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SUMMARY

The prevalence of intellectual disability is around 3%;
however, the etiology of the disease remains unclear
in most cases. We identified a series of patients with
X-linked intellectual disability presenting mutations
in the Rad6a (Ube2a) gene, which encodes for an
E2 ubiquitin-conjugating enzyme. Drosophila defi-
cient for dRad6 display defective synaptic function
as a consequence of mitochondrial failure. Similarly,
mouse mRad6a (Ube2a) knockout and patient-
derived hRad6a (Ube2a) mutant cells show defective
mitochondria. Using in vitro and in vivo ubiquitination
assays, we show that RAD6A acts as an E2 ubiquitin-
conjugating enzyme that, in combination with an E3
ubiquitin ligase such as Parkin, ubiquitinates mito-
chondrial proteins to facilitate the clearance of
dysfunctional mitochondria in cells. Hence, we iden-
tify RAD6A as a regulator of Parkin-dependent
mitophagy and establish a critical role for RAD6A in
maintaining neuronal function.

INTRODUCTION

Intellectual disability (ID) represents a significant social and eco-

nomic burden. About 3%of theWestern population is diagnosed

with ID, and patients require lifelong care (Backx et al., 2010).

Numerous genetic causes of ID exist, in particular X-linked ID

(XLID); however, assessment of the molecular defects that result

in synaptic deficits as well as prognostication for therapeutic

care remain a challenge (Baker et al., 2012).

Mutations in hRad6a (Ube2a) cause XLID, but how this gene

affects neuronal function is not known (Budny et al., 2010; de

Leeuw et al., 2010; Honda et al., 2010; Nascimento et al.,

2006). RAD6A is a neuronally expressed ubiquitin conjugating

enzyme (E2) (Jentsch et al., 1987; Koken et al., 1996). RAD6-

dependent ubiquitination is best studied in DNA damage

tolerance (Karras and Jentsch, 2010; Koken et al., 1996, 1991;
M

Prakash, 1994), a process that allows specialized DNA polymer-

ases to bypass DNA lesions (Lee and Myung, 2008). Several

nuclear E3 ubiquitin ligases that act with RAD6 have been iden-

tified, including Rad18, Ubr1, and Bre1 (Game and Chernikova,

2009). Although RAD6A is rather well studied in the nucleus, it

remains unclear how mutant RAD6A translates into dysfunction

of the nervous system. Moreover, RAD6A is abundantly present

in the cytoplasm (Zenkel et al., 2007), and the non-nuclear roles

for RAD6A need further exploration.

We find that RAD6A is an E2 ubiquitin-conjugating enzyme

that, in combination with an E3 ubiquitin ligase such as Parkin

(Martin et al., 2011), controls clearance of dysfunctional mito-

chondria in mice and in human cells in vitro. Our work identifies

RAD6A as a ubiquitin-conjugating enzyme (E2) essential tomain-

tain a healthymitochondrial pool in vivo; this is critical tomaintain

normal synaptic transmission and potentially an important

element involved in the etiology of ID.
RESULTS

Identification of Rad6a Mutations in XLID Patients
To identify the causative gene defect in 248 unresolved XLID

families, we performed X-exome sequencing. This strategy

allowed us to identify two families that carry a pathogenic muta-

tion in hRad6a (Ube2a) (Figure 1A and Table S1). Mutations in

hRad6awere recently linked to XLID using a positional candidate

gene approach (Budny et al., 2010; Nascimento et al., 2006). We

found a frameshift mutation leading to a deletion, I87MfsX14

(X:118600597-98 TA deletion), and a missense mutation, R7W

(X:118592721 C/T), affecting a highly conserved amino acid

in exon 1 of hRad6a in affected males and their carrier mothers

from families a and b, respectively. These mutations were not

identified in 389 control samples. All affected males of these

two families display ID as well as other developmental features

(Table S1 and Supplemental Experimental Procedures); how-

ever, the underlying mechanisms that result in neuronal defects

remain elusive.

Next we determined if the mutations in hRad6a affect expres-

sion of RNA or protein. Mammals harbor Rad6a and Rad6b

proteins that are 80% identical at the sequence level. To assess
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Figure 1. Rad6a Mutations in XLID Patients

(A) Pedigrees of families a and b, showing affected males I87MfsX14 (a-IV.1)

and R7W (b-III.7) and carrier females (related to Table S1). Rad6a was also

identified in an independent screen for defects in synaptic and mitochondrial

dysfunction (Figure S1).

(B) hRad6a mRNA levels in I87MfsX14 and R7W lymphocytes and Q128X

fibroblasts. Data are mean ± SEM for three experiments; ANOVA post hoc

Dunnett’s test: **p < 0.01.

(C) IEF/SDS-PAGE using whole-cell extract from I87MfsX14 and R7W

lymphocytes and from Q128X fibroblasts probed with anti-RAD6. The first

dimension is isoelectrical focusing with a pH gradient of 4–7, and the second

dimension is an SDS-PAGE. ‘‘A’’ and ‘‘B’’ denote hRAD6A and hRAD6B

protein spots (two independent experiments). Longer exposures also did not

reveal hRAD6A signal (not shown).

Molecular Cell

RAD6A Facilitates Mitophagy
hRAD6A expression in lymphocytes from patients, as well as in

fibroblasts from a previously reported Brazilian patient harboring

a frameshift mutation, Q128X (c.382C/T) (Nascimento et al.,

2006), we used RT-PCR and two-dimensional (2D) analysis (iso-

electric focusing [IEF]/SDS-PAGE). While hRad6a messenger

RNA (mRNA) levels are decreased by approximately 60% in cells

harboring the clinical mutations (Figure 1B), hRAD6A protein is

not detected. However, the closely related hRAD6B is expressed

(Figure 1C). Thus, we identified two families in whichmutations in

the hRad6a gene cause XLID. Analysis of patient cells harboring

these hRad6a mutations indicate the mutant RAD6A protein is

not expressed or is below our detection limit.

