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To improve the sensitivity of laser-interferometer gravitational-wé88\V) detectors, experimental tech-
niques of generating a squeezed vacuum in the GW frequency band are being developed. The squeezed
vacuum generated from nonlinear optics has a constant squeeze angle and squeeze factor, while optimal use of
squeezing usually requires a frequency dependé squeeze angle and/or a homodyne detection phase. This
frequency dependence can be realized by filtering the input squeezed vacuum or the output light through
detuned Fabry-Perot cavities. In this paper, we study FD input-output schemes for signal-recycling interfer-
ometers, the baseline design of Advanced LIGO and the currently operational configuration of GEO 600.
Complementary to a recent proposal by Haretsl. to use FD input squeezing and ordinary homodyne
detection, we explore a scheme which uses an ordinary squeezed vacuum, but FD readout. Both schemes,
which are suboptimal among all possible input-output schemes, provide a global noise suppression by the
power squeeze factor. At high frequencies, the two schemes are equivalent, while at low frequencies the
scheme studied in this paper gives better performance than the Haratsscheme, and is nearly fully
optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LI@{hera
30-m filter cavities and current estimates of filter-mirror losses and thermal) néiseneutron star binary
inspirals, for low-mass x-ray binaries, and known radio pulsars. Optical losses are shown to be a major obstacle
for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation
interferometers, such as EURO/LIGO-112012), with kilometer-scale filter cavities and/or mirrors with
lower losses, a signal-recycling interferometer with the FD readout scheme explored in this paper can have
performances comparable to existing proposals.
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I. INTRODUCTION followed [16]. If generated from non-linear optics, squeezed
vacuum will have frequency independent squeeze angle and
The first generation of kilometer-scale, ground-basedsqueeze factor in the GW frequency bddd]. The above
laser-interferometer gravitational-way&W) detectors(in-  theoretical works, as well as past experiments employing
terferometers for shortlocated in the United Statdtaser squeezed vacuum to enhance interferometer performances
Interferometer Gravitational-wave Observator{LIGO) [18], all assume frequency independent squeezing. In the
[1,2]], Europe(VIRGO [3] and GEO 6002,4]), and Japan 1990s, Watchanin, Matsko, and Zuboy®9] realized that
(TAMA 300 [5]), have begun their search for gravitational the sensitivity of GW interferometers can also be improved,
radiation and have yielded first scientific resuls-9]. The  beating the SQL, by measuring an optimal output quadrature,
development of interferometers of the second generationwhich is usually frequency dependent. Later, Kimble, Levin,
such as Advanced LIG@o be operative around 200&0]) Matsko, Thorne, and Watchani(KLMTV ) [20] made a
and future generationssuch as EURO and LIGO-)| are  comprehensive, unified theoretical study of improving the
underway. In this paper we explore the possibility of improv-sensitivity of conventional interferometérsy injecting
ing the sensitivity of signal-recyclingSR) interferometers squeezed vacuum into the input port and/or performing fre-
[11,12, the baseline design of Advanced LIG®D0], and the quency dependent~D) homodyne detection at the output
current optical configuration of GEO 608], when squeezed port. They showed that, for conventional interferometers, in
vacuum is injected into the antisymmetric péithe “input  order to obtain a noise suppression proportional to the power
port,” as we shall refer to it in this pap®r squeeze factor at all frequenciésptimal input squeezed
In the early 1980s, building on works of Cavds3], Un-  vacuum), either the squeezed vacuum must have a FD
ruh [14] proposed the first design of a squeezed-input intersqueeze anglésqueezed-input interferometeor FD homo-
ferometer, which can beat the free-mass standard quantudyne detection has to be applied at the output (satieezed-
limit (SQL) [15]. Other theoretical studies of input squeezingvariational interferometer (Of course, combinations of

This is the same port from which the GW signal light exits, but By conventional interferometer we mean a Michelson interfer-
here the squeezed vacuum propagémes the interferometer, in- ometer without or with an SR cavity on resonance or antiresonance
stead of comingut of it. with the laser frequency.
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those optical configurations can also be used, but they will béatter. To quantify the improvement in sensitivity due to FD
experimentally more challengindKLMTV proposed a prac- techniques, we consider three classes of astrophysical
tical way of implementing FD homodyne detection, as wellsources: neutron-stdNS) binary inspirals, low-mass x-ray
as converting squeezed vacuum with constant squeeze andlmaries(LMXBs), and known radio pulsars. In addition to
into squeezed vacuum with FD squeeze angle, by filteringhe ideal quantum noise and filter optical losses, we also take
the output light or input squeezed vacuum through two deinto account current estimates of thermal and seismic noises.
tuned(with respect to the laser carrier frequen&y cavities (We note that GW interferometers can already take advan-
(KLMTV filters). KLMTV constructed the explicit filter pa- tage of input squeezed vacuum even without using FD tech-
rameters that provide the desired frequency dependence faiques, if the interferometer parameters are carefully opti-
squeezed-input and squeezed-variational interferometermized. For example, an interesting optical configuration
showing that the latter provides a better ideal performanceithout FD input-output optics has been explored by Corbitt
than the former, but is more susceptible to optical lossesand Mavalvalg 23], providing good sensitivities at high fre-
Purdue and ChetPQO studied the KLMTV filters further, quencies.
and worked out the most general FD squeeze angle and ho- In the third part of the paper, we apply our FD readout
modyne phase that a sequence of filters can pro\ddg scheme to third-generation interferometers, such as EURO/
Experimental programs on generating squeezed vacuumGO-IIl, which are scheduled to be operative around 2012.
in the GW frequency band and injecting it into GW interfer- We assume that on this time scale, due to the implementation
ometers have already started in several groups, for examplef cryogenic techniques and the use of kilometer-length
at the Australian National Universify22], at the Massachu- KLMTYV filters, thermal noise will be negligible and loss
setts Institute of Technology, USE3], and at the Albert effects will be rather low. Third-generation interferometers
Einstein Institut in Hannover, Germari®4]. Their goal in  will have to beat the SQL significantly. We compare the per-
the next several years is to inject squeezed vacuum witformance of SR interferometers with our FD readout scheme
~10 dB squeeze factdas a net result after optical losges with those of other existing SQL-beating proposals, such as
into an interferometer. It is very likely that the squeezedthe KLMTV squeezed-variational interferomef@0] and the
vacuum they obtain has a constant squeeze angle in the G¥peed-meter interferometdi26,27. We also investigate the
frequency band. accuracy of short-arm and short-filter approximations used in
This paper contains three relatively independent parts. Inlescribing GW interferometers and KLMTV filters. More
the first part, we generalize the work by KLMTV on FD dramatic ideas to circumvent the SQL in GW interferometers
input-output optics to SR interferometers. Recently, Harmsexist, for example, the intracavity schemes of Braginsky,
et al.[25] applied the KLMTV squeezed-input scheme, com-Gorodetsky, and Khalili{28], and the feed-back control
bining FD input squeezed vacuum with ordinary homodynescheme of Courty, Heidmann, and Pind&9]. Since thor-
detection to SR interferometers, achieving a global nois&ugh analyses of these schemes tuned to GW interferometers
suppression equal to the power squeeze factor. Hatrak  has not been available yet, in this paper we do not compare
also showed that their FD squeezed-input scheme is onlthe performances.
suboptimal; the fully optimal scheme, however, requires Readers with particular interests in the astrophysical con-
complicated frequency dependence in both input squeezsequences of using input squeezed vacuum and FD schemes
angle and homodyne phase, andnnot be achieved by could go directly to the second part of the paf@ec. ), in
KLMTYV filters. Complementary to the scheme of Harms which an in-depth understanding of the opticsnist re-
et al, we explore here the scheme which combines ordinaryjuired. The paper is organized as follows. In Sec. I, we
input squeezed vacuum with FD homodyne detecdtimmce-  write the input-output relation of a nonsqueezed SR interfer-
forth, the BC schemeThis scheme, which can be thought of ometer in terms of the intrinsic FD rotation angle and pon-
as a generalization of the KLMTV squeezed-variationalderomotive squeeze factor. In Sec. Il we review the
scheme, can also provide a global noise suppression by theLMTV filters, including the effects of optical losses. In
power squeeze factor. In addition, at high frequentié®ve  Sec. IV we study FD input-output schemes for SR interfer-
~200 Hz for typical Advanced LIGO configurationst is  ometers. More specifically, in Sec. IV A, we write the gen-
equivalent to the Harmet al. scheme, while at low frequen- eral input-output relation of SR interferometers with FD
cies (below ~200 Hz) it is to a very good approximation input-output optics. In Sec. IV B, we study all suboptimal
fully optimal, and thus provides a better sensitivity than theschemes that allow global noise suppression, proposing the
Harmset al. scheme. BC scheme. In Sec. IV C we study the regime with low
In the second part of this paper we apply these FD inputponderomotive squeezingigh frequency band of Advanced
output schemes to Advanced LIG@008, assuming that the LIGO), and show the equivalence between the BC and the
generation and injection of squeezed vacuum might have aHarmset al. schemes. In Sec. IV D we study the fully opti-
ready(or partially) become available at that time scale. Themal scheme, showing that at low frequencies the BC scheme
major obstacle in using FD input-output techniques in theés a good approximation to it. In Sec. V, we investigate the
facilities of Advanced LIGO is the constraint that the filter improvement in sensitivity to GWs from various astrophysi-
cavities cannot be longer than30 m—the shorter the filter cal sources. In Sec. VI, we compare the BC scheme with
cavities, the larger the optical losses. In our analyses wether proposals for third-generation interferometers, and
assume that filter losses dominate over internal interferomstudy the effect of filter lengths in FD readout schemes. Fi-
eter losses, and comment only briefly on the effects of theally, Sec. VIl summarizes our conclusions.
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TABLE |. Parameters of the SR interferometer and input

squeezed vacuum.

Quantity Symbol and Value
Laser frequency wo=1.8x10% sec!
GW sideband frequency Q

Arm-cavity length L (4 km for LIGO facilities

Mirror mass m (40 kg for Advanced LIGQ
Input test-mas$ITM) power T
transmissivity(LIGO only)

Arm-cavity circulating power | (840 kW for Advanced LIGQ

Light power at the beamsplitter lo
SR optical resonar{sideband -\
frequency

SR bandwidth
Homodyne detection phase

"~ m

Input squeeze factor
Input squeeze angle

QL =

II. QUADRATURE ROTATION AND PONDEROMOTIVE
SQUEEZING IN SIGNAL RECYCLED
INTERFEROMETERS
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8wolc

le 40kg) [ 4 km
*““mLc :(ZWXIOOHz)s(smkW)( m )( L )
(8)

wherec is the speed of lightm is the mirror massl. is the
arm length, and. is the circulating optical power in the arm
cavity, which in turn depends on the power at beamspliter
by’

2
le=lo. 9)

The quantity, must be on the order dd2,, if we want the
optomechanical coupling to modify the detun@bssuming
N~Qcw) interferometer’s sensitivity in the GW frequency
band[see Eqgs(3)—(5)]. In addition, we have denoted by

/ 8% 10
hS = _ 10
o mQ2L2

the free-mass SQL for the gravitational strhiff2).°

It is important to note that the input-output relation, as
given by Eqs(1)—(6), has been obtained at the leading order
in QL/c (as well as ineL/c, AL/c and :}3L/c). This ap-

A summary of the various parameters of SR interferom-proximation is called the “short-arm” approximation, since
eters, such as Advanced LIGO and GEO 600, is given int assumes that the arm length be much smaller than the
Table I. The input-output relation for the quadrature fields ingravitational wavelength. The short-arm approximation sim-

signal recycled interferometers reddee, e.g., Eq(24) in
Ref.[30], with superscrip{1) and the tilde droppdd

1 e g R ey e A
by M ||Cy; Cyp D,/ hsal)

where we define

ai

az

M=[\2—(Q+ie)2]Q%—\¢ 2)

and
C11=Cp=02%(Q%— N2+ €?) + ¢, (3)
Cio=—2eN0?, 4)
Cy1=2eN0%—2eqq, (5)

Di=—2\Ve ), Dy,=2(e—iQ)QVer. (6)

plifies dramatically the form of the input-output relation, as
well as the design of optimal KLMTYV filter&s we shall see
later in this paper

In the following sections we first write the input-output
b, ra, , relation[the first term inside the parenthesis on the
right-hand side(RHS) of Eq. (1)] in terms of an intrinsic
squeeze factog and an intrinsic rotation angle. We then
study how the output quadratures depend on the sighel
second term inside the parenthesis on the RHS of(Eq,
obtaining the quadraturg,,,. at which the signal strength is
maximal. Finally, we give the noise spectrum, and express it
in terms ofq, ¢, and{yax-

A. Rotation of noise quadratures and ponderomotive
squeezing

As is evident from Eqs(2)—(5), in detuned SR interfer-
ometers(with X #0), the input-output relation is frequency
dependent. For high-power interferometers like Advanced
LIGO, the matrixC;; contains both a FD rotation and a FD

The parameters ande are related to the real and imaginary (ponderomotivesqueezing. Let us work these quantities out

parts of the frekoptical resonant frequenayye, of the SR

interferometer by 30]

0= wo—N—ie, )

wherewy is the laser frequency. The parametgis defined

by

explicitly. The quantum transfer matrixwith an overall
phase factor removéd

_Gij

|M|, |,j=1,2 (det./\/l”:l), (11)

“This only applies to LIGO; for GEO 600 we havg=1,/2.
SNote that the definitions aof; andhgq , written in terms ofm, L,

Here “free” means that the mirrors are all fixed at their equilib- and |, differs by numerical factors in Advanced LIGO and GEO

rium positions.

600.

