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The detection of the gravitational wavesWs) emitted by precessing binaries of spinning compact objects
is complicated by the large number of parametsigh as the magnitudes and initial directions of the spins,
and the position and orientation of the binary with respect to the deje¢btdrare required to model accurately
the precession-induced modulations of the GW signal. In this paper we describe a fast matched-filtering search
scheme for precessing binaries, and we adopt the physical template family proposed by Buonanno, Chen, and
Vallisneri[Phys. Rev. D67, 104025(2003 ] for ground-based interferometers. This family provides essentially
exact waveforms, written directly in terms of the physical parameters, for binaries with a single significant
spin, and for which the observed GW signal is emitted during the phase of adiabatic i&pitdlGO-1 and
VIRGO, this corresponds to a total mags< 15M ). We show how the detection statistic can be maximized
automatically over all the parametdiacluding the position and orientation of the binary with respect to the
detecto), except four(the two masses, the magnitude of the single spin, and the opening angle between the
spin and the orbital angular momentyreo the template bank used in the search is only four-dimensional; this
technique is relevant also to the searches for GW from extreme-mass-ratio inspirals and supermassive black
hole inspirals to be performed using the space-borne detector LISA. Using the LIGO-I design sensitivity, we
compute the detection threshole- {0) required for a false-alarm probability of 1¥yr and the number of
templates 76 000) required for a minimum match of 0.97 for the mass range,rf,)=[7,12]M

X[1,3Mg .
DOI: 10.1103/PhysRevD.69.104017 PACS nuni®er04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym
I. INTRODUCTION Population-synthesis studiegl12,13 suggest that in

NS-BH binaries there is a possibility for the BH spin to be

Binaries consisting of a black hol®H) in combination  substantially misaligned with the orbital angular momentum
with another BH or with a neutron stéNS) are among the of the binary. Early investigatior{44,15 showed that when
most promising gravitational-wavéGW) sources for first-  this is the case and the BH spin is large, the evolution of the
generation laser-interferometer GW detectors such as the L&W phase and amplitude during the adiabatic inspiral is sig-
ser Interferometer Gravitational Wave ObservatdryGO)  nificantly affected by spin-induced modulations. While reli-
[1,2], VIRGO [3], GEO600[2,4] and TAMA300 [5]. For  aple templates for precessing binaries should include these
LIGO-I and VIRGO, and for binaries with a total mabé  modulational effects, performing GW searches with template
=<15Mg, the observed GW signal is emitted during the families that include all the@rima facierelevant parameters
adiabatic-inspiral regime, where post-Newton{&) calcu-  (the masses, the spins, the angles that describe the relative
lations can be used to describe the dynamics of the binargrientations of detector and binary, and the direction of
and predict the gravitational waveforms emit{&d-9]. propagation of GWs to the detectds extremely computa-

Very little is known about the statistical distribution of tionally intensive.
BH spin magnitudes in binaries: the spins could very well be  Several authors have explored this issue, and they have
large, with a significant impact on both binary dynamics andproposed detection template familiggTFs) that depend on
gravitational waveforms. On the contrary, it is generally be-fewer parameters and that can still reproduce well the ex-
lieved that NS spins will be small in the NS-BH and NS-NS pected physical signals. An interesting suggestion, built on
binaries that are likely to be observed with first-generationthe results obtained in Refl4], came from Apostolatos
GW detectors. For example, the observed NS-NS binary pul15], who introduced a modulational sinusoidal tefthe
sars have rather small spifiys/mis~10"3 [6]. One reason Apostolatos ansalzin the frequency-domain phase of the
the NSs in binaries of interest for GW detectors should carrtemplates to capture the effects of precession. This sugges-
small spin is that they are old enough to have spun dowmion was tested further by Grandoient, Kalogera, and Vec-
considerably(even if they once had spins comparable to thechio [16]. The resulting template family has significantly
theoretical upper IimitsSNS/mﬁ,Sz0.6—0.7[10], wheremys  fewer parameters, but its computational requirements are still
is the NS mass, and where we set=c=1), and because very high, and its signal-fitting performance is not very sat-
dynamical evolution cannot spin them up significaridyen  isfactory; Grandclment and Kalogerd17] subsequently
during the final phase of inspiral when tidal torques becomesuggested a modified family apiky templates that fit the
important[11]). signals better.
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After investigating the dynamics of precessing binariesunphysical templates, as the BCV2 DTF dil) all the tem-
Buonanno, Chen, and Vallisnefil8], henceforth BCV2 plate parameters except four adrinsic that is, they can be
proposed a new convention for quadrupolar GW emission irsearched over semialgebraically without having to compute
such binaries, whereby the oscillatory effects of precessioall of the corresponding waveforms.
are isolated in the evolution of the GW polarization tensors. In this paper we describe a data-analysis scheme that em-
As a result, the response of the detector to the GWs can bloys this family, and we estimate the number of templates
written as the product of a carrier signal and a modulationatequired for a NS-BH search with LIGO-I: we assume
correction, which can be handled using an extension of th&M;<mys<3My and Mg<mgy<12M, (see Sec.
Apostolatos ansatz. On the basis of these observationH) D). In a companion pap€20], we show how a simple
BCV2 built a modulated frequency-domain DTF that, for extension of this template family can be used to search for
maximal spins, yields average fitting factorSF see Sec. the GWs emitted by binaries when both compact bodies have
VI B of Ref. [18]) of =0.97 for (7+5)M BH-BH binaries,  significant spingand where of course the adiabatic limit of
and =0.93 for (10+1.4)M, NS-BH binaries(see also the PN equations is still valjd The problem of estimating
Tables VIII and IX and Fig. 14 of Ref18]). Note that the the parameters of the binaries is examined in a forthcoming
stationary-phase-approximatiaisPA templates developed paper[21].
for nonspinning binaries give much lowEFs of=0.90 for This paper is organized as follows. In Sec. Il we review
(7+5)M BH-BH binaries and=0.78 for (10r1.4)M, the fqrmalism of ma@ched—filtering Gw detgction, and we
NS-BH binaries, while according to our computations the€stablish some notation. In Sec. Ill we review the PN dy-
Apostolatos templates giveﬁ::OBl for (10+1.4)M namics and GW generation in smgle—spln bmanes_, a_nd we
NS-BH binarieg19]. discuss the accuracy of the_ resulting ngeforms, |nd|cat|ng

An important feature of the BCV2 templates is that their{N€ range of masses to which our physical template family
mathematical structure allows an automatic search over sef@n Pe applied. In Sec. IV we describe the parametrization of
eral of the modulational parameteia strict analogy to the the templates, and we discuss the semialgebraic maximiza-
automatic search over initial orbital phase in GW searche&On Of signal-template correlations with respect to the extrin-
for nonspinning binaries reducing significantly the number Sic parameters. In Sec. V we describe and test a fast two-
of templates in the search banks, and therefore the computgtage detection scheme that employs the templates, and we
tional cost. However, since many more signal shapes ardiscuss its false-alarm statistics. In Sec. VI we build the tem-
effectively (if implicitly ) tested against the detector output, plate mismatch metric, and we evaluate the number of tem-
the detection threshold for this DTF should be set higheplates required for an actual GW search. Finally, in Sec. VII
than those for simpler familiegfor the same false-alarm we summarize our conclusions.
probability). According to simple false-alarm computations
performed with Gaussian, stationary detector n¢ése Ref.

[18]) for a single template, the gain in FF is larger than the|| A BRIEF REFRESHER ON MATCHED-FILTERING GW

increase in the threshold only for binariesuch as NS-BH DETECTION
binaries with low symmetric mass ratiosm;m,/(m;
+m,)?; while the opposite is true for high mass rati¢gl- We refer the reader to R€f22] (henceforth BCV], for a

timately, the issue of FF gain versus threshold increase wilself-contained discussion of matched-filtering techniques for
be settled only after constructing the mismatch metric forGW detection, which includes all relevant bibliographic ref-
this template family and performing Monte Carlo analyses oferences. In this section we mainly establish our notation and
false-alarm statistics for the entire template bank under reakonventions; the experienced reader may therefore want to
istic detector nois¢.Although the improvement in FF with jump ahead to Sec. IlI.

the BCV2 DTF is relevant, it is still not completely satisfac-  Matched filtering 23—36 is the standard method to detect
tory, because it translates to a loss-620% in detection rate  GW signals of known shape, whereby we compare the de-
(for the maximal-spin cagevith respect to a perfect template tector output witttemplateghat approximate closely the sig-
bank (the loss will be higher if the higher required threshold nals expected from a given class of sources, for a variety of
is taken into account Current estimates of binary-inspiral source parameters. The goodness of fit between the template
event rates within the distance accessible to first-generation(\”) (wherex” denotes all the source paramejeaad the
GW interferometers hovers around one event per year, so @al GW signal is quantified by theverlap

reduction of~20% in the detection rate may not be accept-

able.

BCV2 also proposed, but did not test, a new promising (s,h(\™)
family of physicaltemplates(i.e., templates that are exact p[s,h(AM)]= — (D)
within the approximations made to write the PN equations V(hA),h(A))

for binaries where only one of the two compact bodies car-

ries a significant spin. This family has two remarkable ad- ] ] ] o
Vantages(i) it consists 0n|y of the physica| waveforms pre- [aISO known as th@lgna|-t0-l’l0lse ratioafter f||ter|ngs by
dicted by the PN equations in the adiabatic limit, so it doed(\")], where the inner productg(t), h(t)) of two real
not raise the detection threshold unnecessarily by includingignals with Fourier transformg(f), h(f) is given by[33]

104017-2



PHYSICAL TEMPLATE FAMILY FOR GRAVITATIONAL . .. PHYSICAL REVIEW D 69, 104017 (2004

+og* (FR(F) +eg* (HR(F) in parameter space to characterize the size and the geometry
,h =2f ——df=4 ej —Fdf; of the template bank corresponding to a given MM.
(em=2]_ “sam 0o S P ponding 08,9
) I1l. ADIABATIC POST-NEWTONIAN MODEL
throughout this paper we adopt the LIGO-I one-sided noise FOR SINGLE-SPIN BINARY INSPIRALS

power spectral densit$, given by Eq.(28) of BCV1. Ex-

cept where otherwise noted, we shall always consider NOl5eneration for NS-BH and BH-BH binaries. Specifically, in

malized templates (where the hat denotes normalization Secs. 11l A—IIl C we review the relevant PN equations and
for which (ﬁ()\A),ﬁ()\A»:l, so we can drop the denomi- the GW emission formalism developed by BCV2. In Sec.
nator of Eq.(1). Il D we study the accuracy of the waveforms, and determine
A large overlap between a given stretch of detector outputhe mass range where the waveforms produced by adiabatic
and a particular template implies that there is a high probmodels can be considered accurate for the purpose of GW
ability that a GW signal similar to the template is actually detection. The discussion of this section is continued in Ap-
present in the output, and is not being merely simulated bypendix A, where we investigate the effects of quadrupole-
noise alone. Therefore the overlap can be useddsetection  monopole interactiondtidal torqueg on the waveforms,
statistic we may claim a detection if the overlap rises abovewhich have been so far neglected in studies of precessing-
a detection thresholp*, which is set, on the basis of a binary waveforms, and in fact turn out to be only marginally
characterization of the noise, in such a way that false alarmgnportant for NS-BH binaries. The time-pressed reader may
are sufficiently unlikely. want to skip Secs. lll A and lll Bwhich review BCV2 ma-
The maximum(optima) overlap that can be achieved for terial), move on to Sec. Ill Gwhich introduces the template
the signals is \(s,s) (the optimal signal-to-noise ratip ~ bank examined in this paperand then jump to the last two
which is achieved by a perfednormalized template h paragraphs of Sec. Ill Dwhich summarize the comparisons

=s/\/(s,s). In practice, however, this value will not be between PN ordeys

reached, for two distinct reasons. First, the template familyonlln;L‘st%%pe;’a;"; r‘;ﬁitgi;;togrisnel;’;;vif tgns?rrri\?l;igtl\j\(ljhicc?f
{ﬁ()\A)} might not contain a faithful representation of the y y g bin, g y

physical signalw. The fraction of the theoretical maximum generic binaries to a companion pajéd]. As a further

overlap that is recovered by the template family is quantifie estriction, we consider only binaries in circular orbits, as-
- i hat they h | irculari iati
by thefitting factor [35] uming that they have already been circularized by radiation

reaction as they enter the frequency band of ground-based
A GW detectors. For all binaries, we denote the total mass by
_ MaX a(w,h(A%)) M=m;+m, and the symmetric mass ratio byy
(W, w) ' ) =m;m,/M?; we also assume that the heavier bdghjth
massm;=>m,) carries the spirS;= y;m?, with 0<y;<1
Second, in practice we will usually not be able to use ahere and throughout this paper we &tc=1).
continuoustemplate family{h(\*)}, but instead we will

have to settle with a discretized template bai\ ()}, A. The PN dynamical evolution

where (k) indexes a finite I_attice in pararr_\eter space; so the In the adiabatic approacf87,38, to the evolution of
best template to match a given phyS|caI signal will have to b‘:spinning binaries, one builds a sequence of precessing
replaced by a nearby template in the baffs we shall see 1 g effects and shrinking(due to radiation reactiorcir-

in Sec. 1V, there is a partial exception to this rule: we cangar orhits. The orbital frequency increases as the orbit

