
1 in the basis fn;�; ‘g are linear

combinations of those of S1, with constant coefficients.
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together with the equation with 1$ 2. At the lowest order
we find
 

T
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1PN �
Gm2

r2
12

	S1�n12v12� � 2n12�v12S1�

� �v1 � 2v2��n12S1�
: (6.2)

The above equation is already known [29,37]. See e.g.
Eq. (4.3) in [37] and the paragraph afterward comment-
ing about the difference with formulations based on an
alternative definition for the spin, like that of Ref. [29].
The spin-spin (SS) term is also known but is out of the
scope of the present paper (and the parallel trans-
port equation we employ); it can be found elsewhere, see
Eqs. (2)–(3) of [8]. Then we find that the next-order spin-
orbit term is
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For completeness and for the benefit of users of these formulas in the data analysis of detectors, we present also the
precession equations in the CM frame, using our specific spin variables defined by (5.4). These are
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where all the spin-orbit coefficients are given by
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and
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(6.6b)

To these expressions one may add the SS terms in the
standard way [see Eqs. (2)–(3) of [8]].

VII. SPIN EFFECTS IN THE CONSERVED
INTEGRALS OF THE MOTION

Having obtained in Sec. V the equations of motion, the
important task is now to deduce from them the complete
set of conserved integrals of the motion associated with the
global Poincaré invariance of these equations (which has
been checked in Ref. [37] and Appendix A below). In
principle, the conserved integrals of the motion, which
generalize the usual notions of energy, angular and linear
momenta, and center-of-mass position, should be best
derived from a Lagrangian. In the present paper, however,
we did not attempt to derive a complete Lagrangian for the
particles with spins (see [43] for a discussion on how to
formulate Lagrangians with spins); rather, we have ob-
tained the integrals of the motion by ‘‘guess work,’’ starting
from their most general admissible form, and then impos-
ing the conservation laws when the equations of motion are
satisfied.11 Here we simply state the results.

The PN expansion of the conserved integral of the
energy, namely E such that dE=dt � 0, reads as
 

E � EN �
1
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1
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c4 	E2PN � E
SS
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c5
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�
1

c6

�
; (7.1)

where the nonspin pieces, EN, E1PN, and E2PN, are known
and can be found e.g. in Ref. [54]. For instance, we have
EN �

1
2m1v

2
1 �

1
2m2v

2
2 �

Gm1m2

r12
. For the lowest-order

spin-orbit effect we find, in agreement with the standard

result,

 E
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Gm2

r2
12

�S1; n12; v1� � 1$ 2; (7.2a)

where we employ a special notation for the totally anti-
symmetric ‘‘mixed product’’ between three vectors, as
given in (5.2). For the spin-orbit contribution at 2.5PN
order we find
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� 1$ 2: (7.2b)

Notice that several equivalent forms can be given to this
result. For instance if wished one could introduce the
mixed product �S1; v1; v2� in place of a �n12; v1; v2� in
the last term of (7.2b), making use of linear combinations
such as �n12v1��S1; v1; v2� � �n12; v1; v2��v1S1� �
�S1; n12; v2�v

2
1 � �S1; n12; v1��v1v2� [a consequence of

Eq. (5.2)]. As before we do not give the SS contribution
at 2PN order (see [29] for instance).

We give here the corresponding result for the conserved
center-of-mass energy in the CM frame:

 

E � m�c2
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�
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��
; (7.3)

where eN �
1
2v

2 � Gm
r (see [55] for the other nonspin

contributions). The SO coupling terms in the CM frame
are found to be

11As usual we neglect the radiation reaction effect at 2.5PN
order. Indeed we know that such an effect does not depend on the
spins. The contribution of the spins in the radiation reaction
force comes in at 1.5PN order beyond the dominant effect, which
means at the 4PN level, and has been computed in Ref. [53].
Radiation reaction effects will be included into the present
formalism when we obtain the contributions of the spins in the
GW flux [38].
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Let us next deal with the conserved total angular mo-
mentum J, i.e. dJ=dt � 0, sum of orbital and spin contri-
butions, which we write as

