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Physical template family for gravitational waves from precessing binaries of spinning compact
objects: Application to single-spin binaries
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The detection of the gravitational waves~GWs! emitted by precessing binaries of spinning compact objects
is complicated by the large number of parameters~such as the magnitudes and initial directions of the spins,
and the position and orientation of the binary with respect to the detector! that are required to model accurately
the precession-induced modulations of the GW signal. In this paper we describe a fast matched-filtering search
scheme for precessing binaries, and we adopt the physical template family proposed by Buonanno, Chen, and
Vallisneri @Phys. Rev. D67, 104025~2003!# for ground-based interferometers. This family provides essentially
exact waveforms, written directly in terms of the physical parameters, for binaries with a single significant
spin, and for which the observed GW signal is emitted during the phase of adiabatic inspiral~for LIGO-I and
VIRGO, this corresponds to a total massM&15M (). We show how the detection statistic can be maximized
automatically over all the parameters~including the position and orientation of the binary with respect to the
detector!, except four~the two masses, the magnitude of the single spin, and the opening angle between the
spin and the orbital angular momentum!, so the template bank used in the search is only four-dimensional; this
technique is relevant also to the searches for GW from extreme-mass-ratio inspirals and supermassive black
hole inspirals to be performed using the space-borne detector LISA. Using the LIGO-I design sensitivity, we
compute the detection threshold (;10) required for a false-alarm probability of 1023/yr and the number of
templates (;76 000) required for a minimum match of 0.97 for the mass range (m1 ,m2)5@7,12#M (

3@1,3#M ( .
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I. INTRODUCTION

Binaries consisting of a black hole~BH! in combination
with another BH or with a neutron star~NS! are among the
most promising gravitational-wave~GW! sources for first-
generation laser-interferometer GW detectors such as the
ser Interferometer Gravitational Wave Observatory~LIGO!
@1,2#, VIRGO @3#, GEO600 @2,4# and TAMA300 @5#. For
LIGO-I and VIRGO, and for binaries with a total massM
&15M ( , the observed GW signal is emitted during t
adiabatic-inspiral regime, where post-Newtonian~PN! calcu-
lations can be used to describe the dynamics of the bin
and predict the gravitational waveforms emitted@6–9#.

Very little is known about the statistical distribution o
BH spin magnitudes in binaries: the spins could very well
large, with a significant impact on both binary dynamics a
gravitational waveforms. On the contrary, it is generally b
lieved that NS spins will be small in the NS-BH and NS-N
binaries that are likely to be observed with first-generat
GW detectors. For example, the observed NS-NS binary
sars have rather small spin,SNS/mNS

2 ;1023 @6#. One reason
the NSs in binaries of interest for GW detectors should ca
small spin is that they are old enough to have spun do
considerably~even if they once had spins comparable to
theoretical upper limits,SNS/mNS

2 .0.6–0.7@10#, wheremNS

is the NS mass, and where we setG5c51), and because
dynamical evolution cannot spin them up significantly~even
during the final phase of inspiral when tidal torques beco
important@11#!.
0556-2821/2004/69~10!/104017~25!/$22.50 69 1040
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Population-synthesis studies@12,13# suggest that in
NS-BH binaries there is a possibility for the BH spin to b
substantially misaligned with the orbital angular momentu
of the binary. Early investigations@14,15# showed that when
this is the case and the BH spin is large, the evolution of
GW phase and amplitude during the adiabatic inspiral is s
nificantly affected by spin-induced modulations. While re
able templates for precessing binaries should include th
modulational effects, performing GW searches with templ
families that include all theprima facierelevant parameters
~the masses, the spins, the angles that describe the rel
orientations of detector and binary, and the direction
propagation of GWs to the detector! is extremely computa-
tionally intensive.

Several authors have explored this issue, and they h
proposed detection template families~DTFs! that depend on
fewer parameters and that can still reproduce well the
pected physical signals. An interesting suggestion, built
the results obtained in Ref.@14#, came from Apostolatos
@15#, who introduced a modulational sinusoidal term~the
Apostolatos ansatz! in the frequency-domain phase of th
templates to capture the effects of precession. This sug
tion was tested further by Grandcle´ment, Kalogera, and Vec
chio @16#. The resulting template family has significant
fewer parameters, but its computational requirements are
very high, and its signal-fitting performance is not very s
isfactory; Grandcle´ment and Kalogera@17# subsequently
suggested a modified family ofspiky templates that fit the
signals better.
©2004 The American Physical Society17-1
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PAN et al. PHYSICAL REVIEW D 69, 104017 ~2004!
After investigating the dynamics of precessing binari
Buonanno, Chen, and Vallisneri@@18#, henceforth BCV2#
proposed a new convention for quadrupolar GW emission
such binaries, whereby the oscillatory effects of precess
are isolated in the evolution of the GW polarization tenso
As a result, the response of the detector to the GWs ca
written as the product of a carrier signal and a modulatio
correction, which can be handled using an extension of
Apostolatos ansatz. On the basis of these observati
BCV2 built a modulated frequency-domain DTF that, f
maximal spins, yields average fitting factors (FF, see Sec
VI B of Ref. @18#! of .0.97 for (715)M ( BH-BH binaries,
and .0.93 for (1011.4)M ( NS-BH binaries ~see also
Tables VIII and IX and Fig. 14 of Ref.@18#!. Note that the
stationary-phase-approximation~SPA! templates developed
for nonspinning binaries give much lowerFFs of.0.90 for
(715)M ( BH-BH binaries and.0.78 for (1011.4)M (

NS-BH binaries, while according to our computations t
Apostolatos templates giveFF.0.81 for (1011.4)M (

NS-BH binaries@19#.
An important feature of the BCV2 templates is that th

mathematical structure allows an automatic search over
eral of the modulational parameters~in strict analogy to the
automatic search over initial orbital phase in GW searc
for nonspinning binaries!, reducing significantly the numbe
of templates in the search banks, and therefore the comp
tional cost. However, since many more signal shapes
effectively ~if implicitly ! tested against the detector outpu
the detection threshold for this DTF should be set hig
than those for simpler families~for the same false-alarm
probability!. According to simple false-alarm computation
performed with Gaussian, stationary detector noise~see Ref.
@18#! for a single template, the gain in FF is larger than t
increase in the threshold only for binaries~such as NS-BH
binaries! with low symmetric mass ratiosm1m2 /(m1
1m2)2; while the opposite is true for high mass ratios.~Ul-
timately, the issue of FF gain versus threshold increase
be settled only after constructing the mismatch metric
this template family and performing Monte Carlo analyses
false-alarm statistics for the entire template bank under r
istic detector noise.! Although the improvement in FF with
the BCV2 DTF is relevant, it is still not completely satisfa
tory, because it translates to a loss of;20% in detection rate
~for the maximal-spin case! with respect to a perfect templat
bank~the loss will be higher if the higher required thresho
is taken into account!. Current estimates of binary-inspira
event rates within the distance accessible to first-genera
GW interferometers hovers around one event per year,
reduction of;20% in the detection rate may not be acce
able.

BCV2 also proposed, but did not test, a new promis
family of physical templates~i.e., templates that are exa
within the approximations made to write the PN equatio!
for binaries where only one of the two compact bodies c
ries a significant spin. This family has two remarkable a
vantages:~i! it consists only of the physical waveforms pr
dicted by the PN equations in the adiabatic limit, so it do
not raise the detection threshold unnecessarily by includ
10401
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unphysical templates, as the BCV2 DTF did;~ii ! all the tem-
plate parameters except four areextrinsic: that is, they can be
searched over semialgebraically without having to comp
all of the corresponding waveforms.

In this paper we describe a data-analysis scheme that
ploys this family, and we estimate the number of templa
required for a NS-BH search with LIGO-I: we assum
1M (,mNS,3M ( and 7M (,mBH,12M ( ~see Sec.
III D !. In a companion paper@20#, we show how a simple
extension of this template family can be used to search
the GWs emitted by binaries when both compact bodies h
significant spins~and where of course the adiabatic limit o
the PN equations is still valid!. The problem of estimating
the parameters of the binaries is examined in a forthcom
paper@21#.

This paper is organized as follows. In Sec. II we revie
the formalism of matched-filtering GW detection, and w
establish some notation. In Sec. III we review the PN d
namics and GW generation in single-spin binaries, and
discuss the accuracy of the resulting waveforms, indicat
the range of masses to which our physical template fam
can be applied. In Sec. IV we describe the parametrizatio
the templates, and we discuss the semialgebraic maxim
tion of signal-template correlations with respect to the extr
sic parameters. In Sec. V we describe and test a fast t
stage detection scheme that employs the templates, an
discuss its false-alarm statistics. In Sec. VI we build the te
plate mismatch metric, and we evaluate the number of te
plates required for an actual GW search. Finally, in Sec.
we summarize our conclusions.

II. A BRIEF REFRESHER ON MATCHED-FILTERING GW
DETECTION

We refer the reader to Ref.@22# ~henceforth BCV1!, for a
self-contained discussion of matched-filtering techniques
GW detection, which includes all relevant bibliographic re
erences. In this section we mainly establish our notation
conventions; the experienced reader may therefore wan
jump ahead to Sec. III.

Matched filtering@23–36# is the standard method to dete
GW signals of known shape, whereby we compare the
tector output withtemplatesthat approximate closely the sig
nals expected from a given class of sources, for a variety
source parameters. The goodness of fit between the tem
h(lA) ~wherelA denotes all the source parameters! and the
real GW signals is quantified by theoverlap

r@s,h~lA!#5
^s,h~lA!&

A^h~lA!,h~lA!&
~1!

@also known as thesignal-to-noise ratioafter filtering s by
h(lA)], where the inner product̂g(t), h(t)& of two real
signals with Fourier transformsg̃( f ), h̃( f ) is given by@33#
7-2
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PHYSICAL TEMPLATE FAMILY FOR GRAVITATIONAL . . . PHYSICAL REVIEW D 69, 104017 ~2004!
^g,h&52E
2`

1` g̃* ~ f !h̃~ f !

Sn~ u f u!
d f54 ReE

0

1` g̃* ~ f !h̃~ f !

Sn~ f !
d f ;

~2!

throughout this paper we adopt the LIGO-I one-sided no
power spectral densitySn given by Eq.~28! of BCV1. Ex-
cept where otherwise noted, we shall always consider
malized templatesĥ ~where the hat denotes normalization!,
for which ^ĥ(lA),ĥ(lA)&51, so we can drop the denom
nator of Eq.~1!.

A large overlap between a given stretch of detector out
and a particular template implies that there is a high pr
ability that a GW signal similar to the template is actua
present in the output, and is not being merely simulated
noise alone. Therefore the overlap can be used as adetection
statistic: we may claim a detection if the overlap rises abo
a detection thresholdr* , which is set, on the basis of
characterization of the noise, in such a way that false ala
are sufficiently unlikely.

The maximum~optimal! overlap that can be achieved fo
the signals is A^s,s& ~the optimal signal-to-noise ratio!,
which is achieved by a perfect~normalized! template ĥ
[s/A^s,s&. In practice, however, this value will not b
reached, for two distinct reasons. First, the template fam

$ĥ(lA)% might not contain a faithful representation of th
physical signalw. The fraction of the theoretical maximum
overlap that is recovered by the template family is quantifi
by thefitting factor @35#

FF5
max

lA ^w,ĥ~lA!&

A^w,w&
. ~3!

Second, in practice we will usually not be able to use
continuoustemplate family $ĥ(lA)%, but instead we will
have to settle with a discretized template bank$ĥ(l (k)

A )%,
where~k! indexes a finite lattice in parameter space; so
best template to match a given physical signal will have to
replaced by a nearby template in the bank.~As we shall see
in Sec. IV, there is a partial exception to this rule: we c
take into account all possible values of certain paramet
known asextrinsic parameters@23,27#, without actually lay-
ing down templates in the bank along that parameter di
tion.! The fraction of the optimal overlap that is recovered
the template bank, in the worst possible case, is quantifie
the minimum match@27,31#. Assuming that the physical sig
nal belongs to the continuous template family$ĥ(lA)%, the
minimum match is equal to

MM5min
l8A

max
(k)

^ĥ~l8A!,ĥ~l (k)
A !&. ~4!

The required minimum match MM sets the allowable coar
ness of the template bank@23,31,32#: the closer to one MM,
the closer to one another the templates will need to be
down. In Sec. VI we shall use a notion ofmetric @27,29,34#
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in parameter space to characterize the size and the geom
of the template bank corresponding to a given MM.

III. ADIABATIC POST-NEWTONIAN MODEL
FOR SINGLE-SPIN BINARY INSPIRALS

In this section we discuss PN adiabatic dynamics and G
generation for NS-BH and BH-BH binaries. Specifically,
Secs. III A–III C we review the relevant PN equations a
the GW emission formalism developed by BCV2. In Se
III D we study the accuracy of the waveforms, and determ
the mass range where the waveforms produced by adiab
models can be considered accurate for the purpose of
detection. The discussion of this section is continued in A
pendix A, where we investigate the effects of quadrupo
monopole interactions~tidal torques! on the waveforms,
which have been so far neglected in studies of precess
binary waveforms, and in fact turn out to be only margina
important for NS-BH binaries. The time-pressed reader m
want to skip Secs. III A and III B~which review BCV2 ma-
terial!, move on to Sec. III C~which introduces the templat
bank examined in this paper!, and then jump to the last two
paragraphs of Sec. III D~which summarize the comparison
between PN orders!.