S . Bhrinks. The time scales of the precession and shrinkage are
known asextrinsic parameterb23,27, without actually lay- o1 jong compared to the orbital peridthis is theadia-

ing down templates in the bank along that parameter direCqayic condition, until the very late stage of binary evolution.

tion.) The fraction of the optimal overlap that is recovered by(Such orbits are also callegpherical orbits since they reside
the template bank, in the worst possible case, is quantified b,

¥n a sphere with slowly shrinking radilis.
the minimum match27,31]. Assuming that the physical sig- P y g l)l

. R The radiation-reaction-induced evolution of frequency
nal belongs to the continuous template famfil(A")}, the o be calculated by using the energy-balance equation,
minimum match is equal to

=—Fl(déldw), wheref is the orbital-energy function, and
o B A R A F the GW energy-fluxor luminosity function. Both have
MM _T,'E r?lgx(h()\ ):h(N))- “) been calculated as functions of the orbital frequency using
PN-expansion techniques, and are determined up to 3.5 PN

The required minimum match MM sets the allowable coarseorder[7—9]; however, spin effects have been calculated only
ness of the template bafk3,31,32: the closer to one MM, up to 2 PN ordef37]. The resulting evolution equation for
the closer to one another the templates will need to be laidb, obtained by inserting the PN expansions€aind F into
down. In Sec. VI we shall use a notion wfetric[27,29,34  the balance equation and reexpanding, is

In this section we discuss PN adiabatic dynamics and GW

FF
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Where VE= 0577 ... iS Eu'er’s constant. We denote h;%l mum energy Circular Ol’bit, or MECO. Up to 3 PN Order, and
«rx v the unit vector along the orbital angular momentum,including spin-orbit effects up to 1.5 PN order, the orbital
wherer andv are the two-body center-of-mass radial sepa-energy&(w) reads[6,37,4Q

ration and relative velocity, respectivel&,\, is also the unit

normal vector to the orbital plan€Throughout this paper we M 213 (9+7) 213
shall always add hats to vectors to denote the corresponding &lo)=— 7 (M ®)™H 1= 17 M )
unit vectors) The (scalaj quantity # is an undetermined R

regularization parameter that enters the GW flux at 3 PN 8 3my\Ly- S

order[8]. As in Ref.[18], we do not include thépartia) spin + 3 2 E) 2 (Mw)

contributions tow at 2.5 PN, 3 PN, and 3.5 PN orders, which
arise from known 1.5 PN and 2 PN spin termséénd F.
(To be fully consistent one should know the spin termg of
andF at 2.5 PN, 3 PN, and 3.5 PN orderin Sec. lll D we

1
— 5(81-577+ 7°) (M w)*3

shall briefly comment on the effect of these terms. We ignore Ll 6_75+ 34445 205 2+£)
also the quadrupole-monopole interaction, which we discuss 64 576 96 " 3 “s|”
in Sec. A.
The precession equation for the spin 38,14 155 , 35 5
o6 7~ 51847 | (M) ®
. n msy\ «
=——(Mw)>3 4+3—=|LyXS,, 6
51 ZM( ©) my) N =L © Henceforth, we assume the regularization paramegeo be

zero, as computed in Refgr,9,39.
where we have replaced=r and|L | by their leading-order
Newtonian expressions im. The precession of the orbital
plane (defined by its normal vectok ) can be computed
following Egs.(5)—(8) of Ref.[18], and it reads

B. The precessing convention

BCV2 introduced a new convention to express the
leading-order mass-quadrupole gravitational waveform gen-

o2 erated by binaries of spinning compact objects; here we re-

S 2 _— " view it briefly. At this order, the radiative gravitational field
Ly=514+3—|SIXLy=Q XLy 7
N 2m my S Lo @) emitted by the quasicircular binary motion reads
Equations(5)—(7) describe the adiabatic evolution of the hijzz_'“(M) ij 9)
three variableso, S;, andL . It can be easily deduced that Dir)~e

the magnitude of the spirg,=|S,|, and the angle between _ .

the spin and the orbital angular momentur@,EI:Né_L, are where__D is Ehgd@t_ritrjce bet\iveen Ehe source and the Earth,

conserved during the evolution. andQ =2[A'N—n'nl], with n andX the unit vectors along
The integration of Eqs(5)—(7) should be stopped at the the separation vector and the relative velocity of the

point where the adiabatic approximation breaks down. Thiginary. In generalﬁ(t) and X(t) can be written as

point is usually reachede.g., for 2 PN and 3 PN orders

when the orbital energy,p\ reaches a minimum, as found

by solvingd&,pn/dw=0 (exceptions occur at Newtonian, 1 N(t)=ey(1)CosP (1) + &, (t)sin®d (1), (10
PN, and 2.5 PN orders, as we shall explain in more detail in )
Sec. Il D). We shall call the corresponding orbit the mini- A(t)=—e(t)sind(t)+e,(t)cosd(t), (11
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whereeg;(t), e (t), and e3(t)EI:N(t) are orthonormal vec-
tors, ande, (t) forms a basis for the instantaneous orbital

plane. NowQ! can be written as

U=—2{[e,]lcosAD +Dy) +[e, ] sin 2D+ D)},
(12)

with e, =e;®e,— 6,06, ande,=e®e,+e,0e, and P,

PHYSICAL REVIEW D 69, 104017 (2004
e(t)=Qut)Xe(t), =12, (13)
Q()=0 —(Q-LyLy. (14)

[See Eq(7) for the definition ofQ), .] In this convention, we
do haved= w.

an arbitrary initial phase. For quasicircular orbits, we have

A=wA, but in general®+ w, because of the time depen-

dence ofe, ,(t). BCV2 defined theprecessing conventidoy
requiring that

2

h=——- g([eJr]ijCOSZ(q)+q)0)+[e><]ij5in2(q)+¢0))([T+]ijF++[T><]ijF><);

D

C. The detector response

The response of a ground-based interferometric detector
to the GW signal of Eq(9) is given by

(15

factor Q: wave generation

the tensor§ T, . J;; are defined byl , =e;@ ef — @ e} and
T.=cfod+efee, after we introduce theradiation
frame

= —esing+ecose, (16)
= —ePcosd cosp—€cosd sinp+elsin®,  (17)
R__ Sai Sai H S _ N
€, = T €5sin® cosp+¢€sin® sing+ecos® =N,
(18)

with N the direction of wave propagation ad, ¢ the cor-
responding angles in an arbitrarily chossource frame

{€7.€).€5} (see Fig. 1 of Ref[18]). For the antenna patterns

F. x we have

i
Fix=5le@e—eog]' [T, «Jj, (19

Whereayy are the unit vectors along the orthogonal interfer-

ometer arms. More explicitly26],

1
Fo=5(1+ cos 6)cos 2p cos 24— coshsin 2 ¢ sin 244,
(20

1
Fo=5(1+ co< 0)cos 2 Sin 2+ cose sin 2¢ cos 2i).
(21)

factor P: detector projection

and that describe thgenerationof GWs (at least if the vec-
torse, , z are defined without reference to the detector, as we
will do soon. Using the language of BCV2, in the precess-
ing convention thelirectionalparameter®, ¢, ¢, 6, andy
are isolated in factor P, while tHeasicandlocal parameters
of the binary are isolated in factor Q.

Physically, we see that factor Q evolves along three dif-
ferent time scaled(i) the orbital period, which sets the GW

carrier frequency 2= 2w; (ii) the precession time scale at
which the e, » change their orientation in space, which
modulates the GWSslijii) the radiation-reaction time scale,

characterized byu/(u, which drives the evolution of fre-
quency. In the adiabatic regime, the orbital period is the
shortest of the three: so for convenience we shall define the
(leading-order instantaneous GW frequency,j directly
from the instantaneous orbital frequency,
=(2w)/(27)=wlm.

Thus, what parameters are needed to specify Q com-
pletely? Equatiori5) for w(t) can be integrated numerically,
starting from an arbitraryw(0) [41] once we specify the
basic parametersl, », and x; and the local parametet;
=Ly-S, (conserved through evolutianWith the resulting
w(t) we can integrate Eq$6) and(7), and then Eq(13). For
these we need initial conditions &, I:N, and for theg ;
without loss of generality, we can introducdfixed) source
frame attached to the configuration of the binary=a0:

fGW

€S5,(0)—[S,(0)- Ly(0)]L (0,

Here ¢, 0, and are the orientation angles of the detector,

as defined by Fig. 2 of Ref18]. €=LCn0)xe, e=L\(0),
Mathematically, we see that the factor P of HG5),

which is independent of time, collects only terms that depen

on the position and orientation of the detector and that de(‘j—"nd then take

scribe thereceptionof GWSs, while factor Q collects only

terms that depend on the dynamical evolution of the binary

(22

a(0)=€, e(0)=¢, e0)=€. (29
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FIG. 1. Ending frequencyinstantaneous GW frequency at the

MECO) as a function ofy, evaluated from E¢8) at 2 PN order for
M=15Mg, x1=1, and for different values of;.

[If S,(0) andL(0) are parallelﬁf can be chosen to lie in
any direction orthogonal tb(0).] The initial orbital phase

d, that enters the expression of Q is defined by

n(0)=e;(0)cosd,+ e,(0)sind,,

while the initial conditions forS; andLy, as expressed by

(29)

their components with respect to the source frame, are

Ln(0)=(0,0,2),

5.(0)=(V1-k2,0,1).

(29)

(26)

BCV2 proposed to use the family of waveforndetector
responsesdefined by Eqs(5)—(7) and(13)—(15) as a family

of physical templatefor compact binaries with a single spin.

Depending on the maximum PN ordBr up to which the
terms of Eq.(5) are retained, we shall denote this class ofways satisfied for NS-BH binarigsPopulation-synthesis cal-

template families SJ. The ST, templates deserve to be culations[43] suggest that the more massive of the two com-
called physical because they are derived from a physicalpact bodies will have the larger spin, since usually it will

model, namely the adiabatic PN dynamics plus quadrupolbave been formed first, and it will have been spun up through
GW emission. Each ST template family is indexed by accretion from the progenitor of its companion. For definite-
elevenparametersM, 7, x; (basig, x4 (local), ®, ¢, 0, ¢,
¢ (directiona), plus the timet, at which the instantaneous the corresponding range of is 0.07-0.16.

PHYSICAL REVIEW D 69, 104017 (2004

GW frequency passes through the fiducial vat@)/,

and the corresponding initial phadg,. Of these, using the
distinction between intrinsic and extrinsic parameters intro-
duced in Refs[27,47 and further discussed by BCV2, the
first four are intrinsic parameters: that is, when we search for
GWs using ST, templates, we need to lay down a discrete
template bank along the relevant ranges of the intrinsic di-
mensions. The other seven are extrinsic parameters: that is,
their optimal values can be found semialgebraically without
generating multiple templates along the extrinsic dimensions
(another way of saying this is that the maximization of the
overlap over the extrinsic parameters can be incorporated in
the detection statistic, which then becomes a function only of
the intrinsic parameteysin Sec. IV we shall describe how
this maximization over the extrinsic parameters can be
achieved in practice.

D. Comparison between different post-Newtonian orders and
the choice of mass range

In this section we investigate the range of massesand
m, for which the PN-expanded evolution equatidbs—(7)
[and therefore the template fami({t5)] can be considered
reliable. As a rule of thumb, we fix the largest acceptable
value of the total mass by requiring that ti&VN ending
frequency(in our case, the instantaneous GW frequency at
the MECQO should not lie in the frequency band of good
detector sensitivity for LIGO-I. Considering the results ob-
tained by comparing various nonspinning PN models
[24,22, and considering the variation of the ending fre-
guency when spin effects are taken into accdurd], we
requireM=<15Mg . In keeping with the focus of this paper
on binaries with a single significant spin, we also impose
m,/m;=<0.5, which constrains the spin of the less massive
body to be relatively smal{of course, this condition is al-

ness, we assumeMy<m<12M, and My<m,<3Mg;

2.0 T T 2.0 T T T T T T T T T T

t -~ 1PN — 25PN k. =0 )
1.8 |— 1.5PNI€1=0 - 18I: —_— 2,5PNK,1=—1 7

L |-- LSPNk =-1 ] " |—- 25PNk =1 e
16 |--- 15PNk =1 =] L6 -
14 14

w o woor
12 12
1.0 1.0
0.8 08
L | | | L |
0.6 0 20 20 160 700 uo 0%
fow H2)

FIG. 2. Plot of e=(w/w?)/[96/57(Mw)>3] as a function off o= w/m, evaluated from Eq(5) at different PN orders for a (10
+1.4)M4 binary. We do not show the 3.5 PN curves, which are very close to the 3 PN curves.
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Li— ‘ ‘ ‘ ‘ ‘ guency at the innermost stable circular orf8CO) of a
- Schwarzchild black hole with madd. In Table | we show
L0k omzm=ZTIIIIIEES——- Ngw at increasing PN orders for (3l.4)Mo, (12
VYV ememe e m e m=e== === """ 7 . . . . .
S e S e i +3)Mg, and (7+3)Mg binaries. The contributions in pa-
_________________________________ rentheses are partial spin terms present at 2.5 PN, 3 PN, and
wos [N T e q 3.5 PN orders and due to known 1.5 PN spin terms in the
Ne=0 | e
-- 15PNm =-1 e orbital energy and luminosity. These terms were neglected in
0l ;ing”izl | Eqg. (5) to be consistent in including PN terms of the same
I N zl;_l order, and we list them here only to give their order of mag-
— 2PNni:1 nitude. Unless there are cancellations, the large number of
020 80 1o 1o 0 220 cycles suggests that it is worthwhile to compute spin effects
Sy H2) up to the 3.5 PN order.