102004-3



A. BUONANNO AND Y. CHEN PHYSICAL REVIEW D 69, 102004 (2004

is a matrix with real elements and with determinant equal to M+ My,
1[31]. So, it can always be written in the form tan 2o = — m
M=R(0)S(¢,q), (12 A 0X(E-22+0)) 0
as a product of a rotation operat®(6) and a squeezing (20 02— 1p) ,
operatorS(¢,q), defined by
; Moy— M €L
cosf —siné ; _ra 12_ St
R( 6)5( ) ) (13) sinhg= 5 =M (22)
singd  cosé
and Note that Eq(21) agrees with Eq(18).
B In absence of SR mirror, or when the SR cavity is either
(¢, A)=R(¢)S(QR(—¢), (14 resonant or antiresonant with the carrier, we haved, and
L the above equations reduce to the known expressions for
e conventional interferometef20]
S(q)E( eq), q=0. (15
Here ¢ is the rotation angleg is the squeeze factor, ardis sinhq= E tan 2p= — E (22)
the squeeze angle. These quantities can in general be fre- 2 K
guency dependent. It can be easily shown that the decompo-
sition (12) is also unique, unles$1 is a pure rotatior{with ith
g=0, 6 being the rotation angle, and being arbitrary. wi
From Egs.(12)—(14), we have
Tr(MM')=2 cosh 2, (16) L 23

040+ ed)
which determinegy uniquely onceM is given (recall that
g=0). If g is zero,S(¢,q) reduces to the identity matrix ) ) ] ) )
regardless of the value af [see Eqs(14) and(15)], and@ K being the coupling constant defined by KLMTV in their
must be the rotation angle o¥(; otherwise, in order that Ed- (18). The sinfg in Egs.(21) and(22) is proportional to

R(6)S(q,¢)=R(8")S(q,¢’), one must impose that te, Which is in turn proportional to the circulating powkr
and inversely proportional to the mirror mass This means
6—60'=mm, ¢—¢' =nm, (17)  the squeezing arises from the well-known ponderomotive ef-
fect[32].
wherem andn are integers anth—n must be an even num- N Fig. 1 we plot 2 sinfy (left pane) and 2 (right pane)

ber. The uniqueness of the decompositid®) assures that @s functions of frequency, for two typical SR configurations
the quantities, g, ande have unambiguous physical mean- @nd a conventional-interferometer configuratioNote that
ing. 2 sinhg=2g asq<1 and 2 sinly=€e" asg>1.) As we can

By comparing Eq(12) with Egs.(1)—(5), we can express See from the plots, both 2 simhand 2¢ are frequency de-
the anglesd, ¢ and the factolq in terms of SR parameters. Pendent.

Using the identity(16), we get the squeeze factqr Let us focus on the detuned configuratioftash and
dash-dot curves in Fig.)1The squeeze factor decreases at
2¢2,2 high frequencies. This can be easily understood from Eqg.
cosh=1+ _ (18 (21), where we see that simh(henceq) decreases whefl
|M|? increases, becaudd, Eq. (2), is a polynomial in{), so it

grows indefinitely ag) tends to infinity.(The factor(Q? in

Since for SR interferometer€,;=C,,, we must impose EQ.(2) can be traced back to the response of a free mirror to
cos(2p+6)=0, or 6= m/2—2¢. This castsM;; into the fol-  an external force, which decreases #%/while the factor

lowing form: [A2—(Q+i€)?] increases at high frequencies because the
storage time (¥) of the interferometer becomes much
M=R(7l2— ¢)S(qQ)R(— ¢) longer than the GW perioplUsing Eq.(2) and the fact that
_ _ IM|=Im(M), we obtain
sin 2¢ coshq —sinhg—cos 2p coshq
| sinhq—cos 2 cos sin 2¢ cos
q 2p coshg ¢ cosha IM[=2603, (24)
(19

Thus we have Combining Eq.(24) with Egs.(21) and(8), we have
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FIG. 1. We plot 2 sinly (left pane) and 2p (right pane) for two typical SR optical configurations, the broadband withk 27
X 234.07 Hzg=27Xx70.36 Hz(dashed lingand the narrowband with=27x601.43 Hze¢= 27X 25 Hz (dot-dashed line We also plot
the curves for the conventional interferometer with-0,e=27X93.75 Hz (continuous ling In all cases we fid.=840 kW andm
=40 Kkg.

frequency and the optical resonant frequency. The above fea-

sinhq= |€'\/I—L°|<i3 tures in 2p are typical of resonators and can be explained
20 easily from Eq.(20).
27X 300 Hz\ 3 For conventional interferometersA€0; continuous
=210 2 2) curves in Fig. 1, the squeeze factar becomes larger a@
Q decreases, providing the strongest squeezing at almost all
le 40kg) [ 4 km frequencies. In particulag— +«~ when(—0, as we can
X 840 kW) - 3 ) (25 see from Eq3(26).7 The rotation angle @ changes by 180°

only once over the entire frequency band.
In the low-power limit (.—0, such thatq—0), the

This gives an upperbound for the amount of squeezinq ansfer matrixM reduces to the rotation matrix

achievable with a given optical power, regardless of resonan
features. As we can see from E@S), even for Advanced Miow powe= ROTI2= @iow powed (27)
LIGO optical power, at frequencies larger thar300 Hz,
the intrinsic ponderomotive squeezing is already very smallwith
From the left panel in Fig. 1 we observe that the squeeze
factor is amplified significantly near the “optical spring” ™ 2\e
resonanc®(left peaks, and mildly near the optical resonance ta =
(right peaks. Those resonant features qmare caused by
local minima ofM around the two resonant frequencies; the
optical resonance provides less squeezing since squeezin
already suppressed at such high frequenfsegs Eq.(25)].
The squeeze factor tends to a nonzero constanf)fonuch
lower than the resonant frequencies. By taking the limit of
Eqg. (21) when)—0 we obtain that the constant value is

E — 200w powe (28)

02— \2+ €2
Note that this low-power approximation also applies to high
gflli'i-quencies where ponderomotive squeezing is suppressed,

even when the power is the typical high power in Advanced
LIGO [see Fig. 1 and Eq$25)].

B. Rotation of signal quadrature

Now suppose the output quadrature

sinfq(Q=0)]=—. (26)

> m

b,=b;sin{+b,cos{ (29

From the right panel of Fig. 1, we see that the rotation anglgs measured, then the signal partmf [second term inside
2¢ changes by 180° across both the optical-spring resonafe parenthesis on the RHS of E@)] is

S*D8iN{+Dycos{x—\ sin{+(e—i)cos{. (30

®In detuned SR interferometers there are two resonances in the . )
GW band. One is near the free optical resonant frequency of a SRaking the magnitude squared of the above equation, we
interferometer with fixed mirrors, and we shall denote it “optical Obtain the signal power in this quadrature,
resonant frequency.” The other is shifted up from the free pendulum
frequency(below 10 Hz into the detection band by the “optical
spring” effect [31]. We shall call it the “optical-spring resonant  ‘In reality, g increases only until the test-mass—mirror pendulum
frequency” or the “optomechanical resonant frequency.” frequency is reached.
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|52 (24 N2+ €2) + (Q?— N2+ €?)cos Z— 2\ e sin 2

=S+ 5108 A~ {max), (31
where
So=(Q%+\?+€?), (32
S;= \/(QZ+)\2+62)2—4)\292, (33
and
1 —2\e
{max= —arctan—— (34
2 Q2 2\2+ €2

PHYSICAL REVIEW D 69, 102004 (2004

IIl. FREQUENCY DEPENDENT INPUT-OUTPUT OPTICS
USING KLMTV FILTERS

To realize FD homodyne detection and generate squeezed
vacuum with FD squeeze angle KLMTM20] proposed to
use Fabry-Perot cavities, detuned from the laser frequency,
with a transmissive input mirror and a perfectly reflective
end mirror(ideal casg Later on, PJ21] derived the most
general form of the FD quadrature rotation achievable by
these filters. We review their work briefly in this section.

A. ldeal KLMTV filters

As shown by PC, the most general quadrature rotation
that can be achieved by a sequenca wfeal KLMTYV filters,
followed by a frequency independent rotation, is of the form
[see Appendix A of Reff21]]:

n

is the quadrature with maximum signal power. Note that the

relative signal strengths in different quadratures depené on kE B
and\ (i.e., on the optical properties of the interferomgter k=0 .
. . =— + >0.
but not on.; (i.e., on the laser power and mirror masses tan{(2) n + [AntiBy[>0 (38)
Equation(34) suggests a resonant feature &f,, near the > AJQZJ
optical resonant frequendy~ |\|. Equationg31)—(33) also j=0

show clearly a known resu[t31]: if AQQ#0, we haveS,
>S,, so it is impossible to have an output quadrature withThe complex resonant frequencies of the filtexst (2;, J
no signal. =1,2,...n are given by the rootévith negative imaginary
By comparing Eqs(28) and (34), we can relate the fre- part9 of the characteristic equation

guency dependence of the maximal-signal quadrature of an
interferometer with arbitrary optical power to the noise-
guadrature rotation of the corresponding low-power interfer-
ometer, that is,

k}_)O (A—iB)Q2%*=0, Im(Q,)<O0. (39)

1/ The constant rotation angle is
Cmax™ — 5 ( o5 2@i0w power) . (39

0=arg A,+iB,). (40)

As we shall see in Sec. lll, the factor of 1/2 in front of the
RHS of the above equation makes it difficult to design opti-
mal FD schemes near the optical resonant frequency.

[Our Eq.(39) is different from Eq.(A13) of PC, because our
definition for Q; is different from PC's definition forw;.
See their Eq(A12).] As in the input-output relation of SR
interferometers, the filter input-output relation in this section
C. Noise spectral density has also been obtained at the leading ordéRir'c (as well

Assuming that ordinary vacuum enters the input port, the®s in|QredL/c), that is, in the short-filter approximation. It
SR noise spectral density in tgequadraturg29) is given by S only under this approximation that we can cast the quadra-
[see e.g., Eq922)—(36) in Ref.[30]] ture rotation of these filters into the elegant fo(&8).

For low-power interferometers.{,q=0), the transfer
matrix M reduces to the pure rotatidR(7/2—2¢o powed

h2oL
Q with

|D;sin¢+ D,cosZ|?
2\ e

X[(CysSin + C,1c08¢)? ™
11 2 ta E_Z(PIowpower :ﬁ,
Q°—\+e

+(C 8N+ Cyyc088)?].

(41)
(36)

By expressingS, in terms of the quantitie, Eq. (20), q,
Eq. (21, {max, EQ. (34), and Sy, Egs.(32) and (33), we
obtain

[coshZ1—sinh2qcosA{—¢)] ,
46102 Sy+ $1008 AL~ Lmad]

Sh=[M|? (37

which is of the form(38) and can be realized by one
KLMTV filter with complex resonant frequency abg— A\
—ie, which coincides with the free optical resonant fre-
quency of the SR interferometgee Eq(7)]. Unfortunately,
due to the factor of 1/2 in front of arctan in E4), the
frequency-dependent rotation of the maximal-signal quadra-
ture cannot be realized by a sequence of KLMTV filters.
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TABLE Il. Parameters of an optical filter. TABLE Ill. Peak values of the filter power-loss fact6ys [Eq.
(51)] for various filter lengths and bandwidths, assuming an end-
Quantity Symbol mirror transmissivity of 20 ppm.
Filter Length o oo b Ly yil(2m) Eres
Input-mirror power transmissivity and reflectivityT;, Rj=1—T;
End-mirror power transmissivity and reflectivity T,, Re=1—T, 4000 m 100 Hz 0.0012
Resonantsideband frequency w; 25 Hz 0.0048
Bandwidth Vi 400 m 100 Hz 0.012
25 Hz 0.048
B. KLMTV filters with low loss 30 m 100 Hz 0.16
Following KLMTV, we model losses in a filter cavity by 25 Hz 0.64

assuming that the end mirror has a nonvanishing powet
transmissivityT,, and a power reflectivity oRg=1—T,. . . ] )
Denoting the front-mirror power transmissivity and reflectiv- Moreover, if the f||ters'have eigenfrequencies well separated
ity by T; andR, (T;+R:=1), the filter input-output relation from each other, that is,

to first order inT./T; reads

109 s [,
pou oI e | wf| = [wi|[>maX v, i}, (48)
(b%‘“) = V1=ER(J) bl + \/E nfzilter)’ (42 and if all filters have high “quality factors,” that is,
where the rotatiorR({) is the same as in the lossless case, w?> 7?, (49
n}'s" are vacuum quadrature fields leaking in from the end
mirror, and the loss factaf is given by then, if we evaluate Eq46) around the resonant frequencies
only one term dominates, yet away from resonances the loss
1 factor is not very large. The total loss factor has peaks at the
&= 2 5:2 B Es. (43 resonant frequencies of each filter, with peak value
with 2T}
E\r]esz_r_;v Qz|Q~r]e (50
2T, 2 '

= y Qe wi—iys. (44
T T 1+ (2 Q= w)? Y esm =iy (49 and a width comparable tg; .
Once a filter's bandwidthy; and the end-mirror transmis-
Herews, s, Lt are the resonant frequency, bandwidth, andsivity T, are specified, we can rewrite the peak value of the
length of the filter, respectively. The bandwidih is related  total loss factor(near this filter’s resonant frequencas
to T; andL; by
Tl
Tic =_—° =0}
7f:4;|_f- (45) S\r]es 27}]Lf' Q |Qre : (51)

[The optical-filter parameters are summarized in Tablg Il. Thus, the shorter the cavity, the lower the front-mirror trans-
For a sequence of multiple filters, the rotation anglesnd ~ Mmissivity and the larger the loss factor. As an order-of-
loss factorsS of each filter add up to give the total rotation magnitude estimate, we show in Table Il the valuesgf
angle and loss factor. In this way, the total rotation angle willevaluated for typical filter length@000, 400, and 30 jrand
be identical to the ideal value, while the total loss factor will bandwidthsy; (27100 Hz and 2rx25 Hz), having as-

be sumedT =20 ppm[33].
e % S el 46) C. KLMTV filters with significant loss
3 fitors As we can see from Table Ill, when the filters are short,

e.g., on the order of 30 m, the energy loss factor can become
The total loss factor is frequency dependent, but never exquite large, and the leading-order calculation used in Sec.

ceeds the upper limit [ B can no longer be trusted. Instead, here we give the exact
filter input-output relation. By denoting with(Q), b(Q),
4T andn(Q) the (Fourier domain annihilation operators of the
Cna= 2 — - (47 input, output, and noise fields at frequenesy+ (), we have
J=filters Ti (see Fig. 2
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Ti Te
b(Q)
D _me)
L
a(Q)
Input Mirror End Mirror

FIG. 2. Filter cavity with inputa({2), outputb(2), and noise
n(Q) field operators. We indicate with; and T, the power trans-
missivity of the input and end mirrors, respectively.

