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Abstract
We introduce a two-parameter family of strongly-correlated wave functions for
bosons and fermions in lattices. One parameter, q, is connected to the filling
fraction. The other one, η, allows us to interpolate between the lattice limit
(η = 1) and the continuum limit (η → +0 ) of families of states appearing in the
context of the fractional quantum Hall effect or the Calogero–Sutherland model.
We give evidence that the main physical properties along the interpolation
remain the same. Finally, in the lattice limit, we derive parent Hamiltonians for
those wave functions and in 1D, we determine part of the low-energy spectrum.

Keywords: fractional quantum Hall effect, Luttinger liquid, conformal field
theory, matrix product state, entanglement, topological phase

1. Introduction

The fractional quantum Hall (FQH) effect has attracted a longstanding interest in physics. 2D
electrons displaying such an effect form incompressible quantum liquids with a bulk gap,
gapless edge states, and quasiparticle excitations with fractional charge and fractional statistics.
Their properties are not amenable to the conventional Ginzburg–Landau theory; however,
they can be thoroughly analyzed thanks to the discovery of analytical wave functions, which
provide good approximations to some of the quantum states responsible for the FQH effect.
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An important family of such states is the Laughlin states [1]
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i j
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where Zi is the position in the complex plane of the ith electron and ν = q1/ is the filling
fraction, i.e. the ratio between the number of electrons and the number of flux quanta. From a
modern viewpoint, the Laughlin states belong to the so-called topological phases [2, 3], an
exotic class of gapped phases whose full classification is still an outstanding open problem.

In the FQH setups, the Laughlin states arise due to the strong interactions between the
electrons in the fractionally filled lowest Landau level. In that case, the size of the electron wave
packets is at least one order of magnitude larger than the lattice spacing and thus the lattice
effects are usually negligible [4]. A natural question is whether Laughlin states (or their
variants) can appear in lattice models without Landau levels. In the late eighties, Kalmeyer and
Laughlin (KL) proposed a state [5–7] that is a lattice version of the bosonic Laughlin state with
q = 2. This state has been shown to share some of the most defining properties of its continuum
counterpart, like the fractional statistics of quasiparticle excitations [8] and the presence of
chiral edge states [9]. Thus, the continuum and lattice version of the bosonic Laughlin state with
q = 2 seem to be closely connected, although it is not clear what such a connection is. In [10], it
has been shown that an interpolation Hamiltonian between a q = 2 Laughlin-like lattice state
and the continuum q = 2 Laughlin state can be obtained by choosing bases that allow both states
to be expressed in the same Hilbert space, although with different base kets. A more direct
interpolation, in which the lattice spacing is continuously changed, has been considered in [11],
but was found to be valid only for sufficiently small lattice filling factors. A similar situation is
encountered in 1D, where the Calogero–Sutherland (CS) model [12, 13], which is defined in the
continuum, seems to be closely related to the Haldane–Shastry lattice model [14, 15], although
it is not obvious how to transform one into the other.

A very useful description of FQH wave functions in the continuum has been introduced by
Moore and Read in [16], where they wrote selected FQH wave functions in terms of correlators
of the corresponding edge conformal field theories (CFTs). Recently, for certain lattice systems
in 1D and 2D, strongly correlated spin wave functions have also been written in terms of CFT
correlators [17–20]. This, in particular, has made it possible to construct parent Hamiltonians
and to build in a systematic form simple wave functions with topological properties. We note
also that parent Hamiltonians of the KL state have been found in [19, 21–25].

In this paper, we provide an explicit connection between the continuum Laughlin/CS states
on the one side and a set of lattice Laughlin/CS states on the other for all filling factors q1/ . We
do this by introducing a family of lattice wave functions for hardcore bosons and fermions,
which is defined on arbitrary lattices in 1D and 2D and allows us to continuously interpolate
between the two limits. We also provide numerical evidence that the states remain within the
same phase for all values of the interpolation parameter, so that the interpolation is meaningful.
In 1D, we show that the states are critical and describe Tomonaga–Luttinger liquids (TLLs)
with Luttinger parameter =K q1/ , and in 2D we find that the states have topological
entanglement entropy (TEE) [26, 27] − qln ( )/2. The wave functions are constructed from
conformal fields, and we use the CFT properties of the states to derive parent Hamiltonians for
the wave functions in the lattice limit in both 1D and 2D and for general q. In 1D, the parent
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Hamiltonians are closely related to Haldaneʼs inverse-square model [14], and we find that part
of the spectrum is given by integer eigenvalues described by a simple formula.