The number of accumulated GW cyclég,, can be a
FIG. 3. Plot of e=(w/w?)/[96/57(Mw)®?] as a function of useful diagnostic, but taken alone it provides incomplete and
fow=w/m, evaluated from Eq(5) at different PN orders for a Sometimes even misleading information. There are three rea-
(1.4+1.4)My NS-NS binary. We do not show the 2.5 PN, 3 PN sons for this. First/Ngy is related only to the number of
(6=0), and 3.5 PN curves, which are very close to the 2 PNorbital cycles of the binaryithin the orbital plane, but it
curves. Note the change in scale with respect to Fig. 2. does not reflect the precession of the plane, which modulates
the detector response in both amplitude and phase. These
In Fig. 1 we plot the GW ending frequency as a functionmodulations are very important effects, as witnessed by the
of 7, evaluated from Eq(8) at 2 PN order forM =15M fact that neither the standard nonspinning-binary templates
and y,=1. The various curves refer to different values of (which do not have built-in modulatiopshor the original
k1. The minimum of the GW ending frequency-s300 Hz,  Apostolatos templategvhich add only modulations to the
and it corresponds to a (#21)M, binary with spin anti- phase can reproduce satisfactorily the detector response to
aligned with the orbital angular momentum. In Fig. 2 we plotthe GWs emitted by precessing binaries. Second, even if two
olw?, normalized to its leading (Newtonian term  Signals have values oty that differ by ~1 when wpmay

96/57(M w)®3, as a function of the instantaneous GW fre- €quals the GW ending frequendwhich apparently repre-
sents a total loss of coherence, and hence a significant de-

: . o crease in overlgpone can always shift their arrival times to
gffresétgocr)fatr(lii1i.:-)c'\>/:€itbilr1ntzrr);g¥ilé?e)</ 1|oTe?1t \f/gf jﬁfirtg:tt’(the obtain higher overlaps. Third, in the context of GW searches
L P 1 the differences inVgy should be minimized with respect to

within the same PN ordgare comparable to, or even larger . .
tpe search parameters, as done with the fitting factor.

than, the effect of increasing the PN order. We see also tha o
the different PN curves spread out more and more as we The Cauchy criteriorj28] states that the sequence ST

increaseM and 7. For comparison, in Fig. 3 we show the JO Yo 9°° if and only if for everk, (ST, STy)—1 as

same plot for a (1.4 1.4)M NS-NS binary; note the dif- rl\rlngjﬁallllq Tsati):%ilrl]’ V;i(;e;(t)rtlzeir?ﬁiimﬂ&aaifl\/lbﬁgfd’ (f;);
ferent scale on the vertical axis. In this case the various+3 M )t; pIr gl’h | P gt d .tth ®b oM f
curves remain rather close over the entire frequency band. Mg binaries. € overiaps quoted at the beginning o
Another procedur¢often used in the literatuyeo charac- each column are maX|m|;ed over the e.X””TS'C paramegers
terize the effects of spin and PN order on the evolution Oiand(bo, but not over the f|_ve gxt_nnsm directional parameters
the GW frequency is to count the number of GW cycles®" ©, 6, ¢, andy or the intrinsic parametens,,, my, x1,
accumulated within a certain frequency bantVay and «, (we call this thenonmaximizedbverlap). For com-
B Omm -~ parison, we show in parentheses the overlaps maximized
=m)] (ol w)do. Here we takavy,=mx10 Hzand  gyer gl the parameters of the lower-order famiilye., the

Wmax= W1sco= (6%?7M) "1, corresponding to the orbital fre- fitting factors(FF) for the target family S, , as matched by

quency;w/ »? is evaluated from Eq(5) at different PN or-

TABLE I. PN contributions to the numbe¥gy, of GW cycles accumulated from = 7X 10 HZ 10 wma= wisco= 1/(6%?7M). The
contributions in parentheses,-(-), are partial spin terms present at 2.5 PN, 3 PN, and 3.5 PN orders and due to known 1.5 PN spin terms
in the orbital energy and luminosity.

(10+1.4)Mg (12+3)Mg (7+3)Mg
Newtonian 3577.0 1522.3 2283.8
1PN 213.1 114.3 139.0
15PN —181.3+114.2¢x; —99.7+55.7k1x1 —102.3+48.2«1 x1
2 PN 9.8 6.3 6.4
25PN —20.4+ (21.1x1x1) —12.7+ (12.1x1 x1) —10.9+ (9.0c1 1)
3 PN 2.24 (—17.0c x1 + 2.462x2) +0.420 2.2+ (— 9.7k x1+ 1.2<2x?) + 0.400 2.3+ (—6.6x1x1+0.72x?) +0.439
3.5 PN — 1.9+ (6.4x1x1) —1.3+(3.8x1x1) — 1.1+ (2.6x1x1)
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TABLE II. Test of Cauchy convergence of the adiabatic templateg &Tincreasing PN orders, for (¥Q.4)Mg and (12+3)Mg
binaries, and for maximally spinning BHs{=1, upper and middle pan¢lsnd nonspinning BHsx;=0, lower panel The overlaps
quoted at the beginning of each column are maximized only with respect to the extrinsic paragetetd,. In parentheses, (), we
give the overlaps maximized over all the parameters of the lower-order fdigly the fitting factors FF for the target family §T, as
matched by the search family §T evaluated at the target masses shpwime fitting factors are obtained by extending the search into the
unphysical template region wherg>0.25 andy;,>1. In brackets[ - - -], we show the parameteM, 5, x1,x1 (or M, when y,;=0) at
which the maximum overlap is achieved. The detector is perpendicular to the initial orbital plane, and at 3 PN ordér=v: setll cases
the integration of the equations is started at a GW frequency of 60 Hz. The maximization procedure was stopped whenever z0 &grlap
was achieved.

(N+k,N) (STn+k,STy) for (10+1.4) Mg binary, y;=1
K]_:O.g K1:0.5 K1:_0.5 Kl:—0.9
(1,0 0.1976 (0.7393 [24.5,0.02,0.00,0.00 0.1976 (0.7392 0.1976 (0.73923 [24.5,0.02,0.06; 0.00] 0.1976 (0.7392

(1.5,9 0.2686 (0.7848 [4.53,0.54,0.00,0.00 0.2696 (0.7008
(2,1.5 0.4876 (=0.99 [9.56,0.14,0.83,0.93 0.5627 (=0.99

0.2065 (0.6040 [6.58,0.36,0.06; 0.00] 0.1800 (0.6255
0.6623 (=0.99 [11.7,0.10,0.9% 0.50] 0.7728 (0.9760

(252 0.1587 (0.9579 [10.5,0.13,1.56,0.95 0.2011 (0.988% 0.2902 (0.9398 [10.2,0.13,2.06;0.19] 0.3460 (=0.99
(3,2 0.4395 (0.9849 [11.5,0.10,0.84,0.81 0.5057 (0.9881 0.5575 (0.9712 [12.0,0.10,0.92;0.48] 0.6606 (=0.99
(3,25 0.1268 (0.9759 [12.8,0.08,0.05,0.98 0.1539 (=0.99 0.2520 (0.9744 [25.6,0.03,0.35;0.21] 0.2488 (=0.99

(353 0.9614 (=0.99 [11.7,0.10,1.00,0.90 0.9738 (=0.99 0.9907 (=0.99 [11.3,0.11,1.02;0.49] 0.9939 (=0.99

(N+Kk,N) (STy+k,STy) for (12+3)Mg binary, y,1=1

K]_:O.g K1:0.5 K1:_0.5 K1=—0.9

(1,0) 0.2506 (0.7066 [10.5,0.22,0.00,0.00 0.2506 (0.7066 0.2506 (0.7066 [10.5,0.22,0.06; 0.00] 0.2506 (0.7066

(1.51)  0.3002(0.7788 [8.22,0.50,0.00,0.00 0.2597 (0.7382 0.2124 (0.6934 [11.6,0.44,0.00;0.00] 0.2017 (0.5427
(2,1.5)  0.6379(=0.99 [16.0,0.14,1.14,0.92 0.7089 (=0.99 0.8528 (=0.99 [14.2,0.18,1.14;0.59 0.8620 (>0.99
(2.5,2)  0.2039(0.9397 [15.4,0.17,1.95,0.97 0.2800 (0.9863 0.4696 (0.9756 [13.5,0.18,1.22; 0.51] 0.4219 (>0.99
(3,2) 0.6679 (0.9851 [11.0,0.25,0.72,0.84 0.7267 (=0.99 0.9052 (=0.99 [13.1,0.21,1.50;0.70] 0.8868 (=0.99
(3,25)  0.1603(=0.99 [18.5,0.10,0.05,0.99 0.2272 (=0.99 0.3804 (0.9759 [15.8,0.15,0.94; 0.49] 0.3060 (=0.99
(353)  0.9517(=0.99 [15.2,0.15,0.84,0.96 0.9694 (=0.99 0.9932 (=0.99 [15.3,0.16,1.00;0.49] 0.9900 (=0.99
(N+k,N) (STy4k,STy) for x1=0
(10+ 1.4)M, (12+3)M,

(1,0) 0.1976 (0.7392 [24.5,0.02 0.2506 (0.7066 [10.5,0.22

(151)  0.1721(0.6427 [5.22,0.51 0.2153 (0.6749 [9.22,0.51

(2,1.5)  0.7954(0.9991 [12.7,0.09 0.8924 (0.9981 [16.2,0.14

(2.5,2)  0.4872(0.9961 [6.94,0.25 0.5921 (0.9977 [8.05,0.48

(3,2) 0.7471 (0.9970 [15.3,0.08 0.8982 (0.9994 [19.3,0.1Q

(3,2.5)  0.4127(0.9826 [26.5,0.02 0.5282 (0.9783 [29.0,0.03

(353)  0.9931(=0.99 [11.6,0.1] 0.9924 (=0.99 [15.4,0.15

the search family SJ]; we show in brackets the parameters and SE, which are much higher than those between &fd

at which the maximum overlaps are achievgthe overlaps ST, ; and than those between STand ST.]

are especially bad when 1 PN and 2.5 PN waveforms are While the nonmaximized overlaps can be very low, the
used. These two orders are rather peculiar: the flux functiogfFs are consistently higinote that this requires extending

J can be a decreasing function @f and even assume nega- the search into the unphysical template region where
tive values(which is obviously not physicgl correspond- - 25 andy,>1); however, the best-fit search parameters
ingly, @ can become negative. Furthermore, the MECO cri-can be rather different from the target parameters. This sug-
terion used to set the ending frequency can also fail, becaugfests that higher-order PN effects can be reabsorbed by a
for some configurations the MECO does not exist, or occurghange of parameters, so the,SfEmplates can be consid-
after » has become negative. To avoid these problems, wered rather reliable for the purpose of detecting GWs from
stop the numerical integration of the equations of motionprecessing binaries in the mass range examined; however,
when o decreases to one tenth of its Newtonian value, or athe estimation of binary parameters can suffer from system-
a GW frequency of 1 kHz, whichever comes first. For com-atic errors. In the rest of this paper we shall describe and
parison, in Table Il we show also the overlaps betweep STanalyze a search scheme that uses thet8mplate family.
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A more thorough analysis of the differences between the Qiqu/zEQiJ'(q;O: wl4); (30)
various PN orders would be obtained by comparing the PN-
expanded adiabatic model used in this paper with PNWwe then have
resummed adiabatic modéks.g., using the Padaescription i _ A i o
[28]) and nonadiabatic mode(s.g., using the effective-one- Q" =QoCo%2®g) + QzSin(20o). (31)
body model[44]). A similar comparison was carried out for The factorP;; (which describes the static relative position
the nonspinning case in Ref22,24. Unfortunately, wave- and orientation of the detector with respect to the axes ini-
forms that include precessional effects are not yet availabléally defined by the binaryis given by
for the PN-resummed adiabatic and nonadiabatic models.