\/Eeezi(n—wf)mc_ \/E.
b(Q)= , a(Q2)
1— Ri REQZI(Q_U)T)Lf /c

TiTeei(Q*wf)Lf /c
+ n(Q).

1_ R| Reezi(ﬂ—wf)l.f/c

(52

Here wg+ ws is the resonant frequency of the filter cavity
(the one nearesdby). The quadrature input-output relation
can be obtained from E@52) by using, e.g., EQSA8) and
(A9) of Ref.[30]. Namely, the relation

b(=Q)=f.(Q)a(=Q) (53

valid for annihilation operators is equivalent to the relation

-3 o e

a
valid for quadrature fielda; , andb; ,. [Note the typo in the
(2,1) component of Eq(A9) of Ref.[30].]
Again, we can apply the short-filter approximatiéxL/
c,wsL/c,y:L/c<1,T,<T; and obtain simpler formulas

(fo+f%)
—i(f,—f*)

i(f,—f*%)
(fo+f*)

Q—wf
1—a;+i
f 02 2\/;1*
b= a+ n, (55
QO — w¢ QO — w¢
1+af—i 1+af—i
04 04

wherea;=T,/T;. By converting into the quadrature repre-
sentation we have

a n
(R+iaA)| +2\/ZA< 1)
bl ap n;
( )= , (56)
b2 Q‘f’&)f Q—wf
l+ozf—i l+(1f_i
04 04

wheren, , are quadratures of the fiefd
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02— w? 2w
1—af2+ > f -
Vi i
R~ P NG
2ws ) 0°— s
i ¥t
20
A=—I, (58
Y
and
Q) W
1+af_|7 7
f f
N= (59
(OF] Q
- — 1+ ai—i—
04 Yt

IV. SQUEEZED-INPUT AND VARIATIONAL-OUTPUT
SIGNAL RECYCLED INTERFEROMETERS

A. Input-output relation and noise spectral density

As discussed by KLMTV, a GW interferometer with
squeezed vacuum std&(r,«)) fed into its input port can be
described by applying the following unitary transformation:

a; a,
(aZ)HR(a)S(r)(.éZ) :

|S(r1a)a>—>|05>7

in which the quadrature operators undergo a linear transfor-
mation, while the quantum state is transformed back to the
vacuum state[Note that(0z|a;a/|0z)=274,;5(Q—Q").]
Equation(60) suggests that, in practice, the squeeze angle
of the squeezed vacuum injected into the input port can be
obtained by a quadrature-rotating optical element, e.g., a
KLMTYV filter, placed between the squeezer and the interfer-
ometer.

Once the unitary transformation is applied, the input-
output relation of the interferometer can be written similarly

to Eq.(1) as
( 11 Cﬁz) e 'ay +(D1>
Cs C%llera, D>

(60)

(61)

by) 1
b, M

where

[e3 a

( 11 12)
a a
C21 C22

( C,;c08a+ Cy8ine Cqc0sa—CqSina

hsqL

S
— | (62

) . (83

C,co0sa+Cysine Cycosa— CySina

The quadrature, is generally called the “squeezed quadra-

ture” because it enters E¢62) multiplied bye ™", while a,

is called the “stretched quadrature” because it is multiplied
by e™". If the output quadraturke,=b;sin{+b,cos{ is mea-
sured, the noise spectral density is

102004-8



IMPROVING THE SENSITIVITY TO GRAVITATIONAL- . .. PHYSICAL REVIEW D 69, 102004 (2004

—— No Squeezing ) I —— No Squeezing
-- 0c=gt/84

5 c=- o=3n/ <
10 A ... SQL ]

20 50 100 200 300 1000 20 50100 200 500 1000
FIHz 7/ Hz

|| |

FIG. 3. Noise curves of SR interferometers with frequency independent input squeezing and homodyne readout. In the left panel, we
show the broadband configuration= 27X 234.07 Hz¢=27X 70.36 Hz{= —0.8037, with no input squeezing €0, a«=0) (continuous
curve, with e =10,a= /8 (dashed curve and with e’ =10,a=3mx/4 (dash-dot curve In the right panel, we plot the narrowband
configuration\ =27 X600 Hze=2mX25 Hz,{=m/2, with no input squeezingr&0, «=0) (continuous curve with e =10,a=n/2
(dashed curyeand withe? =10, =0 (dash-dot curve In both configurations we fik,=840 kW andm=40 kg and show the SQL curve
(dotted line.

e~ 2"(CY;sinZ+ C5,c0s)%+ e (Cé,sin + C5,c0s!)

2
Sh= héQL! (64)
|D;sing+ D,cos¢|?

which in terms of thgponderomotive squeeze factog, intrinsic rotation anglep, maximal-signal quadratur&,,,, reads

e ?[coshq cog a+ {—2¢)—sinhq cog a— ¢)]?+ e[ coshq sin(a+ {—2¢) —sinhq sin(a— £)]?

=|M|?2
S | | 4€LCQZ[SO+S]_COSZ§_£maX)]

h&oL-
(65)

In Egs.(64) and(65), the spectral densit§, contains a term B. Cancellation of the stretched quadrature and suboptimal

proportional toe™ 2", as well as one proportional te* . schemes
We can take advantage of squeezed vacuum onlp,if In order thatS, in Eq. (64) has only the term proportional
contains very little (preferably nong of the stretched toe~2", we have to impose
guadraturea,. )
In Fig. 3 we plot some examples of noise spectral densi- Cising+C5cos{=0 (66)

ties with frequency independent input squeezingnstant

@) and readouticonstant¢). In this case, squeezing can ©f More symmetrically inv and¢,

improve the sensitivity at some frequencies, but at the price .

of deteriorating the sensitivity at other frequencies. However, (sing cos{)(cn C12) ( —sma) —0. (67)

as investigated by Corbitt, Mavalvala, and Whitcomb Ca Cyy/\ cosa

[23,34], without introducing FD input-output techniques, it is

still possible to take advantage of input squeezing, by chood! 1S interesting to note that Eq67) does not depend on

ing carefully the SR parameters (e, .), and/or by filtering ~ This happens because the way'a; ande'a, are mapped
out the squeezed vacuum in the frequency region wherbt0 P, [see Eq(62)] depends only o, Cjj, and{, but not
the stretched quadrature increases the noise. On the othe? -

. ) . - Equation(67) can be satisfied in many ways. However,
hand, if, for a substantially detuned configuration, we WOUIdsinceCij are frequency dependent, eitheror ¢, or both,

like to obtain a large noise-suppression factor over the entirg;i| have to be frequency dependent. Given such a pair of
frequency band, FD input-output techniques should(«((Q),7(Q)), the noise spectrum can be obtained by insert-
be used. ing them into Eq.(64), obtaining
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e 2[CiYsinz(Q) +Cs{Weos () 12+ 2 CHVsing(Q) + C5iPcosz ()12

Sh= h3au (68)
|Dysin(Q) +D,cosi(Q)|?

with the second term in the numerator vanishing once(Ed. is imposed. As a consequence, we can also write

,Zr[Cﬂ“)siné(m+C§£“>cos§<ﬂ>]2+[Cﬁ‘”siné(m+C§§“)cos§<m]zh2
SQL

S,=e
|D;sin¢(Q)+D,cos{(Q)|?

_, [Cusing(Q)+ C21€0S{(2) ]2+ [ Cy8in(Q) + Cypcos (1) ]2 5
|D;sinZ(Q)+Dycoss(Q)|?

The first equality in Eq(69) says that the noise spectrum of  In this paper, we explore the second simple solution. We
an input-output schenleas specified by &(),(£))] with assume a frequency independenaind requires the FD de-
an input squeeze factorscales ag~ 2'; the second equality tection phase

in Eq. (69) must hold since for ordinary vacuum a rotation of

the input quadratures leaves the system invariant. The spec- C,c0sa— Cyisina

tral density, as given by Eq69), is e %' times that of a tan{supopt ) =
(nonsqueezedFD readout scheme with homodyne phase

£(Q). Clearly, an additional optimization i& will give the : . : .
. ; ] This detection phase is also of the fo@8) and realizable
fully optimal input-output scheme. However, we postponeby KLMTV filters, with characteristic equation

the discussion of the fully optimal scheme till Sec. IV D and
investigate first the suboptimal schemes, which have 5 . . e
(«(Q),£(Q)) satisfying Eq(67) but do not necessarily have =~ X (Q+A—ie)(Q—A+ie)+[A+2e “esina]i=0

~ Cy,c0sa—Cysina’ (73

the optimal () required by the minimization of69). (74)
These schemes all provide a global noise suppression by the ) )
factore= 2. and a subsequent frequency independent rotation

The (two) simplest solutions to Eq67) can be obtained
by imposing¢ (or a) to be frequency independent and solv- 0=37/2—«. (79

ing Eq.(67) for « (or ). This means that KLMTYV filters are

placed either in the input port or in the output port, but not inHenceforth, we shall call this scheme the BC scheme. The

both places. noise spectral density of the BC scheme can be obtained by
The first simple solution has been studied by Haanal.  inserting Eq.(73) into Eq. (69); the result is

[25], who proposed to inject squeezed vacuum with FD

squeeze angle into SR interferometers. Imposing a frequency e 2'|M|2hZ
) . sQL
independent,, they obtained Sh= . (76)
4e1 02|\ cosa+ (e—iQ)sinal?
C,,c0s{+Cy,8inl
tanagpopf ) = — (70) . S .
C,c08{+Cyy8ing Additional insight into these suboptimal schemes can be

obtained by decomposing the input-outpsi relation into a

Remarkably, the requiredsyop:in Eq. (70) is of the form - ;
(38), thus realizable by KLMTV filters. In our notations, the ?ggfju;r:do(gg)]tgtlon and squeezing operatpsse Eqs(19),

characteristic equation for the filters is

QX Q+N—ie)(Q—\+ie)+[N—2ie '%e cosz:]LC=C(>, ) Ab=[(0 DR(] [R(72—¢)S(¢)R(—¢)]
71 ,
readout interferometer
while the constant rotation following the filters should be _
a
6=m/2— 72 X R(oz)S(r)( -1
ml2—{ (72 7 77
[see Eqs(39) and(40)]. Note that, without making the short- v

input

arm and short-filter approximations, both E¢g0) and(38)
would have been much more complicated, making the iden-
tification of filter parameters much less straightforw#éod = HereAb, is the fluctuatingnoise part ofb,. Equation(67)
even impossible can then be put into the following form:
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0
DR() R(7/2—¢)S(q)R(—¢) R(a)| | =0.

1

N —
input

(0

readout interferometer

(78)
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™

4 + Plow power: 4’ + @low power| - (83

(§1a)opt:
Simple as it looks, this fully optimal schemerist realizable
by KLMTYV filters because tadi,,; and tanx,y, given by Eq.

(83) are not of the form(38).
We now compare the Harnet al. (H) and BC schemes in

In the Harmset al. scheme, the input quadratures are rotatedhe smallg regime. They can be written in terms af, ) as
(with FD angle «), before entering the interferometer, in

such a way that, after being rotated again and ponderomo-

(gaa)Hz(ng(Plowpower_ 9k

tively squeezed by the interferometer optomechanical dy-

namics, the squeezed quadrature is mapped into a frequency
independent output quadrature, which is detected. In the BC
scheme a frequency independent squeezed state enters

(gaa)BC:(Z(Plowpower_ a,a). (84)

#e two schemes give the same noise output@drd, [see

interferometer. Due to rotation and ponderomotive squeezin§d: (80, while for the signal power they yielfsee Eqs.

inside the interferometer, the squeezed quadrature is mapp
into a FD output quadrature. We then apply a rotation to the
field emerging from the interferometer to counteract this ef-
fect and bring thegimage of the input squeeze quadrature

)—(33)]
SH= So+ 51005{2(5— gmax)]

back to a frequency independent quadrature and detect it.
Finally, another interesting suboptimal scheme can be oband

tained by imposind = a= — ¢. In this case the noise part of

the output quadrature fiel@7) is

(0 1)R(w/2>8<q>5<r>(~zl)=e“*‘”51 (79
2

which gives the lowest amount of noigleut does not guar-
antee a maximal signal contentUnfortunately, from Eg.
(21) we see that tati= —tang is not of the form(38), and

thus not realizable by KLMTYV filters.

C. Suboptimal schemes using]-¢ parametrization:
The low-power limit

If the ponderomotive squeezing factpis small, the fully

optimal input-output scheme can be solved easily using t

various quadrature-rotation angles. As seen in Sec. I, a sm : _
d_advanceshe optimal quadrature by CoRst|qy power- IN this

g can either arise from a low optical power, or from consi
ering high frequencies f&300 Hz for Advanced LIGO

powen, see Eq(21). However, we shall still refer to this as
the low-power limit. In this case, the output noise is propor-

tional to

0 1)R({+m/2 2 @iow power™ @) (1) ~1 , (80
( ) P a
2

and the minimal noise is obtained whenever

{+a=2¢y power- (82)

By setting{ equal to the maximal-signal quadratisee Eq.
(39)],

w

4 + @low power: (82

Cmax=

we find the fully optimal readout scheme

=S+ 510942+ 72— 2¢)4y power)v (89
Sec=Sot S1€04 2({— {max) ]

=S+ S,008 =2+ 7/2+ 29| power

=Sp+ 5,082 — /12— 2P0y powen - (86)

This means, the two suboptimal schemes have the same ideal
performance in the low-power regime and we can map one
into the other by settinge« {+ /2.

This equivalence can be understood more intuitively if we
compare the dependence of the various readout quadratures
(i.e., maximum-signal, Harmet al,, and BQ on ¢y power-

The maximal-signal quadrature,,,, rotates as const

+ @lowpower- 1N the Harms et al. scheme, the detected

guadrature is constant, and thereftaigs the maximal-signal
hguadrature by consteig power- IN the BC scheme, the de-
dfcted quadrature rotates @s=constt 2@y powers Which

way, if one adjusts the constaritsy adjustingZ in the Harms

et al. scheme andv in the BC schemg the detected quadra-
tures in the two schemes can be made to lie symmetrically on
each side of the maximal-signal quadrature. Since the de-
tected signal power depends only on[@§6— {4 | [Se€ Eq.

(31)], which is an even function of {(~{ma), the two
schemes must detect the same signal power and hence have
the same sensitivity.