In this paper, we restrict ourselves to binaries in whi
only one body has significant spin, leaving a similar study
generic binaries to a companion paper@21#. As a further
restriction, we consider only binaries in circular orbits, a
suming that they have already been circularized by radia
reaction as they enter the frequency band of ground-ba
GW detectors. For all binaries, we denote the total mass
M5m11m2 and the symmetric mass ratio byh
5m1m2 /M2; we also assume that the heavier body~with
massm1>m2) carries the spinS15x1m1

2, with 0<x1<1
~here and throughout this paper we setG5c51).

A. The PN dynamical evolution

In the adiabatic approach@37,38,6# to the evolution of
spinning binaries, one builds a sequence of precessing~due
to spin effects! and shrinking~due to radiation reaction! cir-
cular orbits. The orbital frequency increases as the o
shrinks. The time scales of the precession and shrinkage
both long compared to the orbital period~this is theadia-
batic condition!, until the very late stage of binary evolution
~Such orbits are also calledspherical orbits, since they reside
on a sphere with slowly shrinking radius.!

The radiation-reaction-induced evolution of frequen
can be calculated by using the energy-balance equationv̇
52F/(dE/dv), whereE is the orbital-energy function, and
F the GW energy-flux~or luminosity! function. Both have
been calculated as functions of the orbital frequency us
PN-expansion techniques, and are determined up to 3.5
order@7–9#; however, spin effects have been calculated o
up to 2 PN order@37#. The resulting evolution equation fo
v, obtained by inserting the PN expansions ofE andF into
the balance equation and reexpanding, is
7-3
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v̇

v2
5

96

5
h~Mv!5/3H 12

7431924h

336
~Mv!2/32S 1

12Fx1~ L̂N•Ŝ1!S 113
m1

2

M2
175h D G24p D ~Mv!

1S 34103

18144
1

13661

2016
h1

59

18
h2D ~Mv!4/32

1

672
~4159114532h!p~Mv!5/3

1F S 16447322263

139708800
2

1712

105
gE1

16

3
p2D1S 2

273811877

1088640
1

451

48
p22

88

3
û Dh1

541

896
h22

5605

2592
h3

2
856

105
log@16~Mv!2/3#G~Mv!21S 2

4415

4032
1

661775

12096
h1

149789

3024
h2Dp~Mv!7/3J , ~5!
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wheregE50.577 . . . is Euler’s constant. We denote byL̂N
}r3v the unit vector along the orbital angular momentu
wherer andv are the two-body center-of-mass radial sep
ration and relative velocity, respectively.L̂N is also the unit
normal vector to the orbital plane.~Throughout this paper we
shall always add hats to vectors to denote the correspon
unit vectors.! The ~scalar! quantity û is an undetermined
regularization parameter that enters the GW flux at 3
order@8#. As in Ref.@18#, we do not include the~partial! spin
contributions tov̇ at 2.5 PN, 3 PN, and 3.5 PN orders, whic
arise from known 1.5 PN and 2 PN spin terms ofE andF.
~To be fully consistent one should know the spin terms oE
andF at 2.5 PN, 3 PN, and 3.5 PN orders.! In Sec. III D we
shall briefly comment on the effect of these terms. We ign
also the quadrupole-monopole interaction, which we disc
in Sec. A.

The precession equation for the spin is@38,14#

Ṡ15
h

2M
~Mv!5/3S 413

m2

m1
D L̂N3S1 , ~6!

where we have replacedr[r anduLNu by their leading-order
Newtonian expressions inv. The precession of the orbita
plane ~defined by its normal vectorL̂N) can be computed
following Eqs.~5!–~8! of Ref. @18#, and it reads

L̇̂N5
v2

2M S 413
m2

m1
DS13L̂N[VL3L̂N . ~7!

Equations~5!–~7! describe the adiabatic evolution of th
three variablesv, S1, andL̂N . It can be easily deduced tha
the magnitude of the spin,S15uS1u, and the angle betwee
the spin and the orbital angular momentum,k1[L̂N•Ŝ1, are
conserved during the evolution.

The integration of Eqs.~5!–~7! should be stopped at th
point where the adiabatic approximation breaks down. T
point is usually reached~e.g., for 2 PN and 3 PN orders!
when the orbital energyEnPN reaches a minimum, as foun
by solvingdEnPN/dv50 ~exceptions occur at Newtonian,
PN, and 2.5 PN orders, as we shall explain in more deta
Sec. III D!. We shall call the corresponding orbit the min
10401
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mum energy circular orbit, or MECO. Up to 3 PN order, a
including spin-orbit effects up to 1.5 PN order, the orbi
energyE(v) reads@6,37,40#

E~v!52
m

2
~Mv!2/3H 12

~91h!

12
~Mv!2/3

1
8

3 S 11
3

4

m2

m1
D L̂N•S1

M2
~Mv!

2
1

24
~81257h1h2!~Mv!4/3

1F2
675

64
1S 34445

576
2

205

96
p21

10

3
vsDh

2
155

96
h22

35

5184
h3G~Mv!2J . ~8!

Henceforth, we assume the regularization parametervs to be
zero, as computed in Refs.@7,9,39#.

B. The precessing convention

BCV2 introduced a new convention to express t
leading-order mass-quadrupole gravitational waveform g
erated by binaries of spinning compact objects; here we
view it briefly. At this order, the radiative gravitational fiel
emitted by the quasicircular binary motion reads

hi j 5
2m

D S M

r DQc
i j , ~9!

whereD is the distance between the source and the Ea
andQc

i j 52@ l̂ i l̂ j2n̂i n̂ j #, with n̂ andl̂ the unit vectors along
the separation vectorr and the relative velocityv of the
binary. In general,n̂(t) and l̂(t) can be written as

n̂~ t !5e1~ t !cosF~ t !1e2~ t !sinF~ t !, ~10!

l̂~ t !52e1~ t !sinF~ t !1e2~ t !cosF~ t !, ~11!
7-4
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wheree1(t), e2(t), and e3(t)[L̂N(t) are orthonormal vec-
tors, ande1,2(t) forms a basis for the instantaneous orbi
plane. NowQc

i j can be written as

Qc
i j 522$@e1# i j cos 2~F1F0!1@e3# i j sin 2~F1F0!%,

~12!

with e15e1^ e12e2^ e2 and e35e1^ e21e2^ e1, and F0
an arbitrary initial phase. For quasicircular orbits, we ha

ṅ̂5vl̂, but in generalḞÞv, because of the time depen
dence ofe1,2(t). BCV2 defined theprecessing conventionby
requiring that
s

er

or

n
de

ar

10401
l

e

ėi~ t !5Ve~ t !3ei~ t !, i 51,2, ~13!

Ve~ t !5VL2~VL•L̂N!L̂N . ~14!

@See Eq.~7! for the definition ofVL.] In this convention, we

do haveḞ5v.

C. The detector response

The response of a ground-based interferometric dete
to the GW signal of Eq.~9! is given by
~15!
we
s-

if-

t
h
,

the
the

om-
,

the tensors@T1,3# i j are defined byT1[ex
R

^ ex
R2ey

R
^ ey

R and
T3[ex

R
^ ey

R1ey
R

^ ex
R , after we introduce theradiation

frame

ex
R52ex

Ssinw1ey
Scosw, ~16!

ey
R52ex

ScosQ cosw2ey
ScosQ sinw1ez

SsinQ, ~17!

ez
R51ex

SsinQ cosw1ey
SsinQ sinw1ez

ScosQ5N̂,
~18!

with N̂ the direction of wave propagation andQ, w the cor-
responding angles in an arbitrarily chosensource frame,
$ex

S ,ey
S ,ez

S% ~see Fig. 1 of Ref.@18#!. For the antenna pattern
F1,3 we have

F1,35
1

2
@ ēx^ ēx2ēy^ ēy#

i j @T1,3# i j , ~19!

whereēx,y are the unit vectors along the orthogonal interf
ometer arms. More explicitly@26#,

F15
1

2
~11cos2u!cos 2f cos 2c2cosusin 2f sin 2c,

~20!

F35
1

2
~11cos2u!cos 2f sin 2c1cosu sin 2f cos 2c.

~21!

Heref, u, andc are the orientation angles of the detect
as defined by Fig. 2 of Ref.@18#.

Mathematically, we see that the factor P of Eq.~15!,
which is independent of time, collects only terms that depe
on the position and orientation of the detector and that
scribe thereceptionof GWs, while factor Q collects only
terms that depend on the dynamical evolution of the bin
-

,

d
-

y

and that describe thegenerationof GWs ~at least if the vec-
torse1,2,3 are defined without reference to the detector, as
will do soon!. Using the language of BCV2, in the preces
ing convention thedirectionalparametersQ, w, f, u, andc
are isolated in factor P, while thebasicand local parameters
of the binary are isolated in factor Q.

Physically, we see that factor Q evolves along three d
ferent time scales:~i! the orbital period, which sets the GW

carrier frequency 2Ḟ52v; ~ii ! the precession time scale a
which the e1,3 change their orientation in space, whic
modulates the GWs;~iii ! the radiation-reaction time scale
characterized byv/v̇, which drives the evolution of fre-
quency. In the adiabatic regime, the orbital period is
shortest of the three: so for convenience we shall define
~leading-order! instantaneous GW frequency fGW directly
from the instantaneous orbital frequencyv, f GW
[(2v)/(2p)5v/p.

Thus, what parameters are needed to specify Q c
pletely? Equation~5! for v(t) can be integrated numerically
starting from an arbitraryv(0) @41# once we specify the
basic parametersM, h, andx1 and the local parameterk1

[L̂N•Ŝ1 ~conserved through evolution!. With the resulting
v(t) we can integrate Eqs.~6! and~7!, and then Eq.~13!. For
these we need initial conditions forŜ1 , L̂N , and for theei ;
without loss of generality, we can introduce a~fixed! source
frame attached to the configuration of the binary att50:

ex
S}S1~0!2@S1~0!•L̂N~0!#L̂N~0!,

ey
S5L̂N~0!3ex

S , ez
S5L̂N~0!, ~22!

and then take

e1~0!5ex
S , e2~0!5ey

S , e3~0!5ez
S . ~23!
7-5
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@If S1(0) andL̂N(0) are parallel,ex
S can be chosen to lie in

any direction orthogonal toL̂N(0).# The initial orbital phase
F0 that enters the expression of Q is defined by

n̂~0!5e1~0!cosF01e2~0!sinF0 , ~24!

while the initial conditions forŜ1 and L̂N , as expressed by
their components with respect to the source frame, are

L̂N~0!5~0,0,1!, ~25!

Ŝ1~0!5~A12k1
2,0,k1!. ~26!

BCV2 proposed to use the family of waveforms~detector
responses! defined by Eqs.~5!–~7! and~13!–~15! as a family
of physical templatesfor compact binaries with a single spin
Depending on the maximum PN orderN up to which the
terms of Eq.~5! are retained, we shall denote this class
template families STN . The STN templates deserve to b
called physical because they are derived from a physic
model, namely the adiabatic PN dynamics plus quadrup
GW emission. Each STN template family is indexed by
elevenparameters:M, h, x1 ~basic!, k1 ~local!, Q, w, u, f,
c ~directional!, plus the timet0 at which the instantaneou

FIG. 1. Ending frequency~instantaneous GW frequency at th
MECO! as a function ofh, evaluated from Eq.~8! at 2 PN order for
M515M ( , x151, and for different values ofk1.
10401
f

l
le

GW frequency passes through the fiducial valuev(0)/p,
and the corresponding initial phaseF0. Of these, using the
distinction between intrinsic and extrinsic parameters int
duced in Refs.@27,42# and further discussed by BCV2, th
first four are intrinsic parameters: that is, when we search
GWs using STN templates, we need to lay down a discre
template bank along the relevant ranges of the intrinsic
mensions. The other seven are extrinsic parameters: tha
their optimal values can be found semialgebraically witho
generating multiple templates along the extrinsic dimensi
~another way of saying this is that the maximization of t
overlap over the extrinsic parameters can be incorporate
the detection statistic, which then becomes a function only
the intrinsic parameters!. In Sec. IV we shall describe how
this maximization over the extrinsic parameters can
achieved in practice.