Pii=[TlijF+ +[TxlijFx, (32
IV. ANEW PHYSICAL TEMPLATE FAMILY FOR NS-BH where the detector antenna pattefhs . (6, ¢,¥) and the
AND BH-BH PRECESSING BINARIES detector polarization tensofs, . (®,¢) depend on the ori-

entation angle®), ¢, and, and on the position angled
nde, all of them extrinsic parameters. The antenna patterns
an be rewritten as

In this section we discuss the detection of GWs from
single-spin precessing binaries using the template family firs
suggested in Ref18], and further discussed in Sec. lll. The
proposed detection scheme involves the deployment of a dis- F
crete template bank along the relevant range of the intrinsic :F
parametersM, 7z, xi1, and k; and the use of a detection x

statistic that incorporates the maximization of the overlap[he factorF = /Fz +E2 then enterdh as an overall multi-
i . ; ; - + X
over all the extrinsic parameters: the directional angles plicative constanf45]. In what follows we shall be consid-

¢, 0, ¢, andy, the time of_arrivalto, and the ir_1itia_| phase ering normalized signals and templates, wherdrops out,
®,. In Sec. IV A we describe the reparametrization of theSO we sefE=1. We then have

templates used for the formulation of the maximized statistic,

which is then discussed in Sec. IV B, where we also present Pij=[T]ijcosa+[T«]jsina. (34
an approximated but computationally cheaper version. The i . ,
exact and approximated statistics are discussed together in BOth Q"(t) and P;; are three-dimensional STF tensors,
Sec. V in the context of an optimized two-stage detectionVith five mdepenldent components each. Using an orthonor-
scheme. mal STF basisM;;, 1=1,...,5,with (M');;(M?)"=4",

we can conveniently expredd; and Q" in terms of their
components on this basis,

Sina

=\F2 +F2 [Cosa]; (33

A. Reparametrization of the waveforms

We recall from Eqs(15)—(21) that the generic functional QI=Q'(MH1,  P;=P' (M), (39

form of our precessing templates is where

hIMT=QUIM, 7, x1,&1; @0, to;t1P;[©,¢; 6, 4]. Q'=Qi(M");, P'=P;(M"T. (36)

(27)
In this paper, we shall adopt a particular orthonormal ba-
[Please note that for the rest of this paper we shall usgjq pap prap

coupled raised and lowered indices to denote contraction;

however, the implicit metric is always Euclidian, so covari- A

ant and contravariant components are equal. This will be true (MY =\ =i+ Y572,
also for the symmetric trace-fre€TFH components intro- 15

duced later, which are denoted by uppercase roman inglices.

The factorQ'/(t) (which describes the time-evolving dy- M2) = i Am 9 e

namics of the precessing binang given by (M%)j=—i 15(32”- Yii ),
Q1= 2 Mire Jicos 2+ dy) Am
D r (M3)jj=~ Eo}?,-l—y%}*l), (37)
+le ]lsin2(d+dg)],
(28) AT _
o (MY)=i \| —=(V&+Yy2 ™Y,

where the GW phas®(t) and the GW polarization tensors 15
e, x(t) evolve according to Eqg5), (13), and(14). This
factor depends on the intrinsic paramet®tsz, y1, and«, M5). — — /8_77 20
and on two extrinsic parameters: the initial phdggand the (M?);j= 15yii ’

time of arrivalty of the waveform, referred to a fiducial GW
frequency. We can factor out the initial phabg by defining ~ with Yi™ defined by

Qi=Ql(¥y=0), 29 yird'd=Y>"(q), (38)
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where Y2m(a) m=—2,...,2 are theusuall =2 spherical B. Maximization of the overlap over the extrinsic parameters
harmonics andj is any unit vector. We bring together this
result with Egs(31) and(34) to write the final expression As we have anticipated, it is possible to maximize the
h=P,[Q'cog2d )+ Q" sin(2d )], 39 qverlapp:<s,h> semialgebraicallwve_r the extrinsig direc-
1[QoC082Po) +QrppSIN(2Po) ] (39 tional parameter®, ¢, 6, ¢, andy, without computing the
where full representation ofi for each of their configurations. In

addition, it is possible to maximize efficiently also owugr
and®,, which are routinely treated as extrinsic parameters
in nonspinning-binary GW searches.

Henceforth, we shall denote the surviving extrinsic param- For a given stretch of detector outpjtand for a particu-
eters collectively a& “=(ty,®,a,0,¢), and the intrinsic  lar set of template intrinsic parameteXs= (M, 7,x1,K1),
parameters aX'=(M, 7, x1,K1). we denote the fully maximized overlap as

P1(0,¢0,0)={[T.+(0,¢)]jcosa+[T«(0,¢)]sina}.
(40

P[(5,00),,€08 2+ (8,072}, 51n 2D ]

EaEmaX<S,i\l(Xi,Ea)>: max 7 T T i D (41)
e 10.90.0.6:0| VPP {Qhcos 2y +QLsin 20, 0lcos 2 +Q, »sin 20y
p
|
where the subscrigt denotes the dependence of the signal- BUE<Q'O ,Qg), (45)

template inner products on the time-of-arrival parameter of i S
the templates. In fact, each of these inner products can B&hich are functions only of the intrinsic parametéasd, for

computed simultaneously for &l with a single FFT: in this A", of to). We have tested the approximatio@®) and(43)
sensel, is an extrinsic paramet¢#6]. by comparing the maximized overlaps obtained from Eg.

Let us now see how to deal with,. We start by making (44) with the results of full numerical maximization without

an approximation that will be used throughout this paper. wéPProximations; both the values and the locations of the
maxima agree to one part in a thousand, even for systems

: | |
nzoélce ?Ztothe templalte c?rr]nponel:iit@%?]”d P1Qx [Eqs't I with substantial amplitude and phase modulations, where the
(29) and(30)] are nearly orthogonal, and have approximately, o qvimations are expected to be least accurate.

the same signal power, Although Eq.(44) looks innocent enough, the maximiza-
(P Ql.p,Q’ )=0 42) tion of Pa, is not a trivial operation. The five components of
190, P72 =Y, P, in Eq. (44) are not all independent, but they are specific
| I\ [ J\. functions of only three parameter®,, ¢, and « [see the
(P1Qo,PsQ0)=(P1Q%12,PsQ%12); “3  giscussion leading to Eq$34) and (40)]. We can therefore
this is accurate as long as the time scales for the radiatioflink of p=a as the result of maximizing,, with respect to
reaction-induced evolution of frequency and for thethe five-dimensional vectoP,, constrained to the three-
precession-induced evolution of phase and amplitude modiflimensional physical submanifold|®,¢,a). We shall
lations are both much longer than the orbital period. Morethen refer topz« as theconstrainedmaximized overlap.
precisely, Eqs(42) and(43) are valid up to the leading-order What is the naturc_e of the c_onstramt surface_? We can easily
stationary-phase approximation. Under this hypothesis Edjnd the two constraint equations that define it. First, we no-

(41) simplifies, and its maximum oveb, is found easily: tice from Egs(41) and(44) that the magnitude of the vector
P, does not affect the overlap: so we may resdalend set
P\[(s,Ql)cos 2bo+(s,Q' ,)sin 20,] one of the constraints @,P'=1; even better, we may re-
pze= Mmax quire that the denominator of E¢44) be unity, P,P,B"
tg.0.0,¢.a VP, P5(Qp,Qp) =1. Second, we remember thByf; [Eq. (32)] is the polar-
ization tensor for a plane GW propagating along the direc-
P,P,AY tion vector
= max = max pg.. (44) S . .
0.0, PP,BY 0.0 0 N'=(sin® cose,sin®sing,cos). (46)
where we have defined the two matrices Because GWs are transver§g, must admit\' as an eigen-
vector with null eigenvalue; it follows that
AIJE<S’Q|o>tO<S'Q3>tO+<S:QLT/2>tO<5'QfT/2>th detP;;=0. (47)
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This equation can be turned into the second constraint for théhermore, the location of the approximated maximum pro-

P, [see Eq(B6) of Appendix B].

vides good initial guesses f@ and ¢, needed to kickstart

Armed with the two constraint equations, we can refor-their numerical maximization.

mulate our maximization problem using the method of La-
grangian multiplier$Eq. (B7) in Appendix B]. However, the

Quite simply, our fast approximation consists in neglect-
ing the functional dependence of tiig on the directional

resulting system of cubic algebraic equations does not appeparameters, computing instead the maximump@% [Eq.

develop an iterative algebraic procedure to solve the systemgethod of Lagrangian multipliers outlined in the beginning
obtaining the constrained maximum and the correspondingf Appendix B[Egs. (B3)—(B5)], we get

P,. In practice, we have found it operationally more robust
to use a closed-form expression for the partial maximum
over ®, and a (which seems to be the farthest we can go
analytically, and then feed it into a numerical maximum-

finding routine (such as the well-knowmaMOEBA [47]) to

explore the @, ¢) sphere, repeating this procedure fortgll

to obtain the full maximum.
To maximizepg, over o, we use Eq(40) to factor out

the dependence of thHe, on «, and write
\/ P,P,AV uA, u’
P,P,B" uB,u”

whereu is the two-dimensional row vector (cassina), and
whereA, andB, are the 22 matrices

(48)

(T2 [ml[wa)
_ Al
A ([ml[TX]J (Tl 9
) :B,J([m.[nh [ml[wa)_ .
B T Tl Tl T

in these definitions we sum over the indicesind J. The
matricesA , andB, are implicitly functions of the angle®
and ¢ through the polarization tensois, and T . It is
straightforward to maximize Eq48) over «, yielding [48]

=«= max ymax eig{A,B; 1= maxpe, o (51)
to,@,QD to,@,(p

The overlapp%'a is essentially equivalent to thg statistic

used in the search of GWs from pulsg4$].
The last step in obtainingz. is to maximizep%’a nu-

P/P,AY
pm.=max\/ ———=+maxeigfAB '], (52
TP P,P,B"
with
(AV=\BY)P;=0, A=maxeigfAB"1]. (53

Here the prime stands famconstrainedmaximization over
P,. We shall henceforth refer tp’Ea as theunconstrained
maximum

Note that the value of th®, at the unconstrained maxi-
mum will not in general correspond to a physical set of di-
rectional parameters, $9; will not admit any direction vec-
tor N' [Eq. (46)] as a null eigenvector. However, we can still
get approximate values dd and ¢ by using instead the
eigenvector ofP;; with the smallest eigenvalugn absolute
value.

V. DESCRIPTION AND TEST OF A TWO-STAGE SEARCH
SCHEME

In Sec. IV we have described a robust computational pro-
cedure to find the maximum overlgpz. (which is maxi-
mized over the extrinsic parametebs), to, andP,, where
the allowed values of th®, are constrained by their func-
tional dependence on the directional anplé¥e have also
established a convenient analytic approximationges, the
unconstrained maximized overlaqga (which is maximized
over the extrinsic parametedlsy, ty, andP,, but where the
P, are treated as five independent and unconstrained coeffi-
cient9. Because the unconstrained maximization has access
to a larger set oP,, it is clear thatp’EL,>pEa. Still, at least
when the target signais very close to the template(X;),

merically over the ©,¢) sphere, repeating this procedure We expectpz, to be a very good approximation fpe..

for all t, to obtain the full maximum. Nowt, enters Eq(51)
only through the ten signal-template

A quick look at the procedures outlined in Sec. IV shows

inner productsthat, for the filtering of experimental data against a discrete

<s,Q{)’7,,2) contained inA,, and each such product can be bank of template$h(xi(k))}, the computation op_. is go-
computed for allty with a single FFT. Even then, the semi- ing to be much faster than the computationpaf.. Under
algebraic maximization procedure outlined above can still behese conditions, it makes sense to implement a two-stage

very computationally expensive if the search o@rnd ¢

search scheme where the discrete béfn(lé(i(k))} is first re-

has to be performed for each individugl We have been duced by selecting the templates that have high against
able to reduce computational costs further by identifying gpe experimental data; at this stage we identify also the

rapidly computed, fully algebraic statistb:’s[, that approxi-

promising times of arrivaty. The exactpz. iS computed

matespza from above..V\(e then economize by performing only for these first-stage triggers, and compared with the
the semialgebraic maximization procedure only for the val-detection thresholg* to identify detection candidatgsne
ues oft,y for which p’Ea rises above a certain threshold; fur- would use the same threshagdd in the first stage to guar-
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FIG. 4. Ratio between the unconstrainexy) and constrainedpz«) maximized overlaps, as a function @f.. Each point corresponds
to one out of 2X 50 sets of intrinsic parameters for target signal and template, and is averaged over 100 sets of extrinsic parameters for the
target signal. The error bars show the standard deviations of the sample (tiheastsindard deviations of the samples themselves will be 10
times larger, since we sample 100 sets of extrinsic paramefiie two panels show results separately for{104)M, (left) and (7
+3)Mg target systemgright). The few points scattered toward higher ratios and lopeer are obtained when the first set of extrinsic
parameters happens to yield a hi@;@u that is not representative of most other values of the extrinsic parameters; then the magnitude of the
intrinsic-parameter deviation is set too high, and the comparison betw’ggrand p=a is done at lowpz., where the unconstrained
maximized overlap is a poor approximation for its constrained version.