2. CFT wave functions

Let us consider a lattice with lattice sites at the positions zj, = …j N1, 2, , , in the complex

plane. The local basis at site j is labeled by nj , where ∈n {0, 1}j is the number of particles at

the site. The family of wave functions we propose (later on referred to as CFT states) take the
form of the following chiral correlators of vertex operators:

Ψ … ∝ …n n V z V z( , , ) ( ) ( ) , (2)N n n N1 1 N1

where

χ=
∑π η η ϕ−

< ( )V z( ) e : e : . (3)n j j
n

n
qn z q

i
i ( )

j

j k j
k j

j j j( )

Here, ϕ z( ) is a chiral bosonic field from the c = 1 free-boson CFT, …: : denotes normal
ordering, χ

j
are phase factors that do not depend on nj, q is a positive integer, and η

j
are positive

parameters with average η η∑ = ∈−N (0, 1]
j j

1 . The charge neutrality condition

η∑ − =qn( ) 0
i i i

of the CFT correlators fixes the number of particles to η∑ = ≡= n N q M/
i

N
i1

,

which must hence be an integer, and it follows that η q/ is the lattice filling fraction. η is
therefore the parameter that interpolates between the continuum limit (η → +0 ), with infinitely
many lattice sites per particle, and the lattice limit (η = 1), in which the lattice filling fraction
η q/ equals the Laughlin filling fraction q1/ . When varying η, we shall always take all η

j
to scale

linearly with η, such that η η
j l

remain constant. Evaluating the vacuum expectation value of the

product of vertex operators in (2) [28] yields a Jastrow wave function
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3. Relation to the CS and Laughlin wave functions

Let us demonstrate how the CFT states are related to several familiar wave functions in the
continuum. We first consider the 1D periodic chain, where the lattice sites are uniformly
distributed on a unit circle, i.e. = πz ej

j N2 i / , and we choose η η=
j

∀ j. In this case, we obtain

analytically that χ∝ ηf z z( )
N l l l , and we can therefore write the state (4) as a product of the wave

function Ψ δ∝ ∏ − ∏<
− −z z z( )n i j i j

qn n
l l

q M n
CS

( 1) 2i j l and the gauge factor χ∏ η+ −( )z
l l l

q M n( 1)/2 l

. In the

continuum limit, where → ∞N , η → +0 , and ηN stays fixed to keep the number of particles M
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and the area of the lattice constant (see figure 1(a)), the lattice spacing goes to zero, and ΨCS

turns into the ground-state wave function of the CS model [12, 13] for bosons (even q) and
fermions (odd q). The gauge factor can be set to unity by choosing χ = η− − −z

l l
q M( 1)/2 if we like,

but we note that its presence does not affect properties such as the particle–particle correlation
function and the entanglement entropy. The CFT states thus allow us to define a lattice version
of the CS wave functions and to interpolate between the lattice and the continuum limit of the
model.

We next consider an arbitrary lattice in 2D, which is defined on a disk  of radius

 → ∞R . We define the area aj of site j to be the area of the region consisting of all points in
that are closer to zj than to any of the other lattice sites. Let us note that

η= −∑ −≠
⎡⎣ ⎤⎦( )f z z z( ) exp ln

N l j l j l j( )
. If we choose η π= a (2 )

j j and consider the continuum

limit η → +0 (as illustrated for a square lattice in figure 1(b)), we can replace the sum over j by
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Figure 1. Illustration of the interpolation between the lattice limit (η = 1) and the
continuum limit (η → +0 ) for a uniform lattice in 1D and a square lattice in 2D. The
interpolation is done, while keeping the area per particle aN M/ fixed, where a is the
average area per site. (a) In 1D, the lattice is defined by = πz ej

j N2 i / , which fixes the area

of site j to π=a N2 /j ∀ j, so that π≡ ∑ =−a N a N2 /
j j

1 . The scaling parameter is

therefore η π= =qM N qMa/ /(2 ). (b) In 2D, the lattice is defined on a disk with radius

 → ∞R , and we choose π=a qM N2 / , since this fixes the area per particle to πq2 as in
the Laughlin wave functions. The scaling parameter is therefore η π= =qM N a/ /(2 ).
Transformations between different lattices, including the two displayed on the right, is
obtained by transforming zj.



the integral ∫ π−( )d z z zln (2 )l
2 . In the thermodynamic limit  → ∞R this integral

evaluates to +z 4 constantl

2
, where the constant does not depend on zl. Note, however, that

η∑ −≠ ( )z zln
j l j l j( )

and κ κ η κ κ∑ −−
≠ ( )z zln

j l j l j
2

( )
2 , where κ is a positive constant, only

differ by a zl-independent constant for  → ∞R . If η
j
is not small, we can choose κ very small,

transform the resulting sum into an integral, and again conclude that

η∑ − = +≠ ( )z z zln 4 constant
j l j l j l( )

2
. For all 2D lattices in the thermodynamic limit,

we therefore obtain

χ∝ − −f z N( ) e e ( large), (6)
N l l

g zi 4
l l

2

where η≡ ∑ −≠
⎡⎣ ⎤⎦g z zIm ln ( )

l j l j l j( )
is a real number. In figure 2, we find numerically for

different lattices that (6) is an accurate approximation even if N is only moderately large.
Choosing χ = e

l
gi l and inserting (6) into (4), we observe that the CFT states coincide with the