D. Comparison between different post-Newtonian orders and
the choice of mass range

In this section we investigate the range of massesm1 and
m2 for which the PN-expanded evolution equations~5!–~7!
@and therefore the template family~15!# can be considered
reliable. As a rule of thumb, we fix the largest accepta
value of the total mass by requiring that theGW ending
frequency~in our case, the instantaneous GW frequency
the MECO! should not lie in the frequency band of goo
detector sensitivity for LIGO-I. Considering the results o
tained by comparing various nonspinning PN mod
@24,22#, and considering the variation of the ending fr
quency when spin effects are taken into account@18#, we
requireM<15M ( . In keeping with the focus of this pape
on binaries with a single significant spin, we also impo
m2 /m1<0.5, which constrains the spin of the less mass
body to be relatively small~of course, this condition is al-
ways satisfied for NS-BH binaries!. Population-synthesis cal
culations@43# suggest that the more massive of the two co
pact bodies will have the larger spin, since usually it w
have been formed first, and it will have been spun up throu
accretion from the progenitor of its companion. For defini
ness, we assume 7M(,m1,12M ( and 1M(,m2,3M( ;
the corresponding range ofh is 0.07–0.16.
FIG. 2. Plot of e[(v̇/v2)/@96/5h(Mv)5/3# as a function off GW5v/p, evaluated from Eq.~5! at different PN orders for a (10
11.4)M ( binary. We do not show the 3.5 PN curves, which are very close to the 3 PN curves.
7-6
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In Fig. 1 we plot the GW ending frequency as a functi
of h, evaluated from Eq.~8! at 2 PN order forM515M (

and x151. The various curves refer to different values
k1. The minimum of the GW ending frequency is;300 Hz,
and it corresponds to a (1211)M ( binary with spin anti-
aligned with the orbital angular momentum. In Fig. 2 we p
v̇/v2, normalized to its leading ~Newtonian! term
96/5h(Mv)5/3, as a function of the instantaneous GW fr
quency;v̇/v2 is evaluated from Eq.~5! at different PN or-
ders, for a (1011.4)M ( binary withx151. We see that the
effects of the spin-orbit interaction~evident for differentk1
within the same PN order! are comparable to, or even larg
than, the effect of increasing the PN order. We see also
the different PN curves spread out more and more as
increaseM and h. For comparison, in Fig. 3 we show th
same plot for a (1.411.4)M ( NS-NS binary; note the dif-
ferent scale on the vertical axis. In this case the vari
curves remain rather close over the entire frequency ban

Another procedure~often used in the literature! to charac-
terize the effects of spin and PN order on the evolution
the GW frequency is to count the number of GW cyc
accumulated within a certain frequency band:NGW

[(1/p)*vmin

vmax(v/v̇)dv. Here we takevmin5p310 Hz and

vmax5v ISCO5(63/2pM )21, corresponding to the orbital fre

FIG. 3. Plot of e[(v̇/v2)/@96/5h(Mv)5/3# as a function of
f GW5v/p, evaluated from Eq.~5! at different PN orders for a
(1.411.4)M ( NS-NS binary. We do not show the 2.5 PN, 3 P

( û50), and 3.5 PN curves, which are very close to the 2
curves. Note the change in scale with respect to Fig. 2.
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quency at the innermost stable circular orbit~ISCO! of a
Schwarzchild black hole with massM. In Table I we show
NGW at increasing PN orders for (1011.4)M ( , (12
13)M ( , and (713)M ( binaries. The contributions in pa
rentheses are partial spin terms present at 2.5 PN, 3 PN,
3.5 PN orders and due to known 1.5 PN spin terms in
orbital energy and luminosity. These terms were neglecte
Eq. ~5! to be consistent in including PN terms of the sam
order, and we list them here only to give their order of ma
nitude. Unless there are cancellations, the large numbe
cycles suggests that it is worthwhile to compute spin effe
up to the 3.5 PN order.

The number of accumulated GW cyclesNGW can be a
useful diagnostic, but taken alone it provides incomplete a
sometimes even misleading information. There are three
sons for this. First,NGW is related only to the number o
orbital cycles of the binarywithin the orbital plane, but it
does not reflect the precession of the plane, which modul
the detector response in both amplitude and phase. T
modulations are very important effects, as witnessed by
fact that neither the standard nonspinning-binary templa
~which do not have built-in modulations! nor the original
Apostolatos templates~which add only modulations to the
phase! can reproduce satisfactorily the detector response
the GWs emitted by precessing binaries. Second, even if
signals have values ofNGW that differ by ;1 when vmax
equals the GW ending frequency~which apparently repre-
sents a total loss of coherence, and hence a significant
crease in overlap!, one can always shift their arrival times t
obtain higher overlaps. Third, in the context of GW search
the differences inNGW should be minimized with respect t
the search parameters, as done with the fitting factor.

The Cauchy criterion@28# states that the sequence STN
converges if and only if for everyk, ^STN1k ,STN&→1 as
N→`. In Table II, we test the specific case ofk50.5, for
maximally spinning and nonspinning (1011.4)M ( and (12
13)M ( binaries. The overlaps quoted at the beginning
each column are maximized over the extrinsic parametert0
andF0, but not over the five extrinsic directional paramete
w, Q, u, f, andc or the intrinsic parametersm1 , m2 , x1,
and k1 ~we call this thenonmaximizedoverlap!. For com-
parison, we show in parentheses the overlaps maxim
over all the parameters of the lower-order family@i.e., the
fitting factors~FF! for the target family STN1k as matched by
n terms

TABLE I. PN contributions to the numberNGW of GW cycles accumulated fromvmin5p310 Hz tovmax5v ISCO51/(63/2pM ). The

contributions in parentheses, (•••), are partial spin terms present at 2.5 PN, 3 PN, and 3.5 PN orders and due to known 1.5 PN spi
in the orbital energy and luminosity.

(1011.4)M ( (1213)M ( (713)M (

Newtonian 3577.0 1522.3 2283.8
1 PN 213.1 114.3 139.0
1.5 PN 2181.31114.2k1x1 299.7155.7k1x1 2102.3148.2k1x1

2 PN 9.8 6.3 6.4
2.5 PN 220.41(21.1k1x1) 212.71(12.1k1x1) 210.91(9.0k1x1)
3 PN 2.21(217.0k1x112.4k1

2x1
2)10.42û 2.21(29.7k1x111.2k1

2x1
2)10.40û 2.31(26.6k1x110.7k1

2x1
2)10.43û

3.5 PN 21.91(6.4k1x1) 21.31(3.8k1x1) 21.11(2.6k1x1)
7-7
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TABLE II. Test of Cauchy convergence of the adiabatic templates STN at increasing PN orders, for (1011.4)M ( and (1213)M (

binaries, and for maximally spinning BHs (x151, upper and middle panels! and nonspinning BHs (x150, lower panel!. The overlaps
quoted at the beginning of each column are maximized only with respect to the extrinsic parameterst0 andF0. In parentheses, (•••), we
give the overlaps maximized over all the parameters of the lower-order family~i.e., the fitting factors FF for the target family STN1k as
matched by the search family STN , evaluated at the target masses shown!; the fitting factors are obtained by extending the search into
unphysical template region whereh.0.25 andx1.1. In brackets,@•••#, we show the parametersM ,h,x1 ,k1 ~or M ,h whenx150) at

which the maximum overlap is achieved. The detector is perpendicular to the initial orbital plane, and at 3 PN order we setû50; in all cases
the integration of the equations is started at a GW frequency of 60 Hz. The maximization procedure was stopped whenever an over>0.99
was achieved.

(N1k,N) ^STN1k ,STN& for (1011.4)M ( binary,x151
k150.9 k150.5 k1520.5 k1520.9

~1,0! 0.1976 ~0.7392! @24.5,0.02,0.00,0.00# 0.1976 ~0.7392! 0.1976 ~0.7392! @24.5,0.02,0.00,20.00# 0.1976 ~0.7392
~1.5,1! 0.2686 ~0.7848! @4.53,0.54,0.00,0.00# 0.2696 ~0.7008! 0.2065 ~0.6040! @6.58,0.36,0.00,20.00# 0.1800 ~0.6255
~2,1.5! 0.4876 ~>0.99! @9.56,0.14,0.83,0.93# 0.5627 ~>0.99! 0.6623 ~>0.99! @11.7,0.10,0.97,20.50# 0.7728 ~0.9760
~2.5,2! 0.1587 ~0.9578! @10.5,0.13,1.56,0.95# 0.2011 ~0.9887! 0.2902 ~0.9398! @10.2,0.13,2.00,20.19# 0.3460 ~>0.99!
~3,2! 0.4395 ~0.9848! @11.5,0.10,0.84,0.81# 0.5057 ~0.9881! 0.5575 ~0.9712! @12.0,0.10,0.92,20.48# 0.6606 ~>0.99!
~3,2.5! 0.1268 ~0.9758! @12.8,0.08,0.05,0.98# 0.1539 ~>0.99! 0.2520 ~0.9744! @25.6,0.03,0.35,20.21# 0.2488 ~>0.99!
~3.5,3! 0.9614 ~>0.99! @11.7,0.10,1.00,0.90# 0.9738 ~>0.99! 0.9907 ~>0.99! @11.3,0.11,1.02,20.49# 0.9939 ~>0.99!

(N1k,N) ^STN1k ,STN& for (1213)M ( binary,x151
k150.9 k150.5 k1520.5 k1520.9

(1,0) 0.2506 ~0.7066! @10.5,0.22,0.00,0.00# 0.2506 ~0.7066! 0.2506 ~0.7066! @10.5,0.22,0.00,20.00# 0.2506 ~0.7066
(1.5,1) 0.3002 ~0.7788! @8.22,0.50,0.00,0.00# 0.2597 ~0.7381! 0.2124 ~0.6934! @11.6,0.44,0.00,20.00# 0.2017 ~0.5427
(2,1.5) 0.6379 ~>0.99! @16.0,0.14,1.14,0.92# 0.7089 ~>0.99! 0.8528 ~>0.99! @14.2,0.18,1.14,20.59# 0.8620 ~>0.99!
(2.5,2) 0.2039 ~0.9397! @15.4,0.17,1.95,0.87# 0.2800 ~0.9863! 0.4696 ~0.9756! @13.5,0.18,1.22,20.51# 0.4219 ~>0.99!
(3,2) 0.6679 ~0.9851! @11.0,0.25,0.72,0.84# 0.7267 ~>0.99! 0.9052 ~>0.99! @13.1,0.21,1.50,20.70# 0.8868 ~>0.99!
(3,2.5) 0.1603 ~>0.99! @18.5,0.10,0.05,0.99# 0.2272 ~>0.99! 0.3804 ~0.9759! @15.8,0.15,0.94,20.49# 0.3060 ~>0.99!
(3.5,3) 0.9517 ~>0.99! @15.2,0.15,0.84,0.86# 0.9694 ~>0.99! 0.9932 ~>0.99! @15.3,0.16,1.00,20.49# 0.9900 ~>0.99!

(N1k,N) ^STN1k ,STN& for x150
(1011.4)M ( (1213)M (

(1,0) 0.1976 ~0.7392! @24.5,0.02# 0.2506 ~0.7066! @10.5,0.22#
(1.5,1) 0.1721 ~0.6427! @5.22,0.51# 0.2153 ~0.6749! @9.22,0.51#
(2,1.5) 0.7954 ~0.9991! @12.7,0.09# 0.8924 ~0.9981! @16.2,0.14#
(2.5,2) 0.4872 ~0.9961! @6.94,0.25# 0.5921 ~0.9977! @8.05,0.48#
(3,2) 0.7471 ~0.9970! @15.3,0.06# 0.8982 ~0.9994! @19.3,0.10#
(3,2.5) 0.4127 ~0.9826! @26.5,0.02# 0.5282 ~0.9783! @29.0,0.05#
(3.5,3) 0.9931 ~>0.99! @11.6,0.11# 0.9924 ~>0.99! @15.4,0.15#
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the search family STN]; we show in brackets the paramete
at which the maximum overlaps are achieved.@The overlaps
are especially bad when 1 PN and 2.5 PN waveforms
used. These two orders are rather peculiar: the flux func
F can be a decreasing function ofv, and even assume neg
tive values~which is obviously not physical!; correspond-
ingly, v̇ can become negative. Furthermore, the MECO
terion used to set the ending frequency can also fail, beca
for some configurations the MECO does not exist, or occ
after v̇ has become negative. To avoid these problems,
stop the numerical integration of the equations of mot
whenv̇ decreases to one tenth of its Newtonian value, o
a GW frequency of 1 kHz, whichever comes first. For co
parison, in Table II we show also the overlaps between S2
10401
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and ST3, which are much higher than those between ST2 and
ST2.5 and than those between ST2.5 and ST3.#

While the nonmaximized overlaps can be very low, t
FFs are consistently high~note that this requires extendin
the search into the unphysical template region whereh
.0.25 andx1.1); however, the best-fit search paramete
can be rather different from the target parameters. This s
gests that higher-order PN effects can be reabsorbed
change of parameters, so the STN templates can be consid
ered rather reliable for the purpose of detecting GWs fr
precessing binaries in the mass range examined; howe
the estimation of binary parameters can suffer from syste
atic errors. In the rest of this paper we shall describe a
analyze a search scheme that uses the ST2 template family.
7-8
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A more thorough analysis of the differences between
various PN orders would be obtained by comparing the P
expanded adiabatic model used in this paper with P
resummed adiabatic models~e.g., using the Pade´ prescription
@28#! and nonadiabatic models~e.g., using the effective-one
body model@44#!. A similar comparison was carried out fo
the nonspinning case in Refs.@22,24#. Unfortunately, wave-
forms that include precessional effects are not yet availa
for the PN-resummed adiabatic and nonadiabatic models

IV. A NEW PHYSICAL TEMPLATE FAMILY FOR NS-BH
AND BH-BH PRECESSING BINARIES

In this section we discuss the detection of GWs fro
single-spin precessing binaries using the template family
suggested in Ref.@18#, and further discussed in Sec. III. Th
proposed detection scheme involves the deployment of a
crete template bank along the relevant range of the intrin
parametersM, h, x1, and k1 and the use of a detectio
statistic that incorporates the maximization of the over
over all the extrinsic parameters: the directional anglesQ,
w, u, f, andc, the time of arrivalt0, and the initial phase
F0. In Sec. IV A we describe the reparametrization of t
templates used for the formulation of the maximized statis
which is then discussed in Sec. IV B, where we also pres
an approximated but computationally cheaper version.
exact and approximated statistics are discussed togeth
Sec. V in the context of an optimized two-stage detect
scheme.