In Fig. 4, we give examples of the BC and Haretsal.
noise curves for two SR interferometers, a broadband con-
figuration (with N=27X234.07 Hz¢=27X70.36 Hz),
and a narrowband onéwith A\=27X600 Hz ande=27
X 25 Hz). For both interferometers, we usg=840 kW,
m=40 kg. Although the optical power used here is not low
by any practical standards, the two schemes for the broad-
band configuration already agree quite well, under the corre-
spondencea« {+ /2, for frequencies above-200 Hz.
The two schemes are equivalent for the narrowband configu-
ration for almost all frequencies. The better agreement in the
narrowband configuration can be understood easily by real-
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1X10_225 T T ‘ S 1><10_225 Y 7l T LI I
F —— Harms et al.: {=n/2| 1 N —— Harms et al.: {=n/2| ]
Ro — BC:o=nt ‘ 1 r \\ — BC: o=n ¢
IR —— Harms et al.: (=0 ] ————|—— Harmsetal.: (=0
o Ix107% % -~ BCGo=n2 € g Ix107N ) 4 - - BC:o=n/2
T NG ey E TN ENCe-e. ..-- SQL
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FIG. 4. Equivalence of the Harnet al. and BC schemes at high frequencies. We assium@40 kW, m=40 kg, ande? =10. In the
left panel, we plot the broadband configurations with 277X 234.07 Hze¢=27X70.36 Hz, while in the right panel we show narrowband
configurations with\ =27 X 600 Hz ande=27 X 25 Hz. In both panels, BC schemes with- = and7/2 are shown in dark continuous and
dark dashed curves, respectively, while Haenhgl. schemes withl = /2 and{=0 are shown in light continuous and light dashed curves.
Noise curves from the two schemes, which are relatedvby,+ /2, do agree quite well for frequencies higher than 200 Hz in the
broadband configuratiofieft panej, and at almost all frequencies in the narrowband configurdtight panel. Note that at high frequen-
ciesq is significantly lower in the narrowband configuration, see left panel of Fig. 3.

izing that ponderomotive squeezing is weaker in this case, asquationg87)—(88¢), which we obtained independenflg5]
shown in the left panel of Fig. 3. from Harmset al, are equivalent to Eq$28)—(30) of Harms
et al. once we set to zero in Eqs(889—(880).
D. The fully optimal scheme and the BC scheme at low As said above, the fully .optlmal Scheme, denOte_c_i by
frequencies (@op ), {opd(2)), should satisfy the suboptimal condition
i ] . ) (67). As a consequence, the noise spectrum of the fully op-
In thls section, we consider the fully optlmal scheme.tima| scheme is also given by E¢9), when £(Q) is re-
Analytical formulas of the fully optimal detection quadrature placed by{o,(Q). Therefore,{o,(Q) can be obtained by

has_ been obtamed_by _Harml;al., but we provide an alter- minimizing theS, in Eq. (69), which is given by the special
native approach, yielding results in simpler form and MOre.4qe of Eqs(87)—(880) with r =0 [or Egs.(28)—(30) of Ref.
relatgd to t.he BC scheme. [25]]; aqp((2) can then be obtained from E(0). It is evi-
Itis stralgh_tforwar_d to show_tha(ag ?"50 done by Harms dent from Eq.(87) that the fully optimal scheme cannot be
et aI: and reviewed in Append|x A fixing 4 and r\ Fhe @ realized by KLMTV filters, except in special cases, e.g., for
obtained from Eq.(70) gives the(constrainefl minimum . nentional interferometers. As observed by Haghal,

noise. On the contrary, fixing andr, the readout quadrature yhe ontimal noise spectrum can also be obtained graphically,
¢ obtained from Eq(73) does nogive the constrained mini- y 5i6tting all the noise curves with different constant values

mum. Instead, minimizingS, [Eq. (64)] over ¢ (with @ ot + "anq then taking the lower envelope of all these curves,
fixed) requires a rather complicated readout phase, detelig seen in the left panel of Fig.(&nd Fig. 4 of Ref[25]).

mined by one of the two roots of The optimal ¢ at each frequency is the one whose noise

Fotarfi+ Fytani + Fo=0, 8 curve touches the envelope._ _
ABmEt Fatani+ 7o (@) We now deduce the optimal scheme in another way.

Again, since @op(€2),{opd((2)) satisfy Eq.(67), the fully

where optimal noise spectral density can also be obtained by taking
the minimum among all BC noise spectral densities with all
Fo=[(CY4 N2+(CH)2]ReD*D,) —(CY'CY " possible a—the minimum is achieved automatically in
2o 12 LhE o), and for{o(Q) it is given by Eq.(73). Similarly,
+C{5'Csy)|D4)3, (888  this can be done graphically by taking the lower envelope of

BC noise curves with all possible, as shown in the right
-T2 a2 2 -T2 panel of Fig. 5. From the plot, it is interesting to observe
F1=[(CL1 D) +(Cy) NIDo*~[(C31 ) that, there are no crossings between different BC noise
+(C%NH21 D, |2, 88b curves at low frequenme(shffergntly from the Harmset aI..
(C22)7ID| (88 curves in the left panglsuggesting that one BC curve might
be nearly fully optimal at these frequencies.

Fo=(C§ "Cs "+ CYCe) D, |2 —[(Cs 712 More quantitatively, since the BC noise spectr(#f) has
wro . a much simpler dependence an(than the dependence of
+(C3 )°]Re(D1Dy). (880  the Harmset al. noise spectrum of), it is much simpler to

102004-12



IMPROVING THE SENSITIVITY TO GRAVITATIONAL- . .. PHYSICAL REVIEW D 69, 102004 (2004
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FIG. 5. Approaching the fully optimal input-output scheme by taking the envelope of Hetrmls and BC noise curves. We filk,
=840 kW andm=40 kg, and\ =2mx234.07 Hze=2mXx70.36 Hz, and assume?’ = 10. In the left panel, we plot the noise curves of
Harmset al. schemes, with frequency independent readout pliase (light short dash #/4 (light long dash, #/2 (light dot dash, and
37/4 (light dot), and FD input squeeze angle given by Ef0). These curves cross each other near both the optical resonance and the
optical-spring resonance. The fully optimal curiggark continuousis obtained by taking the lower envelope of the entire family of these
curves. In the right panel, we plot the BC curves, with frequency independent input squeeze angke/2 (light short dash — 7/4 (light
long dash, O (light dot dash, and #/4 (light dot), and FD readout phase given by E@3). The lower envelope of these curves also gives
the fully optimal noise curvédark continuous, identical to the one shown in left parEhe fact that these curves do not cross each other
at low frequencies suggests that one member of this family is fully optimal in this band. Indeed, the BC curve optimézeddfpdark

dashed curve, witly=arctare/\, see Eq(91)] does agree very well with the fully optimal curve for frequencies lower th@90 Hz. In
both panels we also show the SQL line.

obtain the optimal input squeeze angig, from this ap-

€
proach[than to obtain,, from the approach starting with @ =a0p[(Q=O):arctar6X ’ (97)
the Harmset al. noise spectrum, see Eq87)—(889]:
we obtain
2\e€ ,
tan 2o g, =——m— (89 e ?"|M|h
" A2—e2—-07? SEC low freq__ | | SQL (92)
20202
and ZGLCQZ 2()\2+ €2+Qz)_
A2+ €2

S

Taking the ratio betweeBEC ' ™4 and 2!, and expanding
in O, we have
efzr|M|2h§QL

220
260,02\ + 2+ 02| 1+ \/1-| ————

N+ e+ 02

2 2

SI?C low freq

S

(90 The correction factor in Eq(93) is usually small at low

frequencies. For example, by maximizing over eitber \,
These simple explicit expressions Sf(pt and aq,({2) have it is easy to show that

not been previously obtained. The optimal readout plfgse

Ne 0?2

(93

A2+ €? N2+ €2

can be obtained from Eq73). From Eq.(89), we can see e \2/ 02 \? 27 Q 4
that the fully optimal scheme cannot be achieved by <—(—) (94)
KLMTV filters. The only exception is when =0 (i.e., for a N+e?) \\2+¢€2] 256\ max\,e}

conventional interferometgrin this case we have,,=0,

and the{,,(Q) is given by Eq.(73) and it is realizable by at worst. The correction in the noise spectral density cannot

KLMTV filters. This is exactly the KLMTV squeezed- exceed~10% (in powep for ~maxA\,e}. For substantially

variational scheme. detuned configurations\(exceeding~200 Hz), this makes
Although the form ofaqy is not achievable by KLMTV  the BC scheme essentially fully optimal up t6200 Hz.

filters, we note that, at low frequenciéswer than the opti- TQ(I;S. refsuIF is confirmed by the right panel of Fig. 5, in which

cal resonant frequengythe variation inay is mild. In fact, S, s plotted(dark dashed curyén comparison with

by setting in the BC scheme SoP! (dark continuous curye
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TABLE IV. Optimizations of SR interferometers witl) no squeezing(ii) frequency independent squeezing and homodyne detgétiorfilters” ), (iii) FD squeezing but frequency
independent reado(the Harmset al. schemg and(iv) frequency independent squeezing but FD readat BC schemkefor neutron-star—binary inspirals, with quantum noise, seismic @

ANNO AND Y. CHEN PHYSICAL REVIEW D 69, 102004 (2004

V. APPLICATIONS TO ADVANCED LIGO

In this section, we discuss the possibility of applying the
above FD techniques to Advanced LIGO interferometers. As
shown by KLMTV [20], a major difficulty in making those
techniques practical for advanced interferometers is the issue
of optical losses. Given a certain bandwidth and mirror qual-
ity (i.e., round-trip loss in the filter cavitigsthe shorter the
filters, the higher their optical lossésee Table Il). In fact,
in order to achieve third-generation performance, optical fil-
ters in the squeezed-variational scheme will have te-len
in lengths. In advanced LIGO, kilometer-scale filter cavities
are not practical and only short filters can fit into the corner-
station building. A plausible length scale 430 m and the
realistic round-trip loss is around 20 pp83]. With such
short (and lossy filters, we shall assume most of the time
that filter losses will dominate and ignore internal interfer-
ometer lossegsee Sec. V in Ref.31] for treatment of lossy
SR interferometeds We shall only comment briefly on the
effect of internal losses when discussing narrowband
sources. The noise spectrum with filter losses are obtained by
using the exact input-output relation of KLMTV filtetSec.

Il C).

In Secs. V A, V B, and V C, respectively, we shall discuss
the broadband configuration optimized for the detection of
NS-NS binary inspiral waveforms, the narrowband configu-
ration targeting GWs from specific accreting NSs and the
wideband configuration that can be used to observe several
kind of sources(For an exhaustive discussion and summary
of GW sources for advanced interferometers see, e.g., Ref.

[36].)

1.00
1.89
2.27(2.96
1.93(2.99
1.00
1.42
2.01(4.27)
1.42(4.76

Performance

5.44
6.73
7.15(7.81)
6.77(7.84
9.29
10.44
11.73(15.08
10.45(15.63

59.6

T!' (oppm SNR 300 Mpc Event Rate Improvement
30.9
45.1
24.6

Filter Il

res
27 Hz

—59.8-23.7
—59.5-12.8
—73.2-18.0
—72.7-9.8

Filter |
T} (ppm)
717
04
290
154

res
27 Hz

352.0-161i0
230.8-61i2

A. Broadband configuration: NS-NS binary inspiral

FD

Inspiral waves from compact binari@dS-NS, NS-BH, or
BH-BH) are among the most promising sources for advanced
LIGO. In this section, we discuss the so-called broadband
configuration obtained by maximizing the signal-to-noise ra-
tio for NS-NS inspiral waveforms, proportional to

/fwlﬁ(f)lz
df, (95
fe Sn(f)

[R(F)|=Af" "0 (fsco—T) (96)

—0.381 296.0-285i4
FD

—0.518 227.2-115i4

—0.804
1.522 —0.040
—1.010
1.395 -0.131

FD
FD

179.1

101.3
233.9

234.1
355.2 —2.090

55.2
296.3
2405 —2.179

70.4
14.4
275.3
106.5
55.7

561.8
280.4
157.4

where

2m Hz 27 Hz

0.1
0.1
0

1
0.1
0.1
0.1

is the frequency-domain amplitude of the leadiiNgwton-

ian) order inspiral signal in the stationary-phase approxima-
tion. The cutoff frequency is chosen to bgco, the GW
frequency corresponding to the innermost stable circular or-
bit (ISCO) of a Schwarzchild black hole with massviy s
=2X1.4My=2.8M, which is equal to 1570 Hz. In the
optimization, we have also included the seismic noise

Interferometer Configuration
1

Mirror Typee 2"
Spherical
Mexican Hat

10 Hz\°2 1
VHz

and the thermoelastic noise of sapphire mirrors with spheri-
cal surfaces, as in the baseline design,

S=5.3x 10" %

(97)

filter is set to be 20 pprfi33]. Noise curves of configurations listed here are plotted in Fig. 6. For the Hefralsand BC schemes, we also optimize the SNR when there is no optical

noise, and thermoelastic noigeith spherical and Mexican-Hat mirrgrscluded. The only optical losses included are those from the 30-m optical filters. The round-trip loss of ea
losses, those SNR’s and the corresponding event-rate improvements are quoted inside brackets.

Input-Output Scheme
No Squeezing

No Squeezing
No Filters

No Filters
Harmset al.

Harmset al.
BC

BC
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FIG. 6. Noise curves optimized for NS-NS binaries, for no squeeting squeezing,” light dashed curvgsfrequency-independent
squeezing and homodyne detectigno filters,” light continuous curves the Harmset al. scheme(dark continuous curvgésand the BC
schemddark dashed curviésParameters of each configuration are listed in Table IV. Quantum noise, seismic noise and thermoelastic noise
of sapphirg(also shown, in dash-dot curyesre included to give the total noise curves. We have used predictions for the thermoelastic noise
of spherical mirrorgleft pane) and that of Mexican-Hat mirror87] (right pane). In addition, we have shown the characteristic strengths
of possible GWs from LMXBgdiamond, solid circles, solid squares, and open trianglad known radio pulsarghin dashed lings

100 H2 1 42% (MH mirror). The BC scheme, however, being more
\/STE=2,7>< 1024( 2)_ (99 susceptible to filter optical losses, does not yield as good a
f \/E performance. In order to appreciate how much the filter op-
tical losses affect the sensitivity, we have also optimized the
as well as when the so-called Mexican-Hat mirrors are usedsNR for the FD schemewithout including filter optical
which are designed to reduce this noj8] losses(but with thermal and seismic noises incluglethe
results are quoted in brackets in Table IV. FD schemes with-
out losses can outperform frequency independent squeezing
\/ﬁ' significantly. For example, the ideal BC scheme can have
58% (spherical mirroy or 235% (MH mirror) more event
In Table IV we list the values ok, e, a (frequency inde- rates than the no-filter cagén this case the BC scheme can

pendent squeezing angle for BC schenge(frequency inde- also provide slightly higher ev_epF rates than the Haetal.
pendent detection quadrature for the scheme of HarmScheme, due to better sensitivity at low frequendiest

et al), obtained by optimizing the SNR of NS-NS binary mpstly still masked by the thermal nojséy 1% (spherical
inspirals at 300 Mpc, and the corresponding optimal SNRMirror) or 11% (MH mirror).]