RAD6A Is Required for Mitochondrial Function across
Species
ID, at least in part, may originate from defects in synaptic trans-

mission. Interestingly, in a Drosophila RNA interference (RNAi)-

based screen for defects in synaptic and mitochondrial function,

two processes linked to synaptic transmission (Chan, 2006), we

identified dRad6 (UbcD6) (Figure S1). Based on RNAi-mediated
832 Molecular Cell 50, 831–843, June 27, 2013 ª2013 Elsevier Inc.
knockdown, loss of dRad6 function results in locomotion

defects, reduced synaptic vesicle trafficking, and mitochondrial

dysfunction at neuromuscular junctions (NMJs) (Figure S1 and

Table S2).

RAD6A has been studied mostly for its role in the nucleus, but

the protein is also abundantly present in the cytoplasm. To verify

if the synaptic phenotypes we observed upon dRad6 RNAi in

Drosophila are specific to the loss of dRad6 function, we used

a transposon insertion in dRad6 (dRad6EY) and created an impre-

cise excision of this P element (dRad6D1). Both alleles result in

reduced protein expression (Figures S2A and S2B) and cause

second instar/early third instar lethality when homozygous. The

lethality as well as all the phenotypes we report are rescued by

a genomic dRad6+ fragment, indicating that defects we observe

are only associated with loss of dRad6 function.

The early lethality of dRad6 mutants precludes us from

analyzing phenotypes in adults. However, we were able to mea-

sure the mitochondrial membrane potential (Dcm) at dRad6

mutant NMJs using JC-1, a potentiometric green fluorescent

dye that shifts to red fluorescence within mitochondria with a

normal negative Dcm. In contrast to controls, we observe

reduced red JC-1 labeling in mitochondria of dRad6D1 and

dRad6EY mutant NMJs (Figures 2A and 2B), very similar to label-

ing of synaptic mitochondria upon dRad6 RNAi expression

(Figure S1). This defect in JC-1 labeling in dRad6 mutants is

rescued by dRad6+ (Figures 2A and 2B). Hence, mitochondria

in dRad6mutant neurons display a defect to maintain their Dcm.

To determine if the mitochondrial defects in dRad6 mutants

are evolutionary conserved, we used knockout mouse embry-

onic fibroblasts (MEFs) (Figures 2C, 2D, and S2C) (Koken

et al., 1996; Roest et al., 2004) and lymphocytes that express

the hRAD6A R7W and I87MfsX14 clinical mutations (Figures 2E

and 2F). We also used patient fibroblasts expressing hRAD6A

Q128X (Figures 2G and 2H). To quantify alterations in Dcm, we

assessed the fluorescence of tetramethyl rhodamine ethyl ester

(TMRE), a dye that concentrates in polarized mitochondria

(Figure S2D). In contrast to control cells, mitochondria in

mRad6a null MEFs or in patient-derived cells show significantly

less TMRE labeling (Figures 2C–2H). This defect is specific to

the loss of Rad6a because expression of wild-type mRad6a in

knockout cells rescues the defect (Figures 2C, 2D, and S2E).

Thus, loss of mRAD6a and hRAD6A in mouse- and patient-

derived cells, respectively, results in mitochondrial dysfunction.

Neuronal Dysfunction in dRad6 Drosophila Mutants
Vesicle mobilization and neurotransmission are ATP-dependent

processes, andmitochondrial function is related to the regulation

of neuronal communication (Morais et al., 2009; Stowers et al.,

2002; Verstreken et al., 2005). In our RNAi screen we found that

knockdown of dRad6 results in reduced stimulation-dependent

vesicle recycling as gauged by bouton labeling of FM1-43 (Fig-

ure S1). FM1-43 is a membrane-bound fluorescent dye that,

upon neuronal stimulation, is internalized by newly forming syn-

aptic vesicles (Verstreken et al., 2008). Similarly, NMJ boutons

ofdRad6D1 anddRad6EYmutants also display less FM1-43 label-

ing upon stimulation when compared to controls, and this defect

is rescued by dRad6+ (Figures 3A and 3B). The data indicate

defects in synaptic vesicle trafficking in dRad6 mutants.



Figure 2. Mitochondrial Defects in Rad6

Mutant Fly, Mouse, and Human Cells

(A and B) Imaging of Dcm at third instar larval

boutons of controls, mutants dRad6D1 and

dRad6EY, and mutants that express wild-type

dRAD6, using JC-1 (red, JC-1 aggregates; green,

JC-1 monomers; scale bar = 4.5 mm) (A), and

quantification of red over green fluorescence in

synaptic mitochondria normalized to control (B).

RAD6 expression levels are shown in Figures S2A

and S2B. Data are mean ± SEM, n = 6; ANOVA

post hoc Dunnett’s test: *p < 0.05, **p < 0.01.

(C and D) Control and mRad6a null MEFs and

mRad6a null MEFs expressing wild-type mRAD6A

labeled with tetramethylrhodamine ethyl ester

(TMRE) to assess Dcm (C) (scale bar = 40 mm) and

quantification of TMRE fluorescence in mitochon-

dria normalized to control (D). Expression levels of

mRAD6A, mRAD6B, and mRAD6A-Myc shown in

Figures S2C and S2E. TMRE fluorescence in

FCCP-treated cells shown in Figure S2D. Data are

mean ± SEM, n = 50 cells from three experiments;

ANOVA post hoc Dunnett’s test: **p < 0.01.

(E and F) Control and patient-derived hRad6a

mutants I87MfsX14 and R7W lymphocytes labeled

with TMRE (E) to assess Dcm (scale bar for

[E] = 5 mm) and corresponding quantification of

TMRE fluorescence in mitochondria normalized to

control (F). Data are mean ± SEM; n = 20 cells from

two experiments; ANOVA post hoc Dunnett’s test:

**p < 0.01.

(G and H) Control and patient-derived hRad6a

mutant Q128X fibroblasts labeledwith TMRE (G) to

assess Dcm (scale bar for [G] = 40 mm) and cor-

responding quantification of TMRE fluorescence in

mitochondria normalized to control (H). Data are

mean ± SEM; n = 20 cells from two experiments;

t test: **p < 0.01.
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To further test if the synaptic defects in dRad6 mutants result

in neurotransmission defects, we performed electrophysiology

at the larval NMJ. First, we recorded excitatory junctional cur-

rents (EJCs) using a two-electrode voltage clamp (TEVC) by

electrically stimulating themotor neuron and assessing the post-

synaptic response. We did not observe a difference in EJC

amplitude when recording in hemolymph-like saline solution

(HL-3) with 0.5 mM external calcium (Figures 3C and 3D). Like-

wise, the average mEJC amplitude elicited by spontaneous

vesicle fusions recorded in HL-3 with 0.5 mMCaCl2 and tetrodo-

toxin is similar in controls and mutants (Figure 3E) as well as the

quantal content (EJC/mEJC) (Figure 3F). Hence, under these

conditions, synaptic transmission is not affected.