A. Reparametrization of the waveforms

We recall from Eqs.~15!–~21! that the generic functiona
form of our precessing templates is

h@lA#5Qi j @M ,h,x1 ,k1 ;F0 ,t0 ;t#Pi j @Q,w;u,f,c#.
~27!

@Please note that for the rest of this paper we shall
coupled raised and lowered indices to denote contract
however, the implicit metric is always Euclidian, so cova
ant and contravariant components are equal. This will be
also for the symmetric trace-free~STF! components intro-
duced later, which are denoted by uppercase roman indic#

The factorQi j (t) ~which describes the time-evolving dy
namics of the precessing binary! is given by

Qi j 52
2m

D

M

r
[ @e1# i j cos 2~F1F0!

1@e3# i j sin 2~F1F0!],
~28!

where the GW phaseF(t) and the GW polarization tensor
e1,3(t) evolve according to Eqs.~5!, ~13!, and ~14!. This
factor depends on the intrinsic parametersM, h, x1, andk1
and on two extrinsic parameters: the initial phaseF0 and the
time of arrivalt0 of the waveform, referred to a fiducial GW
frequency. We can factor out the initial phaseF0 by defining

Q0
i j [Qi j ~F050!, ~29!
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Qp/2
i j [Qi j ~F05p/4!; ~30!

we then have

Qi j 5Q0
i j cos~2F0!1Qp/2

i j sin~2F0!. ~31!

The factorPi j ~which describes the static relative positio
and orientation of the detector with respect to the axes
tially defined by the binary! is given by

Pi j 5@T1# i j F11@T3# i j F3 , ~32!

where the detector antenna patternsF1,3(u,f,c) and the
detector polarization tensorsT1,3(Q,w) depend on the ori-
entation anglesu, f, andc, and on the position anglesQ
andw, all of them extrinsic parameters. The antenna patte
can be rewritten as

H F1

F3
J 5AF1

2 1F3
2 H cosa

sina J ; ~33!

the factorF[AF1
2 1F3

2 then entersh as an overall multi-
plicative constant@45#. In what follows we shall be consid
ering normalized signals and templates, whereF drops out,
so we setF51. We then have

Pi j 5@T1# i j cosa1@T3# i j sina. ~34!

Both Qi j (t) and Pi j are three-dimensional STF tensor
with five independent components each. Using an orthon
mal STF basisMi j

I , I 51, . . . ,5, with (MI) i j (MJ) i j 5d IJ,
we can conveniently expressPi j and Qi j in terms of their
components on this basis,

Qi j 5QI~MI ! i j , Pi j 5PI~MI ! i j , ~35!

where

QI5Qi j ~MI ! i j , PI5Pi j ~MI ! i j . ~36!

In this paper, we shall adopt a particular orthonormal b
sis,

~M1! i j 5A4p

15
~Y i j

221Y i j
222!,

~M2! i j 52 iA4p

15
~Y i j

222Y i j
222!,

~M3! i j 52A4p

15
~Y i j

212Y i j
221!, ~37!

~M4! i j 5 iA4p

15
~Y i j

211Y i j
221!,

~M5! i j 52A8p

15
Y i j

20,

with Y i j
2m defined by

Y i j
2mqiqj[Y2m~ q̂!, ~38!
7-9
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whereY2m(q̂), m522, . . . ,2 are theusual l 52 spherical
harmonics andq̂ is any unit vector. We bring together th
result with Eqs.~31! and ~34! to write the final expression

h5PI@Q0
I cos~2F0!1Qp/2

I sin~2F0!#, ~39!

where

PI~Q,w,a!5$@T1~Q,w!# Icosa1@T3~Q,w!# Isina%.
~40!

Henceforth, we shall denote the surviving extrinsic para
eters collectively asJa[(t0 ,F0 ,a,Q,w), and the intrinsic
parameters asXi[(M ,h,x1 ,k1).
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B. Maximization of the overlap over the extrinsic parameters

As we have anticipated, it is possible to maximize t

overlapr5^s,ĥ& semialgebraicallyover the extrinsic direc-
tional parametersQ, w, u, f, andc, without computing the

full representation ofĥ for each of their configurations. In
addition, it is possible to maximize efficiently also overt0

andF0, which are routinely treated as extrinsic paramet
in nonspinning-binary GW searches.

For a given stretch of detector outputs, and for a particu-
lar set of template intrinsic parametersXi5(M ,h,x1 ,k1),
we denote the fully maximized overlap as
~41!
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where the subscriptt0 denotes the dependence of the sign
template inner products on the time-of-arrival parameter
the templates. In fact, each of these inner products can
computed simultaneously for allt0 with a single FFT; in this
sense,t0 is an extrinsic parameter@46#.

Let us now see how to deal withF0. We start by making
an approximation that will be used throughout this paper.
notice that the template componentsPIQ0

I andPIQp/2
I @Eqs.

~29! and~30!# are nearly orthogonal, and have approximat
the same signal power,

^PIQ0
I ,PJQp/2

J &.0, ~42!

^PIQ0
I ,PJQ0

J&.^PIQp/2
I ,PJQp/2

J &; ~43!

this is accurate as long as the time scales for the radiat
reaction-induced evolution of frequency and for t
precession-induced evolution of phase and amplitude mo
lations are both much longer than the orbital period. Mo
precisely, Eqs.~42! and~43! are valid up to the leading-orde
stationary-phase approximation. Under this hypothesis
~41! simplifies, and its maximum overF0 is found easily:

rJa5 max
t0 ,F0 ,Q,w,a

PI@^s,Q0
I &cos 2F01^s,Qp/2

I &sin 2F0#

API PJ^Q0
I ,Q0

J&

5 max
t0 ,Q,w,a

API PJA
IJ

PI PJB
IJ

[ max
t0 ,Q,w,a

rF0
, ~44!

where we have defined the two matrices

AIJ[^s,Q0
I & t0

^s,Q0
J& t0

1^s,Qp/2
I & t0

^s,Qp/2
J & t0

,

-
f

be

e

y

n-

u-
e

q.

BIJ[^Q0
I ,Q0

J&, ~45!

which are functions only of the intrinsic parameters~and, for
AIJ, of t0). We have tested the approximations~42! and~43!
by comparing the maximized overlaps obtained from E
~44! with the results of full numerical maximization withou
approximations; both the values and the locations of
maxima agree to one part in a thousand, even for syst
with substantial amplitude and phase modulations, where
approximations are expected to be least accurate.

Although Eq.~44! looks innocent enough, the maximiza
tion of rF0

is not a trivial operation. The five components
PI in Eq. ~44! are not all independent, but they are speci
functions of only three parameters,Q, w, and a @see the
discussion leading to Eqs.~34! and ~40!#. We can therefore
think of rJa as the result of maximizingrF0

with respect to
the five-dimensional vectorPI , constrained to the three
dimensional physical submanifold PI(Q,w,a). We shall
then refer torJa as theconstrainedmaximized overlap.

What is the nature of the constraint surface? We can ea
find the two constraint equations that define it. First, we n
tice from Eqs.~41! and~44! that the magnitude of the vecto
PI does not affect the overlap: so we may rescalePI and set
one of the constraints asPI P

I51; even better, we may re
quire that the denominator of Eq.~44! be unity, PI PJB

IJ

51. Second, we remember thatPi j @Eq. ~32!# is the polar-
ization tensor for a plane GW propagating along the dir
tion vector

N̂i5~sinQ cosw,sinQsinw,cosQ!. ~46!

Because GWs are transverse,Pi j must admitN̂i as an eigen-
vector with null eigenvalue; it follows that

detPi j 50. ~47!
7-10
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This equation can be turned into the second constraint for
PI @see Eq.~B6! of Appendix B#.

Armed with the two constraint equations, we can ref
mulate our maximization problem using the method of L
grangian multipliers@Eq. ~B7! in Appendix B#. However, the
resulting system of cubic algebraic equations does not ap
to have closed-form analytic solutions. In Appendix B w
develop an iterative algebraic procedure to solve the sys
obtaining the constrained maximum and the correspond
PI . In practice, we have found it operationally more robu
to use a closed-form expression for the partial maxim
over F0 and a ~which seems to be the farthest we can
analytically!, and then feed it into a numerical maximum
finding routine ~such as the well-knownAMOEBA @47#! to
explore the (Q,w) sphere, repeating this procedure for allt0
to obtain the full maximum.

To maximizerF0
over a, we use Eq.~40! to factor out

the dependence of thePI on a, and write

API PJA
IJ

PI PJB
IJ

5AuAauT

uBauT
, ~48!

whereu is the two-dimensional row vector (cosa,sina), and
whereAa andBa are the 232 matrices

Aa5AIJS @T1# I@T1#J @T1# I@T3#J

@T1# I@T3#J @T3# I@T3#J
D , ~49!

Ba5BIJS @T1# I@T1#J @T1# I@T3#J

@T1# I@T3#J @T3# I@T3#J
D ; ~50!

in these definitions we sum over the indicesI and J. The
matricesAa andBa are implicitly functions of the anglesQ
and w through the polarization tensorsT1 and T3 . It is
straightforward to maximize Eq.~48! over a, yielding @48#

rJa5 max
t0 ,Q,w

Amax eigv@AaBa
21#[ max

t0 ,Q,w

rF0 ,a . ~51!

The overlaprF0 ,a is essentially equivalent to theF statistic
used in the search of GWs from pulsars@49#.

The last step in obtainingrJa is to maximizerF0 ,a nu-

merically over the (Q,w) sphere, repeating this procedu
for all t0 to obtain the full maximum. Now,t0 enters Eq.~51!
only through the ten signal-template inner produ
^s,Q0,p/2

I & contained inAa , and each such product can b
computed for allt0 with a single FFT. Even then, the sem
algebraic maximization procedure outlined above can stil
very computationally expensive if the search overQ andw
has to be performed for each individualt0. We have been
able to reduce computational costs further by identifying
rapidly computed, fully algebraic statisticrJa8 that approxi-
matesrJa from above. We then economize by performin
the semialgebraic maximization procedure only for the v
ues oft0 for which rJa8 rises above a certain threshold; fu
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thermore, the location of the approximated maximum p
vides good initial guesses forQ andw, needed to kickstart
their numerical maximization.

Quite simply, our fast approximation consists in negle
ing the functional dependence of thePI on the directional
parameters, computing instead the maximum ofrF0

@Eq.

~44!# as if the five PI were free parameters. Using th
method of Lagrangian multipliers outlined in the beginni
of Appendix B @Eqs.~B3!–~B5!#, we get

rJa8 5max
PI

API PJA
IJ

PI PJB
IJ

5Amax eigv@AB21#, ~52!

with

~AIJ2lBIJ!PJ50, l5max eigv@AB21#. ~53!

Here the prime stands forunconstrainedmaximization over
PI . We shall henceforth refer torJa8 as theunconstrained
maximum.

Note that the value of thePI at the unconstrained maxi
mum will not in general correspond to a physical set of
rectional parameters, soPi j will not admit any direction vec-
tor N̂i @Eq. ~46!# as a null eigenvector. However, we can st
get approximate values ofQ and w by using instead the
eigenvector ofPi j with the smallest eigenvalue~in absolute
value!.

V. DESCRIPTION AND TEST OF A TWO-STAGE SEARCH
SCHEME

In Sec. IV we have described a robust computational p
cedure to find the maximum overlaprJa ~which is maxi-
mized over the extrinsic parametersF0 , t0, andPI , where
the allowed values of thePI are constrained by their func
tional dependence on the directional angles!. We have also
established a convenient analytic approximation forrJa, the
unconstrained maximized overlaprJa8 ~which is maximized
over the extrinsic parametersF0 , t0, andPI , but where the
PI are treated as five independent and unconstrained co
cients!. Because the unconstrained maximization has acc
to a larger set ofPI , it is clear thatrJa8 .rJa. Still, at least
when the target signals is very close to the templateh(Xi),
we expectrJa8 to be a very good approximation forrJa.