We assumé =840 kW, m=40 kg, ande” % =0.1 and did Noise curves corresponding to the optical configurations
the optimization for(i) nonsqueezed SR interferometglis) listed in Table IV are plotted in Fig. 6. We notice that due to
SR interferometers with frequency independent squeezingptical losses the BC noise spectral densities have a peak
and homodyne detectiotfno filters” )2 (iii) squeezed SR around the optical-spring resonant frequency. The noise
interferometers with the Harmst al. scheme(FD input spectrum of the “no filters” scheme(squeezing with
squeezing + ordinary homodyne detectign and (iv)  frequency-independent input-output op}ics comparable to
squeezed SR interferometers with the BC schéondinary  the Harmset al. and BC schemes at high frequencies, but
squeezing+ FD homodyne detectignin the table we also becomes worse at low frequencies. These “no-filter” curves
give the improvements in the predicted event rate with reare quite similar to the wideband noise curves proposed by
spect to nonsqueezed configurations, ascihiege of the im-  Corbitt and Mavalvald23], especially in the case of spheri-
provements in SNR at a fixed distance. cal mirrors.

As we can read from Table IV, with frequency indepen-  The squeezing noise curves optimized for NS-NS binaries
dent squeezingi.e., no filterg, it is already possible to im- also have better high-frequency sensitivity than nonsqueezed
prove the NS-NS event rate by a significant amount, 89%onfigurations, although they were not optimized specifically
(spherical mirroy or 42% (MH mirror). The Harmset al. ~ for high frequencies. From Fig. 6, we see that for frequencies
scheme provides further improvement in the event rate witthigher than ~500 Hz (spherical mirrors or ~300 Hz
respect to the no-filter case, by 20&pherical mirror or ~ (Mexican-Hat mirrory the squeezed configurations are

~5-8 (spherical mirrorsor ~3-5 (Mexican-Hat mirrorg
as sensitive(in amplitude as the nonsqueezed configura-
8Corbitt, Mavalvala and Whitcomf34] are currently investigat-  tions. (The Mexican-Hat mirrors produce lower thermoelas-
ing this scheme. tic noise, so the noise spectral densities are better optimized

100 Hz 1
) (99)

SiEMA=11x 10‘24(
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TABLE V. Frequency, characteristic amplitudig , and characteristic strengthslsﬁg'da”, 20-day coherent integration with 1% false
alarm of possible GWs from several known LMXBéncluding Z sources(the first 8 sources type-l burstergthe next 8 sourcesand
accreting millisecond pulsafthe last 3 source$[44], and sensitivities achievable by nonsqueezed, Hatnas, and BC schemes. Both 5
dB (e ?'=0.316) and 10 dB& 2'=0.1) squeezing are considered. Sensitivity is measured by taking the ratio between the characteristic
strength and square root of the noise spectral density at the predicted GW frequency. Bold face is used for ratios larger than unity, in which
case the GW is detectable. In this table we use the baseline assurigilidne., f = f4 for Z sources, and mass-quadrupole emigsida
obtain the predictions for other mechanisms of GW emission and determination of the spin frequency, see Table VI. N/G_g tetuld
convert by the same factor bs. For the source SAX J1808-43658 in particular, we have also shown in parenthesis values that correspond
to a 4-month coherent integration.

GW parameters ST S, (fow)

fow he \/Sﬁo—day No 5dB 10 dB

(Hz)  (10%) (10 24/0\/H—z) Squeezing  Harmst al. BC Harmset al. BC
GX 349+2 532 5.40 1.67 0.65 1.33 1.32 1.80 1.79
4U 1820-30 550 3.70 1.14 0.58 1.02 1.01 1.27 1.25
GX 17+2 588 4.70 1.45 1.48 1.52 1.51 1.65 1.63
4U 0614+ 06 654 1.30 0.40 0.19 0.35 0.34 0.44 0.43
GX5-1 654 6.00 1.85 0.88 1.60 1.58 2.01 2.00
Cyg X—2 686 3.70 1.14 0.36 0.80 0.79 1.17 1.16
GX 340+0 650 3.70 1.14 0.58 1.01 1.00 1.25 1.24
Sco X-1 500 22.00 6.79 1.87 4.40 4.38 6.89 6.83
4U 1702-429 660 1.20 0.37 0.16 0.31 0.31 0.40 0.40
4U 1728-34 726 2.00 0.62 0.14 0.34 0.34 0.57 0.56
4U 1916-053 540 1.00 0.31 0.13 0.26 0.26 0.34 0.33
KS 1731-260 1048 1.30 0.40 0.03 0.07 0.07 0.16 0.16
Agl X-1 1098 1.00 0.31 0.02 0.05 0.05 0.11 0.11
MXB 1658—298 1134 0.30 0.09 0.01 0.01 0.01 0.03 0.03
4U 1636-53 1162 2.00 0.62 0.03 0.09 0.09 0.21 0.21
4U 1608-52 1238 1.00 0.31 0.01 0.04 0.04 0.09 0.09

SAX J1808.4- 3658 802 0.71 0.220.53 0.03(0.08 0.08(0.20 0.08(0.20 0.16(0.39 0.16(0.39
XTE J175% 305 870 0.15 0.05 0.00 0.01 0.01 0.03 0.03
XTE J0929-314 370 0.25 0.08 0.01 0.03 0.03 0.06 0.05

at low frequencies, reducing the bandwidth. This is why inwhose sky positions and phase evolutions are known
this case the noise curves optimized for NS-NS binaries yield38,39).
worse high-frequency sensitivity than those with spherical From Fig. 6 we see that the NS-NS optimized noise spec-
mirrors.) tra for spherical mirrors can detect known pulsars at 10 kpc
In Fig. 6, we also plot(in light thin dashed linesthe ~ With e=10"" if the GW frequency is higher than 500 Hz,
characteristic GW strengths from known radio pulsars. FolWwhile those for MH mirrors can deteet=2x10"" if the
lowing the notation of Cutler and Thorfi6], the character- GW frequency is higher than 300 Hz. We have also shown in
istic strengthS, _is defined as the maximum allowed noise Fig. 6 the frequencies and the estimated characteristic GW

. strengths from LMXBgSco X-1 in diamond, th& sources
spectral density(fsourd (at and near the source frequency in solid dots, type-I bursters in solid squares, and accreting
fsourcd SUCh that the source is detectable. Note Batwill ’ :

millisecond pulsars in open triang)e$Ve shall explain those

in general depend on the data analysis technique and statiseurces in more detail in the next section and in Appendix B.
tical criteria used, e.g., integration time, confidence levelAll the squeezed-input configurations are able to detect Sco
etc.; sometimes it is also obtained by averaging over unX-1 with large margins, while configurations with spherical
known source parameters, such as the spin orientation afirrors might also be able to detect the group of Zix
pulsars[see Appendix B for more detallsHere for known sources near 600 Hz.

radio pulsars at 10 kpc distance, with ellipticiey=10"6, _ i

107, and 108, we have been assuming 1% of false-alarm B. Narrowband configuration: LMXB

probability in a coherent search of 16 of data(coherent Low-Mass X-ray BinarieLMXBs) are systems formed
search for such a long time can only be done for pulsardy a neutron star and a low-mass stellar companion, from
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TABLE VI. Conversion of predicted GW frequencies and char-
acteristic GW amplitudesfgy,h.) from LMXBs between different

assumptions on spin frequency and GW emission mechanism. In

particular, our baseline assumptida,l) for Z sources andl) for

type-1 bursters and accreting millisecond pulsars, has been used by

Refs.[36,43,44 to give numerical estimates for GW frequency and

characteristic amplitudes/strengtfiSor tpe-I bursters and accreting
millisecond pulsars, the conversion frai) to (2) follows the rule
from (al) to (a2 in the table]

a (fs=fq) b (fs=2fy)
1(MQ) (&) (2153, Vhie)
2(CQ (3183, V3hie)) (4163, V3hied)

which the neutron star accretes material. Observations qj|a
LMXBs have provided evidence of a NS spin-frequencyCo

“locking” in the range 260 H& f4<600 Hz (much lower
than the breaking frequency ef 1.5 kHz[43]). These sys-

tems are rather old and believed to have been spun up k

PHYSICAL REVIEW D 69, 102004 (2004
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FIG. 7. Noise curves of non-squeez€éight dashed curve
rmset al. (dark continuous curvésand BC(dark dashed curves
nfigurations optimized for narrowband sources, for 5 and 10 dB
squeezing. We apply only one filter, that is the one with resonant
frequency near the free optical resonant frequency of the SR inter-
¥rometer, or filter I(see Table V. The interferometer noise curves

accretion torque. Thus, to explain the locking it has beerontain only quantum noise but include filter losses. The ther-
conjectured that accretion torque could be balanced byhoelastic noise of spherical and MH mirrors, and the SQL are

angular-momentum loss due to GW emissi@i®—-42. In
Table V, we list a number of LMXBs that are promising GW
sources: the first group contains the so-callesburces, the

plotted for comparison. We also show the frequencies and charac-
teristic strengths(20-day coherent integration, 1% false alarm
[38,39) of possible GWs from LMXBg41] [using the baseline

second group the type-I bursters, and the third group accreéssumptior(al), namely,f,=f4 and mass-quadrupole emissjo#

ing millisecond pulsars(all data are taken from Refs.
[41,43,49).
The spin frequency of the NS in these LMXBs is not

sources, solid circlesSco X-1 in diamony type-l1 x-ray bursters,
solid squares, and accreting millisecond pulsars, open triangles. For
the accreting millisecond pulsar SAX J1808.4-3658, for which the

unambiguously determined, except for accreting millisecondrbital parameters and GW phase evolutions are knp4t, we

pulsars, whose x-ray fluxes pulsate at their spin frequencie§how in another open triangldinked to the 20-day one with a
i.e., fp="fs. For type-l bursters, the spin frequency can pevertical segment of solid linehe characteristic strength assuming a

inferred from the millisecond oscillations in their x-ray
fluxes observed after burstsg) and from the kHz QPO
difference frequencyf(). However, for different sources, it
has been observed that eithgr=fg or f4="fg/2, and it is
not firm yet whetherfg should be equal tdg or fy. Re-
cently, x-ray bursts have been obsery48] from the source
SAX J1808.4—3658an accreting millisecond pulsar, with
spin frequency known fromis= f [46]), and x-ray flux after
the bursts is observed to oscillate at the spin frequéney,
fg=fp="{g). Moreover, for this source the kHz QPO differ-
ence frequency is observed to be half this valiyes f /2.
This might favor the argument thdt="fg for all type-I
bursters, as assumed by R¢fl1,43,44 and used in Table V
(henceforth we shall always adopt this assumptiéfor Z

4-month integration.

bilities for Z sources,(al), (a2, (b1), and (b2) [and two
possibilities for accreting millisecond pulsars and type-I
bursterg1) and(2)]. In the following, we considefal) for Z
sources andl) for accreting millisecond pulsars and type-I
bursters our baseline assumptionas done in Refs.
[36,41,43,44 and comment on what happens if the other
options turn out to be true.

In the second column of Table V, we list GW frequencies
obtained from the baseline assumption; GW frequencies
based on other assumptions can be obtained fronetheor
(1) value by using Table VI. The characteristic GW ampli-
tudeh, from LMXBs has been estimatdd8,49 by assum-

sources, only kHz QPOs have been observed; this makesiiig a balance between GW angular momentum loss and ac-

difficult to determine the NS spin frequency: it could be
either(a) fs="f4 or (b) fs=2f, [note that for different type-I
bursters eithefa) or (b) could be trug

cretion torque, with the latter estimated from x-ray flux, and
by subsequent averaging over {lumknown spin orientation
[see Appendix B for a detailed explanation on the averaging

Moreover, two plausible physical mechanisms for GWprocess and the associated uncertaihtidewever, the value

emission from accreting NS’s have been proposgédmass
qguadrupole radiation from deformed NS crustg,(=2f)
[40,41] and (2) current quadrupole radiation from unstable
(with respect to gravitational radiatippulsation modesr(
mode$ in NS cores {gw=4f14/3) [42,47,49. Suppose one

of h, can also be different due to the various assumptions on
spin frequency and GW emission mechanism we can make.
Values listed in the third column of Table V has been ob-
tained in Refs.[41,43,44 using the baseline assumption;
conversions fronfal) or (1) to the other assumptions can be

of the two emission mechanisms to dominate, then alongnade easily using Eq8) of Ref.[48] and Eqs.(4.4)—(4.6)
with uncertainties in spin frequencies, we have four possiof Ref.[49], and are given in Table VI. By assuming 1%
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A.

Optimization of SR interferometers witlii) no squeezing(ii) FD squeezing but frequency-independent readthe Harmset al. schemg, and (iii) frequency-

independent squeezing but FD read(he BC schemyfor narrowband sources around 600 Hz. We have considered both 8 d8<(0.316) and 10 dB& 2"=0.1) squeezing. In both

TABLE VII.

us]

of the FD schemes, filter 11, which has impractically high finesse, does not affect high frequency performance, and is not applied. The 600 Hz lsamditicith, and SNR for NS-NS
binaries at 300 Mpc are given as performance indices. Here bandwidth is defined as the difference in the two frequencies\/cﬁhwmi@h/zsh(GOO Hz). Noise curves of

configurations listed here are plotted in Fig. 7.