Reduced FM1-43 dye uptake is often the result of defects in

synaptic vesicle recycling. We therefore recorded excitatory

junctional potentials (EJPs) in HL-3 with more calcium (2 mM)

during prolonged stimulation at different frequencies (1–20 Hz),

as such conditions stimulate synaptic vesicle recycling (Dickman

et al., 2005). At low-frequency stimulation (1 Hz) dRad6 mutants

maintain release (Figure 3G), but at higher frequencies (7–20 Hz)

they fail to maintain transmission at the same level as controls

(Figure 3H). When stimulated for 10 min at 10 Hz, the EJP ampli-

tudes in dRad6 mutants runs down (dRad6EY: 66.2% ± 5.4%;

dRad6D1: 67.2% ± 3.5%). In controls or in dRad6 mutants that
M

harbor dRad6+, EJPs are well maintained (control: 93.0% ±

8.9%; dRad6EY; dRad6+: 90.9% ± 1.5%; dRad6D1; dRad6+:

95.4% ± 2.7%; p < 0.01) (Figures 3I–3K). Thus, loss of dRAD6

function results in a reduced rate of vesicle replenishment at

synapses.

To assess if the defect in neuronal communication in dRad6

mutants is linked tomitochondrial dysfunction in dRad6mutants,

we forward filled motor neurons with 1 mM ATP (Verstreken

et al., 2005) and tested their ability to maintain neurotransmitter

release during 10 Hz stimulation. Compared tomutants not incu-

bated in ATP, EJPs recorded from mutant animals in which

motor neurons were filled with ATP did not run down as much

(dRad6EY + ATP: 87.4% ± 8.7%; dRad6D1 + ATP: 86.6% ±

4.1%; p < 0.01) (Figures 3I–3K). These data are consistent with

the idea that the defects in neuronal communication are the

result of reduced ATP as a consequence of mitochondrial

dysfunction in dRad6 mutants.

RAD6A Facilitates CCCP-Induced Mitochondrial
Ubiquitination and Autophagy
We show that loss of RAD6A results in a pool of defective mito-

chondria in fly,mouse, and human cells. This deficit could be due

in part to an impairment in defective mitochondria clearance by

mitophagy (Narendra et al., 2009). Given that mitophagy requires
olecular Cell 50, 831–843, June 27, 2013 ª2013 Elsevier Inc. 833



Figure 3. Synaptic Defects in dRad6Mutant

Flies

(A and B) FM1-43 labeling at NMJ boutons of

third instar larvae stimulated for 1 min using

90 mM KCl from controls, dRad6D1 and dRad6EY

mutants, and mutants that harbor a wild-type

genomic dRAD6 construct (rescue) (scale bar =

4.5 mm) (A) and quantification normalized to

control (B). Data are mean ± SEM, n = 6 animals;

ANOVA post hoc Dunnett’s test: *p < 0.05.

(C and D) Quantification of the average amplitude

(C) of the EJC traces of recordings made at 1 Hz

in 0.5 mM calcium (D) in control animals and

in dRad6D1 and dRad6EY mutant animals. Data

are mean ± SEM; n = 8 animals; t test: ns, not

significant.

(E and F) Quantification of the average mini EJC

(mEJC) amplitude recorded in 0.5 mM calcium

and TTX (E) and calculation of the quantal content

(EJC/mEJC) (F). Data are mean ± SEM; n = 6

animals; t test: ns, not significant.

(G) Quantification of the average EJP amplitude of

recordings made at 1 Hz (1 min) in 2 mM calcium in

control animals and in dRad6D1 and dRad6EY

mutant animals. Data are mean ± SEM; n = 6

animals; t test: ns, not significant.

(H) Average EJP amplitude measured in HL-3 with

2 mM calcium when controls or dRad6EY mutants

were sequentially stimulated at 1 Hz for 3 min,

7 Hz for 3 min, 10 Hz for 3 min, and 20 Hz for

3 min. n = 6 animals, and individual data points

per animal were normalized to the first EJP

amplitude measured at 1 Hz in that given animal

and then averaged over the animals. Data are

mean ± SEM.

(I) Average EJP amplitude upon stimulation at

10 Hz for 10 min in HL-3 with 2 mM calcium

of control (blue), dRad6EY (black), dRad6EY

mutants harboring a rescue construct (dark

green), and dRad6EY mutants with motor neu-

rons filled with ATP (light green). EJP amplitudes

are binned per 30 s and normalized to the

average of the first 15 s. Data are mean ± SEM;

n = 6.

(J) Raw EJP traces of a 10 Hz 10 min recording in

HL-3 with 2 mM calcium from control (light blue)

and dRad6EY mutant (black).

(K) Average EJP amplitude upon stimulation at

10 Hz for 10 min in HL-3 with 2 mM calcium

of control (blue), dRad6D1 mutants (black), dRad6D1 mutants harboring a rescue construct (dark red), and dRad6D1 mutants with motor neurons filled with

ATP (light red). EJP amplitudes are binned per 30 s and normalized to the average of the first 15 s. Data are mean ± SEM; n = 6.
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mitochondrial protein ubiquitination (Lee et al., 2010), we tested

the involvement of the RAD6A ubiquitin-conjugating enzyme in

this process. We acutely induced mitophagy in control and

mRad6a null MEFs using the mitochondrial uncoupler CCCP

for 8 hr and determined protein ubiquitination in cytosolic and

mitochondrial fractions using western blotting with anti-ubiquitin

and with antibodies that recognize specific polyubiquitin chains

linked at K48 and at K63 (Chan et al., 2011). The level of ubiquiti-

nation in the cytosolic fractions of CCCP-treated and dimethyl

sulfoxide (DMSO)-treated samples does not differ between con-

trol and mRad6a null MEFs (Figures 4A and 4B). However, the

level of total ubiquitin as well as K48-linked and K63-linked poly-

ubiquitin in the mitochondrial fractions of CCCP-treated control
834 Molecular Cell 50, 831–843, June 27, 2013 ª2013 Elsevier Inc.
MEFs is increased compared to control MEFs treated with

DMSO (Figures 4A, asterisk, and 4B), in linewith previous reports

(Lee et al., 2010). In contrast, the level of total ubiquitination as

well as K48-linked and K63-linked polyubiquitination in mito-

chondrial fractions of CCCP-treated mRad6a null MEFs does

not significantly differ from the level of ubiquitination in DMSO-

treated mRad6a null MEFs (Figures 4A and 4B). Thus, RAD6A

is required for ubiquitination of mitochondrial proteins upon

depolarization.