antee that all the detection candidates will make it into the~or each set of target-signal intrinsic parameters, we choose
second stagg 50]. 100 random sets of extrinsic parametes ¢, a, d,), where

To prove the viability of such a search scheme, we shalthe combination @, ¢) is distributed uniformly on the solid
first establish thap_, is a good approximation fopz« for  angle, and wherer and ®,, are distributed uniformly in the

target signals and templates computed using the adiabatjg) 27] interval. The target signals are normalized, so the
model of Sec. Ill. We will take slightly displaced intrinsic allowed range fopz. andp_, is [0,1]

parameters for target signals and templates, to reproduce the . .
experimental situation where we are trying to detect a signall For each target signal, we test &ormalized templates

of arbitrary physical parameters with the closest templatélisplaced in the intrinsic-parameter spadé, 7, x1,«1) (the
belonging to a discrete bank. This first test is described ifPptimal extrinsic parameters will be determined by the opti-
Sec. V A. We shall then study the false-alarm statistics ofmization of pz« and p’Ea, so we do not need to set them

S andp’Ea, and we shall show that, for a given detection The direction of the displacement is chosen randomly in the
threshold, the number of first-stage triggers caused by puréM, ,x1.x1) space. For simplicity, the magnitude of the
noise is only a few times larger than the numbeboiha fide  displacement is chosen so that, for each set of target-signal
second-stage false alarms. Such a condition is necessary hetrinsic parameters and for tHast setof target-signal ex-
cause the two-stage detection scheme is computationally efrinsic parameters, the overlag.. is about 0.95; the magni-

ficient only if few templates need ever be examined in they,qe s then kept fixed for the other 99 extrinsic-parameter
expensive second stage. The false-alarm stati6ticSauss- sets, sgpL.. can be very different in those cases

ian stationary noigeare obtained in Sec. V B, and the second k o ]
Figure 4 shows the ratip-./p=z«, for each pair (20

test is described in Sec. V C.

X 50 in tota) of target and template intrinsic-parameter
points, averaged over the 100 target extrinsic-parameter
points, as a function of the averaged.. Thep’Ea get closer

In this section we describe a set of Monte Carlo runsto the p=z« as the latter get higher; most important, the dif-
designed to test how wefi~, can approximat@x=., for the  ference is within~ 2% whenpz«>0.95, which one would
target signals and templz;tes computed usina the adiabatfimost certainly want t,o achieve in an actual search for sig-
model of Sec. IlI, for typical signal parameters, and forNals. We conclude thaiz . can indeed be used as an approxi-
signal-template parameter displacements characteristic of gRation forpz. in the first stage of a two-stage search. The

actual search. We choose target signals with 20 different seggcond stage is still necessary, because the false-alarm statis-
of intrinsic parameters given by tics are worse for the unconstrained maximized overlap

(where more degrees of freedom are availplthan for its

A. Numerical comparison of constrained and unconstrained
maximized overlaps

-0.9 constrained version. We will come back to this in the next
—05 two sections.
(10,2.49M¢ 0.5 It is also interesting to compare the set of extrinsic param-
(my,my, x1,K1)= (7.3M X 1 x{ 00 eters of the target signal with the set of extrinsic parameters
' © 0.5 that maximizep=., as characterized by the corresponding
0.9 source direction vector§yye andNpay, respectively. Figure
(54) 5 shows the inner produdty,e- Nimay, averaged over the 100
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FIG. 5. Inner product between target-signal source dire(ﬁigjg andp=.-maximizing source directioﬁlmax, as a function opz.. Each
point corresponds to one out of &0 sets of intrinsic parameters for target signal and template, and is averaged over 100 sets of extrinsic
parameters for the target signal. Standard deviations of the sample means are shown as error bars, as in Fig. 4. The two panels show
separately (18 1.4)M, target systemgleft) and (7+3)M, target systemsright).

target extrinsic-parameter points, as a function of the averonly of B, and therefore only of the intrinsic parameters of
agedpz«. The difference between the vectors can be veryhe template. We can also combiRgcos 2b, and P, sin 20,

large, even whenp=.>0.95: this happens because thetogether ad;, and then write the maximized overlapsa
intrinsic-parameter displacement between target signal anghq,_ . as

template can be compensated by a change in the extrinsic =~
parameters of templatén other words, the effects of the PAn,Q% P,Y?
intrinsic and extrinsic parameters on the waveforms are max ' =max

max :
highly correlated P VPP A(Q%Q%) P VPLP,C

B. False-alarm statistics for the constrained and unconstrained ~Where maximization is performed over the appropriate range
maximized overlaps of the P7. In the rest of this section we shall use the short-
In this section we derive and compare the false-alarm stahandp to_ denotg botfpz. andpE?' . ,
Equation(56) is very general: it describgsz« andp.,

tistics of pz« andp’Ea. Our purpose is to estimate the num- ) 50 i h o TR
ber of additional triggers that are caused by replacing th(?Ut It can aiso Incorporate ot er maximization ranges over
the P;, and it can even treat different template families. In

detection statlst@ga by the fwsF-stage statistipz. . .Our fact, the maximized detection statistic for thég{/s.5)¢
two-stage detection scheme, which employs the rapidly COMNTE of Ref [18] can be put into the same form, wifh,

(56)

putedp’Ea to choose candidates for the more computationally— az, for =1, ...,6, andwith completely unconstrained
expensivepz«, Will be viable only if the number of those maximization.
candidates is small enough. We can now generate a distribution of the detection sta-

By definition, a false alarm happens when, with interfer-tistic  for a given set of intrinsic parameters by generating a
ometer output consisting of pure noise, the detection statistigistribution of the Gaussian random vectéf, and then
computed for a given template happens to rise above thgomputingp from Eq.(56). The first step is performed easily
detection threshold. Although the detection statisigs and by starting from ten independent Gaussian random variables

’Ea include maximization over the time of arrivig), we find ~ zZ of zero mean and unit variance, and then settifg

it convenient to exclude, from this computation, and to z[\/E]UZj [51]. Thus, there is no need to generate actual
include it later when we evaluate the total false-alarm probyegjizations of the noise as time series, and no need to com-
ability for all the templates in the bank. pute the inner productén, Q7) explicitly.

Recall thatpz« [Eq. (44)] and p~. [Eq. (52)] are func- The statisticy [Eq. (56)] are homogeneous with respect
tions of the matrices\ andB, which contain the inner prod- g the vectorzZ that is, if we definezZ=rZZ (wherer
ucts(s, Qg 12> and(Qy, 12, Qp -12), respectively. In this case _ 57, 575 _

. i <O i . : = andZ*Z;=1) we have
the signals is a realization of the nois&. We combine the o =1)
vectorsQy andQ' , together a®Q” with Z=1, . . .,10; under VATV =1 ol YA T =1 0. () 5
the assumption of Gaussian stationary no®es (n,Q%) is a PLYAZII=rplYHZD]=rpa(4): ®7)
ten-dimensional Gaussian random vector with zero mean a

. . rW'ereﬂ represents the direction @ in its ten-dimensional
covariance matrix36]

Euclidian space. The random variahiehas the marginal
probability density

C™=(n,Q"}(n,Q")=(Q%. Q7). (55)
v—1 _ 2
The covariance matri’” specifies completely the statisti- p,(r)= T exp—ro/2) (58)
cal properties of the random vect¥f, and it is a function 2271 (wl2)
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where the direction) is distributed uniformly over a ten- [ - ]
sphere(For the rest of this section we shall write equations 103k ° Z 3:22 Zi: 4
in the generalv-dimensional case; the special case of our I o o o ---BCV2 | |
template family is recovered by setting=10.) The random 102F%-2----- 5-.‘3.0-3-9_ ------ [0- 0022 066000 |
variablesr and() [and thereforg,({)] are statistically in- I o o ]
dependent, so the cumulative distribution function for the =« 101 o ° o ° o 4
statisticp is given by the integral I o °o
100 o B
Lo o ° |
p*Ipa(0) 99 ° ° o 0 o °
P(p<p*)= f da f p,(r)dr / f da I (10+1.4HM,, | (10+1.HMg | (7+3)Mg (7+3)Mp ]
0 x1=1 x1=0.5 x1=1 x1=0.5 1
T[w/2,[p*1p1(Q)]%/2] FIG. 6. Detection thresholdp* for a false-alarm rate of
:1_f I'[v/2] do f da, 107%/yr, using the constrained statistie. (circles, the approxi-

mated (unconstrainedstatistic p—., (diamond$, and the detection
(59 statistic for the (yoif38)¢ DTF from BCV2 (dashed ling The four
windows correspond to the masses andhown; the points in each
window correspond ta;=0.9, 0.5, 0,—0.5, —0.9.
where I'[k,z]=[;"t< e 'dt is the incomplete gamma

function N _ o C. Numerical investigation of false-alarm statistics
The false-alarm probability for a single set of intrinsic

parameters and for a single time of arrival is then R(p The total false-alarm probability for the filtering of ex-
<p*). The final integral over the-dimensional solid angle Perimental data by a template bank over a timis

can be performed by Monte Carlo integration, averaging the P. (p>p*)=1—[P(p< p*)Vonapediimes 61
integrand over randomly chosen directidls Each sample wlp=p") [Plp=p™)] 61

of the integrand is obtained by generating a normalizéd , h h
(that is, a direction()), obtaining the correspondiny?, (see, for instance, Ref[22]), where the exponent

; : ; NananedViimes iS @n estimate of the number of effective inde-
computin Q) from Eq.(56), and finally pluggingo,(Q shapes'times > © : :
into ?hel“gﬁjlrfcti)on. 9.(56 Y pluggingp,(€) pendent statistical tests. The number of independent signal

Equation(59) shows that if we seb,(Q)=1, the random shapes/\/shgpesis related to(and smaller thghthe number' of
variable p follows the x(,_distribution; this is obvious templates in the ban}62]; the number of independent times

i = of arrival MVjmesis roughly T/ 8tg, wheredt, is the mismatch
b(;cause in that cage=r=\Z"Z; [see Eq(57)], where the i, the time of arrival needed for two nearby templates to
Z* are v-independent Gaussian random variables.

_ In facthave, on average, very small overlap. In our tests we set
p1({2) can be written as Napapes 10 and Njme=3x 10" (or equivalently ot,

=1 ms), as suggested by the results of Sec. VI for template
counts and for the full mismatch metric; in fact, both num-
bers represent rather conservative choices.

We compute single-test false-alarm probabilities from Eg.
(59), averaging the integrand over°Léandomly chosen val-
ues of () to perform the integration ovefl. Our conver-
gence tests indicate that this many samples are enough to
. T : . obtain the required precisiofb3]. In Fig. 6 we show the
only if the range of maximization foiP; is the entire thresholdsp* required to achieve a total false-alarm rate of

z—?,:/m\clanrsmgal \I/lvneatr ;paﬁﬁ gtﬁner?:i?d ”l:r)1y t?e bé@gt}r;] 10~ 3/yr; the figure suggests that a threshold close to 10 is
JOWEVET, once we start using e entire finear space, the pa dequate. The thresholds are only marginally higher for the
ticular basis used to generate it ceases to be important, so t

. i d ¢ of th i for th Ficonstrained statistic, so the number of first-stage false
covarlance matrix.” = drops out ot the equations 1or € o, ¢ ihat are dismissed in the second stage is limited. We
false-alarm probabilities. That is the case, for instance, fo

Show also the threshold required to achieve the same false-
the (Yoirs3)s DTF (see Sec. V B of Ref18]), whose false- : e
alarm probability is described by thg, - distribution. For alarm rate with the ¢oyis25)s DTF of BCV2: this threshold

. is very close to the values found fpt., indicating thatp...
our template familyy=10, but bothpz« andp’Ea have very y DE g thapz

- LT has roughly six effective degrees of freeddes it seems
restrictive maximization ranges fd?; (becausePr_y,.. s (easonable from counting the fi®! plus ®,). The BCV2

. » = threshold is consistently higher than tpe. threshold for

will have much lower false-alarm probability, for the samethe same single-test false-alarm rate; this suggests that the

thresholdp™, than suggested by the, -1 distribution. In  getection scheme discussed in this paper is less wasteful

fact, in the next section we shall see that the effectiier  (with respect to the available signal powénan the BCV2

the detection statistip’Ea is about 6, while the effective for ~ scheme, assuming of course that the number of templates
=« IS even lower. used in the two banks is similar.

