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Scaling law in signal recycled laser-interferometer gravitational-wave detectors
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By mapping the signal-recycling~SR! optical configuration to a three-mirror cavity, and then to a single
detuned cavity, we express the SR optomechanical dynamics, input–output relation, and noise spectral density
in terms ofonly three characteristic parameters: the~free! optical resonant frequency and decay time of the
entire interferometer, and the laser power circulating in the arm cavities. These parameters, and therefore the
properties of the interferometer, are invariant under an appropriate scaling of SR-mirror reflectivity, SR detun-
ing, arm-cavity storage time, and input power at the beam splitter. Moreover, so far the quantum-mechanical
description of laser-interferometer gravitational-wave detectors, including radiation-pressure effects, has been
obtained only at linear order in the transmissivity of arm-cavity internal mirrors. We relax this assumption and
discuss how the noise spectral densities change.
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I. INTRODUCTION

A network of broadband ground-based laser interfero
eters, aimed at detecting gravitational waves~GWs! in the
frequency band 10–104 Hz, is already operating. This ne
work is composed of GEO, the Laser Interferome
Gravitational-wave Observatory~LIGO!, TAMA, and
VIRGO ~whose operation will begin in 2004! @1#. The LIGO
Scientific Collaboration~LSC! @2# is currently planning an
upgrade of LIGO starting from 2008, called advanced LIG
or LIGO-II. In addition to the improvement of the seism
isolation and suspension systems, and the increase~decrease!
of light power~shot noise! circulating in the arm cavities, the
LIGO community has planned to introduce an extra mirr
called a signal-recycling mirror~SRM! @3,4#, at the dark-port
output ~see Fig. 1!. The optical system composed of the S
cavity and arm cavities forms a composite resonant cav
whose eigenfrequencies and quality factors can be contro
by the position and reflectivity of the SR mirror. The
eigenfrequencies~resonances! can be exploited to reshap
the noise curves, enabling the interferometer to work eit
in broadband or in narrowband configurations, and impr
ing in this way the observation of specific GW astrophysi
sources@5#.

The initial theoretical analyses@3,4# and experiments@6#
of SR interferometers refer to configurations with low las
power, for which the radiation pressure on the arm-cav
mirrors is negligible and the quantum-noise spectra
dominated by shot noise. When the laser power is increa
the shot noise decreases while the effect of radiation-pres
fluctuation increases. LIGO-II has been planned to work a
laser power for which the two effects are comparable in
observational band 40–200 Hz@2#. Thus, to correctly de-
scribe the quantum optical noise in LIGO-II, the results ha
been complemented by a thorough investigation of the in
ence of radiation-pressure force on mirror motion@7–10#.
The analyses revealed that SR interferometers behave a
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‘‘optical spring.’’ The dynamics of the whole optomechanic
system, composed of arm-cavity mirrors and an optical fie
resembles that of a free test mass~mirror motion! connected
to a massive spring~optical fields!. When the test mass an
the spring are not connected~e.g., for very low laser power!
they have their own eigenmodes: the uniform translat
mode for the free mode and the longitudinal-wave mode
the spring. However, for LIGO-II laser power the test mass

FIG. 1. A signal-~and power-! recycled LIGO interferometer.
The laser light enters the interferometer from the left~bright port!,
through the power-recycling mirror~PRM!, and gets split by a
50/50 beam splitter~BS! into the two identical~in the absence of
gravitational waves! arm cavities. Each of the arm cavities
formed by the internal test-mass mirror~ITM ! and the end test-mas
mirror ~ETM!. No light leaves the interferometer from below th
BS ~dark port!, except the lights induced by the antisymmetric m
tion of the test-mass mirrors, e.g., due to a passing-by gravitati
wave, or due to vacuum fluctuations that originally enter the in
ferometer from the dark port. A SRM is placed at the dark po
forming a SR cavity~marked by thick dashed lines! with the ITMs.
©2003 The American Physical Society02-1
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A. BUONANNO AND Y. CHEN PHYSICAL REVIEW D 67, 062002 ~2003!
connected to the massive spring and the two free modes
shifted in frequency, so the entire coupled system can re
nate at two pairs of finite frequencies. Near these resona
the noise curve can beat the free mass standard qua
limit ~SQL! for GW detectors@11#. Indeed, the SQL is not by
itself an absolute limit, it depends on the dynamical prop
ties of the test object~or probe! which we monitor. This
phenomenon is not unique to SR interferometers; it is a
neric feature of detuned cavities@12,13# and was used by
Braginsky, Khalili, and colleagues in conceiving the ‘‘optic
bar’’ GW detectors@14#. However, because the optomecha
cal system is by itself dynamically unstable, a careful a
precise study of the control system should be carried
@10#.

The quantum mechanical analysis of SR interferome
given in Refs. @8–10# was built on results obtained b
Kimble, Levin, Matsko, Thorne, and Vyatchanin~KLMTV !
@7# for conventional interferometers, i.e., without SRM. F
this reason, both the SR input–output relation@8,9# and the
SR optomechanical dynamics@10# were expressed in term
of parameters characterizing conventional interferomet
such as the storage time in the arm cavities, instead of
rameters characterizing SR interferometers as a whole,
as the resonant frequencies and the storage time of the e
interferometer. Therefore, the analysis given in Refs.@8–10#
is not fully suitable for highlighting the physics in SR inte
ferometers.