A quick look at the procedures outlined in Sec. IV show
that, for the filtering of experimental data against a discr
bank of templates$h(X(k)

i )%, the computation ofrJa8 is go-
ing to be much faster than the computation ofrJa. Under
these conditions, it makes sense to implement a two-s
search scheme where the discrete bank$h(X(k)

i )% is first re-
duced by selecting the templates that have highrJa8 against
the experimental data; at this stage we identify also
promising times of arrivalt0. The exactrJa is computed
only for these first-stage triggers, and compared with
detection thresholdr* to identify detection candidates~one
would use the same thresholdr* in the first stage to guar
7-11
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FIG. 4. Ratio between the unconstrained (rJa8 ) and constrained (rJa) maximized overlaps, as a function ofrJa. Each point corresponds
to one out of 20350 sets of intrinsic parameters for target signal and template, and is averaged over 100 sets of extrinsic paramete
target signal. The error bars show the standard deviations of the sample means~the standard deviations of the samples themselves will be
times larger, since we sample 100 sets of extrinsic parameters!. The two panels show results separately for (1011.4)M ( ~left! and (7
13)M ( target systems~right!. The few points scattered toward higher ratios and lowerrJa are obtained when the first set of extrins
parameters happens to yield a highrJa8 that is not representative of most other values of the extrinsic parameters; then the magnitude
intrinsic-parameter deviation is set too high, and the comparison betweenrJa8 and rJa is done at lowrJa, where the unconstrained
maximized overlap is a poor approximation for its constrained version.
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antee that all the detection candidates will make it into
second stage! @50#.

To prove the viability of such a search scheme, we sh
first establish thatrJa8 is a good approximation forrJa for
target signals and templates computed using the adiab
model of Sec. III. We will take slightly displaced intrinsi
parameters for target signals and templates, to reproduc
experimental situation where we are trying to detect a sig
of arbitrary physical parameters with the closest temp
belonging to a discrete bank. This first test is described
Sec. V A. We shall then study the false-alarm statistics
rJa andrJa8 , and we shall show that, for a given detecti
threshold, the number of first-stage triggers caused by p
noise is only a few times larger than the number ofbona fide
second-stage false alarms. Such a condition is necessar
cause the two-stage detection scheme is computationall
ficient only if few templates need ever be examined in
expensive second stage. The false-alarm statistics~in Gauss-
ian stationary noise! are obtained in Sec. V B, and the seco
test is described in Sec. V C.

A. Numerical comparison of constrained and unconstrained
maximized overlaps

In this section we describe a set of Monte Carlo ru
designed to test how wellrJa8 can approximaterJa, for the
target signals and templates computed using the adiab
model of Sec. III, for typical signal parameters, and f
signal-template parameter displacements characteristic o
actual search. We choose target signals with 20 different
of intrinsic parameters given by

~m1 ,m2 ,x1 ,k1!5H ~10,1.4!M (

~7,3!M (
J 3H 0.5

1 J 35
20.9

20.5

0.0

0.5

0.9
6 .

~54!
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For each set of target-signal intrinsic parameters, we cho
100 random sets of extrinsic parameters (Q,w,a,F0), where
the combination (Q,w) is distributed uniformly on the solid
angle, and wherea andF0 are distributed uniformly in the
@0,2p# interval. The target signals are normalized, so
allowed range forrJa andrJa8 is @0,1#.

For each target signal, we test 50~normalized! templates
displaced in the intrinsic-parameter space (M ,h,x1 ,k1) ~the
optimal extrinsic parameters will be determined by the op
mization of rJa and rJa8 , so we do not need to set them!.
The direction of the displacement is chosen randomly in
(M ,h,x1 ,k1) space. For simplicity, the magnitude of th
displacement is chosen so that, for each set of target-si
intrinsic parameters and for thefirst setof target-signal ex-
trinsic parameters, the overlaprJa8 is about 0.95; the magni
tude is then kept fixed for the other 99 extrinsic-parame
sets, sorJa8 can be very different in those cases.

Figure 4 shows the ratiorJa8 /rJa, for each pair (20
350 in total! of target and template intrinsic-paramet
points, averaged over the 100 target extrinsic-param
points, as a function of the averagedrJa. TherJa8 get closer
to the rJa as the latter get higher; most important, the d
ference is within; 2% whenrJa.0.95, which one would
almost certainly want to achieve in an actual search for s
nals. We conclude thatrJa8 can indeed be used as an appro
mation forrJa in the first stage of a two-stage search. T
second stage is still necessary, because the false-alarm s
tics are worse for the unconstrained maximized over
~where more degrees of freedom are available! than for its
constrained version. We will come back to this in the ne
two sections.

It is also interesting to compare the set of extrinsic para
eters of the target signal with the set of extrinsic parame
that maximizerJa, as characterized by the correspondi
source direction vectors,N̂true andN̂max, respectively. Figure
5 shows the inner productN̂true•N̂max, averaged over the 100
7-12
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FIG. 5. Inner product between target-signal source directionN̂true andrJa-maximizing source directionN̂max, as a function ofrJa. Each
point corresponds to one out of 20350 sets of intrinsic parameters for target signal and template, and is averaged over 100 sets of e
parameters for the target signal. Standard deviations of the sample means are shown as error bars, as in Fig. 4. The two pa
separately (1011.4)M ( target systems~left! and (713)M ( target systems~right!.
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target extrinsic-parameter points, as a function of the a
agedrJa. The difference between the vectors can be v
large, even whenrJa.0.95: this happens because t
intrinsic-parameter displacement between target signal
template can be compensated by a change in the extr
parameters of template~in other words, the effects of th
intrinsic and extrinsic parameters on the waveforms
highly correlated!.

B. False-alarm statistics for the constrained and unconstrained
maximized overlaps

In this section we derive and compare the false-alarm
tistics of rJa andrJa8 . Our purpose is to estimate the num
ber of additional triggers that are caused by replacing
detection statisticrJa by the first-stage statisticrJa8 . Our
two-stage detection scheme, which employs the rapidly c
putedrJa8 to choose candidates for the more computationa
expensiverJa, will be viable only if the number of those
candidates is small enough.

By definition, a false alarm happens when, with interf
ometer output consisting of pure noise, the detection stat
computed for a given template happens to rise above
detection threshold. Although the detection statisticsrJa and
rJa8 include maximization over the time of arrivalt0, we find
it convenient to excludet0 from this computation, and to
include it later when we evaluate the total false-alarm pr
ability for all the templates in the bank.

Recall thatrJa @Eq. ~44!# and rJa8 @Eq. ~52!# are func-
tions of the matricesA andB, which contain the inner prod
ucts^s,Q0,p/2

I & and^Q0,p/2
I ,Q0,p/2

J &, respectively. In this case
the signals is a realization of the noise,n. We combine the
vectorsQ0

I andQp/2
I together asQI with I51, . . .,10; under

the assumption of Gaussian stationary noise,YI[^n,QI& is a
ten-dimensional Gaussian random vector with zero mean
covariance matrix@36#

CIJ5^n,QI&^n,QJ&5^QI,QJ&. ~55!

The covariance matrixCIJ specifies completely the statist
cal properties of the random vectorYI, and it is a function
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only of B, and therefore only of the intrinsic parameters
the template. We can also combinePIcos 2F0 andPIsin 2F0
together asPI , and then write the maximized overlapsrJa

andrJa8 as

max
PI

PI^n,QI&

APIPJ ^QI,QJ&
5max

PI

PIYI

APIPJ CIJ
, ~56!

where maximization is performed over the appropriate ra
of the PI . In the rest of this section we shall use the sho
handr to denote bothrJa andrJa8 .

Equation~56! is very general: it describesrJa andrJa8 ,
but it can also incorporate other maximization ranges o
the PI , and it can even treat different template families.
fact, the maximized detection statistic for the (c0c3/2B)6
DTF of Ref. @18# can be put into the same form, withPI
[aI , for I51, . . . ,6, andwith completely unconstrained
maximization.

We can now generate a distribution of the detection s
tistic r for a given set of intrinsic parameters by generatin
distribution of the Gaussian random vectorYI, and then
computingr from Eq.~56!. The first step is performed easil
by starting from ten independent Gaussian random varia
ZI of zero mean and unit variance, and then settingYI

5@AC#IJZJ @51#. Thus, there is no need to generate act
realizations of the noise as time series, and no need to c
pute the inner productŝn,QI& explicitly.

The statisticsr @Eq. ~56!# are homogeneous with respe
to the vectorZI: that is, if we defineZI5rẐI ~where r

[AZIZI and ẐIẐI51) we have

r@YI~ZI!#5rr@YI~ ẐI!#[rr1~V!; ~57!

hereV represents the direction ofẐI in its ten-dimensional
Euclidian space. The random variabler has the marginal
probability density

pr~r !5
r n21exp~2r 2/2!

2n/221G~n/2!
, ~58!
7-13
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where the directionV is distributed uniformly over a ten
sphere.~For the rest of this section we shall write equatio
in the generaln-dimensional case; the special case of o
template family is recovered by settingn510.! The random
variablesr andV @and thereforer1(V)] are statistically in-
dependent, so the cumulative distribution function for t
statisticr is given by the integral

P~r,r* !5E dVE
0

r* /r1(V)
pr~r !drY E dV

512E G†n/2 , @r* /r1~V!#2/2‡

G@n/2#
dVY E dV,

~59!

where G@k,z#5*z
1`tk21e2tdt is the incomplete gamma

function.
The false-alarm probability for a single set of intrins

parameters and for a single time of arrival is then 12P(r
,r* ). The final integral over then-dimensional solid angle
can be performed by Monte Carlo integration, averaging
integrand over randomly chosen directionsV. Each sample
of the integrand is obtained by generating a normalizedẐI

~that is, a directionV), obtaining the correspondingYI,
computingr1(V) from Eq.~56!, and finally pluggingr1(V)
into theG function.

Equation~59! shows that if we setr1(V)51, the random
variable r follows the x (n) distribution; this is obvious

because in that caser5r 5AZIZI @see Eq.~57!#, where the
ZI are n-independent Gaussian random variables. In fa
r1(V) can be written as

r1~V!5max
PI

RIẐI

ARIRJdIJ
, RI5@AC#IJPJ ~60!

which shows thatr1(V)51 uniformly for everyV if and
only if the range of maximization forPI is the entire
n-dimensional linear space generated by the basis$QI%;
however, once we start using the entire linear space, the
ticular basis used to generate it ceases to be important, s
covariance matrixCIJ drops out of the equations for th
false-alarm probabilities. That is the case, for instance,
the (c0c3/2B)6 DTF ~see Sec. V B of Ref.@18#!, whose false-
alarm probability is described by thex (n56) distribution. For
our template familyn510, but bothrJa andrJa8 have very
restrictive maximization ranges forPI ~becausePI51, . . . ,5

andPI56, . . . ,10are strongly connected!: so bothrJa andrJa8
will have much lower false-alarm probability, for the sam
thresholdr* , than suggested by thex (n510) distribution. In
fact, in the next section we shall see that the effectiven for
the detection statisticrJa8 is about 6, while the effectiven for
rJa is even lower.
10401
r

e

e

t,

ar-
the

r

C. Numerical investigation of false-alarm statistics

The total false-alarm probability for the filtering of ex
perimental data by a template bank over a timeT is

Ptot~r.r* !512@P~r,r* !#NshapesNtimes ~61!

~see, for instance, Ref.@22#!, where the exponen
NshapesNtimes is an estimate of the number of effective ind
pendent statistical tests. The number of independent si
shapesNshapesis related to~and smaller than! the number of
templates in the bank@52#; the number of independent time
of arrival Ntimes is roughlyT/dt0, wheredt0 is the mismatch
in the time of arrival needed for two nearby templates
have, on average, very small overlap. In our tests we
Nshapes5106 and Ntimes5331010 ~or equivalently dt0
.1 ms), as suggested by the results of Sec. VI for temp
counts and for the full mismatch metric; in fact, both num
bers represent rather conservative choices.

We compute single-test false-alarm probabilities from E
~59!, averaging the integrand over 105 randomly chosen val-
ues of V to perform the integration overV. Our conver-
gence tests indicate that this many samples are enoug
obtain the required precision@53#. In Fig. 6 we show the
thresholdsr* required to achieve a total false-alarm rate
1023/yr; the figure suggests that a threshold close to 10
adequate. The thresholds are only marginally higher for
unconstrained statistic, so the number of first-stage fa
alarms that are dismissed in the second stage is limited.
show also the threshold required to achieve the same fa
alarm rate with the (c0c3/2B)6 DTF of BCV2: this threshold
is very close to the values found forrJa8 , indicating thatrJa8
has roughly six effective degrees of freedom~as it seems
reasonable from counting the fivePI plus F0). The BCV2
threshold is consistently higher than therJa threshold for
the same single-test false-alarm rate; this suggests tha
detection scheme discussed in this paper is less was
~with respect to the available signal power! than the BCV2
scheme, assuming of course that the number of templ
used in the two banks is similar.

FIG. 6. Detection thresholdsr* for a false-alarm rate of
1023/yr, using the constrained statisticrJa ~circles!, the approxi-
mated~unconstrained! statisticrJa8 ~diamonds!, and the detection
statistic for the (c0c3/2B)6 DTF from BCV2~dashed line!. The four
windows correspond to the masses andx1 shown; the points in each
window correspond tok150.9, 0.5, 0,20.5, 20.9.
7-14
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FIG. 7. Ratio (12P@rJa8 ,r* #)/(12P@rJa,r* #) between single-test false-alarm probabilities for the unconstrained and constr
detection statistics, as a function of thresholdr* . The two panels represent systems with masses equal to (1011.4)M ( ~left! and to (7
13)M ( ~right!. The five curves in each plot correspond to differentk1.
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In Fig. 7 we show the ratio between the single-test fal
alarm probabilities forrJa andrJa8 : for a common thresh-
old around 10, we can expect about five times more fa
alarms usingrJa8 than usingrJa, for most values of the
intrinsic parameters~for some of them, this number could b
as high as;15). These results corroborate our suggestion
usingrJa8 in the first-stage of a two-stage detection schem
to weed out most of the detection candidates before com
ing the more computationally expensiverJa.