R,ZZ
pr(Q)=max———, R;=[\Cl,P7  (60)

pZ \ RIR j51']

which shows thap;(Q2)=1 uniformly for every() if and

.....
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FIG. 7. Ratio (- P[p,Ea<p*])/(l— P[p=.<p*]) between single-test false-alarm probabilities for the unconstrained and constrained
detection statistics, as a function of threshplfd The two panels represent systems with masses equal to1(2#M, (left) and to (7
+3)M (right). The five curves in each plot correspond to differenpt

In Fig. 7 we show the ratio between the single-test falsesearch scheme of Sec. V is the total number of templates that
alarm probabilities fop=. andp_,: for a common thresh- are needed in practice. As mentioned in Sec. Il, the template-
old around 10, we can expect about five times more falsdank size and geometry required to achieve a certain mini-
alarms usingp_, than usingpz., for most values of the Mum match can be §tudied using t.rmismatch metric
intrinsic parameter&or some of them, this number could be [27,29,34, which describes, to quadratic order, the degrad-
as high as-15). These results corroborate our suggestion of"d overlap between nearby elements in a template bank:
usingp'Ea in the first-stage of a two-stage detection scheme, . .
to weed out most of the detection candidates before comput- 1—(h(A), AN+ ANy = SN N+ ANA]
ing the more computationally expensige .. — g ANBANC 62)

We need to remember that our assumption of Gaussian Ysc '
stationary noise is usually not realized in practice. For non- .
Gaussian noise, the probability density functiéme counter- Whered denotes the mismatch, and where
part of p,(r) defined in Eq.(58), now a function of both . N
and ] drops more slowly for larger, so more highp 1 a%h(\A),h(NA+ANR))
events will appear than are expected for the Gaussian case. 9sc= ~ 2 I(ANB)3(ANC) ' (63
These events will cause false alarms for both the uncon-

stralnfad and constrained statistics, but we expect the ratio Qi ; . oth- or first-order terms are needed in the expansion

the pz, and pz. false-alarm probabilities at a common gy pecayse the overlap has a maximum dfdt normal-
threshold(shown in Fig. 7 for Gaussian nojs® be reduced  j,o4 templatesat ANA=0. The metric is positive definite,

?t ol-esatzt gst?ﬁetrg:aezngldl dlsstr;llgtr)]e ergl(zeu%r:w;t 'Sr? rggrcprrwop((:)gren— ecauses>0. Note that, according to this definition, the
wo-stag hould still be relevant | ucing CoMp,icmatchs is the squareof the metric distancebetween A
putational costs. This expectation is justified by the follow-

A A i ;
ing argument. For a common threshgid and a given di- and\"+ AN, It is alsohalf the square of thenner-product

rection 27, constrained-statistic triggers require=|z7  distance V(Ah,Ah), where Ah=h(\*)—h(\A+AN")
larger by a certain factoN,>1 than unconstrained-statistic [55]-

triggers; this factoN, is independent of* and of the prob- Ideally, for a given continuous template family, one could
ability distribution for r. Now, the ratioP[r>N,ro]/P[r  find a reparametrization in which the metric is a Kronecker
>r,] drops much more quickly for a Gaussian distributiondelta, and then lay down a template bank as a uniform hy-
(or rather, for ay? distribution with several degrees of free- percubic lattice in these coordinates, with the appropriate
dom) than for a distribution with larger tails; thus, our density to yield the required MM. For a hypercubic lattice in
Gaussian-noise estimates undercount gke triggers with  n dimensiong56], the (metric) side 8l of the lattice cell is
respect to thep’Ea triggers. As for nonstationarity, real-world given by the relation + MM =n(51/2)? [22,27); we then get
data-analysis protocols try to cope by introducing vetoingthe total number of templates in the bank by dividing the
schemes and by requesting coincident triggers between twiotal (metric volume of parameter space by the volume of
or more detectorf54]. It is hard to predict how these addi- each cell:

tional elements might play into our proposed search scheme;

a full statistical analysis including non-Gaussianity and non-
stationarity is beyond the scope of this paper, and it will /\/templates:f Vldetggld"™\A/[2V(1-MM)/n]".  (64)
probably need to be quite empirical in nature.

In practice, this expression will usually underestimate the

total number of templates, for two reasons: first, for more
The last aspect to examine before we can recommend tH8an two dimensions it is usually impossible to find coordi-

template family of Sec. IV for actual use with the two-stagenates where the metric is diagonalized everywhere at once;

VI. TEMPLATE COUNTING AND PLACEMENT
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second, the fact that the actual parameter space is bound@&tie inner product in the right-hand side of E®8) ex-
will also introduce corrections to E¢64). (The presence of presses therisher information matrixfor the normalized

null parameter directions, discussed in Sec. VI B, can also bgaveformsh(\?) (see for instance Ref30]); for nonnor-

seen as an extreme case of boundary effects. malized waveform$i(\*) we can write

As we showed in Secs. IV and V, the overlap of the de-
tector output with one of the {Ttemplates can be maxi- 1 oh  ah 1 oh oh
mized automatically over all the extrinsic paramet&r% it Ogc=mr o\ —=v ——=) ———— | —, ,——=
follows that a discrete template bank will need to extend 2(h.h) \ BT oNC[  2(h,h)? | oAB IN®

only along the four intrinsic parameteX¢. So the estimate (69)
(64) for the number of templates should be computed on th

projectedmetric gpro, that satisfies %t is much easier to compute the mismatch metric from Eq.

(68) rather than from Eq(63), for two reasons. First, we
know the analytic dependence of the templates on all the

— D=a R iEa Ayi i WU
Pzl NOXL,ES), (X +AXD] extrinsic parametergexceptt,), so we can compute the de-

=1— max(h(X' 29), h(X'+AX' E'9) rivatives oh/ 9= * analytically (the derivative with respect to
zZra to can be handled by means of the Fourier-transform time-
o shift property FTh(t+to) ]= 7 h(t) Jex 2mift,]). Second,

=g PAX'AX. (65  although the derivativesh/dX' have to be computed nu-

merically with finite-difference expressions such [dg X'

+AX', 28 —h(X,5%]/AX', this is still easier than fitting
the second-order derivatives of the mismatch numerically

Note thatgp“" is still a function ofall the parameters. In Sec.
VI A we computegﬁrol from the full metricggc; we then

proceed to construct amveragemetric, gf’r‘” which is con-
nected closely to detection rates and does not depend on tr[le
extrinsic parameters.

In fact, it turns out thanot all four intrinsic parameters
are needed to set up a template bank that achieves a reaso
able MM: we can do almost as well by replacing a 4D bank
with a 3D bank whergfor instancé we setx;=0. As a
geometrical counterpart to this fact, the projected metric . Gij Cig\( AX
must allow a quasinull direction: that is, it must be possible =(AX'AE“)( c )(A:ﬁ); (70)
to move along a certain direction in parameter space while aj  Yap =
accumulating almost no mismatch. The correct templat
counting for the 3D bank is then described byregluced
metric, which we discuss in Sec. VI B. Finally, we give our
results for the total number of templates in Sec. VI C.

To obtain the projected metrtyproJ we rewrite the mis-
match S(ONA N2+ ANA) by separatlng intrinsic and extrinsic
parameters,

SXLEE X+ AX B4+ AE®)

fiere we have split the full metriggc into four sections
corresponding to intrinsic-intrinsicQ;;), extrinsic-extrinsic
(7ap), @and mixed C,;=C;,) components. Maximizing the
overlap over the extrinsic parameters is then equivalent to
_ _ _ minimizing Eq.(70) over theAZ“ for a givenA X', which is
A. Computation of the full, projected, and average metric achieved when
According to Eq.(63), the full metricggc can be com- _
puted numerically by fitting the quadratic decrease of the YapAEP+ChAXI =0, (72)
overlap (h(A*),A(AA+ANA)) around ANA=0. It is also
possible to rewritaygc in terms of first-order derivatives o
the waveforms: sincéh(A?),h(A*))=1 for all A4,

¢ While the resulting mismatch is

mind(X', 24X +AX B+ AE9)

I .. _oh A=t o
m(h,h)=2 h,m =0 (66) =[Gj;— Cialy HPC4IAX AXI
[in this equation and in the following, we omit the parametric =gfPAX'AXI. (72)
dependencé(\*) for ease of notatiof taking one more 1
derivative with respect ta®, we get Here (y 1)*# is the matrix inverse ofy,z. For each point
(X', E) in the full parameter space, thgrojected metric
< oh oh > < % > g7 describes a set of concentric ellipsoids of consant
—, = = (67 in the intrinsic-parameter subspace. We emphasize that the
INC oNB INCINB : - i : ;
projected metric has tensor indices corresponding to the in-
hich implies[by Eq. (63)] trinsic parameters, but it is a function of both the intrinsic
which impliestby £q. and the extrinsic parameters, and so are the conptant-
A s ellipsoids.
ch=l<ﬂ-ﬂ> (68) Therefore, to build a template bank that covers all the
2\ gA\B'aNC signals(for all X' andZ*) with a guaranteed MM, we must

104017-16



PHYSICAL TEMPLATE FAMILY FOR GRAVITATIONAL . .. PHYSICAL REVIEW D 69, 104017 (2004

use the projected metric at eaxhto construct the constant- which ensures that the detection raaeeraged over the ex-
mismatch ellipsoids for all possiblE“, and then take the trinsic parameters of the signals reduced at most by the
intersection of these ellipsoids to determlne the size of théactorMM?3. We shall callMM the average minimum match
unit template-bank cell. This is minimaxprescription[28],
because we are maximizing the overlap over the extrinsic
parameters of the templates, and then setting the template-
bank spacing according to the least favorable extrinsic pa- As discussed by Sathyaprakash and Scliéfd and by
rameters of the signal. In general, the intersection ofCutler[59], an extreme example of boundary effect occurs
constant-mismatch ellipsoids is not an ellipsoid, even in thavhen one of the eigenvalues ghc at \* (say, A1) be-
limit 6—0, so it is impossible to find a single intrinsic- comes so small that it is possible to move away in parameter
parameter metric that can be used to enforce the minimaspace along the corresponding eigendirectsay, ef},) and
prescription. There is an exception: the projected metric igeach the boundary of the allowed parameter reglon while
not a function oft, or ®, [58], so it can be used directly to keeping the mismatch(\", N+ re( ) well below the re-
lay down banks of nonspinning-binary templaf@g,29 for  quired valuedy,=1—MM. In other words the ellipsoid of
which tg and® are the only extrinsic parameters. constant mismatcld,, extends far beyond the allowed pa-
Returning to the generic case, we can still use the prorameter region in the quasinull-eigenvalue direction. In such
jected metric to guide the placement of a template bank if we situation, Eq(64) will underestimate the total number of
relax the minimax prescription and request that the minimuntemplates, because the denominator should now express the
match be guaranteedn the averageor a distribution of volume of the intersection of each lattice cell with the al-
signal extrinsic parameter§59]. It turns out that this lowed parameter regiof62]. A simple-minded fix to Eg.
average-mismatciprescription is closely related to the ex- (64) is the following: write deggc=1IyA ), where the
pected detection rates. Let us see how. The matched-filtering,, are then eigenvalues ofggc; identify all the small

detection rate for a signa=SAxh(X,5%), where SA elgenvalues wheresmall can be defined byA;)<(1
=(s,s)'? is the signal amplitudeat a fiducial luminosity —MM)/I(,), with | ;) the coordinate diameter of the allowed

distance, is proportional to §Aia[§,ﬁnea;|, where h,,, Parameter range along the elgenve«a@r replace the small
—R(XI+AX,Z') is the closest template in the bank, and elgenvalues by the corresponding value of the expression

where we assume that sources are uniformly distribute(g1 PrI:AM)/II(Il),tﬁse this mOd'Efed dTltermlnant ;n E). ¢
throughout the volume accessible to the detecsere, for ysically, the presence aismall eigenvectors suggests

- . TSI that the variety of waveform shapes spanned by an
instance, Ref[22]). The minimax prescription is given by n-dimensional template family can be approximated with

very high overlap by ann(—k)-dimensionakeducedfamily.
A lower-dimensional template bank is certainly desirable for
ractical purposes, but it is necessary to exercise caution:
ecause the metriggc is not homogeneous, the quasinull
eigendirections rotate as we move in parameter spégke
so we need to show explicitly that any signal in the
n-dimensional family can be reached from a given
(n—k)-dimensional submanifold along a quasinull trajec-
tory. For this to happen, the small eigenvalues must exist
J dE“SA3p3:a2J dE“SA3[1—gﬁr°jAX‘AXi]3 throughout the entira-dimensional parameter space, and the
. flow of the quasinull eigenvectors must map the submanifold
. into the entire space. To see that under these conditions the
=SA3— U dﬁ“SA3gp’°‘}Ax AX mismatch between the points on the submanifold and the
points outside is indeed small, consider the following argu-
ment, due to Cutlef59]. The triangle inequality for the

B. Null parameter directions and reduced metric

pzal S, Npead =1—glUX , EM)AXAXIZMM (73

for all E¢, which ensures that the detection rate is reduced ag
most by a factor MM for every combination of signal ex-
trinsic and intrinsic parameters.