In this paper, we first map the SR interferometer into
three-mirror cavity, as originally done by Mizuno@15#,
though in the low power limit and neglecting radiatio
pressure effects, and by Rachmanov@16# in classical re-
gimes. Then, as first suggested by Mizuno@15#, we regard
the very short SR cavity@formed by SRM and internal test
mass mirror~ITM !# as one~effective! mirror and we express
input–output relation and noise spectral density@8#, and op-
tomechanical dynamics@9# as well, in terms of threecharac-
teristic parameters that have more direct physical mean
the free optical resonant frequency and decay time of
entire SR interferometer, and the laser power circulating
arm cavities. By free optical resonant frequency and de
time we mean the real and inverse imaginary part of
~complex! optical resonant frequency when all the test-m
mirrors areheld fixed.These parameters can then be rep
sented in terms of the morepractical parameters: the powe
transmissivity of ITM, the amplitude reflectivity of SRM, S
detuning, and the input power. An appropriate scaling of
practical parameters can leave the characteristic param
invariant.

In addition, in investigating SR interferometers@8–10#
the authors restricted the analyses to linear order in the tr
missivity of arm-cavity internal mirrors, as also done
KLMTV @7# for conventional interferometers. In this pap
we relax this assumption and discuss how results chang

The outline of this paper is as follows. In Sec. II w
explicitly work out the mapping between a SR interferome
and a three-mirror cavity, expressing the free oscillation f
quency, decay time, and laser power circulating in arm c
ity, i.e., the characteristic parameters, in terms of SR-mir
reflectivity, SR detuning, and arm-cavity storage time, wh
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are the parameters used in the original description@8,9#. An
interesting scaling law among the practical parameters
then obtained. In Secs. III and IV A the input–output re
tions, noise spectral density, and optomechanical dynam
are expressed in terms of those characteristic parameter
Sec. IV B we map the SR interferometer to a single detun
cavity of the kind analyzed by Khalili@13#. In Sec. IV C we
show that correlations between shot noise and radiat
pressure noise in SR interferometers are equivalent t
change of the optomechanical dynamics, as discussed
more general context by Syrtsev and Khalili@17#. In Sec.
IV D, using fluctuation-dissipation theorem, we explain w
optical spring detectors havevery lowintrinsic noise, and are
then preferable to mechanical springs in measuring very
forces. In Sec. V we derive the input–output relation of S
interferometers at all orders in the transmissivity of intern
test-mass mirrors. Finally, Sec. VI summarizes our main c
clusions. Appendix A contains definitions and notations, A
pendix B discusses the Stokes relations in our optical syst
and in Appendix C we give the input–output relation inclu
ing also next-to-leading order terms in the transmissivity
arm-cavity internal mirrors.

In this paper we shall be concerned only with quantu
noise, though in realistic interferometers seismic and ther
noises are also present. Moreover, we shall neglect op
losses~see Ref.@9# where optical losses in SR interferom
eters were discussed!.

II. DERIVATION OF SCALING LAW

A. Equivalent three-mirror –cavity description
of signal-recycled interferometer

In Fig. 1, we draw a signal- and power-recycled LIG
interferometer. The Michelson-type optical configurati
makes it natural to decompose the optical fields and the
chanical motion of the mirrors into modes that are eith
symmetric ~i.e., equal amplitude! or antisymmetric ~i.e.,
equal in magnitude but opposite in signs! in the two arms, as
done in Refs.@7–10#, and briefly explained in the following
In order to understand this decomposition more easily, le
for the moment ignore the power-recycling mirror~PRM!
and the signal-recycling mirror~SRM!.

First, let us suppose all mirrors are held fixed in th
equilibrium positions. The laser light, which enters the int
ferometer from the left of the beam splitter~BS!, excites
stationary, monochromatic carrier light inside the two ide
tical arm cavities with equal amplitudes~marked with two
plus signs in Fig. 1! and thereby drives the symmetric mod
To maximize the carrier amplitude inside the arm caviti
the arm lengths are chosen to be on resonance with the
frequency. When the carrier lights leave the two arms a
recombine at the BS, they have the same magnitude
sign, and, as a consequence, leak out the interferometer
from the left port of the BS. No carrier light leaks out from
the port below the BS. For this reason, the left port is cal
the bright port, and the port below the BS is called the d
port. Obviously, were there any other light that enters
bright port, it would only drive the symmetric mode, whic
would then leak out only from the bright port. Similarly
2-2
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SCALING LAW IN SIGNAL RECYCLED LASER- . . . PHYSICAL REVIEW D 67, 062002 ~2003!
lights that enter from the dark port would only drive th
antisymmetric optical mode, which have opposite signs
the BS ~marked in Fig. 1! and would leak out the interfer
ometer only from the dark port.