 J � L�
1

c
S1 �

1

c
S2; (7.5)

where L is the orbital angular momentum, and where S1

and S2 are the contravariant spin vectors defined following
the specific choice made in Eq. (2.19) [recall also their
peculiar dimension which follows from (1.1)]. The angular
momentum L admits the PN expansion
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where all the nonspin pieces are given by Eq. (4.4) of [54].
For instance, LN � m1y1 � v1 �m2y2 � v2. Now, in or-
der to express in the best way the spin-orbit contributions
in L, we find that they must be written in the following
way:
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2 �K
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2:5PN; (7.7b)

in which we have introduced some convenient notions of
the ‘‘individual linear momenta’’ of the particles, say Sp1
and Sp2 at 1.5PN order, and Sq1 and Sq2 at 2.5PN order.
The extra terms in the RHS, SK1:5PN and SK2:5PN, incor-
porate all that remains, the point being that they depend on
the positions of the particles only through their relative
separation, i.e. r12 � jy1 � y2j and n12 � �y1 � y2�=r12.
The only dependence of the conserved angular momentum
on the individual positions y1 and y2 is the one which is
given explicitly by the first terms of Eqs. (7.7).12 The
results we find for these momenta are
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together with the equations with 1$ 2. The last terms in
the RHS of Eqs. (7.7) are explicitly given by
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�
�
Gm2v2
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	�3�n12S1��n12v2� � 3�v1S1�

� 4�v2S1�
 � 1$ 2: (7.9b)

The 1.5PN term in the conserved angular momentum, Eq. (7.7a), agrees with the result of Kidder [29].13

Let us add a comment on the meaning of the conservation of the total angular momentum J at 2.5PN order [Eq. (7.5) with
(7.6)]. When differentiating J with respect to time, we generate several spin contributions at 2.5PN order: (i) The ‘‘main’’

12However, let us stress that the definition of some individual momenta for the particles is merely introduced here as a convenient
notation. In order to define in a meaningful way the notions of individual linear momenta of the particles with spins, we would need a
Lagrangian, which as said before we did not compute, and the linear momenta would simply be the conjugate momenta of the ordinary
positions.

13Reference [29] uses different definitions for the spin variables, which are related to ours by

 �S1�Kidder �

�
1�

Gm2

c2r12

�
S1 �

1

2c2 �v1S1�v1:
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one is coming from the differentiation of the Newtonian
term LN, and is due to the replacement of the acceleration
by the equations of motion (5.1) with (5.3b); (ii) there is the
one coming from the differentiation of the 1PN part L1PN,
since the replacement of the accelerations at order 1.5PN
[Eq. (5.3a)] therein does also produce some terms at 2.5PN
order; (iii) when differentiating the lowest-order spin-orbit
term SL1PN, the derivative of the spins gives other 2.5PN
terms via the precessional equations; (iv) when differenti-
ating the spin vectors themselves, S1 and S2, one must
make use of the precessional equations with their full 2PN
accuracy14 which are given by Eqs. (6.1), (6.2), and (6.3).

Only when account is taken of all these replacements (i)–
(iv) of accelerations and spin precession, does one find that
J is conserved, dJ=dt � 0, up to 2.5PN order (neglecting
the 2.5PN nonspin radiation reaction damping).

The orbital angular momentum in the CM frame reads
 

L � �
�
‘N �

1

c2 ‘1PN �
1

c3 ‘S
1:5PN �

1

c4 	‘2PN � ‘
SS

2PN


�
1

c5
‘
S

2:5PN �O

�
1

c6

��
; (7.10)

where ‘N � mx� v; the nonspin contributions can be
found in Refs. [54–56]. We have
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Finally, let us give the conserved integrals of the linear
momentum P and center-of-mass position G, which are
related to each other by dG=dt � P. Recall that the exis-
tence of the center-of-mass integral G is a consequence of
the boost invariance of the equations of motion
(cf. Appendix A). Both P and G admit a PN expansion
exactly like those of E and L. Quite naturally, we find that
the spin-orbit contributions in P are simply given by the
sum of the ‘‘individual’’ linear momenta for each particles
that we found convenient to introduce in order to express
the angular momentum in Eqs. (7.7). Thus,
 

P
S

1:5PN � p
S

1 � p
S

2; (7.12a)

P
S

2:5PN � q
S

1 � q
S

2; (7.12b)

where the explicit expressions (7.8) hold. For G, we obtain
rather simple expressions:
 

G
S

1:5PN � v1� S1� v2� S2; (7.13a)

G
S

2:5PN �
1

2
v1� S1v

2
1�

Gm2

r12

�
�

y1

r12
�S1; n12; v1�

� 2v1� S1� 3v2� S1� �n12� v1�n12� v2�

� �n12S1�

�
� 1$ 2: (7.13b)

The derivation of the complete set of integrals of the
motion gives us further confidence in the physical sound-
ness of the equations of motion derived in this paper. Those
results, together with the analyses performed in
Appendices A and B, complete the resolution of the prob-
lem of linear spin-orbit effects in the binary’s equations of
motion at 2.5PN order.