Ubiquitination marks mitochondria for degradation by several

pathways, including autophagy (Chan et al., 2011). To test

whether autophagy is altered inmRad6a null MEFs, we assessed

the levels of p62/SQSTM1 (p62), an adaptor that recognizes



Figure 4. RAD6A Is Required for Ubiquitina-

tion of Mitochondrial Proteins and

Autophagy

(A) Western blots of cytosolic and mitochondrial

protein fractions from control and mRad6a

null MEFs following CCCP or DMSO treatment

probed with anti-ubiquitin, anti-K48-linkage- or

anti-K63-linkage-specific polyubiquitin, anti-actin,

or anti-CV (*, increased ubiquitination; arrowhead,

ubiquitination levels are not affected inmRad6a�/�

MEFs).

(B) Quantification of ubiquitination signal in CCCP-

or DMSO-treated cells normalized to the ratio of

CCCP or DMSO signal in control cytosol. Data are

mean ± SEM for three experiments; t test:

**p < 0.01.

(C and D) Western blots from control andmRad6a

null MEFs treated with CCCP or DMSO for 8 hr and

probed with anti-LC3 (LC3-II: compare arrow-

heads in +CCCP), anti-p62 (compare arrowheads

in�CCCP), and anti-actin (C) and quantification of

LC3-II and p62 levels (arrowheads) normalized to

actin (D). Data are mean ± SEM for three experi-

ments; t test: **p < 0.01.
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ubiquitinated proteins and promotes the formation of autopha-

gosomes that engulf damaged organelles, including mitochon-

dria (McBride, 2008; Mizushima et al., 2011). A block in

autophagy has been shown to correlate with an upregulation of

p62 because cells treated with 3-MA, a compound that blocks

the initiation of autophagy, as well as ATG5�/� and ATG7�/�

knockout mouse cells that show reduced autophagy, both

show increased levels of p62 (Klionsky et al., 2012; Komatsu

et al., 2007; Tanabe et al., 2011). Similarly, we also found that

p62 levels are significantly upregulated in mRad6a MEFs

(Figures 4C, arrowhead, and 4D), consistent with a defect in

autophagy.

Autophagosome formation requires the conversion of LC3-I to

LC3-II and the binding of p62 to LC3 (Klionsky et al., 2012).

Consistently, CCCP-induced mitochondrial depolarization pro-

motes the conversion of LC3-I to LC3-II (Figures 4C and 4D)

(Cai et al., 2012). Similarly, in CCCP-treated mRad6a knockout

MEFs, the accumulation of LC3-II is much less pronounced

than in CCCP-treated control cells (Figures 4C and 4D). These

data are also in agreement with previous reports indicating that

3-MA trumps the accumulation of LC3-II (Tanabe et al., 2011),

suggesting that, in Rad6a mutant cells, either the induction of

autophagy is blocked or autophagic flux (LC3-II degradation) is

facilitated.

RAD6A Facilitates CCCP-Induced Mitochondrial
Clearance
If induction of autophagy is inhibited in Rad6a mutants, we

expect mitochondria and mitochondrial proteins to accumulate

upon CCCP treatment, whereas if clearance is facilitated, we
Molecular Cell 50, 831–8
expect organelles and proteins to be

cleared faster. To assess mitophagic

flux in mRad6a mutant cells, we first

determined the abundance of different
mitochondrial proteins using western blotting in cells treated

for 8 hr with CCCP. While the levels of voltage-dependent anion

channel 1 (VDAC1) and the beta subunit of complex V (CV), both

mitochondrial proteins, are significantly reduced upon CCCP

treatment of control MEFs compared to DMSO-treated MEFs

(Figure 5A, arrowhead), we did not find a significant reduction

in the levels of these proteins in mRad6a null MEFs (Figures 5A

and 5B). These data argue against the idea that Rad6a mutant

cells promote faster mitochondrial protein clearance upon

CCCP treatment, suggesting rather that RAD6A is needed for

the induction of autophagy (see below).

CCCP-uncoupled mitochondria also undergo morphological

changes and are eventually cleared by mitophagy (Figure 5C,

first column) (Geisler et al., 2010; Lee et al., 2010; Matsuda

et al., 2010; Narendra et al., 2009; Rakovic et al., 2010; Vives-

Bauza et al., 2010; Ziviani et al., 2010). Treatment of cells with

25 mM CCCP induces the formation of doughnut-like-shaped

mitochondria (Liu and Hajnóczky, 2011). Next, mitochondrial

proteins are ubiquitinated, leading to fragmentation, perinuclear

clustering (before 8 hr of CCCP), and clearance (24 hr of CCCP)

(Chan et al., 2011; Lee et al., 2010; Vives-Bauza et al., 2010). To

determine if mRAD6A is required for mitochondrial clearance, we

treated mRad6a null and control MEFs with 25 mM CCCP or

DMSO and followed mitochondrial mass and morphology over

a time period of 24 hr. While control MEFs treated with CCCP

showed significant clearance of mitochondria after 24 hr (Figures

5C, second column, and 5D), most mitochondria inmRad6a null

MEFs did not progress beyond the doughnut-like stage, nor

were they cleared after 24 hr (Figures 5C, arrowhead and third

column, and 5D). This defect is very similar to the block in
43, June 27, 2013 ª2013 Elsevier Inc. 835



Figure 5. RAD6A Is Necessary for Efficient Mitochondrial Clearance

(A and B) Western blots from control and mRad6a null MEFs treated with CCCP or DMSO and probed with anti-VDAC1, anti-CV beta, and anti-actin (A) and

quantification of protein levels normalized to actin (D). Data are mean ± SEM for three experiments; t test: **p < 0.01.