Laughlin states (1), except that the possible particle positions are restricted to the coordinates of
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Figure 2. Numerical demonstration that (6) is approximately valid even for a moderate
number of lattice sites N for the square (a), the triangular (b), and the hexagonal (c)
lattice with a circular edge. The lattices are illustrated in the lower part of the figure, and

the upper part show =x z 4j

2
versus = − +⎡⎣ ⎤⎦y f zln ( ) constant

N j , where

η− = ∑ −≠
⎡⎣ ⎤⎦ ( )f z z zln ( ) ln

N j l j l j l( )
and we choose the constant to make y

(approximately) homogeneously linear in x (each data point corresponds to one value
of j and the black lines in the background are the curve y = x). The scale of the lattices is
chosen such that η = 1

j
for all j. We note, however, that this choice is unimportant since

the transformation κ→z zj j just takes κ→x x2 and κ→ +y y constant2 .



the lattice sites. By changing the number of lattice sites per particle, we can thus interpolate
between the Laughlin states in the continuum and Laughlin-like states on lattices.

4. Continuous interpolation

We next demonstrate that important properties of the states (4) stay the same as a function of the
interpolation parameter, which indicates that the states remain within the same phase when
interpolated between the lattice limit and the continuum limit. We first consider the uniform
lattice in 1D and show that (4) is well-described by the TLL theory in this case. The Rényi

entropy ρ α= −α α( )( )S ln Tr (1 )L L
( ) of a TLL, where ρ

L
is the reduced density operator of L

successive sites in the chain, is expected to be [29]

π π
= +α α α

α

( )
( )

S S
f Lk

k L N N

cos 2

2 sin sin ( / ) /
(7)L L K

( )
,CFT

( ) F

F

2 /

for π π α≫( )( )k L N Nln 2 sin sin ( / ) /F , where K is the Luttinger parameter, kF is the Fermi

momentum,

α π π= + + ′α
αS c L N N c( /6) (1 1/ ) ln (sin ( / ) / ) , (8)L,CFT

( )

c is the central charge, and αf and ′αc are nonuniversal constants. In our case, ηπ=k q/F . The
Rényi entropy with index α = 2 of the state (4) can be computed numerically by using the

method described in [17, 30]. In brief, the idea is to note that ρ= − ( )( )S ln TrL L
(2) 2 can be

rewritten into

∑ Ψ Ψ
Ψ Ψ

Ψ Ψ

=
… … … …

… …

× … …

′ ′ ′ ′
′ ′

′ ′

−

… ′ … ′

+ +( ) ( )
( )

( )

e
n n n n n n n n

n n n n

n n n n

, , , , , , , , , ,

( , , ) , ,

( , , ) , , , (9)

S

n n n n

L L N L L N

N N

N N

, , , , ,

1 1 1 1

1 1

1

2

1

2

L

N N

(2)

1 1

where nj and ′nj are summed over 0 and 1 for all j and we assume Ψ …n n( , , )N1 to be

normalized. One can then interpret Ψ Ψ… …′ ′( )n n n n( , , ) , ,N N1

2

1

2
as a probability

distribution and compute the right-hand side of (9) using the Metropolis algorithm as detailed
further in appendix A. The result is shown for η = 1 in figure 3(a). Fixing c = 1 and using f

2
, K,

and ′c2 as fitting parameters, we find that the entanglement entropy of (4), indeed, follows (7).
The expected TLL behavior of the particle–particle correlation function
= −+ +C k n n n n( ) i i k i i k is [31]

π π π π π
= +

( )
C k

A kk

k N N

K

k N N
( )

cos 2

sin ( / ) / 2 sin ( / ) /
(10)

K

F

2 2 2

for large k, where A is a nonuniversal constant. For the state (4), we have η= =n M N q/ /i .
We compute the two-body expectation value
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∑ Ψ= …+
…

+n n n n n n n( , , , ) (11)i i k
n n n

i i k N
, , ,

1 2

2

N1 2

by interpreting Ψ …n n n( , , , )N1 2

2
as a probability distribution and using the Metropolis

algorithm (see appendix A for details). Numerical results for the correlation function are shown
for η = 1 in figure 3(b), and we find that (10) provides a good fit.

The values of K extracted from the entropy and correlation function computations are
shown as a function of the interpolation parameter η in figure 3(c), and these results suggest that

=K q1/ independent of η. We note that the observed behavior coincides with the properties of
the free-boson CFT with radius =R q , which is the low-energy effective theory for the CS
model with rational coupling constant q [32].

The Laughlin states in the continuum are topological states with TEE − qln ( )/2. To
compute the TEE of the lattice models, we consider the state defined on an R × L lattice on the
cylinder as suggested in [33]. The state on the cylinder is obtained by choosing
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Figure 3. (a) Deviation of the Rényi entropy with index α = 2 of a block of L
consecutive sites from the lowest order CFT expression (8) and (b) particle–particle
correlation function of the CFT state (4) for a uniform 1D lattice in the lattice limit for
q = 3 (top) and q = 4 (bottom) obtained from Monte Carlo simulations. The fits are
based on equations (7) and (10), respectively, and allow us to extract the Luttinger
parameter K, which is shown forM = 50 as a function of the interpolation parameter η in
inset (c) (‘Ent’ (‘Cor’) means extracted from the entropy (correlator) fit). Since (7) and
(10) are valid for large L and k, respectively, we exclude the first ηq2 / points when
computing the fits.