We need to remember that our assumption of Gaus
stationary noise is usually not realized in practice. For n
Gaussian noise, the probability density function@the counter-
part of pr(r ) defined in Eq.~58!, now a function of bothr
and V] drops more slowly for largerr, so more high-r
events will appear than are expected for the Gaussian c
These events will cause false alarms for both the unc
strained and constrained statistics, but we expect the rat
the rJa8 and rJa false-alarm probabilities at a commo
threshold~shown in Fig. 7 for Gaussian noise! to be reduced,
at least if the threshold is high enough; so our propo
two-stage scheme should still be relevant in reducing co
putational costs. This expectation is justified by the follo
ing argument. For a common thresholdr* and a given di-
rection ẐI, constrained-statistic triggers requirer 5uZIu
larger by a certain factorNr.1 than unconstrained-statist
triggers; this factorNr is independent ofr* and of the prob-
ability distribution for r. Now, the ratio P@r .Nrr 0#/P@r
.r 0# drops much more quickly for a Gaussian distributi
~or rather, for ax2 distribution with several degrees of free
dom! than for a distribution with larger tails; thus, ou
Gaussian-noise estimates undercount therJa triggers with
respect to therJa8 triggers. As for nonstationarity, real-worl
data-analysis protocols try to cope by introducing veto
schemes and by requesting coincident triggers between
or more detectors@54#. It is hard to predict how these add
tional elements might play into our proposed search sche
a full statistical analysis including non-Gaussianity and n
stationarity is beyond the scope of this paper, and it w
probably need to be quite empirical in nature.

VI. TEMPLATE COUNTING AND PLACEMENT

The last aspect to examine before we can recommend
template family of Sec. IV for actual use with the two-sta
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search scheme of Sec. V is the total number of templates
are needed in practice. As mentioned in Sec. II, the templ
bank size and geometry required to achieve a certain m
mum match can be studied using themismatch metric
@27,29,34#, which describes, to quadratic order, the degra
ing overlap between nearby elements in a template bank

12^ĥ~lA!,ĥ~lA1DlA!&[d@lA,lA1DlA#

5gBCDlBDlC, ~62!

whered denotes the mismatch, and where

gBC52
1

2

]2^ĥ~lA!,ĥ~lA1DlA!&

]~DlB!]~DlC!
. ~63!

No zeroth- or first-order terms are needed in the expans
~62!, because the overlap has a maximum of 1~for normal-
ized templates! at DlA50. The metric is positive definite
becaused.0. Note that, according to this definition, th
mismatchd is thesquareof the metric distancebetweenlA

andlA1DlA. It is alsohalf the square of theinner-product

distance A^Dĥ,Dĥ&, where Dĥ[ĥ(lA)2ĥ(lA1DlA)
@55#.

Ideally, for a given continuous template family, one cou
find a reparametrization in which the metric is a Kroneck
delta, and then lay down a template bank as a uniform
percubic lattice in these coordinates, with the appropri
density to yield the required MM. For a hypercubic lattice
n dimensions@56#, the ~metric! side d l of the lattice cell is
given by the relation 12MM5n(d l /2)2 @22,27#; we then get
the total number of templates in the bank by dividing t
total ~metric! volume of parameter space by the volume
each cell:

Ntemplates5E AudetgBCudnlA/@2A~12MM !/n#n. ~64!

In practice, this expression will usually underestimate
total number of templates, for two reasons: first, for mo
than two dimensions it is usually impossible to find coor
nates where the metric is diagonalized everywhere at o
7-15
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second, the fact that the actual parameter space is bou
will also introduce corrections to Eq.~64!. ~The presence o
null parameter directions, discussed in Sec. VI B, can also
seen as an extreme case of boundary effects.!

As we showed in Secs. IV and V, the overlap of the d
tector output with one of the STN templates can be maxi
mized automatically over all the extrinsic parametersJa; it
follows that a discrete template bank will need to exte
only along the four intrinsic parametersXi . So the estimate
~64! for the number of templates should be computed on
projectedmetric gi j

proj that satisfies

12rJa@ ĥ~Xi ,Ja!,ĥ~Xi1DXi !#

[12max
J8a

^ĥ~Xi ,Ja!,ĥ~Xi1DXi ,J8a!&

5gi j
projDXiDXj . ~65!

Note thatgi j
proj is still a function ofall the parameters. In Sec

VI A we computegi j
proj from the full metric gBC ; we then

proceed to construct anaveragemetric, gi j
proj, which is con-

nected closely to detection rates and does not depend o
extrinsic parameters.

In fact, it turns out thatnot all four intrinsic parameters
are needed to set up a template bank that achieves a rea
able MM: we can do almost as well by replacing a 4D ba
with a 3D bank where~for instance! we setk150. As a
geometrical counterpart to this fact, the projected me
must allow a quasinull direction: that is, it must be possi
to move along a certain direction in parameter space w
accumulating almost no mismatch. The correct temp
counting for the 3D bank is then described by areduced
metric, which we discuss in Sec. VI B. Finally, we give o
results for the total number of templates in Sec. VI C.

A. Computation of the full, projected, and average metric

According to Eq.~63!, the full metric gBC can be com-
puted numerically by fitting the quadratic decrease of
overlap ^ĥ(lA),ĥ(lA1DlA)& around DlA50. It is also
possible to rewritegBC in terms of first-order derivatives o
the waveforms: sincêĥ(lA),ĥ(lA)&51 for all lA,

]

]lB
^ĥ,ĥ&52K ĥ,

]ĥ

]lBL 50 ~66!

@in this equation and in the following, we omit the paramet
dependenceĥ(lA) for ease of notation#; taking one more
derivative with respect tolC, we get

K ]ĥ

]lC
,

]ĥ

]lBL 1K ĥ,
]2ĥ

]lC]lBL 50, ~67!

which implies@by Eq. ~63!#

gBC5
1

2 K ]ĥ

]lB
,

]ĥ

]lCL . ~68!
10401
ed

e

-

d

e

the

n-

c
e
le
te

e

The inner product in the right-hand side of Eq.~68! ex-
presses theFisher information matrixfor the normalized
waveformsĥ(lA) ~see for instance Ref.@30#!; for nonnor-
malized waveformsh(lA) we can write

gBC5
1

2^h,h& K ]h

]lB
,

]h

]lCL 2
1

2^h,h&2 K ]h

]lB
,hL K h,

]h

]lCL .

~69!

It is much easier to compute the mismatch metric from E
~68! rather than from Eq.~63!, for two reasons. First, we
know the analytic dependence of the templates on all
extrinsic parameters~exceptt0), so we can compute the de
rivatives]ĥ/]Ja analytically„the derivative with respect to
t0 can be handled by means of the Fourier-transform tim
shift property F@h(t1t0)#5F@h(t)#exp@2pift0#…. Second,
although the derivatives]ĥ/]Xi have to be computed nu
merically with finite-difference expressions such as@ ĥ(Xi

1DXi ,Ja)2ĥ(Xi ,Ja)#/DXi , this is still easier than fitting
the second-order derivatives of the mismatch numeric
@57#.

To obtain the projected metricgi j
proj , we rewrite the mis-

matchd(lA,lA1DlA) by separating intrinsic and extrinsi
parameters,

d~Xi ,Ja;Xi1DXi ,Ja1DJa!

5~DXiDJa!S Gi j Cib

Ca j gab
D S DXj

DJbD ; ~70!

here we have split the full metricgBC into four sections
corresponding to intrinsic-intrinsic (Gi j ), extrinsic-extrinsic
(gab), and mixed (Ca j5Cj a) components. Maximizing the
overlap over the extrinsic parameters is then equivalen
minimizing Eq.~70! over theDJa for a givenDXi , which is
achieved when

gabDJb1Ca jDXj50, ~71!

while the resulting mismatch is

min
DJa

d~Xi ,Ja;Xi1DXi ,Ja1DJa!

5@Gi j 2Cia~g21!abCb j #DXiDXj

[gi j
projDXiDXj . ~72!

Here (g21)ab is the matrix inverse ofgab . For each point
(Xi ,Ja) in the full parameter space, theprojected metric
gi j

proj describes a set of concentric ellipsoids of constantrJa

in the intrinsic-parameter subspace. We emphasize that
projected metric has tensor indices corresponding to the
trinsic parameters, but it is a function of both the intrins
and the extrinsic parameters, and so are the constantrJa

ellipsoids.
Therefore, to build a template bank that covers all t

signals~for all Xi andJa) with a guaranteed MM, we mus
7-16
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use the projected metric at eachXi to construct the constant
mismatch ellipsoids for all possibleJa, and then take the
intersection of these ellipsoids to determine the size of
unit template-bank cell. This is aminimaxprescription@28#,
because we are maximizing the overlap over the extrin
parameters of the templates, and then setting the temp
bank spacing according to the least favorable extrinsic
rameters of the signal. In general, the intersection
constant-mismatch ellipsoids is not an ellipsoid, even in
limit d→0, so it is impossible to find a single intrinsic
parameter metric that can be used to enforce the minim
prescription. There is an exception: the projected metric
not a function oft0 or F0 @58#, so it can be used directly to
lay down banks of nonspinning-binary templates@27,29# for
which t0 andF0 are the only extrinsic parameters.

Returning to the generic case, we can still use the p
jected metric to guide the placement of a template bank if
relax the minimax prescription and request that the minim
match be guaranteedon the averagefor a distribution of
signal extrinsic parameters@59#. It turns out that this
average-mismatchprescription is closely related to the e
pected detection rates. Let us see how. The matched-filte
detection rate for a signals[SA3ĥ(Xi ,Ja), where SA
5^s,s&1/2 is the signal amplitudeat a fiducial luminosity
distance, is proportional to SA3rJa

3
@ ŝ,ĥnear#, where ĥnear

[ĥ(Xi1DXi ,J8a) is the closest template in the bank, a
where we assume that sources are uniformly distribu
throughout the volume accessible to the detector~see, for
instance, Ref.@22#!. The minimax prescription is given by

rJa@ ŝ,ĥnear#.12gi j
proj~Xi ,Ja!DXiDXj>MM ~73!

for all Ja, which ensures that the detection rate is reduce
most by a factor MM3 for every combination of signal ex
trinsic and intrinsic parameters.

Averaging over a uniform distribution of signal extrins
parameters@60#, we get a detection rate proportional to

E dJaSA3rJa
3 .E dJaSA3@12gi j

projDXiDXj #3

.SA323F E dJaSA3gi j
projGDXiDXj

.SA3@12gi j
projDXiDXj #3, ~74!

whereSA35*dJaSA3, and where theaverage metricgi j
proj,

now a function only ofXi , is defined as

gi j
proj5E dJaSA3gi j

proj/SA3. ~75!

@To derive Eq.~74! we assume that 12rJa@ ŝ,ĥnear#!1 for
all Ja.# We can now state the new average-mismatch p
scription as

12gi j
proj~Xi !DXiDXj>MM, ~76!
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which ensures that the detection rate,averaged over the ex
trinsic parameters of the signal, is reduced at most by the
factorMM3. We shall callMM the average minimum match.

B. Null parameter directions and reduced metric

As discussed by Sathyaprakash and Schutz@61# and by
Cutler @59#, an extreme example of boundary effect occu
when one of the eigenvalues ofgBC at lA ~say, L (1)) be-
comes so small that it is possible to move away in param
space along the corresponding eigendirection~say,e(1)

A ) and
reach the boundary of the allowed parameter region wh
keeping the mismatchd(lA,lA1te(1)

A ) well below the re-
quired valuedMM512MM. In other words, the ellipsoid of
constant mismatchdMM extends far beyond the allowed pa
rameter region in the quasinull-eigenvalue direction. In su
a situation, Eq.~64! will underestimate the total number o
templates, because the denominator should now expres
volume of the intersection of each lattice cell with the a
lowed parameter region@62#. A simple-minded fix to Eq.
~64! is the following: write detgBC5) (k)L (k) , where the
L (k) are then eigenvalues ofgBC ; identify all the small
eigenvalues, wheresmall can be defined byL ( i )!(1
2MM)/ l ( i )

2 , with l ( i ) the coordinate diameter of the allowe
parameter range along the eigenvectore( i )

A ; replace the small
eigenvalues by the corresponding value of the expres
(12MM)/ l ( i )

2 ; use this modified determinant in Eq.~64!.
Physically, the presence ofk small eigenvectors sugges

that the variety of waveform shapes spanned by
n-dimensional template family can be approximated w
very high overlap by an (n2k)-dimensionalreducedfamily.
A lower-dimensional template bank is certainly desirable
practical purposes, but it is necessary to exercise caut
because the metricgBC is not homogeneous, the quasinu
eigendirections rotate as we move in parameter space@63#,
so we need to show explicitly that any signal in th
n-dimensional family can be reached from a giv
(n2k)-dimensional submanifold along a quasinull traje
tory. For this to happen, the small eigenvalues must e
throughout the entiren-dimensional parameter space, and t
flow of the quasinull eigenvectors must map the submanif
into the entire space. To see that under these conditions
mismatch between the points on the submanifold and
points outside is indeed small, consider the following arg
ment, due to Cutler@59#. The triangle inequality for the
inner-product distance guarantees that

d1/2@lA~0!,lA~1!#<E
0

1AgBC

dlB

dn

dlC

dn
dn ~77!

alonganypathlA(n); for a path that follows the flow of the
quasinull eigenvectore( i )

A ~a reduction curve!, the total mis-
match is then bounded by the average ofL ( i ) along the
curve, times an integrated squared parameter length of o
l ( i ) @64#.