Now suppose the mirrors@ITMs and external test-mas
mirrors ~ETMs!# move in an antisymmetric~mechanical!
mode ~shown by arrows in Fig. 1! such that the two arm
lengths change in opposite directions—for example, driv
by a gravitational wave. This kind of motion would pump th
~symmetric! carriers in the two arms into sideband ligh
with opposite signs, which lie in the antisymmetric mod
and would leak out the interferometer from the dark p
~and thus can be detected!. On the contrary, symmetric mir
ror motions that change the two arm lengths in the same
would induce sidebands in the symmetric mode, wh
would leave the interferometer from the bright port. Mor
over, sideband lights inside the arm cavities, combined w
the strong carrier lights, exert forces on the test mas
Since the carrier lights in the two arms are symmetric, si
bands in the symmetric~antisymmetric! optical mode drive
only the symmetric~antisymmetric! mechanical modes. In
this way, we have two effectively decoupled systems in
interferometer:~i! ingoing and outgoing bright-port optica
fields, symmetric optical and mechanical modes, and~ii ! in-
going and outgoing dark-port optical fields, antisymmet
optical and mechanical modes.

When the PRM and SRM are present, since each of th
only affects one of the bright/dark ports, the decoupling
tween the symmetric and antisymmetric modes is still va
Nevertheless, the behavior of each of the subsystems
comes richer. The PRM, along with the two ITMs, forms
power recycling cavity~for symmetric optical modes, show
by solid lines in Fig. 1!. In practice, in order to increase th
carrier amplitude inside the arm cavities@3#, this cavity is
always set to be on resonance with the input laser light. M
specifically, if the input laser power at the PRM isI in , then
the power input at the BS isI 054I in /Tp , and the circulating
power inside the arms isI c52I 0 /T, whereTp andT are the
power transmissivities of the PRM and the ITM. The SR
along with the two ITMs, forms a SR cavity~for the anti-
symmetric optical modes, shown by dashed lines in Fig.!.
By adjusting the length and finesse of this cavity, we c
modify the resonant frequency and storage time of the a
symmetric optical mode@4#, and affect the optomechanica
dynamics of the entire interferometer@10#. These changes
will reshape the noise curves of SR interferometers, and
allow them to beat the SQL@8,9#.

Henceforth, we focus on the subsystem made up of d
port fields and antisymmetric optical and mechanical mod
in which the detected GW signal and quantum noises res
In light of the above discussions, it is convenient to ident
the two arm cavities as one effective arm cavity, and map
entire interferometer to a three-mirror cavity, as shown
Fig. 2. In particular, the SR cavity, formed by the SRM a
ITMs is mapped into a two-mirror cavity~inside the dashed
box of Fig. 2! or one effectiveITM. The antisymmetric me-
chanical motions of the tworeal arm cavities is equal o
opposite in sign to those of this system. The input and ou
fields at the dark port correspond to those of the three-mi
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cavity, a andb ~shown in Fig. 2!. Because of the presence o
the BS in real interferometer~and the absence in effectiv
one!, the optical fields inside the two real arms is61/A2
times the fields in the effective cavity composed of the
fective ITM and ETM. As a consequence, fields in this e
fective cavity areA2 times as sensitive to mirror motions a
those in the real arms, and the effective power in the eff
tive cavity must be

I arm52I c . ~1!

Therefore, both the carrier amplitude and the sideband
plitude in the effective cavity areA2 times stronger than the
ones in each real arm. In order to have the same effect
the motion of the mirrors, we must impose the effecti
ETM and ITM to be twice as massive as the real ones, i

marm52m. ~2!

We denote byT andR512T the power transmissivity and
reflectivity of the ITMs,L54 km is the arm length, and we
assume the ETMs to be perfectly reflecting. The arm len
is on resonance with the carrier frequencyv051.8
31015 s21, i.e., v0L/c5Np, with N an integer. We denote
by r and l the reflectivity of the SRM and the length of th
SR cavity, andf5@v0l /c#mod 2p the phase gained by light
with carrier frequency upon one trip across the SR cavity.
assume the SR cavity to be very short (;10 m) compared
with the arm-cavity length. Thus, we disregard the pha
gained by lights with sideband frequency while traveli
across the SR cavity, i.e.,V l /c→0. The three-mirror cavity
system can be broken into two parts. The effective arm c
ity, which is the region to the right of the SR cavity, includ
ing the ETM~but excludingthe ITM!, where the light inter-
acts with the mechanical motion of the ETM. This region
completely characterized by the circulating powerI c , the
arm lengthL, and the mirror massm. The ~very short! SR
cavity, made up of the SRM and the ITM, which does n
move. This part is characterized byT, r, andf.

Henceforth, we assume the radiation pressure forces
ing on the ETM and ITM to be equal, and the contribution
the radiation-pressure–induced motion of the two mirrors

FIG. 2. We draw the three-mirror cavity which is equivalent to
SR interferometer in describing the antisymmetric optic
mechanical modes and dark-port optical fields. The SR cav
which is mapped into a two-mirror cavity~in the dashed box! can
be viewed as an effective mirror, with four effective reflectivitie

and transmissivities,r̃8, t̃8 ~for fields entering from the right side!,

and r̃, t̃ ~for fields entering from the left side!. The input and
output fields,a andb, corresponds to those at the dark port of t
real SR interferometer.
2-3
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the output light, or the radiation-pressure noises due to
two mirrors, to be equal.~These assumptions introduce e
rors on the order of max$VL/c,T%.! As a consequence, we ca
equivalently hold the ITM fixed and assume the ETM ha
reduced mass of

marm5
1

2
marm. ~3!