π= +( )( )z r l Lexp 2 ij j j in (4), where ∈ − + − + … −r R R R{ /2 1/2, /2 3/2, , /2 1/2}j and

∈ …l L{1, 2, , }j . When cut in two halves in the direction perpendicular to the cylinder axis,

the entanglement entropy behaves as ξ γ= −S LL
(2) for large R and L, where ξ is a nonuniversal

constant and γ− is the TEE [33]. The techniques mentioned above to compute SL
(2) can also be

applied here, and in figure 4, we plot the entanglement entropy as a function of L for different
values of the interpolation parameter for q = 3 and q = 4. In all cases the extracted values of the
TEE are compatible with the value− qln ( )/2. This provides further evidence that the CFT states
in the lattice limit are continuously connected to the Laughlin states in the continuum. Finally,
we note that TEE values close to − qln ( )/2 have also been obtained for another set of Laughlin-
like states on lattices in [34].
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Figure 4. Rényi entropy with α = 2 of the CFT state (4) with q = 3 (left) and q = 4
(right) obtained from Monte Carlo simulations. The state is defined on an R × L square
lattice on the cylinder, and the cut divides it into two ×R L/2 lattices, where L is the
number of lattice sites in the periodic direction. The fits are weighted linear least squares
fits of the form ξ γ= −S LL

(2) , where ξ and γ are fitting parameters, and the weight of
each point is taken to be the inverse of the square of the error bar. Starting from above, η
and R are, respectively, η = 1, 0.694, 0.391, 0.25, 0.111 and =R 10, 12, 16, 20, 30
for the five data sets, and the number of particles is η=M RL q/ . The TEE values

γ δγ− ± extracted from the fits are given in the table below the figures, and these values
should be compared to the TEE γ− ≡ − qln ( )/2

q
of the Laughlin states in the

continuum, i.e. to γ = 0.549
3

and γ = 0.693
4

, respectively. When interpreting the error
bars δγ (one standard deviation), one should keep in mind, however, that the expression

ξ γ= −S LL
(2) is only valid asymptotically for large L and R and that finite size effects

may therefore give rise to small errors biased in a particular direction. The relevant size
of these errors may be judged from the graphs. The insets are enlarged views, and the
red arrows point at the value γ−

q
.



5. Parent Hamiltonian

For η = 1
j

∀ j, the vertex operators constructing the wave functions (2) can be identified as

primary fields of a free-boson CFT compactified on a circle of radius =R q . For q = 2, the
CFT is the SU(2)1 Wess–Zumino–Witten (WZW) model. For q = 3, the CFT has a hidden
supersymmetry and can be identified as the = 2 superconformal field theory [16]. For integer
q, the rationality of these CFTs ensures the existence of null fields. This is very useful, because
null fields can be used for deriving parent Hamiltonians as demonstrated for the case of WZW
models in [18]. Here, we identify a suitable set of null fields from which we derive decoupling
equations. After some algebra (see appendix B), this procedure gives us a set of operators,

which annihilate the wave functions (2) at η = 1
j

. These operators include Υ = ∑ ˜
= d

i

N
i1
, where

χ˜ = −d di i i
1 and di denotes the fermionic (hardcore bosonic) annihilation operator for odd (even)

q, and

∑Λ = − ˜ + ˜ − ˜ −
≠

⎡⎣ ⎤⎦( )q d w d d qn( 2) 1 , (12)i i
j i

ij j i j
( )

where ≡ + −( )w z z z z( )ij i j i j . Since Υ Ψ Λ Ψ| 〉 = | 〉 = 0i ∀ i, the positive semi-definite

Hermitian operators Υ Υ† and Λ Λ†
i i ( = …i N1, , ) have the wave functions (2) with η = 1

j

and zj arbitrary as their zero-energy ground state. Thus, these operators can be used to construct

both 1D and 2D parent Hamiltonians for which the wave functions (2) with η = 1
j

are exact

ground states. For the states with η ≠ 1
j

, we have not achieved to construct parent Hamiltonians,

which is still an interesting open problem.
In the following, we focus on a 1D parent Hamiltonian obtained for = πz ej

j N2 i / , which

turns out to have a particularly simple form. Specifically, we consider

Λ Λ Γ Γ Υ Υ= ∑ − + +† † − †( )H q E
i i i i i

q
1D

1

2

2

2 0, where Γ Λ= ˜ = ∑ ˜ ˜
≠d w d di i i j i ij i j( )

and

= − + −−E N N q[3 ( 8) ]
q

q0
1

6
is the eigenenergy of (4). This choice yields a parent Hamiltonian

with purely two-body interactions (see appendix C)