Performance

T (ppm  \/S./(1072%/Hz) at 600 Hz BW (Hz) NS-NS 300 Mpc

Filter (unapplied

Filter |

Interferometer configuration

1l
res

fes Ti (ppm)
21 Hz

2 Hz

A

2m Hz 27 Hz

€

eAZr

Scheme

Spherical/MH

UONANNO AND Y. CHEN

2.93/4.43

41

0.89

—0.748

601.4

25

10dB)
0.316(5dB)

No squeezing

4.59/6.70
4.59/6.64

152
153

0.94
0.95

5.6

—43.0-2.2
—43.0-2.3

152
152

—0.749 599.760.3

FD
601.3 0.806

601.2

60

Harmset al.
BC

5.8

599-860.3

—0.722 596.4100.5

FD

60

6.03/8.15
5.98/7.96

356
361

0.88
0.89

9.7

—44.1-3.8
—44.1-3.9

253
253

100 5979 FD

100

0.1 (10dB)

Harmset al.
BC

9.7

596-7100.5

FD

598.3 0.843
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Enhancement in SNR
W
/

FIG. 8. Relative increase in SNR for LMXB sources around 600
Hz, with 5 dB (e 2'=0.316, dashed curyeand 10 dB & %'
=0.1, continuous curyesqueezing. Since the Harres al. and BC
schemes are extremely close to each other only one curve is shown
for each squeeze factor. The various detectable LM¥Bgler the
baseline assumptigtisted in Table V are also showi$co X—1 in
solid diamond, the rest in solid circles

false-alarm probability and 20-day coherent integration time
(due to unknown orbital motion and frequency drifts caused
by fluctuations in the mass accretion m&c can be ob-

tained fromh, (listed on the fourth column of Table V, see
Appendix B 2 for details note that for the different assump-

tions \/S,_changes by the same factortas For the accret-

ing millisecond pulsar SAX J1808.4-3658, for which the
orbital motion is knowr46], assuming that GW frequency
evolution can be obtained, we also shGw parenthesisthe
characteristic strength obtained with a 4-month integration.
It is important to realize that there are still uncertainties as
to whether a particular source will be detectable, even if the
noise curve is belov&BhC—as explained in Appendix B. How-

ever, the main aim of this paper is to discuss interferometer
configurations, rather than the data analysis of narrowband
sources, so we shall usg , as done by Cutler and Thorne

[36] despite the subtleties, as a playground to compare sen-
sitivities of different interferometer/filter configurations.
Conclusions drawn in our discussions on whether these
sources will be detectable should definitely be refined by
more rigorous investigations.

In Fig. 7 we plot the noise curves obtained for a non-
squeezed SR interferometer and for squeezed SR interferom-
eters with the Harmet al. and BC schemes by optimizing
their sensitivities in a narrow band around 600 Hz. Peak
sensitivities and bandwidths are adjusted to incorporate the
signal strengths of a groupf @ Z sources(including Sco
X-1). The baseline assumption is used in obtainigg, and
Sy, for these sources.

For the nonsqueezed interferometer, we obtain a noise
curve similar to the “narrowband” curve in Fig. 1 of Cutler
and Thorne[36], provided originally by Ken Strain. For
squeezed interferometers, we have considered both 5 dB
(e 2'=0.316) and 10 dB g 2'=0.1) squeezing. Since in
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FIG. 9. Consequences of spin-frequency and emission-mechanism uncertainties on the detection of ZN¥BE€$ using narrow-
band configurations. We plot the GW frequency and characteristic GW stréog&0-day coherent integratiprunder approximation&@l)
(solid circles with center frequency around 600)Hd1) (open circles, with center frequency around 1200, Ha2) (solid triangles, with
center frequency around 400 Kand(b2) (open triangles, with center frequency around 800, lfpng with Harmset al. (equivalent to
BC) noise curvegwith 10 dB squeezingtuned to those frequencies, witkolid curveg and without(dashed curvgsnternal losses of the
interferometer. We assume an ITM power transmissivity of 0.033, SR-cavity round-trip loss of 1% and photodetection losg$ .of 2%;
=840 kW andm=40 kg. The rest of the parameters are listed in Table VIII.

narrowband configurations, the seismic and thermal noiseBD techniques cannot increase the peak sensitivity much due
do not affect significantly the choice of the SR parametersto filter losses, they do increase the bandwidth of observa-
the noise curves in Fig. 7 have been optimized using only théon. This will allow the observation of multiple possible
qguantum-optical noisébut we include filter optical lossgs sources with a fixed configuration. For example, with the
(For comparison we plot in Fig. 7 the thermoelastic nojses.frequency and GW strengths estimates we used in Fig. 7,
We obtain the parametees A, and{ for the squeezed con- with 10 dB squeezing, we can detect simultaneously 7
figurations following a heuristic procedure. Since the filterssources near 600 H@ncluding Sco X-3, while with 5 dB

are very lossy, it is desirable to increase from the squeezing we can detect 6 of them simultaneo(isiuding
nonsqueezed valuem2x< 25 Hz, so that the noise due to Sco X-1). In Fig. 8, we plot the increase in SNR by the
filter losses decreases and although the ideal minimum cfqueezed schemes, as compared to the non-squeezed
SPsseSSincreases, it is still buried by the noise due to filter

losses. As we increase from 27x25 Hz, we search for TABLE VIII. Parameters of narrowband configurations tuned to
the X and ¢ that minimizeS, at 600 Hz; we find that the LMXB sources when different assumptions on spin frequency and
sensitivity at 600 Hz remains roughly the same, while theGw emission mechanism are adopted. Noise curves of these con-
bandwidth increases. Trying to include as many sources dfyurations, with and without interferometer losses included, are
possible, we sek=27X100 Hz for 5 dB squeezing and shown in Fig. 9, and compared to the corresponding GW character-
27X 60 Hz for 10 dB squeezing. The interferometer and fil-istic strengths.

ter parameters used in these configurations are listed

Table VII. Assumption f central € A l
As we see from Fig. 7, the Harnet al. (two dark con- Hz 2mHz 2mHz

tinuous lines, one for 5 dB squeezing the other for 10 dBal 600 30 600.4 —0.756

squeezingand BC(two dark dashed lingsschemes are ex- (b1 1200 90 1057.3  —0.065

tremely close to each other. The peak sensitivities in the %a2) 400 25 412.6 —0.749

and 10 dB cases are chosen to be comparable to each othgy) 800 90 769.0 —0.306

while 10 dB squeezing gives a broader band. Although the
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and the BC scheme. Since there>

TABLE IX. Parameters of wideband configurations, including squeezing with frequency independent input-output optics, thet lHasokeme,
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FIG. 10. Noise spectral densities of wideband configurations,
with e=2mx600 Hz and\ =0, frequency-independent squeezing
(a=m/2,{=0, light continuous curje the Harmset al. scheme
(£=0, dark continuous curyeand the BC schemea(= 7/2, dark
dashed curveare used. Only the guantum-optical noigeking
filter losses into accouptis included. Thermoelastic noises of
spherical and MH mirrors are also shown, in dark and light dash-dot
lines, respectively. The SQL is shown in dashed line. Possible GW
signals from LMXBs(under the baseline assumptjoend known
radio pulsars are also shown.

schemes, for LMXBs around the resonant frequency; both 5
and 10 dB squeezing are shown. In Table V, columns 5-9 we
list the sensitivies of these configurations.

As in the case of NS binary inspirals, SR interferometers
with frequency-independent squeezing and readout phase
can also be optimized for the detection of LMXBs. However,
squeezing combined with frequency-independent input-
output optics cannot easily improve peak sensitivity and
bandwidth at the same time for narrowband configurations.
As a consequence, as we optimize the frequency-independent
scheme with 5 dB squeezing, we obtain narrowband
configurations that can detect at most 4 sources out of the
group of 7 (including Sco X-1. (With 10 dB squeezing,
when a similar optimization is done for frequency-
independent schemes, one finds that a wideband interferom-
eter with frequency-independent schémuan detect all 7
sources—no narrowbanding is necessary, as we shall see in
the next section.

Now we look at the interferometer performances if as-
sumptions other thafal) turn out to be true. In Fig. 9, we
show the predicted GW strengths from the Z sources under
the four assumptiongbtained using Tables V and \I(al)

(solid circles, with center frequency around 600)H@®1)
(open circles, with center frequency around 1200,Ha2)
(solid triangles, with center frequency around 400),Hmd
(b2) (open triangles, with center frequency around 800.Hz
Given these hypothetical groups of sources, we tune
squeezed-input SR interferometévdth Harmset al. or BC
schemes, which are equivalent at high frequendtmeach of

9Corbitt, Mavalvala, and Whitcom[B4] are currently investigat-
ing this optical configuration.
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FIG. 12. Consequences of spin-frequency and emission-
FIG. 11. Comparison of sensitivities to LMXB sources. We plot mechanism uncertainties on the detection of LMXHs qource$
the noise curves of Harnet al. (or equivalently B schemgcon-  using the wideband configuration. We plot the GW frequency and
tinuous curvep and with frequency independent squeezing andcharacteristic GW strengitior 20-day coherent integratignunder
readout schemé&he CM configuration, dashed curyesith 5 dB approximationgal) (solid circles, (b1) (open circleg (a2 (solid
(light curves, and 10 dB(dark curveg squeezing. We also plot the triangles, and (b2) (open triangles along with CM noise curves
estimated frequencies and characteristic GW strengths of Sco X-kith 5 (dashed curvgsand 10 dB(continuous curvessqueezing,
and several otheZ sourcegunder the baseline assumptitat)]. with (dark curveg and without(light curves interferometer losses.

them: around 600, 1200, 400, and 800 Hz, with interferom Table IX, along with SNR achievable for NS binaries at 300

eter parameters listed in Table VIII and noise curves showr'1vIpC and sensitivities at 600 Hz. Both 5 and 10 dB squeezing

in Fig. 9. We remark that assumptions that yield lovigy,'s are considered, with 5 dB numbers quoted in square brack-

X ets. We plot the corresponding noise curves in Fig. 10.
tend to make the sources more detectable. In this study, wé For frequencies higher than 200 Hz, the CM noise curves

have also taken into account interferometer losses, which has

been neglected up till now. We assume the ITM power transe < always better than those with FD techniques. This is

L . . because, as observed by Corbitt and Mavalvala, at high fre-
= - = 0,

missivity to beT_ 0.033, SR-cavity round trlp_loss to be 1% quencies, the optimal squeeze angle and detection phase de-
(denoted byA gy in Ref.[31]) ani:iO photodetection loss to be pend very mildly on the frequency. Therefore, the FD

0 i : )
2A;_(denot.ed .by‘PDm Ref.[31)). 'I_'hese numbers are crude schemes, having additional filter losses, give worse perfor-
estlmgtebs, given the effecﬁs of rllnt(ra]rfer]?metercl[ossesf SUances. At high frequencies, the wideband schemes give a
gested by Fig. 9, especially in higher frequendies., i o - ;
assumptiongbl) of (b2) turns out to be truk more refined sensitivity of 3.2(10 dB squeezingor 1.8(5 dB squeezing

) N times betterin amplitude than the wideband configuration
understanding of realistic interferometer losses, as well as I P 9 g

) . ' as Bithout squeezing. With 10 dB squeezing, the wideband con-
more systematic study of interferometer parameters will b?igurations can detect known pulsars at 10 kpc wéth

crucial in fully understanding whether and how Advanced>10_7 it £ =420 Hz. Withe=3%108 if f..=1 kHz
=~ GwW= ' =~ GW= :

LIGO can detect these narrowband sources, [With 5 dB squeezing, the minimum detectablevill be 1.8
times larger than the 10 dB valdeédowever, if we also re-
quire good sensitivities below 200 Hz, then the FD wideband
The so-called wideband configuration of SR interferom-schemes are preferable to the CM configuration.
eters can be obtained settingsmall ande rather high. These In addition, in the 10 dB squeezing case, when spherical
configurations can be used to detect a broad range of genetigirrors are used, the SNR for binaries are all above 96% the
sources, including: coalescence of NS-NS binary, tidal disoptimal values obtained in the broadband césee Table
ruption of NS by the BH companion, accreting NS’s and!V). However, for Mexican-hat mirrors, the SNR is less op-
radio pulsars. There are no specific criteria for the noisdimal, equal to 83%no filters, 91% (Harmset al.) and 93%
spectrum of the wideband configuration. For simplicity we (BC) the optimal valuegof the same schemésee Table IV.
set e=27 X600 Hz and\=0 (since this configuration is These can be understood by going back to Sec. VB and
similar to the one by Corbitt and Mavalvdla3], we denote observing in(the left panel of Fig. 6 that for spherical mir-
it by CM). The various parameters used are summarized ifors, the optimal noise curves are very wideband.
It is also interesting to note that, with 10 dB squeezing,
the sensitivities of wideband configurations around 600 Hz,
10The 1% SR-cavity loss is the major interferometer loss, accordare only slightly worse~10% in amplitude, than the nar-
ing to Ref.[31]. In addition, we did not use the valtle=0.005 in ~ rowband configurations. As a consequence, with 10 dB
the baseline design of Advanced LIGO: assuming the same amousgueezing, the wideband configurations, even without FD
of loss per round trip inside the SR cavity, a much smallewill techniques, can detect the same groups of LMXBs discussed
make the effect of this loss much larger. in the last sectiorisee Fig. 10 However, it should be noted