For the STN template bank and for the two-stage sear
scheme of Sec. V, we find that the projected metricgi j

proj

admits a small eigenvalue for all values of the intrinsic a
7-17
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extrinsic parameters. Figures 8 and 9 show several exam
of reduction curves that follow the quasinull eigendirectio
~the subtleties related to projected-metric reduction cur
are discussed in Appendix C!. The curves shown@65# begin
at the points marked with circles, where (m11m2)5(10
11.4)M ( and

~x1 ,k1!5H 0.5

1.0J 3H 20.5

0.0

0.5
J ; ~78!

the curves then proceed in steps of 1026 for the nominal
mismatch~i.e., the mismatch computed using the local p

FIG. 8. Plot of (x1 ,k1) reduction curves in the (x1 ,k1) plane.
We show curves for two sets of starting extrinsic parameters,
responding to detector directions perpendicular~dark dots! and par-
allel ~light dots! to the initial orbital plane. The curves start at th
points marked with circles, and proceed in steps of 1026 for the
nominal mismatch~i.e., the mismatch computed using the project
metric!. For starting points atx150.5, we follow the quasinull
eigenvector for both positive and negative increments. The cu
end at the (x1 ,k1) boundary, or~roughly! where the true mismatch
~i.e., the exact mismatch between the local and the starting t
plate! becomes greater than 0.01. The ending points are ma
with crosses, and they are annotated with the number of steps t
since the starting point, and with the true mismatch in units
1023.

FIG. 9. Plot of (x1 ,k1) reduction curves in the (M ,M) plane.
The curves are the same as shown in Fig. 8, but we omit all m
ings.
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jected metric! until they reach the (x1 ,k1) boundary, or
~roughly! until the true mismatch~i.e., the exact mismatch
between the local and the starting template! is greater than
0.01. We show curves for two sets of starting extrinsic p
rameters, corresponding to detector directions perpendic
~dark dots! and parallel~light dots! to the initial orbital plane.
Figure 8 shows the projection of the reduction curves in
(x1 ,k1) plane; the ending points are marked with cross
and they are annotated with the number of steps taken s
the starting point, and with the true mismatch in units
1023. Comparing the two numbers at each cross, we see
the triangle inequality is always respected: the true misma
dN is always less than the accumulated nominal misma
1026N2 ~whereN is the number of steps!; in fact, we see that
the latter is a good approximation for the former. Figure
shows the projection of the same reduction curves in
(M ,M) plane. The chirp massM[Mh3/5 varies by less
than 2% along the curves: this is natural, sinceM dominates
the evolution of the GW phase@see Eq.~5!#.

Figure 8 suggests that we can reduce the dimension
of our template bank by collapsing the (x1 ,k1) plane into;
three curves, while retaining the full (M ,h) plane. Templates
laid down on these 3D submanifolds with a required mi
mum match MM will then cover every signal in the full 4D
family with mismatch no larger than (12MM) 1d red, where
d red.0.01 is thereduction mismatchintroduced by the re-
duction procedure. Further investigations will be needed
find the optimal choice of reduction curves in the (x1 ,k1)
plane, and to investigate the reduction curves of the aver
metric gi j

proj.

C. Template counting

While three or more reduction curves will probably b
necessary to limitd red.0.01, for the sake of definiteness w
select a 3D reduced template space corresponding
(m1 ,m2)P@7,12#3@1,3#, k150, and x1P(0,1# @66#. We
compute the total number of templates in this 3D templ
bank according to

Ntemplates5

E Audetgi 8 j 8
proj udMdhdx

@2A~12MM !/3#3
, ~79!

where the primed indicesi 8, j 8 run throughM, h, andx, and
we setX4[k150; furthermore,gi j

proj denotes the metric av
eraged over the extrinsic parametersQ, w, anda, as given
by Eq. ~75!. The integral is carried out by evaluating th
projected metric at the parameter sets

~m1 ,m2 ,x1!5H 7M (

12M (
J 3H 1M (

2M (

3M (

J 35
0.1

0.3

0.5

0.7

1.0
6 ; ~80!
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TABLE III. Effects of quadrupole-monopole terms, for (1011.4)M ( binaries with maximally spinning BH. At the beginning of eac
column we quote the overlaps between ST2 templates and ST2

QM templates that include quadrupole-monopole effects. Just as in Tab
these overlaps are maximizing only over the extrinsic parameterst0 andF0. In parentheses, (•••), we show the fitting factors for the ST2

QM

family as matched by the ST2 family; in brackets,@•••#, we show the intrinsic parameters at which the fitting factors are achieved. The
column describes the position of the detector with respect to the initial orbital plane. In all cases the integration of the equations
at a GW frequency of 60 Hz. The maximization procedure was stopped whenever an overlap>0.99 was achieved.

View (1011.4)M ( with x151
k150.9 k150.5 k1520.5 k1520.9

Top 0.4796 ~>0.99! @10.3,0.13,1.21,0.89# 0.9890 ~>0.99! 0.1873 ~>0.99! @11.3,0.11,1.08,20.48# 0.7245 ~0.9877!
Side 0.3503 ~>0.99! @10.0,0.13,0.77,0.94# 0.8033 ~>0.99! 0.8754 ~>0.99! @11.4,0.11,1.03,20.39# 0.7598 ~>0.99!
Diagonal 0.3292 ~>0.99! @11.2,0.11,0.80,0.94# 0.6669 ~>0.99! 0.4546 ~>0.99! @11.3,0.11,1.08,20.49# 0.8437 ~0.9887!
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at each of the points the metric is averaged on 100 pse
random sets of extrinsic parameters. The integration t
proceeds by interpolating across the parameter sets~80! The
final result isNtemplates.76 000 for MM50.98~not including
the reduction mismatch!. Given the uncertainties implicit in
the numerical computation of the metric, in the interpolatio
in the choice of the reduction curves, and in the actual pla
ment of the templates in the bank, this number should
understood as an order-of-magnitude estimate. Most of
templates, by a factor of about 10 to 1, come from the
rameter region nearm251 ~that is, from the small-h region!.

VII. SUMMARY

Buonanno, Chen, and Vallisneri~BCV2! recently pro-
posed@18# a family of physical templates that can be used
detect the GWs emitted by single-spin precessing binar
The attributephysicalrefers to the fact that the templates a
exact within the approximations used to write the PN eq
tions that rule the adiabatic evolution of the binary. In th
paper, after reviewing the definition of this template fam
~here denoted as STN), we discuss the range of binar
masses for which the templates can be considered accu
and examine the effects of higher-order PN corrections,
cluding quadrupole-monopole interactions. We then desc
an optimized two-stage detection scheme that employs
STN family, and investigate its false-alarm statistics. Fina
we estimate the number of templates needed in a GW se
with LIGO-I. Our results can be summarized as follows.

We determine the range of binary masses where theN
templates can be considered accurate by imposing two
ditions: first, for the orbital separations that correspond
GWs in the frequency band of good interferometer sensi
ity, the dynamics of the binary must be described faithfu
by an adiabatic sequence of quasispherical orbits; second
nonspinning body must be light enough that its spin will
negligible for purely dimensional reasons. The selected m
range is (m1 ,m2).@7,12#M (3@1,3#M ( .

To evaluate the effect of higher-order PN corrections
binaries in this mass range, we compute the overlaps
tween templates computed at successive PN orders. W
computed between templates with the same parameters,
overlaps can be rather low; however, they become very h
when maximized over the parameters~both intrinsic and ex-
trinsic! of the lower-order PN template~see Table II!. This
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means that the ST2 template family should be considere
acceptable for the purpose of GW detection, but this me
also that the estimation of certain combinations of bina
parameters can be affected by large systematic errors@20#.
~When precessing-binary gravitational waveforms compu
within PN-resummed and nonadiabatic approaches@28,44#
become available, it will be interesting to compare them w
the PN-expanded, adiabatic STN templates to see if the maxi
mized overlaps remain high. We do expect this to be
case, because the spin and directional parameters of theN
templates provide much leeway to compensate for nontri
variations in the PN phasing.! Again by considering maxi-
mized overlaps, we establish that quadrupole-monopole
fects@67,68# can be safely neglected for the range of mas
investigated~Table III!.

We describe a two-stage GW detection scheme that
ploys a discrete bank of ST2 templates laid down along th
intrinsic parameters (M ,h,x1 ,k1) @although the (x1 ,k1)
may be collapsed to one or few 1D curves, in light of t
discussion of dimensional reduction of Sec. VI#. The detec-
tion statisticrJa(M ,h,x1 ,k1) is the overlap between th
template and the detector output, maximized over temp
extrinsic parameters: (t0 ,F0 ,PI)[(t0 ,F0 ,u,f,c,Q,w).
This maximization is performed semialgebraically, in tw
stages. First, for all possible times of arrivalt0, we maximize
the overlap overF0 and overPI without accounting for the
constraints that express the functional dependence of thPI
on (u,f,c,Q,w): this step yields the approximated~uncon-
strained! maximumrJa8 , which can be computed very rap
idly, and which sets an upper bound forrJa. Second, only
for the times of arrivalt0 at whichrJa8 passes the detectio
threshold, we compute the fully constrained maximumrJa,
which is more expensive to compute.~Note that this scheme
differs from traditional hierarchical schemes because we
the samethreshold in the first and second stages.! We find
that rJa8 is a good approximation torJa, so the number of
first-stage triggers passed to the second stage is small.

For a total false-alarm probability of 1023/yr, and for a
conservative estimate for the number of independent stat
cal tests, the detection threshold is around 10. For this va
between 5 and 15 first-stage triggers are passed to the se
stage for each eventual detection. For the same threshold
single-test false-alarm probability is lower for ST2 templates
than for the (c0c3/2B)6 DTF of @18# @the total false-alarm
7-19
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probability depends on the number of independent statis
tests, which is not available at this time for the (c0c3/2B)6

DTF#.
The procedure of maximization over the extrinsic para

eters outlined in this paper can also be adapted for the tas
detecting GWs from extreme-mass-ratio inspirals~i.e., the
inspiral of solar-mass compact objects into the supermas
BHs at the center of galaxies@69#! and inspirals of two su-
permassive black holes with LISA@70#. This is possible un-
der the simplifying assumptions of coherent matched filt
ing over times short enough that the LISA antenna patte
can be considered constant, and of GW emission descr
by the quadrupole formula. Furthermore, the formalism
projected and reduced mismatch metrics developed in
VI can treat GW sources, such as extreme-mass-ratio
spirals, where many physical parameters are present,
only few of their combinations have significant effects on t
emitted waveforms@59,61#. In fact, this formalism is closely
related to the procedures and approximations used in
ongoing effort~motivated by mission-design consideration!
to count the templates needed to detect extreme-mass-
inspirals with LISA@71#.

It should be possible to generalize the formalism beyo
quadrupole GW emission, at least to some extent. W
higher-multipole contributions are included, the detector
sponse becomes much more complicated than Eq.~15! @see,
e.g., Eqs.~3.22b!–~3.22h! of Ref. @38# #. In particular, the
response cannot be factorized into a factor that depends
on the dynamical evolution of the binary, and a factor th
depends only on the position and orientation of the detec
it is instead a sum over a number of such terms, each c
taining different harmonics of the orbital and modulation fr
quencies. Despite these complications, it should still be p
sible to maximize the overlap over the extrinsic paramet
using a relatively small number of signal-template a
template-template inner products. The constrain
maximization procedure would however be very comp
cated, and although the~fully algebraic! unconstrained maxi-
mum would still be easy to compute, the dimensionality
the unconstrained template space would now be so large
it may increase the false alarm probability too dramatica
to make the two-stage scheme useful.

The last result of this paper is an estimate of the num
of ST2 templates needed for a GW search in the mass ra
@7,12#M (3@1,3#M ( . To obtain this estimate, we first com
pute the full mismatch metric, which describes the misma
for small displacements in the intrinsic and extrinsic para
eters; we then obtain the projected metric, which reprodu
the effect of maximizing the overlap over the extrinsic p
rameters. At this point we observe that the projected me
has an eigenvector corresponding to a very small eigenva
this indicates that we can choose one of the four intrin
parameters to be a function of the other three, so the dim
sionality of the ST2 template bank can be reduced to thre
For simplicity, we perform this reduction by settingk150.
We then compute the reduced mismatch metric, and obta
rough estimate of;76 000 as the number of templates r
quired for an average MM of 0.98, or 0.97 including a
estimated reduction mismatch of 0.01.
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APPENDIX A: THE QUADRUPOLE-MONOPOLE
INTERACTION

In this appendix we investigate the effect of th
quadrupole-monopole interaction, which we have so far
glected in describing the dynamics of precessing binaries
is well known@67# that the quadrupole moment of a compa
body in a binary creates a distortion in its gravitational fie
which affects orbital motion~both in the evolution ofv and
in the precession ofL̂N), and therefore GW emission; th
orbital motion, on the other hand, exerts a torque on
compact body, changing its angular momentum~i.e., it in-
duces a torqued precession!. Although the lowest-order
quadrupole-monopole effect is Newtonian, it is smaller th
spin-orbit effects and of the same order as spin-spin effe

When the spinning body is a black hole, the equations
the orbital evolution and GW templates are modified as f
lows to include quadrupole-monopole effects. Equation~5!
gets the additional term@68#

S v̇

v2D
Q2M

5
96

5
h~Mv!5/3F5

2
x1

2
m1

2

M2
~3k1

221!~Mv!4/3G ,

~A1!

while the precession equations~6! and ~7! become@68#

Ṡ15
h

2M
~Mv!5/3F S 413

m2

m1
D23x1k1~Mv!1/3G~ L̂N3S1!