∑ ∑= − − ˜ ˜ − −

≠

†

≠

⎡⎣ ⎤⎦H q w w d d
q q

w n n( 2)
( 1)

2
. (13)

i j
ij ij i j

i j
ij i j1D

2 2

While the q = 2 Hamiltonian recovers the spin-1/2 Haldane–Shastry model [14, 15], the
Hamiltonians with ⩾q 3 differ from the Haldaneʼs inverse-square Hamiltonians [14] by an
extra hopping term. By diagonalizing the Hamiltonian (13) numerically for small N, we confirm
that the wave functions (2) are indeed their unique ground states. Additionally, we observe that
H1D always has integer eigenvalues besides noninteger ones, which is an interesting feature
already arising in Haldaneʼs model [14]. Motivated by Haldaneʼs results, we have found that,
after subtracting a constant, part of the integer eigenvalues take the form

= ∑ + − −( )E m m q N2 2
m k k{ }k

, where m{ }k is a set of M pseudomomenta (M: number of

particles) satisfying ∈ −m N[0, 1]k and ⩾ ++m m qk k1 . This formula captures the essential
low-lying part of the energy spectrum. Similar to Haldaneʼs model, one can prove analytically
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that the Jastrow wave functions Ψ δ χ… = ∏ − ∏< ( )n n z z z( , , ) ( )J
N n i j i j

qn n
l l l

J n

1D 1
i j

l

, where δ = 1n

for ∑ =n M
i i and zero otherwise and ⩽ ⩽ − − −J N q M1 ( 1) 1, are exact eigenstates of (13)

and are a subclass of those eigenstates with integer eigenvalues.

6. Conclusion

The present work combines several known models into a common framework with an
underlying CFT structure and shows how the Laughlin states and the CS wave functions can be
continuously transformed into lattice wave functions with similar properties. The CFT structure
provides useful tools for deriving properties of the states analytically, and, in particular, enables
us to derive parent Hamiltonians of the states in the lattice limit. Analytical wave functions play
an important role in the investigation of the FQH effect in the continuum, and the model
proposed here may similarly be used for analyzing FQH properties in lattice systems. Our
present work also provides a method to discretize continuum FQH states in a way that is
amenable to projected entangled-pair state description [35, 36], and thus it provides an
alternative approach to the one recently introduced based on infinite matrix product states using
discrete Landau level orbitals [37–39].
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Appendix A. Details of the Monte Carlo simulations

To compute

∑ Ψ= …+
…

+n n n n n n n( , , , ) (A.1)i i k
n n n

i i k N
, , ,

1 2

2

N1 2

by use of Monte Carlo simulations, we start from a random configuration …n n n, , , N1 2 of the

occupation numbers fulfilling ∑ == n M
j

N
j1

. In each step of the algorithm we randomly choose a

particle from one of the occupied sites and move it randomly to one of the empty sites. We
denote the new configuration by ˜ ˜ … ˜n n n, , , N1 2 and compute

Δ = ˜ ˜ … ˜ …( )P n n n P n n n, , , ( , , , )N N1 2 1 2 , where Ψ… ≡ …P n n n n n n( , , , ) ( , , , )N N1 2 1 2

2
. If

Δ ⩾ 1, we keep ˜ ˜ … ˜n n n, , , N1 2 as our input configuration in the next step,and if Δ < 1, we
choose the input configuration in the next step to be ˜ ˜ … ˜n n n, , , N1 2 with probability Δ and

…n n n, , , N1 2 with probability Δ−1 . After a warm up period, we run the algorithm for NS steps.
The visited configurations represent the probability distribution …P n n n( , , , )N1 2 , and one can

therefore compute +n ni i k from
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∑=+
… ∈

+n n
N

n n
1

, (A.2)i i k
S n n n S

i i k
{ , , , }N1 2

where S is the tuple of visited configurations. Since it follows from (4) with = πz ej
j N2 i / that

+n ni i k is independent of i, we also average (A.2) over i. It is important to note that it is not

necessary to normalize the wave function Ψ …n n n( , , , )N1 2 since we only need ratios of
probabilities to compute Δ.

The Monte Carlo simulation of (9) is done in the same way, except that there are now two
configurations …n n n, , , N1 2 and …′ ′ ′n n n, , , N1 2 to keep track of. We therefore choose randomly
in each step, whether we move a particle in …n n n, , , N1 2 or in …′ ′ ′n n n, , , N1 2 .