C. Wideband configuration
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FIG. 13. To show the break down of the short-cavity approxi- FIG. 14. To investigate the short-filter and short-arm approxi-
mation we plot several noise curves for the KLMTabnventional mation in SR squeezed-variational interferometers we plot several
squeezed-variational interferomet¢20] with |.=840 kW, m noise curves fixingl =840 kW, m=40 kg, e 2=0.1, e=2
=40 kg, ande2'=0.1, fixing a bandwidth oé=27X75 Hz. The X80 Hz, and\=2m7X200 Hz. In particular we show the noise
dark continuous curve refers to the nominal filter-cavity lenigth  curve obtained with exact input-output relation and 4 km filter cavi-
=4 km, and the round-trip filter losB.=20 ppm; while the short- ties(dark continuous curyeand 4 m filter(dark dashed curyethe
filter approximation [;=0.1 m) predicts the dark dashed curve. noise curves obtained with first-order expanded input-output rela-
For comparison, we also plot noise curves of configuration withtion and 4 km filter(light continuous curveand 4 m filter(light
L{=400 m, T,=2 ppm(dark dash-dot curyealong with those of  dashed curve We useT,=20 ppm for the 4 km configurations, and
the lossless optical configurations with=4 km (light continuous  T.=0.02 ppm for 4 m configurations, such that the overall loss
curve, L;=400 m (light dash-dot curveand with short-filter ap- factor remains the same. The disagreements between curves with
proximation L;=0.1 m) (light dashed curve the same patter(continuous or dashedbut different color(dark or

light) is due to the inaccuracy of short-filter approximation; while

that, if 10 dB squeezing is not achievable, then one canndhe disagreements bgtween curves with the same cqlor b_ut different
detect these sources with the wideband configuration. FdPattern is due to the inaccuracy of short-arm approximation.
example, 5 dB squeezing will barely allow one or two more
LMXBs than Sco X-1 to be detected. The narrowband conmances, we want to discuss the limitations of the so-called
figuration (with FD input-output schemgsby contrast, will  short-cavity approximation, so far used in the literature to
only miss one source in the group of 7. In Fig. 11, we com-describe kilometer-scale filter caviti€20,26.
pare the sensitivities of narrowband FD schemes and wide-
band frequency independent schemes to LMXB sources,
with 5 and 10 dB squeezings. A. Breakdown of short-cavity approximation

Finally, by taking into account all other assumptions on
spin frequency and GW emission mechanism, we plot in Fig. Up till now in this paper, we have been using the short-
12, the predictions ofal), (bl), (@2, and(b2), along with  cavity approximation, which imposes thétl./c<1. (Note
CM noise curves with ¥dashed curveand 10 dB squeezing that when referred to the interferometeris the arm length,
(continuous curvg with (dark curveg and without (light ) js the GW sideband frequency or the optical resonant

curves interferometer losses included. frequency— X —ie; when referred to filter cavitied, is the
filter length, Q) is the GW sideband frequency or the filter
VL. THIRD-GENERATION INTERFEROMETERS resonant frequence s.) As we saw in Secs. Il and IlI, the

We now assume that on time scales of third-generatio$hort-cavity approximations, applied to SR interferometers
GW interferometergaround 2012 thermal noise of mirrors and KLMTV filters, simplify significantly their input-output
will be reduced by a large factor, for example by using cryo-relations [see Egs.(3)—(5), (38), and (42)], allowing a
genic techniques, and we can take full advantage of the imstraightforward determination of filter parameters in the
provements in quantum noise obtained by FD input-outpuHarms et al. and BC schemes via characteristic equations
techniques. In addition, we assume that long filters can be f{tEgs. (99) and(74)].
into the existing vacuum tubgsvhich house the arm cavi- On the contrary, without this approximatigne., when
ties) of the LIGO facility and made 4 km long, so that optical cavity lengths are too long for this approximation to work
losses will be significantly lowere(see Table Il). As dis- the filter parameters cannot be determined easily—it is not
cussed in Sec. IV D, the BC scheme is nearly optimal foreven clear whether the optimal/suboptimal frequency depen-
frequencies lower than the optical resonafsee Fig. 5 and dence required bythe exact input-output relation SR
Eqg. (93], thus in the following we shall restrict our analysis interferometers can at all be realized tlgose of KLMTV
to the BC scheme. However, before showing the perforfilters. Since we have derived the exact input-output relation
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of the filters[Egs.(52)—(54)], as well ag(partially*?) that of 102 . -
the interferometefEqgs. (99)—(104) of Ref. [30]], we can : 840 kW, 4000 m
investigate the range of validity of the short-cavity approxi- i - gﬁ@vﬁgo'gm
mations. - fég[Lw,zxm

Let us start with conventional interferometers. As we have§, 1 234
checked in this case, the short-arm approximation is still E
quite accurate, in the sense that, for a given readout schem ~
(i.e., a given set of input or output filtersusing exact and NS
short-arm—approximated input-output relation do not give~ L 10-24,
very different results. Yet, the short-filter approximation “? :
seems to lose accuracy at low frequencies. We study this
effect in Fig. 13, by plotting several noise curves for

squeezed-variational conventional interferomef@@ with 10-25 IS Y L5 s i pipg
| =840 kW, m=40 kg,e > =0.1, ande= 27X 75 Hz, us- 10 20 50 100 200 500 1000
ing the exactinterferometer input-output relation. In doing flHz

so, we use filters with bandwidths and resonant frequencies FIG. 15. We plot the noi ; d-variational q
obtained from the short-filter approximation, but with differ- B e_p Ot the noise Cuives ol squeeze Vaﬂ?}'ﬁ”a spee
ent actual lengths and losses. In the figure, we show the nois”éeters. With(ds=2m> 95.3 Hz, 6=2mx 100 Hz, an.de =0.1,
. . ) P assumind .= 840 kW (dark curvegandl.,=2 MW (light curves,
curve for filters withL+=4 km andTe= 20. ppm in da'f" CoN- and L¢=4000 m(continuous curveésandL;=4 m (dashed curves
tinuous curve, and alsp lossy filters _W|th decreasing length, o round-trip losses ar€,=20 ppm for 4000 m filters and,
but the sameT,/L ratio: L{=400 m in dark dotted curve _gq g2 ppm fo 4 m filters. The optical losses are included follow-
andL=0.1 m(to simulate short-filter limijtin dark dashed g Ref.[21].
curve. The noise spectrum improves as the filter length de-
creases(In fact, since in this case the short-arm approxima-for 4 m configurations, keeping the same overall loss factor.
tion is accurate, short filters must give the optimal perfor-[Filter resonant frequencies and bandwidths are still obtained
mance). In Fig. 13, we also show noise curves for losslessfrom the characteristic equatid@i4), which in turn has been
configurations withL;=4 km in light continuous curvel.;  derived based on both short-arm and short-filter approxima-
=400 m in light dotted curve antl;=0.1 m (to simulate tions.] Noise curves with the same col@dight or dark use
short-filter limit) in light dashed curve. The reason for suchthe same interferometer input-output relation, so the differ-
dramatic noise increase at low frequencies can be attributeghce between them reflects the inaccuracy of the short-filter
to the strong ponderomotive squeezing generated by conveapproximation; those with the same pattécontinuous or
tional interferometers at these frequenciemte thatq  dash share the same filter input-output relation, so their dif-
— 4o as)—0, see left panel of Fig.)1The stronger the ference reflects the inaccuracy of the short-arm approxima-
squeezing, the higher the accuracy requirement on the FDon. We conclude that the errors arising from the short-arm
readout phase; yet the accuracy of short-filter approximatioand short-filter approximations somewhat cancel each other,
does not increase indefinitely whéh— 0. making the exact noise curve differ only slighly from the
By contrast, as we have checked, the short-cavity approxieurve with both short-arm and short-filter approximations ap-
mations still apply very well to squeezed-input conventionalplied. The mild noise increase around the optical-spring reso-
interferometer which at low frequencies does not have agance in this case can also be understood from the pondero-
good an ideal sensitivity as the squeezed-variational convermotive squeezing factor. As we see from the left panel of
tional interferometer. In Fig. 14 we investigate the short-arnFig. 1 (the dashed curve represents a similar configurgtion
and short-filter approximations for SR squeezed-variationaponderomotive squeezing is the strongest near this reso-
interferometers(the BC scheme with 1.,=840 kW, m nance, yet even here the squeeze factor is still small com-
=40 kg, e ?"=0.1, e=2m7Xx80 Hz, and\=27x200 Hz.  pared to that of the conventional interferometer at lower fre-
In this case, both the short-filter and short-arm approximaguencies.
tions introduce some inaccuracies, but they are by far not as We now discuss the short-cavity approximation in
significant as in the squeezed-variational conventional intersqueezed-variational speed metg26,27. We consider the
ferometers. In particular, in Fig. 14, we plot noise curvesconfiguration with Q;=27x95.3 Hz (the “sloshing fre-
obtained using exact interferometer input-output relationguency,” as denoted by} in Ref. [21]) and 6=2m
with 4 km (dark continuous curyeand 4 m filters(dark X100 Hz(bandwidth, assuminge™2"=0.1. We include op-
dashed curve and noise curves obtained using short-arm-tical losses as done in Ref21]. As for conventional
approximated interferometer input-output relation, with 4 kmsqueezed-variational interferometers, the short-arm approxi-
(light continuous curveand 4 m(light dashed curvefilters.  mation is rather accurate hef@his is true if the enhanced
We fix T,=20 ppm for 4 km configurations, and 0.02 ppm formula(i.e., expanded to next-to-leading ordeth./c) for
the quantityx is used, see footnote 5 of R¢21].] However,
the short-filter approximation is not accurate enough, if we
Hn Ref. [30] we treated exactly the propagation of light inside increase the optical power further from advanced LIGO
the interferometers, approximated the radiation-pressure—inducedalue. In Fig. 15, we plot four noise curves with
motion of the ITM as being equal to that of the ETM. =840 kW (dark curveyand 2 MW (light curves, and filter
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10—22: S — ferometers, SR squeezed-variational interferomet{@&@€

& \ —Y ] schemg¢ and the squeezed-variational and -input speed

] meters. The BC schem&hich requires two additional km-

scale cavities has better sensitivity than the conventional
squeezed-variational schemehich also requires two addi-
tional km-scale cavitiggor all frequencies below- 350 Hz.
It has also better performances than the squeezed-input speed
meter(which requires one additional km-scale cayityr all
frequencies above 40 Hz. The BC scheme has comparable
(or slightly bettey sensitivities with respect to the squeezed-
variational speed metéwhich requires three additional km-
scale cavitieg? for frequencies between 50 and~ 300 Hz.

1070 20 50 100 200 500 1000
f/Hz VII. CONCLUSIONS
FIG. 16. Noise spectral densities of SR interferometers with BC In th'.s baper, we generallzed the St]E'dy of KLM-W?’] di
scheme(SR+BC, dark continuous line conventional squeezed- ©N FD input-output optics to SR interferometers, and dis-
variational interferometefKLMTV, dark dashed ling the Purdue- CUSS?d possible appllcatlon§ to second- and third-generation
Chen speed-meter interferometer with ordinary homodyne detectioP W interferometers. In the first part of the pajg8ecs. Il-

(light continuous ling and FD homodyne detectidight dashed 1), we studied the quantum optical properties of SR inter-
curve. We assumé,. =840 kW, m=40 kg, ande"2'=0.1; the SR ferometers and FD input-output schemes. We wrote the

interferometer with BC scheme has=2mXx200 Hz, e=2m input-output relations of SR interferometers as a product of
X 80 Hz, anda=arctang/\); the speed meter with ordinary homo- ponderomotive squeezing and quadrature rotations, deriving
dyne detection ha€=173.2 Hz ands=2=7x200 Hz, while the  explicit formulas for the intrinsic rotation angle and squeeze
speed meter with FD homodyne detection lias=27x95.3 Hz  factor [see Egs(20) and (21)], and investigating their fea-
and 6=2mx 100 Hz. Optical filters are assumed to be 4 km long, tures for several optical configurations. We found that pon-
with 20 ppm round-trip loss. deromotive squeezing becomes very weak in SR interferom-
eters for frequencies higher than300 Hz, regardless of the

lengths 4000 n{and T,=20 ppm, continuous curvgand 4  optical configuratiorjsee Eq(25)]. Then, we built and ana-
m (andT.=0.02 ppm, dashed curve€Again, resonant fre- yzed the performances of the input-output scheme which
quencies and bandwidths of the filters are obtained in th€ombine FD homodyne detectidnia KLMTYV filters) with
same way as in Ref21], based on short-arm and short-filter Ordinary input squeezed vacuu(BC schemg and com-
approximations. As we see, a filter length of 4000 m in- Pared it to the recent FD scheme proposed by Haetrad.
creases the noise significantly lasbecomes on the order of [25- In the low-power limit(which also describes the high-
2 MW. The increase is rather constaand now as dramatic frequency band of Advanced LIG@ve worked out the fully
as in KLMTV squeezed-variational conventional interferom-OPtimal input-output schemgsee Eq.(83)]. In the general
eters at low frequencies, because speed meters have a cof@Se, we derived simple analytical formulas for the fully op-
stant ponderomotive squeezing factor at low frequencie§mal noise spectrumEq. (90)] and the optimal input
[21]. squeeze anglgEq. (89)], and found that at low frequencies,
We notice that in all the above cases where the shortth€ BC scheme can approximate the fully optimal noise
cavity approximations break down, using filter parameter£&urve very wellsee Eq(93)], providing better performances
obtained from the characteristic equatiqas we have done than the Harmet al. scheme. These results for SR interfer-
above, which are derived assuming those approximationsOMeters are quite similar to the conventional interferometer
can no longer be optimal. Instead, one must optimize filte€@S€, in which as shown by KLMTV, a frequency indepen-
parameters numerically using exact filter and interferometefl€nt squeezed vacuum is already fully optintaith FD
input-output relations. We do not have quantitative resultd®2doul, yet a frequency independent readout cannot give as
yet on how much sensitivity can be gained by this re-900d & sensitivitfeven with FD squeezing(The BC and
optimization, but it does not seem likely that the sensitivity Harms et al. schemes generalize to SR interferometers the
can reach the optimal levéle., having the FD rotation from squeezed-variational and squeezed-input schemes introduced

the filters matching exactly the interferometer’s require-0Y KLMTV for conventional interferometers. _
men. In the second part of the papéBec. Vj, assuming that

squeezed vacuum in the GW band would become available

B. Performances of SR squeezed-variational interferometers

Using exact filter and interferometer input-output rela- 12ye do not discuss the Sagnac interferometer which is also a
tions (i.e., without applying short-cavity approximations speed metewithout adding any km-scale cavitig®7]. A Sagnac
and assuming that 4 km filters will be used in third- interferometer can achieve sensitivities equivalent to the Michelson
generation interferometers, we compare in Fig. 16 the noiseurdue-Chen speed meters, and its squeezed-variational version re-
spectral densities of conventional squeezed-variational integuires onlytwo additional km cavities.
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during the operation of Advanced LIGO, we evaluated theMoreover, we also realized that optical losses inside the SR
improvement in astrophysical sensitivity to specific sourcesnterferometer become rather crucial in deciding whether
achievable by these FD schemes, under the facility limitatiorthese sources will be detectable, especially if the predicted
that the filters cannot be longer than 30 m. It is important tovaves are at higher frequencies. A more careful study of
note that, as has been realized by Corbitt and Mavalval@ptical losses will be reported in a forthcoming paff]. It