B. The scaling law in generic form

As first noticed by Mizuno@15#, when the SR cavity is
very short, we can describe it as a single effective mir
with frequency-independent~but complex! effective trans-
missivities and reflectivities~see Fig. 2! r̃, t̃ ~for fields en-
tering from the left! andr̃8, t̃8 ~for fields entering from the
right!, and write the following equations for the annihilatio
~and creation, by taking Hermitian conjugates! operators of
the electric field~see Appendix A for notations and defin
tions!:

j 6~V!5 r̃8k6~V!1 t̃a6~V!,

b6~V!5 t̃8k6~V!1 r̃a6~V!. ~4!

Among these four complex coefficients,r̃8, the effective re-
flectivity from inside the arms, determines the~free! optical
resonant~complex! frequencyv01Ṽ of the system through
the relation:

r̃8e2i ṼL/c51. ~5!

~Note that the carrier frequencyv0 is assumed to be on reso
nance in the arm cavity, i.e.,v0L/pc5 integer.! It turns out
that if we keep fixed the arm-cavity circulating powerI c , the
mirror massm, and the arm-cavity lengthL, the input–output
relation (ã2b̃) of the two-port system~4! is completely de-
termined byr̃8 alone or equivalently by the~complex! free
optical resonant frequencyṼ. To show this, we first redefine
the ingoing and outgoing dark-port fields as

ã6~V!5
t̃

u t̃u
a6~V!, b̃6~V!5

t̃*

u t̃u
b6~V!. ~6!

This redefinition is always possible since we can fre
choose another~common! reference point for the input an
output fields. Second, using the Stokes relations given
Appendix B, we derive the following equations:

j 6~V!5 r̃8k6~V!1u t̃uã6~V!

5 r̃8k6~V!1A12ur̃8u2ã6~V!, ~7!

b̃6~V!5u t̃uk6~V!2 r̃8* ã6~V!

5A12ur̃8u2k6~V!2 r̃8* ã6~V!, ~8!
06200
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from which we infer that the output fieldsb̃6(V) depend
only on r̃8 or equivalently onṼ. Thus, if we vary the inter-
ferometer characteristic parametersT, r, andf such thatr̃8
is preserved, the input–output relation does not change.
refer to the transformation among the interferometer para
eters having this property as thescaling law.

C. The scaling law in terms of interferometer parameters

In this section we give the explicit expression of the sc
ing law in terms of the practical parameters of the SR int
ferometer. We start by deriving the effective transmissivit
and reflectivitiesr̃, t̃, r̃8, andt̃8 in terms ofT, R512T, r,
andf. By imposing transmission and reflection conditions
the ITM and SRM, and propagating the fields between th
mirrors ~see Fig. 2!, we get the following equations:

tã6~V!1reify6~V!5x6~V!,

ATk6~V!2AReifx6~V!5y6~V!, ~9!

2rã6~V!1teify6~V!5b̃6~V!,

ARk6~V!1ATeifx6~V!5 j 6~V!, ~10!

where the ~amplitude! transmission and reflection coeffi
cients of ITM and SRM are chosen to be real, more spec
cally, $1AT,2AR% are chosen for light that impinges th
ITM from outside the arm cavity,$1AT,1AR% for light that
impinges the ITM from inside the arm cavity,$1t,2r% for
light that impinges the SRM from outside the SR cavity, a
$1t,1r% for light that impinges the SRM from inside th
SR cavity.~Here AR, AT, r, and t are positive real num-
bers.! Solving Eq.~9! for x6 andy6 in terms ofã6 andb̃6 ,
plugging these expressions into Eq.~10!, and comparing
with Eq. ~4! we obtain

r̃85
AR1re2if

11ARre2if
, r̃52

r1ARe2if

11ARre2if
,

t̃85 t̃5
tATeif

11ARre2if
. ~11!

It can be easily verified that these coefficients satisfy
Stokes relations~B8! and ~B9!. The scaling law can be ob
tained by imposing thatr̃8 does not vary. This gives

AR1re2if

11ARre2if
5const. ~12!

Using Eq.~5!, we derive the~complex! free optical resonan
frequency in terms ofT, r, andf:

Ṽ5
ic

2L
log

AR1re2if

11ARre2if
[2l2 i e, ~13!
2-4
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FIG. 3. We plotr and f2p/2 vs e for l52p3100 Hz ~solid line!, 2p3200 Hz ~dotted line!, 2p3500 Hz ~dashed line!, and 2p
31000 Hz~dashed-dotted line!, having fixedT50.033.
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where we tradeṼ for two real numbers, the resonant fr
quencyl and decay rate~inverse decay time! e. For any
choice of T, the parametersr and f can be expressed i
terms ofl ande by solving Eq.~13! in terms ofre2if. The
result is

re2if5
e22eL/ce2ilL/c2AR

12ARe22eL/ce2ilL/c
. ~14!