(C) Schematic of mitochondrial morphological changes and clearance upon CCCP treatment (first column) and images of the mitochondrial mass (labeled using

anti-Hsp60) in controlMEFs (second column),mRad6a null MEFs (third column), andmRad6b null MEFs (fourth column) subjected to DMSO treatment. TOTO-3 is

a nuclear marker (scale bar = 40 mm). See also Figures S3A–S3F.

(D) Quantification of mitochondrial mass (Hsp60) normalized over cell area. Data are mean ± SEM; n = 30–50 cells from three experiments; ANOVA post hoc

Dunnett’s test: *p < 0.05, **p < 0.01.

Molecular Cell

RAD6A Facilitates Mitophagy
mitochondrial clearance in CCCP-treated cells incubated with

3-MA (Figure S3A). The defect in mitochondrial clearance in

mRad6a null MEFs is specific because mitochondria in CCCP-

treatedmRad6b null MEFs have a fate very similar to that of mito-

chondria of control MEFs, and most are cleared after 24 hr

(Figures 5C, fourth column, and 5D). Furthermore, the defect in

CCCP-induced mitochondrial clearance in mRad6a knockout

MEFs is rescued when the cells are transfected either transiently

with green fluorescent protein (GFP)-hRad6a (Figures 6A–6C) or

stably with Myc-mRad6a (data not shown). Hence, mRad6a

mutant cells display a defect to induce CCCP-dependent

mitophagy.

Previous reports have shown that CCCP-induced mitophagy

is mediated by the E3 ubiquitin ligase Parkin (Narendra et al.,

2009); in a set of control experiments, we ascertained ourselves
836 Molecular Cell 50, 831–843, June 27, 2013 ª2013 Elsevier Inc.
that the defect in mitochondrial clearance in mRad6a null MEFs

is not the result of insufficient Parkin levels. First, while control

MEFs in the presence of CCCP display obvious clearance of

mitochondria in a 24 hr period, this process is largely inhibited

in Parkin null MEFs (Figure S3B, fifth column). Second, we find

Parkin gene expression inwild-type control MEFs and inmRad6a

null MEFs by RT-PCR (Figure S3C). Third, mitophagy inmRad6a

null cells that stably overexpress Parkin-GFP is still blocked

(Figure S3D, bottom panels). In contrast, CCCP-depolarized

mitochondria in wild-type MEFs that stably overexpress

Parkin-GFP are efficiently cleared (Figure S3D, top panels). In

addition, mRad6a null MEFs that stably express Parkin-GFP still

display defects in autophagy (Figures S3E and S3F). Altogether,

our data indicate an important role for RAD6A in clearing

dysfunctional mitochondria.



Figure 6. Clinical Mutations in RAD6A Do Not Support Mitophagy

(A)Western blots ofmRad6a null MEFs transiently expressing wild-type hRAD6A and hRAD6A clinical mutants I87MfsX14, R7W,Q128X, R11Q, andG23R probed

with anti-GFP, anti-RAD6A (N-terminal specific), and anti-Tubulin (three independent experiments).

(B) Images of mitochondrial mass (anti-Hsp60) inmRad6a null MEFs transiently expressing hRAD6A or clinical mutants (R7W or R11Q) following 24 hr of CCCP

treatment. Transfected cells are labeled by anti-GFP, and nuclei are marked by TOTO-3 (scale bar = 8 mm).

(C) Quantification of mitochondrial mass. Data are mean ± SEM; n = at least 25 transfected cells from two experiments; t test: **p < 0.01.

(D) Images of mitochondrial mass (anti-Hsp60) in control and patient-derived fibroblasts (Q128X) subjected to 24 hr DMSO or CCCP treatment. TOTO-3 is a

nuclear marker. Scale bar = 8 mm.

(E) Quantification of mitochondrial mass. Data are mean ± SEM; n = 20 cells from two experiments; t test: **p < 0.01.

(F) Western blots from control and patient-derived fibroblasts (Q128X) treated with CCCP or DMSO for 8 hr and probed with anti-LC3 (compare arrowheads

in +CCCP), anti-p62 (compare arrowheads in �CCCP), and anti-actin.

(G) Quantification of LC3-II and p62 levels (arrowheads) normalized to actin. Data are mean ± SEM from three experiments; t test: **p < 0.01. See also Figure S4.

Molecular Cell

RAD6A Facilitates Mitophagy
Clinical hRad6a Mutants Do Not Support Mitophagy
To investigate the role of the ID-causing mutations in hRad6a at

the level of mitophagy, we transiently expressed the clinical

mutations we identified (I87MfsX14 and R7W) and the previously

described mutations Q128X (Nascimento et al., 2006), R11Q,

and G23R (Budny et al., 2010) tagged with GFP in mRad6a null

MEFs. We first assessed expression of the mutant proteins

and probed western blots of cellular extracts with anti-GFP

and with N-terminal-specific RAD6A antibodies. In line with our
M

inability to detect RAD6A in patient-derived cells, we were un-

able to detect hRAD6A in cells expressing I87MfsX14 (frameshift

mutation leading to a deletion), Q128X (point mutation leading to

a stop codon), and G23R (missense mutation leading to a pre-

dicted highly unstable protein; Budny et al., 2010) (Figure 6A).

In contrast, we can detect wild-type hRAD6A as well as the

R7W and R11Q mutants that harbor missense mutations

affecting conserved amino acids at the N terminus (Figure 6A).

Given that the hRAD6A R7W mutant protein is undetectable in
olecular Cell 50, 831–843, June 27, 2013 ª2013 Elsevier Inc. 837



Molecular Cell

RAD6A Facilitates Mitophagy
patient-derived cells (Figure 1), the data are consistent with the

hRAD6A R7W protein being unstable and only detectable upon

overexpression. It will be interesting to test if the R11Q mutation

is detectable in patient-derived cells.