[23], for nearly tuned SR interferometers with a large band-should also be remembered that we have been relying on the
width (wideband configuration the optimal input-output Ccharacteristic GW streng{l36] of LMXBs to provide a very
scheme is nearly frequency independent at high frequenciefUgh criterion of detectability—in order to make a straight-
So, in this case it is possible to use squeezing optimall;forward yet specific comparison between dlff.e'rent noise
without introducing FD techniques. The Corbitt-Mavalvala CUrves. As a consequence, the true detectability of these
(CM) wideband configuration can be used to detect simultaSPurces by configurations studied in this paper should be
neously various types of sources in the high-frequency band€fined by a more rigorous study. , _

e.g., NS-NS merger, tidal disruption in NS-BH systems, or N the third part of the pap&Sec. V), we investigated the
GWs from known radio pulsars. In addition, if 10 dB squeez-Performances of squeezed SR interferometer with FD output
ing can be realized, this wideband configuration can aIreadgs'ng two 4-km KLMTV filter cavities. We foundsee Fig.

detect a group of 7 LMXBsincluding Sco X-1 around 600 _6) that SR interferometers with input squeezing and subop-
Hz. timal FD readout schemighe BC schemjecan have compet-

However, for specific sources with known spectral fea-INg sensitivities to existing propo§als for th.ird—generation in-
tures, it is more convenient to use optical configurationderferometers(26,27, especially in the middle frequency
which are not wideband. In this case, the FD techniques caf@nd of 50350 Hisee Fig. 16 We also discuss the limi-
provide more flexibility and somewhat better sensitivity, de-f@tion of the short-arm and short-filter approximations
spite significant optical losses due to short filters. The Harm@dopted by most of the past work20,26]. Should at least
et al. scheme is shown to provide a better sensitivity than th&n€ of these approximations break down, the opireal
BC scheme in general in the Advanced LIGO era, due to théuboptimal filter parameters provided by the characteristic
BC scheme’s higher susceptibility to losses at low frequen&duation(39) would not give the required FD rotation—
cies and the filter-length limitation to 30 m. For NS-NS in- Which, in fact, may not even be realizable by any sequence
spirals, assuming 10 dB squeezingthoutusing FD filters, of Qet_uned FP cavrqes. queed, we found that for squeezed-
one can improve the event rate by 898pherical mirroy or variational conventional interferometers and speed meters

42% (MH mirror) with respect to the nonsqueezed case; fur-With high powey, the approximation breaks down at low

ther improvements of 20%spherical mirroy and 429%(MH frequen_cies if applied to km-scale filtefsee Figs. 13 and
mirror) can be obtained by the Harnet al. scheme. For 15), which we attribute to the high level of ponderomotive

LMXB’s, using 5 dB squeezing, without using FD tech- squeezing_ and therefore_ more stringer_lt requirement rotation
niques, the broadband configuration can only detect ®ccuracy in these configurations; while for SR squeezed-
sources simultaneously. By adjusting the SR parameters, wériational interferometerdC schemg the error introduced
find that a frequency independent input-output scheme carfy the approximations is rather mildee Fig. 14

not detect more than 4 sources, since in this case we cannot

gain sensitivity and bandwidth at the same time. The Harms ACKNOWLEDGMENTS

et al. and BC schemes, instead can allow the detection of 6

sources simultaneously, by opening up the bandwidth with We wish to thank Nergis Mavalvala for reading and com-
FD filters (although the peak sensitivity cannot be improvedmenting on our manuscript, and Lars Bildsten, Thomas Cor-
much due to significant filter lossedVith 10 dB squeezing, Dbitt, Teviet Creighton, Lee Lindblom, Kip Thorne, and Stan
the Harmset al. and BC schemes can open up the bandwidthWithcomb for useful discussions. We thank Curt Cutler for
further, inc|uding a group of 7 sources near 600 Htow- clarifying many points in the data anaIySiS of narrow band
ever, with this level of squeezing, the broadband configurasources. A.B. thanks LIGO Caltech Laboratory under NSF
tion can also detect the same sources, though with slightigooperative agreement No. PHY92-10038 for support and
less sensitivity. It is important to mention that, the above the Theoretical Astrophysics and Relativity group for hospi-
detailed results about LMXBs are obtained by assumingality during her visit at Caltech. The research of Y.C. was
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at the QPO difference frequencyE f4~300 Hz) and that

the GW is dominantly mass-quadrupole emissiofi( APPENDIX A: PROOF THAT THE EULLY OPTIMAL

=2f;~600 Hz). Recent resulfg}5], however, may suggest  gcpemE SATISFIES THE SUBOPTIMAL CONDITION
that the spin frequencies could be twice the QPO difference

frequency and therefore lie around 600 Hz instead. In addi- Suppose! is the readout phase. As seen in Sec. IV, with
tion, it is not clear yet whether the dominant GW emission isthe sub-optimala given by Eq.(67), only the squeezed
mass quadrupolée.g., due to deformation in the crusir  quadrature enters the detected quadrature. We now show that
current quadrupolée.g., due ta mode. In Figs. 9 and 12, given(, this « is also theoptimal squeeze quadrature in the
we have briefly explored the sensitivities of narrowband andense that it minimizes the output noise. Since when we vary
wideband configurations to these alternative scenariosy alone, the signal strength in the output quadratyree-
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mains constant, we only need to minimize the noiséjn
We write Eq.(77) schematically as

erzll)

ea, |

Ab,=(A, AZ)R(a)( (A1)

with (A1 A,) the product of the readout and the interferom-

eter partsA; ,e Re. The noise spectrum depends®ias

e A,
Sho(Aq Az)R(a)( o2 )R( a)( 2)- (A2)
Minimizing S, then requires

0
(A1 Az)R(CY)( 1) =0, (A3)
which is equivalent to Eq(78) and hence to Eq67).

APPENDIX B: ON THE DETECTABILITY
OF NARROWBAND SOURCES

In this appendix, we briefly review some subtleties that
are not taken into account in our discussion of narrowband
sources. We restrict the analysis to the mass-quadrupole ra-

diation mechanism.

1. Characteristic amplitude of monochromatic gravitational
wavesh,

PHYSICAL REVIEW D 69, 102004 (2004

In reality F,. . vary due to the Earth’s motion, or are
unknown for some sources; the inclination aniglalthough
may stay constant, could also be unknown, even for known
sources, e.g., LMXBs. As a consequence, with a fixgdhe
SNR achievable can be different. If we are interested in ex-
pected event rates, we shoalderagethe SNR over different
source and detector orientations. If we want to understand
the detectability of a particular source and extractugper
limit, we should consider unfavorable geometries. In this pa-
per the predictions for LMXBs and isolated pulsars have
been obtained averaging the SNR. As said, this is not appro-
priate for evaluating the detectability of individual sources.
In what follows we shall briefly review the average proce-
dure, and comment on what might be done in order to extract
upper limits from a specific source.

Let us first consider the variation or uncertaintyFn . .

The most straightforward ansatz for taking this into account
is to use the r.m.s. average of SNR over the entire sky—as
viewed by the detector. The ansatz gives

(N Ja(E2 2 [ T, [h2+n?
(SN >det_ 2<F+> Sh(QO) 2
1 /h2 +h?
 ha(Qo) 2

To obtain the RHS in the above equation we Y§& )
=(F%)=1/5, and defin¢as done in Eq(51) of Ref. [51]]:

(B5)

Let us consider a monochromatic source emitting GWs at

(angulay frequencyQy#0:

h(t)=F,h,cosQut+FhysinQt, (B1)
h,=hg(1+cosi), (B2)
h, =2h,cosi, (B3)

where we denote witk , ,F, the antenna patterf§1] and
with i the angle that the line-of-sight forms with the spin
direction of the neutron star. The quanthy is an intrinsic

GW amplitude depending on the ellipticity of the isolated

pulsar, or on the x-ray flux emitted by the LMX&hrough

Sh(20)/To

hn((lo)E 2<F2>

(B6)

Now let us consider the dependence &SNRZMM on i.
There are two plausible averaging prescriptions. The first,
which is the easiest, and most appropriate for a known
source at a fixed distance, averages SNRiformly over
source angles, as

VSN gz \/ =

d‘(2’SI’C

h2+h2)

the balance between accretion torque and GW radiation-

reaction torqug as well as on the distance of the source.

Suppose the signal is observed in the time intervdly/2
<t<Ty/2, then the signal-to-noise rati®NR) using opti-
mal matched filtering is

+=dQ 2[h(Q)[?
w27 S(Q)

~[ 2T,
[Sh(Q0)

Note that Eq.(B4) differs from Eq.(29) of Ref. [51]—the
latter is wrong by a factor of §52]. As we shall see in the

SNRZ =

Fih%+F%h?
2

(B4)

next section, when statistical issues are considered, signals

above a certaithresholdSNR will be detectable.

1

h,

(&)

It is then natural to define the characteristic amplitude:

8
ha: \/;hom 126’]0 .

Another way of averaging was proposed by Thorne in Ref.
[51], which has the property that event raSNR)3, if we
assume uniform distribution of sources in the universe

(B7)

(B8)

1/3

dQgc
<SNR>det&src:[J 4 [<SNR2>der]3/2
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il

The integral (B9) cannot be performed analytically, so
Thorne introduced &ludgefactor

h? +h?
2

derc
41

3/2} 1/3

(B9)

dQge[ h? +h% | ¥2H° \/Z dQ, h2 +h2 |12
f 4 2 N g f 4 2 ’
10
yielding
1 32
[<SNR>det&src]kIudge:h_n 1_5h0 . (B11

The above expression originated the following definition for
the characteristic strength:

32
[hc]kludge: 1_5ho* 1.46n,.

The kludged characteristic strendth, ]y qge has been used

(B12)

by many authors, including us in this paper. In particular,

[ hclwudge OF @ pulsar at distance with ellipticity e and fre-
qguencyf can be obtained from Ed3.6) of Ref.[38], and
[Nclugge from LMXBs with mass-quadrupole emission
mechanisms that balances the accretion torque can be
tained from Eq.(4) of Ref.[41].

However, the kludge factov/4—/3 is not accurate. A simple
numerical calculation gives

J
I

1 x 1/3
[EJ sini[(1+cos°-i)2+(2cosi)2]3/2di}
0

} 1/2

3/211/3

d‘(ESI”C h%— + h§<
A 2

dQgchd +h%
Ar 2

172

:

—f;sini[(1+co§i)2+(2 cosi)?]di
~1.047

(B13)
or

h.=1.3%,. (B14)

(o]

PHYSICAL REVIEW D 69, 102004 (2004

For a known source with constahy but uncertain orienta-
tion (uniformly distributed cos), we can also ask for the
probability that(SNR)4e; exceedh, /hy,, [helyugge/hn, and
h./h,. The answers are 41, 29, and 37 %, respectively.

To summarize, we have managed to write the SNR for a
given source or a given set of sourge@gth fixed intrinsic
amplitudehgy, unknowni) in the form of

he

SNR= h’

(B16)

whereh, is the characteristic amplitude—with four different
relations tohy, (B8), (B12), (B14), and (B15), yielding
SNRs that are either averaged in different ways over differ-
enti’s, or taken as the minimuniThe quantityh,, is defined

in Eq. (B6) in terms ofS,, and integration timé.Given the
characteristic amplitude based on a particular prescription,
values based on other prescriptions can be obtained from
Egs.(B8), (B12), (B14), and(B15) using the fact thah, is

the same in all of them. For example, giien ]iq,qqe (Which

is used in this pap&rwe have

h,=0.86G h] kludge: (B17)
h.= O-golhc]kludgea (B19)
hy = 0-484hc]kludge- (B19)

Note that the more conservativg, is a factor of ~2
%maller thar] he Juudge-

2. Factors that determine the detection threshold:
from h; to Sh,

With data analysis methods and desired statistical confi-
dence, a threshol@minimum SNR can be obtained; hence
from Eq.(B16), for a certainh,, a maximumh,, and thus a
maximum S, or S, can be obtainedHere h; should be

specified from an intrinsic GW amplitudb,y, through a
h.-hg relation, such as one of Eq8), (B12), (B14), and
(B15).]

Referenceq 38,39 introduces the canonical sensitivity

hyr=4.2\/8n(f)><10*7 Hz, which is the characteristic am-
plitude of the weakest source detectable with 99% confi-
dence level(i.e., 1% false alarmin a coherent search of
10 s of data, if the frequency and phase evolution of the
source is knowrnsee Eq.(1.4) of Ref. [38]]. This readily
gives theSr1C for known pulsars. However, it should be noted

that Shc obtained using thidgy, only guarantees that the

expectation valudor average of the detection statistic be
higher than the detection threshdl@8], and gives a high
false-dismissal rate of about 5096,53]. In other words,

On the other hand, if we are interested in setting upper limits€ven if the noise curve touch&, for a particular source,

we should use am that has the lowest possib{SNR)ge;
this impliesi = 7/2 and

h_y hUL: Eh02070m0 (815)

n

Min{(SNR e =

there is still around 50% chance this source will not make the
detection threshold.

For LMXBs, frequency and phase evolution of the GW
due to orbital motion is unknown and one must build an
appropriate bank of templates to search for these parameters,
resulting in a threshold higher thdm,,; in addition, varia-
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tions in accretion rate, which induces “random walks” in the

spin, and hence in the GW frequency, further complicates th
data analysis procedure, increasing the threshold further.

PHYSICAL REVIEW D 69, 102004 (2004

VSh (f)=hc®i/(4.2V10"7 Hz). Brady and Creighton

ave shown that, for Sco X-1, with realistic computational

Brady and Creighton studied these issues, and devised a twBOWer @=0.41 [Sec. VIIC of Ref.[39]]. This yields a

step hierarchical scheme for detecting such signag.
They use the relative sensitivity,. to measure the increase
in the threshold for the characteristic amplitudg,,

value ofShC comparable to that of a coherent integration of

20 days. In the paper we use this prescription for all LMXBs
(except for SAX J1808.4—-36%58and denote this character-

=hay/®,. As a consequence, in our notation, we haveistic strength byS3> .
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