APPENDIX A: LORENTZ INVARIANCE OF THE
EQUATIONS OF MOTION

Because of the global Poincaré invariance of the
Einstein equations (with bounded sources), and the mani-
fest covariance of the De Donder harmonicity condition, it
is not possible to physically distinguish between two
harmonic-coordinate grids differing by a mere Lorentz
transformation. As a result, the equations of motion must
be of the same form in two such grids. In other words, up to
an arbitrary PN order n, the link between the boosted
acceleration a01�yC; vC; aC� and the boosted positions
y0B�yC; vC�, velocities, v0B�yC; vC�, and spins S01�yC; vC;SC�
must be given by the original equations of motion [i.e.
Eq. (5.1) at the 2.5PN level] with the original variables
being replaced by their primed counterparts. Note that the
Euclidean metric and the totally antisymmetric tensors
remain unchanged under Lorentz transformations.
Schematically, we may write a01 � A�y0B; v

0
B;S

0
B; �ij; "ijk�

for B � 1, 2. The resulting relation between unboosted
14This is the only place where one needs the precessional

equations with 2PN accuracy.
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quantities,

 

a01�yC; vC; aC� � A�y0B�yC; vC�; v
0
B�yC; vC�;S

0
B�yC; vC;SC�;

�ij; "ijk� �O

�
1

cn�1

�
; (A1)

defines a function A0 as a1 � A0�yC; vC;SC; �ij; "ijk� �
O�1=cn�1�. Equivalence with the equations of motion in
the unboosted frame, a1 � A�yB; vB;SB; �ij; "ijk� �
O�1=cn�1�, means precisely that

 A � A0; (A2)

up to negligible PN corrections. This property constitutes
the so-called explicit Lorentz boost invariance of the equa-
tions of motion. It happens to be a very powerful check for
the coefficients entering the functions A of Eq. (5.1), and,
in particular, its contribution A2:5PN [see Eq. (5.3b)].

In order to verify the validity of Eq. (A2), we need to
determine the function A0 explicitly, which requires one to
know how yB, vB, a1, and SB transform under a Lorentz
boost. Let us start with considering an arbitrary space-time
event P with coordinates x� in the current working frame
�F �. Its coordinates in a boosted frame �F 0� of relative
velocity V are related to the original ones by x0� �
��

��V�x�, where the Lorentz matrix ��
��V� is given by

 

�0
0�V� � 	; (A3a)

�i
0�V� � �0

i�V� � �	
Vi

c
; (A3b)

�i
j�V� � �ij �

	2

	� 1

ViVj
c2 ; (A3c)

with 	 being the Lorentz factor 1=
����������������������
1� V2=c2

p
. An eventQ

with coordinates y0� in �F 0� is simultaneous to P in the
new frame if and only if y00 � x00. There exist two such
events located on the two worldlines of the binary com-
panions. Their coordinates in �F 0� are denoted by y0�1 �
�ct0; y01� and y0�2 � �ct

0; y02�, respectively. The mapping
t0 ! y01 defines a function y01�t

0�, and similarly for the
second body. The events having coordinates �ct0; y01�t

0��
and �ct0; y02�t

0�� in �F 0� do not generally appear as simul-
taneous in �F �. They may be referred to in components as
�ct1; y1�t1�� and �ct2; y2�t2�� in that frame, the functions
y1�t� and y2�t� being the original trajectories. By construc-
tion, we have

 y0�1 �t
0� � ��

��V�y�1�t1�: (A4)

Let us express in the end the RHS in terms of the coor-
dinate time t. A derivation of the general formula linking
y01�t

0� to y1�t� in the PN scheme can be found in [57]. This
relation reads, see Eqs. (3.20) in [57],

 

y01�t
0� � y1�t� � 	V

�
t�

1

c2

	
	� 1

�Vx�
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�
X�1
n�1

��1�n

c2nn!
@n�1
t

�
�Vr1�

n
�
v1 �

	
	� 1

V
��
: (A5)