Next, to test if hRAD6A-R7W-GFP or hRAD6A-R11Q-GFP

supports mitophagy, we incubated the mRAD6A null MEFs

that express these mutants for 24 hr in CCCP. While mRAD6A

null MEFs that express wild-type hRAD6A-GFP showed efficient

clearance of mitochondria, mRAD6A null MEFs that express

hRAD6A-R7W-GFP or hRAD6A-R11Q-GFP failed to efficiently

degrade mitochondria (Figures 6B and 6C). Hence, while

hRAD6A-R7W and hRAD6A-R11Q-GFP protein is detectable

when overexpressed in mRad6a null cells, the mutant proteins

are not able to promote CCCP-induced mitophagy.

Finally, we assessed if patient-derived fibroblasts carrying the

Q128X mutation display mitochondrial clearance when incu-

bated in CCCP. As shown in Figures 6D (arrowhead) and 6E,

mitophagy is much reduced in the patient-derived cells

compared to control cells. In line with defects in autophagy,

the patient-derived fibroblasts also display reduced LC3-II levels

upon CCCP treatment and show a concomitant accumulation of

p62 levels (Figures 6F and 6G). Hence, cells with hRAD6A clinical

mutants show a defect to promote CCCP-inducedmitochondrial

clearance.

RAD6A Is a Parkin E2 Ubiquitin-Conjugating Enzyme
Several E3 ubiquitin ligases have been described as acting with

RAD6A in the nucleus, including Rad18, Ubr1, and Bre1 (Game

and Chernikova, 2009). To test if these E3 ubiquitin ligases are

involved in the control of mitochondrial function, we knocked

down Ubr1 and Bre1 (fruit flies do not harbor a Rad18 homolog)

using RNAi in fruit flies (Figure S4A). As a control, we also

knocked down Parkin. Knockdown of Bre1 in fruit flies results

in embryonic lethality, precluding us from analyzing JC-1 label-

ing in larval motor neurons. While knockdown of Parkin results

in reduced red JC-1 labeling, indicating a less-negative Dcm,

knockdown of Ubr1 has no effect (Figures S4B and S4C). Simi-

larly, we used GFP-labeled small hairpin RNA (shRNA) to knock

down Ubr1, Rad18, or Bre1 inmammalian cells (Figures S4D and

S4E) and tested if knockdown of these E3 ligases affected mito-

chondrial clearance upon CCCP treatment of the cells. In

contrast to Parkin mutant MEFs (Figure S3B), MEFs with

reduced levels of Rad18, Ubr1, or Bre1 efficiently cleared their

mitochondria following CCCP treatment, very similar to untrans-

fected control cells in CCCP (Figures S4F and S4G). Hence,

three of the E3 ubiquitin ligases that are known to operate with

RAD6A in the nucleus do not affect mitochondrial function.

As previously shown, Parkin is an E3 ubiquitin ligase involved

in the ubiquitination of mitochondrial proteins and mitophagy

(Lee et al., 2010) (Figure S3). In cells, loss of Parkin blocks

CCCP-induced mitophagy (Figure S3B). In flies, parkin mutant

motor neurons harbor mitochondria with a less-negative Dcm

(Figures S4B and S4C) and parkin mutant muscles harbor

enlarged and doughnut-shaped morphologically abnormal

mitochondria (Figure S4H). These phenotypes, including the

mitochondrial morphological defects in muscles, are all very

reminiscent of those seen in Rad6a mutant cells and flies (Fig-

ures 2, 5, 6, and S4H). We therefore tested the hypothesis that
838 Molecular Cell 50, 831–843, June 27, 2013 ª2013 Elsevier Inc.
RAD6A serves as an E2 ubiquitin-conjugating enzyme that can

act with Parkin. First, we performed an in vitro ubiquitination

assay (Hristova et al., 2009) using 90 nM purified recombinant

E1, 2.5 mM hRAD6A, 3 mM Parkin, and 0.2 mM ubiquitin (Fig-

ures 7A and S5A). Probing reactions that include the E1,

hRAD6A, Parkin, and ubiquitin with anti-ubiquitin reveal ubiqui-

tination that is not obvious when either protein is omitted (Fig-

ure 7A). Furthermore, we also performed a more sensitive

ELISA-based in vitro ubiquitination assay (Marblestone et al.,

2010) and incubated different concentrations of hRAD6A with

60 nM Parkin, 5 nM E1 activating enzyme, and 9 mM ubiquitin.

We then quantitatively assessed newly synthesized ubiquitin

chain formation by measuring luminescence. While hRAD6A

alone is not able to form a significant amount of ubiquitin chains

(Figure 7B), hRAD6A and Parkin together are very effective in

forming ubiquitin chains in a hRAD6A dose-dependent manner.

The in vitro ubiquitination assay reveals significant enzymatic

activity of hRAD6A toward Parkin, since adding a known Parkin

E2 ubiquitin-conjugating enzyme (UBCH7) (Tanaka et al., 2001)

is less effective at forming ubiquitin chains than hRAD6A in a

similar concentration range (Figure 7C). We fitted the data

using a Michaelis-Menten kinetics model and calculated the

apparent KM (nM) values for the Parkin-dependent ubiquitina-

tion reaction mediated by hRAD6A (Figure 7D). These data

indicate that Parkin and hRAD6A can form a functional ubiqui-

tination partnership in vitro and suggest that RAD6A can be a

cognate E2 ubiquitin-conjugating enzyme for the E3 ubiquitin

ligase Parkin.

Next, we tested if RAD6A and Parkin interact in a cell-based

assay. Parkin is implicated in mediating mitophagy upon translo-

cation to depolarized mitochondria that are destined for degra-

dation (Narendra et al., 2009). We therefore assessed if an

interaction between the two proteins would be affected by

mitochondrial depolarization. For this, we immunoprecipitated

Parkin from MEFs stably expressing Parkin-GFP (Figures S5B

and S5C) following a 6 hr treatment with CCCP. Western blots

probed with anti-RAD6A antibody revealed that Parkin coimmu-

noprecipitates with RAD6A and that RAD6A and Parkin binding

is increased upon mitochondrial uncoupling (Figure 7E, lower

panel), indicating that the two proteins interact upon mitochon-

drial depolarization.