In Fig. 3 we plotr ~left panel! andf2p/2 ~right panel! as
functions of e for four typical values ofl: 2p3100 Hz
~solid lines!, 2p3200 Hz ~dotted lines!, 2p3500 Hz
~dashed lines!, and 2p31000 Hz ~dashed-dotted lines!,
while fixing T50.033. In Fig. 4 we plotr and f2p/2 as
functions ofT, as obtained from Eq.~14!, for three sets of
optical resonances: (l,e)5(2p3194.5 Hz,2p325.4 Hz),
plotted in solid lines, which goes through the poi
(T,r,f)5(0.033,0.9,p/220.47) ~marked by a square!,
which is the configuration selected in Refs.@8–10#; (l,e)
5(2p3228.1 Hz,2p369.1 Hz), plotted in dotted lines
which goes through the point (T,r,f)5(0.005,0.96,p/2
20.06) ~marked by a triangle!, which is the current LIGO-II
reference design @18#; and (l,e)5(2p3900 Hz,2p
330 Hz), plotted in dashed-dotted lines, which is an e
06200
-

ample of a configuration with narrow-band sensitivity arou
a high frequency. AsT, r, andf vary along these curves, th
input–output relation is preserved.

As done in Refs.@8,9#, we now expand all the quantitie
in T and keep only the first nontrivial order.~The accuracy of
this procedure will be discussed in Sec. V.! For the crucial
quantity r̃8 a straightforward calculations gives

r̃8512
T

2

12re2if

11re2if
. ~15!

So the scaling law at linear leading order inT is

T
12re2if

11re2if
5const. ~16!

Moreover, applying Eq.~15! to Eq. ~5!, we derive the fol-
lowing expression for the~free! optical resonant frequency a
leading order inT:

Ṽ5
1

i

12re2if

11re2if

Tc

4L
5

22r sin 2f2 i ~12r2!

11r212r cos 2f
g, ~17!
e

FIG. 4. We plotr andf2p/2 vs T for three sets of optical resonances: (l,e)5(2p3194.48 Hz,2p325.42 Hz) ~solid lines!, (l,e)
5(2p3228.10 Hz,2p369.13 Hz)~dotted lines!, and (l,e)5(2p3900 Hz,2p330 Hz) ~dashed-dotted lines!. We mark with a square and
a triangle the special configurations selected in Refs.@8–10#, with (T,r,f)5(0.033,0.9,p/220.47), and the current LIGO-II referenc
design@18#, with (T,r,f)5(0.005,0.96,p/220.06), respectively.
2-5
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whereg5Tc/4L is the half-bandwidth of the arm cavity. Th
frequencyṼ coincides with the frequencyV2 introduced in
Ref. @10#. @Since the authors of Ref.@10# used the quadratur
formalism, they had to introduce another~free! optical reso-
nant frequency which they denoted byV152V2* . See dis-
cussion around Eq.~A12! in Appendix A.# Thus, at linear
order inT we have

l5
2rg sin 2f

11r212r cos 2f
, e5

~12r2!g

11r212r cos 2f
.

~18!

Finally, using Eqs.~B8! and Eq.~15! we obtain the coeffi-
cients redefining the fieldsa6(V) andb6(V) in Eq. ~6!:

t̃

u t̃u
5

~11r!cosf1 i ~12r!sinf

A112r cos 2f1r2
. ~19!

III. INPUT –OUTPUT RELATION AND NOISE
SPECTRAL DENSITY IN TERMS

OF CHARACTERISTIC PARAMETERS

A. Input –output relation

In this section we shall express the input–output relat
of the SR interferometer~at leading order inT) only in terms
of the ~free! optical resonant frequency,Ṽ52l2 i e, and
the parameteric , defined by

ic5
8v0I c

mLc
, ~20!

where the circulating powerI c is related to the input powe
at BS I 0 by

I c5
2

T
I 0 . ~21!

As will be shown in greater detail below, the parameteric
~which has the dimension of frequency cubed! tells us when
radiation pressure becomes an important contributor to
interferometer’s noise. Using Eq.~19! and the results derived
in Appendix A @see Eqs.~A8!, ~A10!, and ~A11!# we trans-
form Eqs.~6!, which are given in terms of annihilation an
creation operators, into equations for quadrature fields:

S ã1

ã2
D 5

1

A112r cos 2f1r2

3S ~11r!cosf 2~12r!sinf

~12r!sinf ~11r!cosf D S a1

a2
D , ~22!

and
06200
n

e

S b̃1

b̃2
D 5

1

A112r cos 2f1r2

3S ~11r!cosf ~12r!sinf

2~12r!sinf ~11r!cosf D S b1

b2
D . ~23!

Inserting the above expressions into Eqs.~2.20!–~2.24! of
Ref. @8#, and using Eqs.~18!–~21!, we get the input–outpu
relation depending only on the characteristic or scaling
variant quantitiesl, e, andic :

S b̃1

b̃2
D 5

1

M̃ (1) H S C̃11
(1) C̃12

(1)

C̃21
(1) C̃22

(1)D S ã1

ã2
D 1S D̃1

(1)

D̃2
(1)D h

hSQL
J ,

~24!

where we define

M̃ (1)5@l22~V1 i e!2#V22lic , ~25!

and

C̃11
(1)5C̃22

(1)5V2~V22l21e2!1lic ,

C̃12
(1)522elV2, C̃21

(1)52elV222eic , ~26!