Averaging over a uniform distribution of signal extrinsic
parameter$60], we get a detection rate proportional to

=SAY1-glPAXAXIT?, (74 inner-product distance guarantees that
whereSA3= [dE“SA3, and where thaverage metncgp’o’, o A A d\B drC
now a function only ofX', is defined as SYINA0), N (1)]<f sy, Edv (77)
”’°’— d=E*SA%g proJ/SA3 (759 alongany path\”(v); for a path that follows the flow of the

quasinull eigenvectoe(Ai) (areduction curve the total mis-
) - A match is then bounded by the average /qf) along the
[To derive Eq.(74) we assume that 1 pza[S,Nnead <1 for  cyrve, times an integrated squared parameter length of order
all £¢.] We can now state the new average-mismatch prer , [64].
scription as For the ST, template bank and for the two-stage search
T — scheme of Sec. V, we find that the projected megft”
1-gfUX)HAX'AXI=MM, (76)  admits a small eigenvalue for all values of the intrinsic and

104017-17



PAN et al. PHYSICAL REVIEW D 69, 104017 (2004

LO[ RN i TR —] jected metri¢ until they reach the X,,x;) boundary, or
0.8} \ N (m;l\),\ ] (roughly) until the true mismatch_(i.e., the exact mismatch
0.6 2 \ N \\_‘) between the local and the starting templagegreater than
0.4 Yy R Na% 990N 0.01. We show curves for two sets of starting extrinsic pa-
02| \ \\ \ \”9(’ 2800.....] rameters, corresponding to detector directions perpendicular
S 00/ \ \ \5 ) (dark dotg and parallellight dot9 to the initial orbital plane.
51 N9, 088 | NI 0871 e 104,955 Figure 8 shows the projection of the reduction curves in the
04] \\\ Bon (136%%&%; (x1.x1) plane; the ending points are marked with crosses,
0.6 [ oo T i ,, (104, 9.94) T and they_ are ar_motated wjth the number_ of steps takep since
0.8}, 2 setorex: panees fiifg the starting point, and with the true mismatch in units of
1ole= — ] 10~ 3. Comparing the two numbers at each cross, we see that

03 04 05 06 07 08 09 10 the triangle inequality is always respected: the true mismatch
ol Oy Is always less than the accumulated nominal mismatch
FIG. 8. Plot of (y;,x,) reduction curves in they|,«,) plane. 10 °N? (whereN is the number of stepsin fact, we see that
We show curves for two sets of starting extrinsic parameters, corthe latter is a good approximation for the former. Figure 9
responding to detector directions perpendicétark dots and par-  shows the projection of the same reduction curves in the
allel (light dots to the initial orbital plane. The curves start at the (M, M) plane. The chirp masd1=M 7*® varies by less
points marked with circles, and proceed in steps of%léor the  than 2% along the curves: this is natural, sirleedominates
nominal mismatcfii.e., the mismatch computed using the projectedthe evolution of the GW phadsee Eq.(5)].
metrig). For starting points af;=0.5, we follow the quasinull Figure 8 suggests that we can reduce the dimensionality
eigenvector for both positive and negative increments. The curvesf our template bank by collapsing thg4(, x;) plane into~
end at the ;,«;) boundary, orroughly) where the true mismatch - three curves, while retaining the fulM, 77) plane. Templates
(i.e., the exact mismatch between the local and the starting temaid down on these 3D submanifolds with a required mini-
plate becomes greater than 0.01. The ending points are markeghym match MM will then cover every signal in the full 4D

with crosses, and they are annotated with the number of steps tak?ﬁmily with mismatch no larger than AMM) + 8,4, Where
reds

il(;]ff the starting point, and with the true mismatch in units Of5red:0-01 is thereduction mismatctintroduced by the re-

duction procedure. Further investigations will be needed to
- . find the optimal choice of reduction curves in the,(«1)
extrinsic parameters. Figures 8 and 9 show sefverallexa'mpl ?ane, and to investigate the reduction curves of the average
of reduction curves that follow the quasinull eigendirections . 5]
(the subtleties related to projected-metric reduction curveZretric g

are discussed in Appendix)CThe curves showf65] begin

at the points marked with circles, wheren{+m,)=(10 C. Template counting

+1.4) Mg and ) ) )
While three or more reduction curves will probably be
05 necessary to limi,,y=0.01, for the sake of definiteness we
0.5 select a 3D reduced template space corresponding to
(xl,xl)=|lo xy 0.0 ¢; (78 (my,m,) e[7,12]X[1,3], k;=0, and y,e(0,1] [66]. We
' 05 compute the total number of templates in this 3D template

bank according to

the curves then proceed in steps of $0for the nominal _
mismatch(i.e., the mismatch computed using the local pro- j \/|detgf’,rj°f|de77dX

. . . . . . . -A/templates: —_——— (79
. 1( tofait.r’ sic Ea tel [2 (1_MM)/3]3
304 ‘ stse ; fx ;n 1»par meters
. na set ol extrinsic parameters /
3 / where the primed indices, |’ run throughM, », andy, and
EG [ /% 1 we setX*=k;=0; furthermoregfi'® denotes the metric av-
RN g i //‘ eraged over the extrinsic parametés ¢, and«, as given
2 - __._-/? %:: 1 by Eg. (75). The integral is carried out by evaluating the
2.98 /' \ - projected metric at the parameter sets
e \
2.96 N
‘ ‘ ‘ . N 0.1
9 10 11 12 13 14 15
M 0.3
MM;) Mg ©
(my,my,x1)= x3{ 2Mg ¢ x{ 0.5} : (80)
FIG. 9. Plot of (y1,x1) reduction curves in theM, M) plane. 12M¢ aM 0.7
The curves are the same as shown in Fig. 8, but we omit all mark- < '
ings. 1.0
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TABLE lll. Effects of quadrupole-monopole terms, for (£Q.4)M binaries with maximally spinning BH. At the beginning of each
column we quote the overlaps between, $@mplates and @M templates that include quadrupole-monopole effects. Just as in Table I,
these overlaps are maximizing only over the extrinsic paramgfensd®,. In parentheses; ( -), we show the fitting factors for the §"f‘
family as matched by the $STamily; in brackets| - - - ], we show the intrinsic parameters at which the fitting factors are achieved. The View
column describes the position of the detector with respect to the initial orbital plane. In all cases the integration of the equations is started
at a GW frequency of 60 Hz. The maximization procedure was stopped whenever an ev@ré#pwas achieved.

View (10+1.4)Mg with y;=1

K1=0.9 K1=0.5 K1= -0.5 K1= -0.9
Top 0.4796 (=0.99 [10.3,0.13,1.21,0.89 0.9890 (=0.99 0.1873 (=0.99[11.3,0.11,1.08;0.48] 0.7245 (0.9877
Side 0.3503 (=0.99 [10.0,0.13,0.77,0.94 0.8033 (=0.99 0.8754 (=0.99 [11.4,0.11,1.03;0.39] 0.7598 (=0.99

Diagonal 0.3292 (=0.99 [11.2,0.11,0.80,0.94 0.6669 (=0.99 0.4546 (=0.99[11.3,0.11,1.08;0.49] 0.8437 (0.988%

at each of the points the metric is averaged on 100 pseudeneans that the STtemplate family should be considered
random sets of extrinsic parameters. The integration thegcceptable for the purpose of GW detection, but this means
proceeds by interpolating across the parameter(86jsThe  also that the estimation of certain combinations of binary
final result isNiempiates= 76 000 for MM=0.98(not including  parameters can be affected by large systematic ef2fis
the reduction mismatghGiven the uncertainties implicit in - (when precessing-binary gravitational waveforms computed
the numerical computation of the metric, in the interpolation,within PN-resummed and nonadiabatic approadi#ss44)
in the choice of the reduction curves, and in the actual placehecome available, it will be interesting to compare them with
ment of the templates in the bank, this number should bgne PN-expanded, adiabatic $emplates to see if the maxi-
understood as an order-of-magnitude estimate. Most of thized overlaps remain high. We do expect this to be the
templates, by a factor of about 10 to 1, come from the pacase, because the spin and directional parameters of the ST
rameter region nean,=1 (that is, from the smally region.  templates provide much leeway to compensate for nontrivial
variations in the PN phasingAgain by considering maxi-
VIl. SUMMARY mized overlaps, we establish that quadrupole-monopole ef-

. fects[67,68 can be safely neglected for the range of masses
Buonanno, Chen, and VallisnefBCV2) recently pro- jnyestigated Table IlI).

posed 18] a family of physical templates that can be used to  \we describe a two-stage GW detection scheme that em-
detect the GWs emitted by single-spin precessing binariegoys a discrete bank of STemplates laid down along the
The attributephysicalrefers to the fact that the templates arentrinsic parameters M, 7, x1,x,) [although the §q,x1)
exact within the approximations used to write the PN equamay be collapsed to one or few 1D curves, in light of the
tions that rule the adiabatic evolution of the binary. In thisgiscussion of dimensional reduction of Sec]\VIhe detec-
paper, after reviewing the definition of this template family tj5, statistic p=«(M, 7,x1,1) is the overlap between the

(here denoted as {), we discuss the range of binary template and the detector output, maximized over template
masses for which the templates can be considered accuraigrinsic parameters: t{,®o,P,)=(to, o, 0, b, 4,0, ¢).

and examine the effects of higher-order PN corrections, inThis maximization is performed semialgebraically, in two
cluding quadrupole-monopole interactions. We then describgages. First, for all possible times of arritgl we maximize
an optimized two-stage detection scheme that employs th@e overlap overd, and overP, without accounting for the
STy famlly, and investigate its false-alarm stat!stlcs. Finally, constraints that express the functional dependence dPthe
we estimate the number of templates needed in a GW sear (6,4,1,0,0): this step yields the approximatédncon-

with LIGO-I. Our results can be summarized as follows. - . / .
; . strained maximump=,, which can be computed very rap-
We determine the range of binary masses where thg ST. d Pz P y rap

templates can be considered accurate by imposing two co(?qu’ and which sets an upper bound feg.. Second, only

ditions: first, for the orbital separations that correspond td®f the times of arrival, at whichpz. passes the detection
GWs in the frequency band of good interferometer sensitivihreshold, we compute the fully constrained maximuga,

ity, the dynamics of the binary must be described faithfullyWhich is more expensive to comput&lote that this scheme

by an adiabatic sequence of quasispherical orbits; second, téffers from traditional hierarchical schemes because we use
nonspinning body must be light enough that its spin will pethe samethreshold in the first and second stagédle find
negligible for purely dimensional reasons. The selected madbat p~. is a good approximation tp=«, so the number of
range is (;,m,)=[7,12lM5X[1,3]|M5. first-stage triggers passed to the second stage is small.

To evaluate the effect of higher-order PN corrections for For a total false-alarm probability of 18/yr, and for a
binaries in this mass range, we compute the overlaps besonservative estimate for the number of independent statisti-
tween templates computed at successive PN orders. Wheal tests, the detection threshold is around 10. For this value,
computed between templates with the same parameters, sulbtween 5 and 15 first-stage triggers are passed to the second
overlaps can be rather low; however, they become very higlstage for each eventual detection. For the same threshold, the
when maximized over the parametébsth intrinsic and ex-  single-test false-alarm probability is lower for Stemplates
trinsic) of the lower-order PN templatésee Table I\. This  than for the {/yi/5.8)s DTF of [18] [the total false-alarm
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VI can treat GW sources, such as extreme-mass-ratio in-

spirals, where many physical parameters are present, but

only few of their combinations have significant effects on the APPENDIX A: THE QUADRUPOLE-MONOPOLE
emitted waveform$59,61]. In fact, this formalism is closely INTERACTION

relate_d to the pro.cedures an_d gpproxmatlons _used_ln the In this appendix we investigate the effect of the
ongoing effort(motivated by mission-design consideratipns

uadrupole-monopole interaction, which we have so far ne-
to count the templates needed to detect extreme-mass-rat] : o . . g
glected in describing the dynamics of precessing binaries. It

inspirals with LISA[71]. h
It should be possible to generalize the formalism beyon s Wel.l knovyn[67] that the qu.adru.pole. mome”t .Of a compact
ody in a binary creates a distortion in its gravitational field,

guadrupole GW emission, at least to some extent. When , : X . . .
higher-multipole contributions are included, the detector re—WhICh affects orbital motioriboth in the evolution of and

sponse becomes much more complicated than(E5).[see, in t_he prec.ession ok ), and therefore GW emission; the
e.g., Egs.(3.22h—(3.22h of Ref. [38]]. In particular, the orbital motion, on the_ other hand, exerts a torque on the
response cannot be factorized into a factor that depends onfPMpact body, changing its angular moment(ra., it in-
on the dynamical evolution of the binary, and a factor thatduces atorqued precessign Although the lowest-order
depends only on the position and orientation of the detectoiduadrupole-monopole effect is Newtonian, it is smaller than
it is instead a sum over a number of such terms, each corsPin-orbit effects and of the same order as spin-spin effects.
taining different harmonics of the orbital and modulation fre-  When the spinning body is a black hole, the equations for
quencies. Despite these complications, it should still be poghe orbital evolution and GW templates are modified as fol-
sible to maximize the overlap over the extrinsic parameterdoWs to include quadrupole-monopole effects. Equatign
using a relatively small number of signal-template anddets the additional terr68]
template-template inner products. The constrained-
maximization procedure would however be very compli- | @ ~ 96 53
cated, and although tH&ully algebraig unconstrained maxi- E 5 7(Mw)
mum would still be easy to compute, the dimensionality of QM
the unconstrained template space would now be so large that
it may increase the false alarm probability too dramatically,ije the precession equatiof® and (7) become[68]
to make the two-stage scheme useful.

