

$\label{prop:supplementary Figure S2} \textbf{ Puromycin (Pmn) reaction.}$

- (**A**) Puromycin reactivity of Bpy-MetPhe-tRNA^{Phe} bound to the ribosomes programed with mRNA-Alx in the absence (○) and presence (●) of EF-G (37°C, 1 mM Pmn). Given is the % of PRE complexes reacting with Pmn.
- (B) Time courses of Pmn reaction with PRE and POST complexes double-labeled with Bpy and Alx. PRE complexes (0.2 μ M after mixing) were mixed with Pmn (10 mM) in the

presence of HygB and EF-G (\blacksquare) ($k_{PRE} = 0.16 \pm 0.01 \text{ s}^{-1}$). POST complexes were prepared by incubating PRE complexes with EF-G for 10 min at 4°C before mixing with Pmn (\spadesuit) ($k_{POST} = 45 \pm 6 \text{ s}^{-1}$).

(C) Same as in (B) with EF-G(H91A) (\blacktriangledown) ($k_{PRE} = 1.5 \pm 0.1 \text{ s}^{-1}$) or EF-G(H583K) (\square) ($k_{PRE} = 1.6 \pm 0.1 \text{ s}^{-1}$) (4 μ M EF-G); the rate of $k_{POST} = 48 \pm 7 \text{ s}^{-1}$ (\bullet). The intrinsic rate of translocation into the Pmn-reactive POST intermediate ($k_{TL Pmn}$; **Table 1**) was calculated from k_{PRE} and k_{POST} as $1/k_{Tl Pmn} = 1/k_{PRE} - 1/k_{POST}$. Shown is the % of POST complexes reacting with Pmn at a given time.