The velocity and acceleration follow from the partial deri-
vation with respect to t0 together with the formula @0t �
	@t � 	V

i@i:
 

v01 �
v1

	
� V �

1

	

X�1
n�1

��1�n

c2nn!
@nt

�
�Vr1�

n
�
v1 �

	
	� 1

V
��
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(A6a)

a01 �
1

	2

�
a1 �

X�1
n�1

��1�n

c2nn!
@n�1
t

�
�Vr1�

n
�
v1 �

	
	� 1

V
���

:

(A6b)

The spin components in the new frame cannot be ob-
tained directly from the linear Lorentz transformation law.
This is because the definition of S1 and S2 involves the
inverse of the 3-metric 	ij induced by g�� on a slice t �
const. Now, 	ij implicitly depends on the choice of the
coordinate time and is generally singular because of the
particle’s self-gravitation. To avoid complications rising
from this second issue, we shall first focus on the case of
test particles on a fixed background.

In the frame �F 0�, the spin components of the first test
body read

 S0i1 �t
0� � 	0ij1 �t

0�S01j �t
0� (A7)

with 	0ij1 �t
0� � 	0ij�y01; t

0�. Whereas the transformation law
of 	ij1 is more difficult, that of �	ij�1 � �gij�1 results
straightforwardly from the transformation of the space-
time metric:

 �g0ij�1�t
0� � �i

��V��j
��V��g���1�t1�; (A8)

with ��
��V� � ��

���V� denoting the inverse transfor-
mation. Therefore, computing 	0ij1 �t

0� amounts to express-
ing the latter quantity as a function of �g0ij�1. This is
achieved by means of the relation det�	0kl�1�	

0ij�1 �

�Com	0�ji1 , valid for any matrix �	0ij�1 between its determi-
nant det�	0kl�1, its comatrix �Com	0�ij1 and its inverse. For
3-dimensional matrices, the determinant may be written in
an Euclidean covariant form as

 det�	0ij�1 �
1
6"
ijk"lmn�g0il�1�g

0
jm�1�g

0
kn�1: (A9)

Similarly, we have for the comatrix

 �Com	0�ij1 � �
1
2"
ikl"jmn�g0kn�1�g

0
lm�1: (A10)

The inverse spatial metrics 	0ij1 is then given by the ratio of
the RHS of Eqs. (A9) and (A10), where the primed metric
relates to �g���1 after Eq. (A8).
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We finally look at the determination of the covariant spin
components S01i . As S1

� is a Lorentzian vector, they are at
once seen to be equal to

 S01i �t
0� � �i

��V�S1
��t1�; (A11)

and, by virtue of the supplementary condition (2.8), S1
0 �

�S1
i v

i
1=c.

At this stage, we have expressed S0i1 in terms of quanti-
ties evaluated at time t1, which has led us to a relation of
the form S1 � S1�t1�. It remains to rewrite S1�t1� as a
function of t. For the present purpose, we restrict ourselves
to a perturbative approach, and resort to the convenient
formula

 f�t1� � f�t� �
X�1
n�1

��1�n

c2nn!
@n�1
t

�
df
dt
�Vr1�

n
�
; (A12)

generalizing in a straightforward way Eq. (3.16) of
Ref. [57] to any smooth function f (see also Appendix A
of [57]). In the end, this yields the following identity for the
spin ‘‘vector’’ S01 � �S

0i
1 � defined in the frame �F 0�:

 S 01 � S1�t� �
X�1
n�1

��1�n

c2nn!
@n�1
t

�
dS1

dt
�Vr1�

n
�
; (A13)

where
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c4 �gkl�1: (A14b)

These expressions are valid at any order in the boost
velocity V. After specializing the above equation truncated
at the PN level to the metric (3.1), we arrive at

 S 01 � S1 �
V
c2

�
��v1S1� �

1

2
�VS1�

�
�O

�
1

c4

�
: (A15)

Note that all powers of V consistent with the 1PN approxi-
mation beyond the leading spin-orbit term have been in-
cluded. In principle, Eq. (A14a) holds only for test
particles. Nonetheless, it turns out not to depend on any
regularized field. It is thus legitimate to extend it to the
conditions of the present problem.

With the previous transformation laws in hand, we are in
position to check the Lorentz invariance as explained
before. After a lengthy calculation, we arrive at the ex-
pected identity A�yB; vB;SB; �ij; "ijk� �A0�yB; vB;SB;
�ij; "ijk� � 0.