Appendix B. Operators annihilating the lattice Laughlin states

In this section, we derive operators that annihilate the state (2) for η = 1. We first assume χ = 1
j

and consider the CFT wave functions defined by

Ψ … = ⋯… z z V z V z V z( , , ) ( ) ( ) ( ) , (B.1)n n N n n n N, , 1 1 2N N1 1 2

where

= =π
=

−
+ = −V z V z V z V z( ) e ( ), ( ) ( ). (B.2)n j

j
j n j j1

i ( 1)
0j j

Here = ϕ
+

−V z( ) e q z qi ( 1) ( )/ and = ϕ
−

−V z( ) e z qi ( )/ .
For the c = 1 free-boson CFT with compactification =R q , it is convenient to define two

chiral currents,

ϕ=± ±G z q z( ) e i ( ), (B.3)

besides the U(1) current ϕ= ∂J z z( ) ( )
q

i . For =q 2, these currents form the SU(2)1

Kac–Moody algebra. For q = 3, together with the energy–momentum tensor, the currents form
the  = 2 superconformal current algebra.

To construct the parent Hamiltonian of (B.1), we need to derive decoupling equations
satisfied by the CFT correlator (B.1) using null fields. Let us first consider the null field

∮

∮

∮

∮

χ
π

π
ϕ

π
ϕ

π
ϕ ϕ

=
−

−

=
−

− ∂

=
− −

− ∂

=
−

∂ − ∂

=

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

+
− +

− −

− −

− −

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

[ ]w
dz

z w
G z V w qJ z V w

dz

z w
q z

dz

z w z w
q w

dz

z w
q w q w

( )
2 i

1
( ) ( ) ( ) ( )

2 i
1

e e i ( ) e

2 i
1 1

e i ( ) e

2 i
1

i ( ) e i ( ) e

0. (B.4)

w

w

q z w q q w q

w

q z w q q w q

w

q w q q w q

1

i ( ) i ( ) i ( 1) ( )

i ( ) i ( ) i ( 1) ( )

i ( 1) ( ) i ( 1) ( )
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By replacing the vertex operator at site i by the null field χ z( )i1
, the chiral correlator vanishes

∑

∮

∮

χ

π

π

= ⋯ ⋯

=
−

⋯ − ⋯ 〉

= −
−

⋯ − ⋯ 〉

+
− +

= ≠

+
− +

⎤⎦

⎤⎦

V z z V z

dz

z z
V z G z V z qJ z V z V z

dz

z z
V z G z V z qJ z V z V z

0 ( ) ( ) ( )

2 i
1

( ) [ ( ) ( ) ( ) ( ) ( )

2 i
1

( ) [ ( ) ( ) ( ) ( ) ( ) , (B.5)

n i n N

z
i

n i i n N

j i

N

z
i

n i i n N

1 1

1

1 ( )
1

N

i
N

j
N

1

1

1

where we have deformed the integral contour in the last step. To proceed we use the operator
product expansions (OPEs)

∼
∑

−
+ ′ ′

′G z V w
d

z w
V w( ) ( )

( )
( ), (B.6)n

n nn
n

∼
∑ −

−
′

†
′

′J z V w
q

qd d

z w
V w( ) ( )

1 ( 1)
( ), (B.7)n

n nn
n

where the particle annihilation and creation operators are defined as

= =†( ) ( )d d0 0
1 0

and 0 1
0 0

, (B.8)

respectively. Applying the OPEs, the chiral correlator with null field χ z( )i1
yields the following

decoupling equation:

∑

∑
∑

∑
∑

∑ ∑

∑ ∑

∮

∮

∮

χ

π

π

π

= ⋯ ⋯

= −
−

⋯ − ⋯ 〉

= −
− −

⋯ ⋯ ⋯

+
−

−

−
⋯ ⋯ ⋯

=
−

⋯ ⋯ ⋯

−
−

− ⋯ ⋯ ⋯

= ≠

+
− +

= ≠

′
′

′ −

= ≠

′

†
′

′ +

= ≠ ′
′ ′ −

= ≠ ′

†
′ ′ +

⎤⎦

V z z V z

dz

z z
V z G z V z qJ z V z V z

dz

z z

d

z z
V z V z V z V z

dz

z z

qd d

z z
V z V z V z V z

z z
d V z V z V z V z

z z
qd d V z V z V z V z

0 ( ) ( ) ( )

2 i
1

( ) [ ( ) ( ) ( ) ( ) ( )

2 i
1

( )

( ) ( ) ( ) ( )

2 i
1

( 1)

( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( )

1
( 1) ( ) ( ) ( ) ( ) . (B.9)

n i n N

j i

N

z
i

n i i n N

j i

N

z
i

n
n n

j
n n j i n N

j i

N

z
i

n
n n

j
n n j i n N

j i

N

i j n
n n n n j i n N

j i

N

i j n
n n n n j i n N

1 1

1 ( )
1

1 ( )
1

1 ( )
1

1 ( )
1

1 ( )
1

N

j
N

j

j

j j

j N

j

j

j j

j N

j

j j j N

j

j j j N

1

1

1

1

1

1

Based on the above decoupling equation, we obtain an operator Λ ′i

∑Λ =
−

− −′
= ≠

†⎡⎣ ⎤⎦( )z z
d d n qn

1
1 , (B.10)i

j i

N

i j
i j i j

1 ( )

where = †n d dj j j, and which annihilates the wave function (B.1), i.e. Λ Ψ| 〉 =′ 0i ∀ = …i N1, , .
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Similarly, decoupling equations can be derived from another two null fields