Assessing the functionality of the RAD6A-Parkin interaction,

we tested if autoubiquitination of Parkin requires RAD6A.

Parkin-GFP autoubiquitination is dramatically induced upon

mitochondrial depolarization (Matsuda et al., 2010; Tanaka

et al., 2010). We therefore immunoprecipitated Parkin from con-

trol andmRad6a null MEFs treated for 6 hr with DMSO or CCCP

and probed the same western blots for Parkin (Figures 7E

and S5D) and ubiquitin (Figure 7F). While we observed an

obvious Parkin laddering pattern (Figures 7E and S5D) that is

also ubiquitin positive in CCCP-treated control cells (Figure 7F),

this pattern is not as prevalent in mRad6a null MEFs (Figures 7E

and 7F). Indicating specificity, immunoprecipitations (IPs) using

nonspecific immunoglobulin G (IgG) antibodies did not reveal

Parkin or ubiquitin-positive signals. Thus, RAD6A facilitates

Parkin autoubiquitination upon mitochondrial depolarization.

Finally, to test if Parkin relocalization to depolarized mitochon-

dria is RAD6A dependent, we treated Parkin-GFP expressing



Figure 7. RAD6A Is an E2 Ubiquitin-Conjugating Enzyme for Parkin

(A) Western blot of in vitro ubiquitination assay using the proteins indicated and probed with anti-ubiquitin antibody (two experiments). See also Figure S4.

(B and C) ELISA-based in vitro ubiquitination assay using RAD6A, Parkin, and E1 (B) and UBCH7, Parkin, and E1 (C) (related to Figure S5A).

(D) Calculation of apparent KM (nM) using a Michaelis-Menten kinetics model. Data are mean ± SEM for three experiments.

(E and F) Western blots of IPs of Parkin-GFP using anti-GFP antibody or IgG control from DMSO (�)- or CCCP (+)-treated control or mRad6a knockout MEFs

expressing Parkin-GFP and probed with anti-Parkin (upper panel), anti-RAD6 (lower panel) (E) or anti-ubiquitin (F). See also Figures S5B–S5D.

(G) Labeling of DMSO- or CCCP-treated control or mRad6a knockout MEFs expressing Parkin-GFP, using anti-Hsp60 (a mitochondrial marker) and anti-GFP

(to label Parkin) (scale bar = 8 mm); insets show enlarged view of mitochondria.

(H) Quantification of the number of cells in which Parkin is relocalized to mitochondria. See also Figure S5E. Data are mean ± SEM; n = 30 cells for three

experiments; t test: **p < 0.01.
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control andmRad6a null MEFs with CCCP or DMSO for 6 hr and

determined the subcellular localization of Parkin (Figures 7G, 7H,

and S5E). While Parkin translocates from its diffuse cytosolic

localization to mitochondria in control MEFs upon CCCP treat-

ment, it fails to do so appreciably in mRad6a null MEFs

(Figures 7G, 7H, and S5D), suggesting that Parkin transloca-

tion to depolarized mitochondria is critically dependent on

RAD6A. Taken together, our data indicate that RAD6A and Par-

kin form a functional E2/E3 ubiquitination pair that mediates

mitophagy.

DISCUSSION

In this study, we identified two families with mutations in the

XLID-associated protein RAD6A. Further investigation of the

functional implications of those mutations led to the unexpected

finding that RAD6A has a central role in triggering mitophagy

upon mitochondrial depolarization in cells and is required to

maintain mitochondrial integrity in vivo. Although a direct

involvement of mitophagy in mitochondrial quality control in vivo

is debated, disruption of the process is thought to result in the

gradual age-dependent accumulation of dysfunctional mito-

chondria (Mizushima and Komatsu, 2011). Given that a healthy

mitochondrial pool is critical not only for neuronal communica-

tion (Kang et al., 2008; Morais et al., 2009; Sheng and Cai,

2012; Verstreken et al., 2005), but also for normal spine

morphogenesis in the postsynaptic compartment (Li et al.,

2004), our findings link a cytoplasmic role of RAD6A at the level

of mitochondria to synaptic function. This conclusion is sup-

ported by electrophysiological analyses in dRad6 loss-of-func-

tion fly mutants that display reduced synaptic transmission

during intense stimulation and are largely rescued by supplying

extra ATP. Further studies are now required to assess which

neurons are most affected in the human brain. Interestingly,

loss of RAD6B, a closely related isoform, does not affect mito-

chondrial integrity, and mutations in RAD6B have never been

found in intellectually disabled patients. Without excluding addi-

tional roles for RAD6A, our work is consistent with a model in

which the cellular and neuronal dysfunction upon loss of

RAD6A function is at least in part caused by dysfunctional

mitochondria.

Disturbedmitophagy has been linked to Parkin, an E3 ubiquitin

ligase, andmutations in parkin cause juvenile Parkinsonism. Par-

kin is thought to ubiquitinate mitochondrial proteins (Chan et al.,

2011; Lee et al., 2010); however, E2 ubiquitin-conjugating

enzymes that mediate Parkin translocation to mitochondria in

response to their depolarization have not yet been identified.

Our data suggest that RAD6A is an E2 enzyme that can operate

with the E3 ligase Parkin upon mitochondrial depolarization

to induce mitochondrial ubiquitination. As ID patients do

not display overt Parkinsonism, we speculate that other E2

conjugating enzymes may be involved in Parkin-dependent

ubiquitination in the neurons of the substantia nigra, providing

compensation in the brain regions responsible for Parkinson’s

disease (PD)-related symptoms. Conversely, RAD6A can trans-

fer ubiquitin to different E3s besides Parkin (Game and Cherni-

kova, 2009); therefore, the situation in different brain regions is

more complex and will need careful scrutiny. We anticipate
840 Molecular Cell 50, 831–843, June 27, 2013 ª2013 Elsevier Inc.
that in brain regions where RAD6A is highly expressed together

with Parkin, for instance in the dorsolateral prefrontal cortex

(Kupershmidt et al., 2010), both proteins might interact. In other

brain regions, this is likely different; for instance, RAD6A is only

weakly present in the substantia nigra, a location where Parkin

is strongly expressed (Kupershmidt et al., 2010). Thus, different

neurons in the brain may be differentially dependent on RAD6A

function.