~A2!

and

L̇̂N5
v2

2M F S 413
m2

m1
D23x1k1~Mv!1/3G~S13L̂N!

[VL83L̂N ; ~A3!

furthermore, the orbital energy~8! gets the additional term

E Q2M~v!52
h

2
~Mv!2/3F2

1

2
x1

2
m1

2

M2
~3k1

221!~Mv!4/3G ;

~A4!
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finally, Ve is again obtained from Eq.~14!, using the modi-
fied VL8 in Eq. ~A3!. ~Note thatk1[L̂N•Ŝ1.!

The quadrupole-monopole interaction changes the n
ber of GW cycles listed in Table I at 2 PN order. The ad
tional contributions are 5.2x1

2215.5k1
2x1

2 for a (10
11.4)M ( binary, 2.5x1

227.6k1
2x1

2 for a (1213)M ( binary,
and 1.8x1

225.4k1
2x1

2 for a (713)M ( binary. To estimate
more quantitatively the effect of the quadrupole-monop
terms, we evaluate the nonmaximized overlaps~in the sense
of Sec. III D! between 2 PN templates, computed with a
without the new terms. The results for (1011.4)M ( binaries
are summarized in Table III. In parentheses we show
fitting factors, which are all very high; in brackets we sho
the intrinsic parameters at which the maximum overlaps
obtained. We conclude that for the purpose of GW searc
we can indeed neglect the effects of the quadrupo
monopole interaction on the dynamical evolution of the
nary.

APPENDIX B: ALGEBRAIC MAXIMIZATION OF THE
OVERLAP OVER THE PI

In this section, we explore the algebraic maximization
rF0

@see Eq.~44!#, given by

rF0
5AAIJPI PJ

BIJPI PJ

, ~B1!

over thePI . We recall that the fivePI are combinations of
trigonometric functions of three angles, and therefore m
satisfy two constraints: luckily, both of these can be form
lated algebraically. In light of the discussion of Sec. IV
the overall normalization of thePI does not affect the value
of the overlap~44!. As a consequence, we can rescale thePI
and replace the first constraint by

BIJPI PJ51, ~B2!

which enforces the normalization of the templates. This c
straint is chosen only for convenience: the maximum, sub
to this constraint, is exactly the same as the unconstra
maximum found by searching over the entire fiv
dimensional space. Let us work out its value, which will
useful later. Introducing the first Lagrangian multiplierl, we
impose

]

]PI
@AIJPI PJ2l~BIJPI PJ21!#5~AIJ2lBIJ!PJ50,

~B3!

which has solutions only forl corresponding to the eigen
values ofAB21. For those solutions, we multiply Eq.~B3!
by PI to obtain

l5AIJPI PJ ; ~B4!

using Eqs.~B1! and~B2!, we then see thatl is the square of
the overlap, so it should be chosen as the largest eigenv
of AB21. We then write theunconstrained maximumas
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rJa8 5max
t0

Amax eigvAB21. ~B5!

By construction,rJa8 will always be larger than or equal t
the constrained maximum,rJa.

The second constraint comes from Eq.~47!. Writing out
the STF components, we get

detPi j [det
1

A2 S P11P5 /A3 P2 P3

P2 2P11P5 /A3 P4

P3 P4 22P5 /A3
D

[DIJKPI PJPK50. ~B6!

~The tensorDIJK can be chosen to be symmetric sin
DIJKPI PJPK5D (IJK)PI PJPK .) The constrained maximum
of rF0

over thePI , subject to the two constraints, can b
obtained as the maximum of the function

AIJPI PJ2l~BIJPI PJ21!2m~DIJKPI PJPK! ~B7!

over PI and over the two Lagrange multipliersl and m.
After taking partial derivatives, we get a system of sev
equations,

AIJPJ2lBIJPJ2
3

2
mDIJKPJPK50, ~B8!

BIJPI PJ2150, ~B9!

DIJKPI PJPK50, ~B10!

where the last two equations come from the constraints~B2!
and~B6!. Multiplying the first equation byPI and using the
two constraints, we obtain Eq.~B4! again. So the first
Lagrange multiplierl is still the square of the overlap. Th
second Lagrange multiplierm is zero when the signals be-
longs to STN template family, and has exactly the same
trinsic parameters as the template. In this case, the extri
parameters of the signal correspond to a vectorPI that sat-
isfies Eq.~B8! with m50 ~the multiplierl is still needed to
enforce normalization of the template!. When the intrinsic
parameters are not exactly equal, but close,m becomes finite,
but small. Equations~B8!–~B10! can then be solved itera
tively by expandingPI in terms ofm,

PI5 (
n50

`

PI
(n)mn. ~B11!

Inserting this expansion into Eqs.~B8! and~B10!, we get the
zeroth-order equation

AIJPJ
(0)2~ALMPL

(0)PM
(0)!BIJPJ

(0)50, ~B12!

where we have already used the zeroth-order version of
~B4! to eliminatel.
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Multiplying by (B21)KI , we see that the zeroth-order s
lution PJ

(0) must lie along an eigenvector of (B21)KIAIJ, and
that the corresponding eigenvalue must be equal
ALMPL

(0)PM
(0) , and therefore also to the square of the zero

order extremized overlap. To get the maximum overlap,
must therefore choosePI

(0) as the eigenvector correspondin
to the largest eigenvalue. So the zeroth-order constra
maximum is exactly the unconstrained maximum obtain
above@Eqs.~B3!–~B5!#.

We can then proceed tonth-order equations:

@AIJ22~AJMPM
(0)BIL PL

(0)!2~ALMPL
(0)PM

(0)!BIJ#PJ
(n)

5 (
m150

n21

(
m250

n21

ALMPL
(m1)PM

(m2)BIJPJ
(n2m12m2)

1 (
m50

n21
3

2
DIJKPJ

(m)PK
(n2m21) . ~B13!

At each order, we insert thenth-order expansion ofPI into
Eq. ~B10!, and select the real solution closest to zero as
nth-order approximation tom ~such a solution is guarantee
to exist for all oddn). We then obtain thenth-order approxi-
mation tol ~and therefore torJa) using Eq.~B4!. We pro-
ceed in this way, untill andm converge to our satisfaction

This iterative procedure succeeds when the intrinsic
rameters of signal and template are close; as their dista
increases, the procedure becomes more and more uns
and eventually fails to converge. The iteration fails often a
when the overlap is optimized against pure noise. For th
reasons, a practical implementation of the detection stat
rJa must eventually rely on the semialgebraic maximizat
procedure discussed in Sec. IV B. Indeed, we have used
semialgebraic procedure for all the tests discussed in Se

APPENDIX C: DIMENSIONAL REDUCTION WITH A
NONUNIFORM PROJECTED METRIC

In this appendix we extend the reasoning of Sec. VI B
study dimensional reduction under the projected me
gi j

proj(lA), which lives in the intrinsic parameter space, but
a function of all parameters. For each pointlA5(Xi ,Ja) in
parameter space, we denoteL (1)(l

A) the smallest eigen
value ofgi j

proj(lA), ande(1)
i (lA) the corresponding eigenvec

tor in the intrinsic parameter space. Suppose we have

L (1)~lA!!
12MM

l (1)
2

, ~C1!

for all values oflA in the allowed parameter region, whe
l (1) is the coordinate diameter of the allowed parame
range along the eigenvectore(1)

i .
Now let us start from a generic pointl0

A5(X0
i ,J0

a) in
parameter space and follow the normal eigenvectore(1)

i for a
tiny parameter lengthe, reachingl1

A5(X1
i ,J1

a), according
to

X1
i 5X0

i 1ee(1)
i ~l0

A!, ~C2!
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J1
i 5J0

i 1e@g21~l0
A!#ab@C~l0

A!#b je(1)
j ~l0

A!; ~C3!

this choice ofDJa makesJ1
a the extrinsic parameter tha

minimizes d(X0
i ,J0

a ;X1
i ,J1

a). Denoting the inner-produc

distance as dist(l0
A ,l1

A)[A2d(l0
A ,l1

A), we can write

dist~l0
A ,l1

A!5eA2L (1)~l0
A!1O~e2!; ~C4!

from l1
A , we follow the eigenvectore(1)

i (l1
A) for another

parameter lengthe, and reachl2
A ; then froml2

A we reach
l3

A , and so on. Up to theNth step, we have traveled a cu
mulative parameter distancel 5Ne in the intrinsic parameter
space, and an inner-product distance

dist~l0
A ,lN

A!< (
n51

N

dist~ln21
A ,ln

A!

5 (
n51

N

@eA2L (1)~ln21
A !1O~e2!#

< lA2max
lA

L (1)~lA!1O~Ne2!, ~C5!

where in the first line we have used the triangle inequality
the inner-product distance. The termO(Ne2) vanishes in the
limit e→0, N→`, keepingl 5Ne finite ~see Fig. 10!. So we
can take the continuous limit of Eqs.~C2! and ~C3! and
arrive at two differential equations that define the result
trajectory:

FIG. 10. Illustration of dimensional reduction. Here we show
signal space with one extrinsic parameter (J1) and two intrinsic
parameters (X1,2), and we assume that the projected metric has
small eigenvalue all through parameter space. Starting from a
neric pointl0

A , we follow the flow of the quasinull eigenvector o
gi j

proj for an infinitesimal parameter distance to reachl1
A ; we then

repeat this process, each time adjusting the direction of the ei
vector according to the metric~hence the difference between th
reduction pathpredictedat l0

A and theactual reduction path!. In the
end we reachlN

A after having accumulated a parameter lengthl in
the intrinsic parameter space. The mismatch betweenl0 and lN

will be smaller thandMM512MM, if l is not much larger than
l (1) , the coordinate diameter of the intrinsic parameter space in
approximate direction of the quasinull eigenvector.
7-22
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Ẋi~ l !5e(1)
i , J̇a~ l !5@g21#abCb je(1)

j , ~C6!

whereXi andJa are parametrized by the cumulative para
eter lengthl, with

Xi~ l 50!5X0
i , Ja~ l 50!5J0

a . ~C7!

We can allowl to be either positive or negative, in order
describe the two trajectories that initially propagate alo
6e(1)

i (l0
A). Equation~C5! then becomes

dist@l0
A ,lA~ l !#<E

0

l

dl8A2L (1)@lA~ l 8!#

<u l uA2max
lA

L (1)~lA!. ~C8!

In terms of mismatch,

min
Ja

d@l0
A ;Xi~ l !,Ja#5

1
2

$min
Ja

dist@l0
A ;Xi~ l !,Ja#%2

<
1
2

$dist@l0
A ;lA~ l !#%2

<
1
2

F E
0

l

dl8A2L (1)@lA~ l 8!# G2

< l 2max
lA

L (1)~lA!

! S l
l (1)

D 2
dMM , ~C9!

where the hybrid notation of the first line indicates the m
match along the solution of Eq.~C6!, and where of course
dMM512MM. Here, although we evolveXi andJa simul-
taneously; it is the trajectoryXi( l ) in the intrinsic parameter
space that we are ultimately interested in. In the contex
s

-

. D

10401
-

g

-

f

dimensional reduction for the projected metric, we shall c
Xi( l ) the reduction curve.

If the reduction curves are reasonably straight, it sho
be easy to find a~dimensionally reduced! hypersurface with
the property that any given point (X0

i ,J0
a) in the full param-

eter space admits a reduction curve that reaches the hy
surface at a parameterl * not much larger than the coordina
diameter of parameter space~see Fig. 11!. From Eq.~C9!, we
then have minJad @X0

i ,J0
a ;Xi(l* ),Ja#,dMM . So any point in

the full parameter space can be fitted with a misma
smaller thandMM by a point on the hypersurface.

FIG. 11. Illustration of reduced signal space as a hypersurf
inside full signal space. Here we show only the directions alo
the intrinsic parameters. Starting from the poin
(X1

i ,J1
a), . . . ,(X4

i ,J4
a), we follow the trajectory~C6! and reach

the hypersurface at (X1 red
i ,J1 red

a ), . . . ,(X4 red
i ,J4 red

a ). For these
particular initial points,X1 red happens to coincide withX4 red, and
X2 red with X3 red. We can see thatl1

A andl4
A ~and indeed all points

that reduce toX1 red, including the points along the reductio
curve! will be indistinguishable upon detection with the reduc
template bank. The same is true forl2

A , l3
A , and for all the points

that reduce toX1 red.
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