∮χ
π

=
−

=+
+w

dz

z w
G z V w( )

2 i
1

( ) ( ) 0, (B.11)
w

2

∮χ
π

= =+
+w

dz
G z V w( )

2 i
( ) ( ) 0, (B.12)

w
3

and we obtain two additional operators annihilating the wave function (B.1)

∑Λ =
−

″
= ≠ z z

n d
1

, (B.13)i
j i

N

i j
i j

1 ( )

∑Υ =
=

d . (B.14)
i

N

i
1

These operators can be combined into new operators annihilating (B.1)

∑Λ Λ+ =
−

− −′ ″
= ≠

⎡⎣ ⎤⎦( )d
z z

d d qn
1

1 , (B.15)i i i
j i

N

i j
j i j

1 ( )

∑Λ =
−

″
= ≠

d
z z

d d
1

. (B.16)i i
j i

N

i j
i j

1 ( )

Defining = +
−wij

z z

z z
i j

i j
, the operator

∑Λ = − + − −
= ≠

⎡⎣ ⎤⎦( )q d w d d qn( 2) 1 (B.17)i i
j i

N

ij j i j
1 ( )

can be written as

∑

∑

∑

∑

Λ

Λ Λ

Λ Λ Υ

Λ Λ Υ

= − +
−

− − −

= − + + − − −

= − + + − − + − − −

= + − + −

′ ″

′ ″

′ ″

= ≠

= ≠

=

=

⎛
⎝
⎜

⎞
⎠
⎟ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )

( )

( )

( )

( )

( )

( ) ( )

( )

q d
z

z z
d d qn

q d z d d d qn

q d z d d d qn qn

z d d qn

( 2)
2

1 1

( 2) 2 1

( 2) 2 1 1

2 1 . (B.18)

i i
j i

N
i

i j
j i j

i i i i i
j i

N

j i j

i i i i i i i
j

N

j i

i i i i i
j

N

j

1 ( )

1 ( )

1

1

Note that the wave function (B.1) has filling fraction ν = q1/ , i.e. Ψ∑ − | 〉 == ( )qn 1 0
j

N

j1
. Thus,

we have proven that Λ Ψ| 〉 = 0i ∀ = …i N1, , . Since Λ Ψ| 〉 = 0i , it is straightforward to prove

that Γ Ψ| 〉 = 0i , where Γi is given by Γ Λ= = ∑ = ≠d w d di i i j i

N
ij i j1 ( )

.
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The wave function (2) with η = 1 differs from (B.1) by the factor χ∏
j j

nj. This can,

however, easily be taken into account by multiplying the above operators with χ∏ −
j j

nj from the

right and χ∏
j j

nj from the left, which amounts to replacing dj by χ˜ = −d dj j j
1 .

Appendix C. 1D parent Hamiltonian

In this section, we use Λi to construct a 1D uniform Hamiltonian, where the lattice sites form a

unit circle, i.e. = πz ej
j Ni2 / .

Since ∑ =≠ w 0
j i ij( )

in 1D uniform case, the form of Λi can be simplified as

∑Λ = − + −
≠

( )q d w d qdn( 2) . (C.1)i i
j i

ij j i j
( )

Then, the positive-semidefinite operators annihilating the wave functions are given by

∑ ∑

∑ ∑

∑ ∑

∑

Λ Λ = − + − − − − −

− − − − − −

= − + − − − +

− − + +

† †

≠

†

≠

†

≠

† †

≠ ≠

† †

≠

† †

≠

≠ ≠

† † †⎡⎣ ⎤⎦

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

q d d q w d d qn n q w d d qn n

w d qd n d qdn w w d qd n d qdn

q n q w d d d d w n q n n

w w d d q d d d d n q n n n

( 2) ( 2) ( 2)

( 2) ( 2)

. (C.2)

i i i i
j i

ij i j i j
j i

ij j i i j

j i
ij j i j j i j

j l i
ij il l i l j i j

i
j i

ij i j j i
j i

ij j i j

j l i
ij il l j j i i j l i j l

2

( ) ( )

( )

2

( )

2

( ) ( )

2 2

( )

2

By using the useful identities

∑ = − − −

≠

w
N N( 1) ( 2)

3
, (C.3)

i j
ij

( )

2

∑ = − +
≠

w w N w( 2) 2 , (C.4)
i j l

ij il jl
( , )

2

and fixing the filling fraction ∑ =n N q/
i i in the system, we obtain

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

∑ ∑

Λ Λ = − + − + − − −

− − + + + −

= − + − − + − −

− − + + + −

†

≠

†

≠

≠

†

≠ ≠

† †

≠

†

≠

≠

†

≠ ≠

† †

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

( )

( )

q
N

q
q w d d

N N
n q w n n

N w d d q w w d d d d n qn n n

q
N

q

N N N

q
q w d d q w n n

N w d d q w w d d d d n qn n n

( 2) 2 ( 2)
( 1) ( 2)