D̃1
(1)522lAeicV, D̃2

(1)52~e2 iV!VAeic, ~27!

and

hSQL[A 8\

mV2L2
~28!

is the free-mass SQL for the gravitational strainh(V) in
LIGO detectors@11#. The quantityic has the dimension of a
frequency to the third power (V3). Since it is proportional to
the laser power circulating in the arm cavity, it provides
measure of radiation-pressure strength. In order that radia
pressure influences interferometer dynamics in the freque
range interesting for LIGO, we need

ic*VGW
3 ⇒ I c*

mLcVGW
3

8v0
, ~29!

which givesI c*100 kW for typical LIGO-II parameters and
VGW52p3100 Hz. The input–output relation~24! is more
explicit in representing interferometer properties than t
given in Ref.@8#, and can be quite useful in the process
optimizing the SR optical configuration@19#. From the last
term of Eq.~24! we observe that as long as the SR oscillati
frequencyl5” 0, both quadrature fields contain the GW si
nal. Moreover, the resonant structure, discussed in R
@8,9#, is readily displayed in the denominator of Eq.~24!,
given by Eq.~25!. As we shall see in Sec. IV, the shot nois
and radiation-pressure noise, and the fact that they are
related, can also be easily worked out from Eq.~24!.
2-6
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In Ref. @10# we found that one of the SR resonant fr
quencies, obtained by imposingM̃ (1)50, always has a posi
tive imaginary part, corresponding to an instability. This
stability has an origin similar to the dynamical instabili
induced in a detuned Fabry-Perot cavity by the radiati
pressure force acting on the mirrors@12,14#. To suppress it,
we proposed@10# a feedback control system that does n
compromise the GW interferometer sensitivity. Although t
model we used to describe the servo system may be rea
for an all-optical control loop, this might not be the case if
electronic servo system is implemented. However, the res
shown in Ref.@20# suggest that our model in fact turns out
be adequately realistic for an electronic system as well
any case, a more thorough studying should be pursue
fully clarify this issue. In this paper, we always assume t
an appropriate control system of the kind proposed in R
@10# is used.

Finally, whenl50 ~which corresponds to eitherr50, or
r5” 0, f50, p/2) Eq. ~24! simplifies to

S b̃1

b̃2
D 5e2ib8S 1 0

2K8 1D S ã1

ã2
D 1eib8A2K8S 0

1D h

hSQL
,

~30!
06200
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which exactly coincides with Eq.~16! of Ref. @7# for a con-
ventional interferometer, but where

b85arctanS V

e D , K85
2eic

V2~V21e2!
. ~31!

The simple relations~30!, ~31! nicely unify the SR optical
configurationf50,p/2 ~denoted by ESR/ERSE in Ref.@9#!
with the conventional-interferometer optical configuration

B. Noise spectral density

The noise spectral density can be calculated as follo
@7,8#. Assuming that the quadratureb̃z5b̃1 sinz1b̃2 cosz is
measured, and using Eq.~24!, we can express the interfe
ometer noise as an equivalent GW Fourier component:

hn[hSQLDb̃z , ~32!

where
a

Db̃z5
~C̃11

(1) sinz1C̃21
(1) cosz!ã11~C̃12

(1) sinz1C̃22
(1) cosz!ã2

D̃1
(1) sinz1D̃2

(1) cosz
. ~33!

Then the~single-sided! spectral densitySh
z( f ), with f 5V/2p, associated with the noisehn can be computed by the formul

@see Eq.~22! of Ref. @7##:

2pd~V2V8!Sh
z~ f !5^ inuhn~V!hn

†~V8!1hn
†~V8!hn~V!u in&. ~34!

Assuming that the input of the whole SR interferometer is in its vacuum state, i.e.,u in&5u0ã&, and using

^0ãuãi~V!ã j
†~V8!1ã j

†~V8!ãi~V!u0ã&52pd~V2V8!d i j , ~35!

we find that Eq.~34! can be recast in the simple form~note thatC̃i j
(1)PR):

Sh
z5hSQL

2
~C̃11

(1) sinz1C̃21
(1) cosz!21~C̃12

(1) sinz1C̃22
(1) cosz!2

uD̃1
(1) sinz1D̃2

(1) coszu2
. ~36!

Plugging into the above expression Eqs.~26! and ~27! we get the very explicit~and very simple! expression for the noise
spectral density:

Sh
z5

V2hSQL
2

4eic@V2 cos2z1~e cosz2l sinz!2#
H @~V1l!21e2#@~V2l!21e2#1

2ic

V2
@V2~l2e sin 2z!

2l~e21l212e2 cos 2z!2e~e22l2!sin 2z#1
ic

2

V4
@2e2~11cos 2z!22el sin 2z1l2#J . ~37!
2-7
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IV. OPTOMECHANICAL DYNAMICS IN TERMS
OF CHARACTERISTIC PARAMETERS

The scaling laws~14!, ~16! could have been equivalentl
derived by imposing the invariance of the optomechan
dynamics@10#. In this section we express all the releva
quantities characterizing the SR optomechanical dynamic
terms of the scaling invariant parametersl, e, andic .