The last result of this paper is an estimate of the number n
of ST, templates needed for a GW search in the mass rangeSlzm(Mw)m[
[7,12]M o X[1,3]Mg . To obtain this estimate, we first com-

5 . mi
§X§W(3K§— 1(Mw)*?

(A1)

m2) 13|
4+3m 3x1k1 (M) ™| (LN X Sy)
1

pute the full mismatch metric, which describes the mismatch (A2)
for small displacements in the intrinsic and extrinsic param-

eters; we then obtain the projected metric, which reproduces

the effect of maximizing the overlap over the extrinsic pa- Y m, R
rameters. At this point we observe that the projected metric  Ly=2|| 4+ 3m_1) —3x161(Mw)Y3(S X Ly)

has an eigenvector corresponding to a very small eigenvalue;
this indicates that we can choose one of the four intrinsic =0/ X[ (A3)
parameters to be a function of the other three, so the dimen- Lo Ny

sionality of the S} template bank can be reduced to three.q, thermore, the orbital energ) gets the additional term
For simplicity, we perform this reduction by setting=0.

We then compute the reduced mismatch metric, and obtain a 1 . m
rough estimate of-76 000 as the number of templates re- Eo mlw)=— Z(Mw)zls _ —X§—1(3K§—1)(Mw)4’3
quired for an average MM of 0.98, or 0.97 including an 2 27 M2

estimated reduction mismatch of 0.01. (A4)

2
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finally, Q. is again obtained from Ef(lA:), using the modi- pL.=max max eigvAB L. (B5)
fied Q| in Eq. (A3). (Note thatk,=Ly-S;.) Tt

The quadrupole-monopole interaction changes the num-
ber of GW cycles listed in Table | at 2 PN order. The addi-By COﬂStrUCtiOﬂ,p’:a will always be larger than or equal to
tional contributions are 5@%—15.5x; for a (10  the constrained maximunpz..
+1.4)Mg, binary, 2.54—7.6x5x3 for a (12+3)M, binary, The second constraint comes from E47). Writing out
and 1.§%—5.4«2y? for a (7+3)M, binary. To estimate the STF components, we get
more quantitatively the effect of the quadrupole-monopole

terms, we evaluate the nonmaximized overlépshe sense P+ ps/\/§ P, Ps

of Sec. Ill D) between 2 PN templates, computed with and 1

without the new terms. The results for (£0.4)M, binaries ~ detP;; EdetT P,  —Py+Ps/\3 P4

are summarized in Table lll. In parentheses we show the 2 Ps P, —2P./\3
fitting factors, which are all very high; in brackets we show s

the intrinsic parameters at which the maximum overlaps are =D"KpP,P,P«=0. (B6)

obtained. We conclude that for the purpose of GW searches,
we can indeed neglect the effects of the quadrupole¢The tensorD'”X can be chosen to be symmetric since
monopole interaction on the dynamical evolution of the bi-DVKp,P;P,=D!¥¥P,P,P,.) The constrained maximum
nary. of pa, Over theP,, subject to the two constraints, can be
obtained as the maximum of the function
APPENDIX B: ALGEBRAIC MAXIMIZATION OF THE
OVERLAP OVER THE P, AYPP;—\(B"P|P;— 1)~ u(D"*PP,Py) (B7)

In this section, we explore the algebraic maximization of

Pa, [see Eq/(44)], given by over P, and over the two Lagrange multiplieds and .

After taking partial derivatives, we get a system of seven

equations,
AVP,P,
p(IJOZ 13 ' (Bl) 3
B~PP, A'JPJ—)\B'JPJ—E,uD'JKPJPK=0, (B8)

over theP,. We recall that the fivd®, are combinations of

trigonometric functions of three angles, and therefore must BYP,P;—1=0, (B9)
satisfy two constraints: luckily, both of these can be formu-
lated algebraically. In light of the discussion of Sec. IV B, D"KP,P,P¢=0, (B10)

the overall normalization of th®, does not affect the value

of the overlap(44). As a consequence, we can rescaleRie \here the last two equations come from the constraB23
and replace the first constraint by and(B6). Multiplying the first equation byP, and using the
BUp p.—1 (B2) two constraints, we obtain EqB4) again. So the first
mm Lagrange multipliei\ is still the square of the overlap. The

which enforces the normalization of the templates. This conS€cond Lagrange multipliqu is zero when the signa be-
straint is chosen only for convenience: the maximum, subjecOnds to ST template family, and has exactly the same in-
to this constraint, is exactly the same as the unconstrainelinSic Parameters as the template. In this case, the extrinsic
maximum found by searching over the entire five- parameters of the signal correspond to a ve&pthat sat-

dimensional space. Let us work out its value, which will beiSfies E.(B8) with u=0 (the multiplierx is still needed to
useful later. Introducing the first Lagrangian multipligrwe ~ €nforce normalization of the templaté/Vhen the intrinsic

impose parameters are not exactly equal, but clgsdecomes finite,
but small. Equation$B8)—(B10) can then be solved itera-
d . . . . tively by expandingP, in terms ofu,
B3 P=> PMyn (B11)
n=0

which has solutions only fox corresponding to the eigen-
values ofAB~ 1. For those solutions, we multiply EGB3)

by P, to obtain Inserting this expansion into Eq®B8) and(B10), we get the

zeroth-order equation
A=A"PPy; (B4)
o AP (AMPOPO)BIp©O—g  (B12)
using Eqs(B1) and(B2), we then see that is the square of
the overlap, so it should be chosen as the largest eigenvalwehere we have already used the zeroth-order version of Eq.
of AB 1. We then write thaunconstrained maximums (B4) to eliminate\.
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Multiplying by (B~ 1)X!, we see that the zeroth-order so- =A
lution P{®) must lie along an eigenvector aB( %)*'A", and
that the corresponding eigenvalue must be equal to
AMPOp©®) " and therefore also to the square of the zeroth-
order extremized overlap. To get the maximum overlap, we
must therefore choosiél(o) as the eigenvector corresponding
to the largest eigenvalue. So the zeroth-order constrained
maximum is exactly the unconstrained maximum obtained
above[Egs.(B3)—(B5)].

We can then proceed tuth-order equations:

[AIJ_Z(AJMP&))BILP(LO))_(ALMP(LO)P%?))BIJ]PSH) . . . .
FIG. 10. lllustration of dimensional reduction. Here we show a

n-1 n-1 signal space with one extrinsic paramet&!j and two intrinsic
= > D AM P(Lml)wamz)B'JPgnfmrmZ) parametersX'?, and we assume that the projected metric has one
my=0 m;=0 small eigenvalue all through parameter space. Starting from a ge-
n-1 neric point\j, we follow the flow of the quasinull eigenvector of
+ > ~DWKp(mp(n-m-1) (813 g9l for an infinitesimal parameter distance to reach; we then
m=0 2 repeat this process, each time adjusting the direction of the eigen-

) ) ) vector according to the metrithence the difference between the
At each order, we insert theth-order expansion oP; into  yeduction pathpredictedat A3 and theactual reduction path In the
Eq. (B10), and select the real solution closest to zero as th@nd we reach\4 after having accumulated a parameter lerigi
nth-order approximation ta (such a solution is guaranteed the intrinsic parameter space. The mismatch betwagnand \y
to exist for all oddn). We then obtain thath-order approxi-  will be smaller thandy,,=1—MM, if | is not much larger than
mation to\ (and therefore tpz=.) using Eq.(B4). We pro- |, the coordinate diameter of the intrinsic parameter space in the
ceed in this way, untih and . converge to our satisfaction. approximate direction of the quasinull eigenvector.

This iterative procedure succeeds when the intrinsic pa-
rameters of signal and template are close; as their distance Ei=Ei+d ,y—1()\/8)]0([3[(:()\é)]ﬁjej(l)()\é); (3
increases, the procedure becomes more and more unstable
and eventually fails to converge. The iteration fails often also . . o —a o
when the overlap is optimized against pure noise. For thes#lS choice ofA=® makes=} the extrinsic parameter that
reasons, a practical implementation of the detection statistiglinimizes 8(Xy,Eg;X;,E7). Denoting the inner-product
=« Must eventually rely on the semialgebraic maximizationdistance as disk(; ,\7)= V28(\5,\7), we can write

procedure discussed in Sec. IV B. Indeed, we have used the

semialgebraic procedure for all the tests discussed in Sec. V. .
g P diSNE N2 = €2 ) (\2) + O(€2); (Ca)
APPENDIX C: DIMENSIONAL REDUCTION WITH A .
NONUNIEORM PROJECTED METRIC from A7, we follow the eigenvector(;,(\7) for another

) , , parameter lengtle, and reach\%; then from )\Q we reach
In this appendix we extend the reasoning of Sec. VI B to\ A

study dimensional reduction under the projected metric 3 and so on. Up {0 thélth step, we have traveled a cu-
proija A T o ._mulative parameter distante- Ne in the intrinsic parameter

gij (A _), which lives in the intrinsic parameter spzice, _but 'Sspace, and an inner-product distance

a function of all parameters. For each poirft=(X',Z%) in

parameter spice, We.dencAmql)()\A) the smallest eigen- N

value ofg™(\?), ande],,(\*) the corresponding eigenvec- A A A A

tor in the”intrinsic para(nl1)eter space. Suppose we have dist\o ')\N)gzl distAn—1 An)

N
A 1—MM X 5
AN < 2, (Cy =n§l [eV2A3)(Ah_ ) +O(€?)]
for all values ofA” in the allowed parameter region, where <| _[2maxA ;) (\*)+O(Ne?),  (CH
|1y is the coordinate diameter of the allowed parameter AA

range along the eigenvecteh).

Now let us start from a generic ponﬁtéz(X'o .E6) IN \where in the first line we have used the triangle inequality for
parameter space and follow the normal eigenveetgrfor a  the inner-product distance. The te{Ne2) vanishes in the
tiny parameter lengtle, reachinghy=(X;,E1), according imit e—0, N— =, keeping = Ne finite (see Fig. 10 So we
to can take the continuous limit of Eq$C2) and (C3) and

arrive at two differential equations that define the resulting

X} =Xo+ e€q)(N), (C2)  trajectory:
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Xi(h=¢elyy, E«)=[y Y*Cyely,  (CO full signal space ¥

whereX' andZ ¢ are parametrized by the cumulative param-
eter lengthl, with

Xi(1=0)=X},, E*1=0)=Eg. (C7)

We can allowl to be either positive or negative, in order to
describe the two trajectories that initially propagate along
+el;)(\g). Equation(C5) then becomes

[
disl[)\é,)\A(l)]sJOdl’ 2A (N1
FIG. 11. lllustration of reduced signal space as a hypersurface

<|l| ZmaxA(l)()\A). (C8) inside full signal space. Here we show only the directions along
N the intrinsic  parameters.  Starting from the points
(X1,ED, ..., (X,,E5), we follow the trajectory(C6) and reach
In terms of mismatch, the hypersurface atX{ reqZ1 red - - - + (X4 rean =4 red - FOI these

particular initial points X, g happens to coincide witk, ¢4, and

X5 regWith X3 oq. We can see that) and\’ (and indeed all points
that reduce toX; .4, including the points along the reduction
1 curve will be indistinguishable upon detection with the reduced
< E{diSI[AA;)\A(I )1}2 template bank. The same is true #f, A5, and for all the points

that reduce toX; ,eq-
| 2
s%“ dI'V2A N
0 ]
X'(1) the reduction curve.

2 A
= T?XA(”(A ) If the reduction curves are reasonably straight, it should
\2 be easy to find adimensionally reducgchypersurface with
<(— OMM (C9  the property that any given poinkp,=g) in the full param-

L eter space admits a reduction curve that reaches the hyper-
where the hybrid notation of the first line indicates the mis-surface at a parametkr not much larger than the coordinate
match along the solution of EGC6), and where of course diameter of parameter spagee Fig. 11 From Eq.(C9), we
Sum=1—MM. Here, although we evolvX' and=* simul-  then have mig«s [X5, 26X (14),E“]1<dum - So any point in
taneously; it is the trajector)t' (1) in theintrinsic parameter the full parameter space can be fitted with a mismatch

space that we are ultimately interested in. In the context ogmaller thandy,, by a point on the hypersurface.

mind[Ag; X' (1), 5] = %{m_indisl[xﬁ;xi(l),ﬁa]}z

dimensional reduction for the projected metric, we shall call
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