3

( 2) 2

( 2)
( 1) ( 2)

3
2 ( 2)

( 2) 2 . (C.5)

i
i i

i j
ij i j

j
j

i j
ij i j

j l
jl l j

i j l
ij il j i i j l i j l

i j
ij i j

i j
ij i j

j l
jl l j

i j l
ij il j i i j l i j l

2 2 2

2

2 2 2

2
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The above expression can be further simplified by using

∑ Υ Υ= −
≠

† †d d
N

q
(C.6)

j l
l j

and

∑ ∑ ∑= + + =

= − −
≠ ≠ ≠ ≠ ≠ ≠

( )w w n n n w w w w w w n n n n n n

N N q N q

q

1
3

1
3

( ) ( 2 )
3

, (C.7)

i j l
ij il i j l

i j l
ij il ji jl li lj i j l

i j l
i j l

3

where we have used the cyclic identity

+ + =w w w w w w 1.ij il ji jl li lj

Then, we obtain

∑ ∑ ∑

∑ ∑

∑ ∑

∑

Λ Λ

Υ Υ

Υ Υ

= − + − − + − −

− − − − + +

− − −

= − − − − −

+ + + + − +

†

≠

†

≠

†

≠

†

≠ ≠

† †

≠

†

≠

†

≠ ≠

† †

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦

( )

( )

q
N

q

N N N

q
q w d d q w n n

N
N

q
w d d q w w d d d d n

q
N N q N q

q

q w w d d q w n n N

q w w d d d d n
N

q
qN q q

( 2)
( 1) ( 2)

3
2 ( 2)

( 2) 2

( ) ( 2 )
3

2 ( 2) ( 2)

3
[3 ( 12 8) ]. (C.8)

i
i i

i j
ij i j

i j
ij i j

i j
ij i j

i j l
ij il j i i j l

i j
ij ij i j

i j
ij i j

i j l
ij il j i i j l

2 2 2

2

2
3

2 2 2

2

Now we construct positive-semidefinite operators from the operator

∑Γ =
≠

w d d (C.9)i
j i

ij i j
( )

by forming

∑ ∑ ∑Γ Γ = − = − −†

≠

†

≠ ≠ ≠

†w w d d n w n n w w d d n , (C.10)i i
j l i

ij il l j i
j i

ij i j
j l i

ij il l j i
, ( ) ( )

2

( )

and

∑ ∑ ∑Γ Γ = − −†

≠ ≠ ≠

†w n n w w d d n . (C.11)
i

i i
i j

ij i j
i j l

lj li i j l
2

Note that Λ Λ∑ †
i i i and Γ Γ∑ †

i i i both contain three-body interaction terms. However, we
observe that, the following combination eliminates the three-body terms by using the cyclic
identity:
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∑ ∑

∑ ∑

∑

∑ ∑

∑

∑ ∑

Λ Λ Γ Γ

Υ Υ

Υ Υ

Υ Υ

−

= − − − − − −

+ + + + + − +

= − − − − − −

+ + + − +

= − − − − − −

+ − + −

† †

≠

†

≠

†

≠ ≠

†

≠

†

≠

†

≠ ≠

†

≠

†

≠

†

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

( )

q

q w w d d q q w n n N

q w w w w w w d d n
N

q
qN q q

q w w d d q q w n n N

q d d n
N

q
qN q q

q w w d d q q w n n q

q

q
N N q

2 ( 2) ( ) ( 2)

3
[3 ( 12 8) ]

2 ( 2) ( ) ( 2)

3
[3 ( 12 8) ]

2 ( 2) ( ) ( 2)

1

3
[3 ( 8) ], (C.12)

i
i i

i
i i

i j
ij ij i j

i j
ij i j

i j l
ij il ji jl lj li i j l

i j
ij ij i j

i j
ij i j

i j l
i j l

i j
ij ij i j

i j
ij i j

2 2 2

2

2 2 2

2

2 2 2

where we have used

∑ ∑

∑ Υ Υ

= − −

= − = − − −

≠ ≠

†

≠

†

≠

† †

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

d d n d d
N

q
n n

N

q
d d

N

q

N

q

N

q
1 1 1 . (C.13)

i j l
i j l

i j
i j i j

i j
i j

Finally, we define the 1D parent Hamiltonian as

∑ ∑

∑ ∑

Λ Λ Γ Γ Υ Υ= − + − −

= − − − −

† † †

≠

†

≠

⎡⎣ ⎤⎦

H
q q

E

q w w d d q q w n n

1
2 2

2

2

( 2)
1
2

( ) , (C.14)

i
i i

i
i i

i j
ij ij i j

i j
ij i j

1D 0

2 2 2

where E0 is the ground-state energy of H1D,

= − − + −E
q

q
N N q

1

6
[3 ( 8) ]. (C.15)0

If χ ≠ 1
j

, dj should be replaced by χ˜ = −d dj j j
1 .
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