APPENDIX B: TEST-MASS LIMIT OF THE
EQUATIONS OF MOTION

In the limit where one of the objects, say the number 1, is
nearly at rest while its companion has a very small mass for
a finite ratio S2=m2, we must recover the dynamics of a
spinning test particle in the background of a Kerr black
hole of mass m1 and spin S1 � m1a1 (in this Appendix we
pose G � c � 1). To allow direct comparison with the PN
equations of motion for m2 ! 0 at S2=m2 � const, we
shall work with the Kerr metric in harmonic coordinates.
The link between the Boyer-Lindquist grid (indicated by
the label BL henceforth) and some spatial harmonic coor-
dinates can be obtained from Eqs. (41) and (43) of
Ref. [58]:
 

x1� ix2 � �rBL�m1� ia1� sin�BL

� expi
�
��

a1

r� � r�
ln

��������rBL� r�
rBL� r�

��������
�
; (B1a)

x3 � �rBL�m1� cos�BL; (B1b)

with r��m1�
�����������������
m2

1�a
2
1

q
and i2��1. Since r�r�tBL �

0, we may also choose t � tBL. The exact expression of the
metric in the new grid is rather complicated, but we shall
not need it beyond the linear order in the spin. Neglecting
the quadratic terms O�S2

1�, the line element reduces to
 

ds2 � �
r�m1

r�m1
dt2 �

4m1a1

r�m1
sin2�dtd��

r�m1

r�m1
dr2

� 2
m2

1a1

r2

r�m1

r�m1
sin2�drd�

� �r�m1�
2�d�2 � sin2�d�2� �O�S2

1�; (B2)

which coincides with the one deriving from the metric (3.1)
at the dominant order, hence the harmonic coordinates
defined by Eqs. (B1) and t � tBL are the same as those
of the PN formalism.

At this level, we may derive the equations of motion of a
test particle with spin per unit mass S2=m2 orbiting in the
gravitational field (B2). For simplicity, we assume the
trajectory to be circular and lie in the equatorial plane � �

=2; the vector @z points to the direction of the spin black
hole, so that S1 � Sz1 � m1a1; the spherical coordinate
basis is denoted by �@r;@�;@��. The circularity conditions
state, in particular, that r remains constant in time. The
spatial components of the four-velocity are then
 

ur �
dr
d�
� 0; (B3a)

u� �
d�
d�
� 0; (B3b)

u� �
d�
d�
� u0 d�

dt
: (B3c)

After taking these relations into account, the explicit form
of the evolution equations (3.14) becomes
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2

S2
r
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�u0�2; (B4c)

d
dt

�
u0

�
g�0 � g��

d�
dt

��
� 0: (B4d)

The harmonic gravitational field only depends on r and �,
both of which do not change with time. It is itself inde-
pendent of t. Thus, Eqs. (B4a) and (B4d) imply that u0 and
! � d�=dt are constant, whereas (B4c) yields S2

r � 0;
(B4b) shows that S2

� � const and fixes the value of !.
We draw the time variation of the spin S2 from the pre-
cession Eq. (2.12) specialized to the Kerr background (B2):
 

dS2
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�
1

r�m1

d�
dt
S2
� �

m1

r2 �m2
1

S2
0

�
; (B5a)

dS2
�

d�
� 0; (B5b)

dS2
�

d�
� ��r�m1�

d�
dt
S2
ru0: (B5c)

Noticing that dS2
r=d� � 0, it is immediate to see from

(B5a) together with the condition S2
0u

0 � �S2
�u

� that
S2
� � 0. The remaining equations are identically satisfied.

As a result, the spin of the small object is aligned (or
antialigned) with the spin of the black hole, meaning that

 S 2 � S�2@� � �
r

�r�m1�
2 S

2
�@z (B6)

up to possible quadratic contributions. In the test particle
limit, the spin vectors are related to S and � as S1 � S�
O�m2� and S2=m2 � �S���=m�O�m2�. Insertion of
these values in Eq. (B4b) leads to the solution
 

!2 �
m

r3

�
1

�1� 	�3
�

	3=2

m2�1� 	�9=2
	5Sz � 3�z

� 3	�Sz ��z�
 �O�S2�

�
; (B7)

with 	 � m=r � m1=r�O�m2�. By expanding the latter
equality at the 2.5PN order, we recover the generalized
Kepler relation given by (5.10) and (5.11) for �! 0.
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