A. Radiation-pressure force

In Ref. @9# we assumed that SR interferometers can
artificially divided into two linearly coupled, but otherwis
independent subsystems: the probeP, which is subject to the
external classical GW forceG and the detectorD, which
yields a classical outputZ. The Hamiltonian of the overal
system is given by~see Sec. II B in Ref.@9# for notations and
definitions!:

H5HP1HD2x~F1G!, ~38!

wherex is the operator describing the antisymmetric mode
motion of four arm-cavity mirrors andF is the radiation-
pressure or back-action force the detector applies on
probe. In the Heisenberg picture, using the superscript
for operators evolving under the total HamiltonianH, and
superscript (0) for operators evolving under the free Ham
tonian of the detectorHD , the equations of motion in Fourie
domain read@9#:

Z(1)~V!5Z(0)~V!1RZF~V!x(1)~V!, ~39!

F (1)~V!5F (0)~V!1RFF~V!x(1)~V!, ~40!

x(1)~V!5Lh~V!1Rxx~V!F (1)~V!, ~41!

where Rxx(V)524/m/V2 @21#, h(V) is the gravitational
strain@see Eq.~2.15! of Ref. @10## related to the GW force in
Fourier domain byG(V)52(m/4)LV2h(V), while the
various Fourier-domain susceptibilities are defined by

RAB~V![
i

\E0

1`

dteiVt@A~0!,B~2t!#, ~42!

where@A(t),B(t8)# is the commutator between operatorsA
andB. As discussed in Sec. I, LIGO-II has been planned
work at a laser power for which shot noise and radiatio
pressure noise are comparable in the observational band
200 Hz. In Sec. III A of Ref.@9# the radiation-pressure forc
was explicitly derived. Here, we want to express it, and
other crucial quantities entering the equations of mot
~39!–~41! in terms of the characteristic parametersl, e,
and

Ic5mic5
8v0I c

Lc
. ~43!

Using Eqs.~18! a straightforward calculation gives the rath
simple expressions:
06200
l
t
in

e
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e
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F (0)~V!5AeIc\

2

~ iV2e!ã1~V!1lã2~V!

~V2l1 i e!~V1l1 i e!
, ~44!

Z1
(0)~V!5

~l22e22V2!ã1~V!12leã2~V!

~V2l1 i e!~V1l1 i e!
, ~45!

Z2
(0)~V!5

22leã1~V!1~l22e22V2!ã2~V!

~V2l1 i e!~V1l1 i e!
,

~46!

RZ1F~V!5AeIc

2\

l

~V2l1 i e!~V1l1 i e!
, ~47!

RZ2F~V!52AeIc

2\

~e2 iV!

~V2l1 i e!~V1l1 i e!
. ~48!

The optical pumping field in a detuned Fabry-Perot resona
converts the free test mass into an optical spring having v
low intrinsic noise@14#. The ponderomotive rigidityKpond,
which characterizes the optomechanical dynamics in SR
terferometers, is also responsible of the beating of the
mass SQL~see Sec. III C of Ref.@10#! and its explicit ex-
pression is given by

Kpond~V!52RFF~V!

52
Ic

4

l

~V2l1 i e!~V1l1 i e!
. ~49!

As long as the free optical resonant frequencyl differs from
zero, Kpond is always nonvanishing. Moreover, in order
have a~nearly! real mechanical resonant frequency at lo
frequency, we requirel,0 @as can be obtained by imposin
Kpond(V50).0].

B. Equivalence between noise correlations and change
of dynamics

As derived in Refs.@9,10#, the output of SR interferom-
eters, when the first or second quadrature of the outgo
dark-port field is measured, can also be written as

Oi~V!5Zi~V!1Rxx~V!@Fi~V!1G~V!#, i 51,2,
~50!

where

Zi~V!5
Zi

(0)~V!

RZiF
~V!

,

F~V!5F (0)~V!2RFF~V!
Zi

(0)~V!

RZiF
~V!

, i 51,2. ~51!

Expressing these quantities in scaling-invariant form@here
the first or second quadrature refers tob̃1 or b̃2, so theZ1,2
discussed here are related to those in Ref.@9# by the rotation
~23!#, we get
2-8
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Z1~V!5A2\

eIc

1

l
@~l22e22V2!ã1~V!12elã2~V!#,

~52!

Z2~V!5A2\

eIc

1

~e2 iV!
@2elã1~V!

2~l22e22V2!ã2~V!#, ~53!

and

F1~V!5AIc\

8e
ã1~V!, ~54!

F2~V!5AIc\

8e

1

~e2 iV!
@2eã1~V!2lã2~V!#. ~55!

The form of Eq.~50!, along with the fact that the operato
Zi(V) andFi(V) are proportional to 1/AI c andAI c, made it
natural to refer to them@10# as effectiveoutput fluctuation
and effective radiation-pressure force. The quantum no
embodied inZi(V) is the shot noise, while the quantu
noise described byFi(V) is the radiation-pressure or bac
action noise. The operatorsZi(V), Fi(V) satisfy the fol-
lowing commutation relations@11,9,10#:

@Zi~V!,Z i
†~V8!#505@Fi~V!,F i

†~V8!#,

@Zi~V!,F i
†~V8!#522p i\d~V2V8!, i 51,2. ~56!