Defects in autophagy and in mitochondrial function are impli-

cated in diverse processes, such as brain development, synaptic

function, neuronal differentiation, and aging (Ishihara et al., 2009;

Kageyama et al., 2012; Le Bot, 2007; Wirawan et al., 2012),

where alterations in reactive oxygen species (ROS) homeostasis

and redox regulation, in part induced by an accumulation of

dysfunctional mitochondria, may be the culprit in a wide spec-

trum of neuronal diseases (Kirkinezos andMoraes, 2001; Oikawa

et al., 2012; Ray et al., 2012; Sabens Liedhegner et al., 2012).

Interestingly, in cortical neuron cultures, Rad6a levels are upre-

gulated in response to oxidative stress (Shalamanova et al.,

2007), particularly to hypochlorous acid (HOCl), one of the major

oxidants (Higgins et al., 2010). These findings are consistent with

a model in which RAD6A plays an important role in mitigating

oxidative stress response to maintain a healthy population of

mitochondria. In conclusion, our work links XLID-associated

defects caused by RAD6A mutations to mitochondrial deficits

and neuronal dysfunction.

EXPERIMENTAL PROCEDURES

Genetics

Identification of the Ube2a mutations identified in this study and patient

features are in the Supplemental Experimental Procedures and Table S1.

Thework in this paper was approved by the ethical review board of KU Leuven,

and patient material was obtained with the consent of the patients or their legal

guardians. UAS-RNAi lines (Dietzl et al., 2007) (Table S2) and y1 w67c23;

P{EPgy2}UbcD6EY04634 (Bellen et al., 2011) were from the Vienna Drosophila

RNAi Center (VDRC) and the Bloomington stock center. dRad6D1 was gener-

ated by P element excision (Supplemental Experimental Procedures), and

both alleles were backcrossed several times to y1 w67c23. Germline transfor-

mation of genomic dRad6 (BAC CH322-46G02) (dRad6+) in the VK37 docking

site was obtained using PhiC31-mediated integration (GenetiVision).

Cell Lines and Plasmids

Immortalized control (mRad6a/b+/+) andmRad6a null (mRad6a�/�) MEFs were

obtained from W. Baarends (EMC) (Roest et al., 2004), and human fibroblasts

harboring a hRad6aQ128Xmutation were described (Nascimento et al., 2006).

Immortalized control (mParkin+/+) and mParkin null (mParkin�/�) MEFs were

obtained from K. Winklhofer (Ludwig Maximilian University of Munich). Gener-

ation of stable and transient transfected cell lines is described in the Supple-

mental Experimental Procedures.

Fluorescence Imaging

Jm in Drosophila NMJ mitochondria was assessed using JC-1 (Molecular

Probes) (Morais et al., 2009). TMRE (Molecular Probes) labeling was adapted

from Narendra et al. (2009). FM1-43 labeling at third instar NMJs was per-

formed as described (Verstreken et al., 2008). Antibodies for immunohisto-

chemistry and imaging conditions are listed in the Supplemental Experimental

Procedures.

Electrophysiology

EJCs or EJPs in HL-3 with CaCl2 from muscle 6 in segment A2 or A3 were

performed as described (Uytterhoeven et al., 2011). Motor nerves were



Molecular Cell

RAD6A Facilitates Mitophagy
stimulated at 23 threshold, and intracellular electrodes had resistances

<10 MU. For TEVC, the holding potential was �70 mV and input resistances

were >5 MU. Data were acquired and digitized using an Axoclamp 900A

Amplifier, a Digidata 1440A, and pCLAMP 10 (Molecular devices). Motor

neurons were forward filled with 1 mM ATP as described (Verstreken et al.,

2005).

Biochemistry

Protein extracts were processed for IEF/SDS-PAGE according to the ZOOM

IPGRunner system protocol (Invitrogen). Protein extracts (25–75 mg) resus-

pended in 8 M urea, 2 M thiourea, 2% CHAPS, 20 mM dithiothreitol (DTT),

0.5% (v/v) ZOOM Carrier Ampholytes were loaded on a pH 4–7 ZOOM Strip.

Immobilized pH gradient (IPG) strips were rehydratated for 16 hr at 20�C. The
first dimension that consisted of isoelectrical focusing (IEF) was performed at

1 mA/strip. Each strip was equilibrated with NuPAGE LDS Sample Buffer

containing 10 mg/ml DTT for 15 min followed by buffer containing

25 mg/ml iodoacetamide for 15 min. Strips were then loaded and analyzed

on a 4%–12% Bis-Tris ZOOM Gel at 170 V for 35 min. For subcellular

fractionations, cells were collected in 0.2 M sucrose, 10 mM Tris-MOPS

(pH 7.4), 0.1 mM EGTA-Tris (pH 7.4) and then disrupted using a Teflon

homogenizer at 1,000 rpm for 30 strokes. Homogenates were centrifuged

at 800 3 g for 10 min, and supernatants were centrifuged again at

7,000 3 g for 10 min. Pellets were resuspended and proteins detected by

western blot. For autoubiquitination, the assay based on western blotting

was adapted from Hristova et al. (2009). In vitro ubiquitination based on

ELISA was performed using the E2 Profiling Kit (LifeSensors). IPs, including

the protein extraction and detection, were performed by standard protocols

(Van Humbeeck et al., 2011). Cells were lysed in 50 mM Tris-HCl (pH 7.4),

150 mM NaCl, 1% Triton X-100, and Complete protease inhibitor (Roche

Applied Science) and incubated with anti-GFP antibody for 2 hr, then

coupled to protein G beads for 1 hr. IPs were washed with lysis buffer, eluted

directly into SDS-PAGE sample buffer, and detected by western blot.

Antibodies and primers used for RT-PCR are listed in the Supplemental

Experimental Procedures.

Statistics

The statistical significance of differences between a set of two groups was

evaluated using unpaired t tests (*p < 0.05; **p < 0.01) and between more

than two groups using one-way ANOVA (p < 0.01) and Dunnett’s test

(*p < 0.05; **p < 0.01) in GraphPad Prism 5.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.molcel.2013.04.012.
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