If the output quadraturei is measured, the noise spectr
density ~36!, written in terms of the operatorsZi and Fi ,
reads@11#

Sh,i~V!5
1

L2
$SZiZi

~V!12Rxx~V!R@SFiZi
~V!#

1R xx
2 ~V!SFiFi

~V!%, ~57!

where the~one-sided! cross spectral density of two operato
is expressible, by analogy with Eq.~34!, as

2pd~V2V8!SAB~V!5^0ãuA~V!B †~V8!

1B †~V8!A~V!u0ã&. ~58!

In Eq. ~57!, the terms containingSZiZi
, SFiFi

andR@SFiZi
#

should be identified as shot noise, radiation-pressure no
and a term proportional to the correlation between the
noises, respectively@11#. The noise spectral densities e
pressed in terms of the scaling invariant quantitiesl, e, and
Ic are rather simple and read

SZ1Z1
~V!5

2\

Ic

@~V1l!21e2#@~V2l!21e2#

el2
, ~59!

SZ2Z2
~V!5

2\

Ic

@~V1l!21e2#@~V2l!21e2#

e~e21V2!
, ~60!
06200
e

l

e,
o

SF1F1
~V!5

\Ic

8e
, ~61!

SF2F2
~V!5

\Ic

8e

~4e21l2!

e21V2
, ~62!

SZ1F1
~V!5\

~l22e22V2!

2el
, ~63!

SZ2F2
~V!5\

l~l213e22V2!

2e~e21V2!
. ~64!

Note that in our caseSFiZi
is real, thusSFiZi

5SZiFi
. It is

straightforward to check that the following relation is al
satisfied:

SZiZi
~V! SFiFi

~V!2SZiFi
~V! SFiZi

~V!5\2, i 51,2.
~65!

Since in SR interferometersSZiFi
5” 0, the noise spectral den

sity Sh,i is not limited by the free-mass SQL for GW inte
ferometers (SSQL[hSQL

2 ), as derived and discussed in Re
@8–10#.

We want to show now that cross correlations between s
noise and radiation-pressure noise are equivalent to s
modification of the optomechanical dynamics of the syst
composed of probe and detector, as originally pointed ou
Syrtsev and Khalili in Sec. III of Ref.@17#. More specifically,
we shall show that for linear quantum measurement devi
at the cost of modifying the optomechanical dynamics,
measurement process can be described in terms of new
eratorsZ8 andF8 with zero cross correlation.

In Ref. @9# the authors found that the most generic tran
formation which preserves the commutation relations~56! is
of the form @see Eq.~2.25! in Ref. @9##:

S Zi8~V!

Fi8~V!
D 5eiaS L11 L12

L21 L22
D S Zi~V!

Fi~V!
D , ~66!

with a,Li j PR, and detLi j 51. Under this transformation
the output~50! becomes

Oi~V!5e2 ia@L222Rxx~V!L21#Zi8~V!1e2 ia

3@2L121Rxx~V!L11# Fi8~V!1Rxx~V!G~V!.

~67!

By imposing that the system responds in the same way
electromagnetic and gravitational forces,F8(V) andG(V),
we find the two conditions:eia561 andRxx(V)(L1171)
5L12. The transformation we have to apply so that the c
relations between new fieldsZi8(V) and Fi8(V) are zero,
gives the following set of equations:

LS SZiZi
~V! SZiFi

~V!

SFiZi
~V! SFiFi

~V!D Lt5S SZ
i8Z

i8
~V! 0

0 SF
i8F

i8
~V!D .

~68!
2-9
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When SZF5SFZPR, as it happens in SR interferometer
the above conditions can be solved in infinite ways. A sim
solution, suggested by Syrtsev and Khalili@17#, is obtained
by taking a50 andL1151. In this case, a straightforwar
calculation givesL1250, L2152SZiFi

/SZiZi
, and L2251.

The output becomes

Oi8~V!5Zi8~V!1x i
eff~V!@Fi8~V!1G~V!#,

Oi8~V!5Oi~V!
Rxx~V!

x i
eff~V!

, ~69!

wherex i
eff , theeffectivesusceptibility, is given by

x i
eff~V!5

Rxx~V!

11Rxx~V!SZiFi
~V!/SZiZi

~V!
. ~70!

The spectral densities of the new operatorsZi8 andFi8 are

SZ
i8Z

i8
~V!5SZiZi

~V!,

SF
i8F

i8
~V!5SFiFi

~V!2
SZiF i

2 ~V!

SZiZi
~V!

, i 51,2, ~71!

with

SF
18F

18
~V!5

\Ic

2

el2

@~V1l!21e2#@~V2l!21e2#
, ~72!

SF
28F

28
~V!5

\Ic

2

e~e21V2!

@~V1l!21e2#@~V2l!21e2#
.

~73!

These new operators satisfy the condition@see Eq.~65!#

SZ
i8Z

i8
~V!SF

i8F
i8
~V!5\2, i 51,2. ~74!

C. Equivalence to a single detuned cavity
and frequency-dependent rigidity

At the end of Sec. II B we discussed under which assum
tions radiation-pressure effects were included in the desc
tion of SR interferometers in Refs.@8–10#. There, the au-
thors assumed that radiation pressure forces acting on E
and ITM are equal, and disregarded ETM and ITM motio
during the light round-trip time in arm cavities. In this ca
the ITM and SRM can be considered fixed, and as show
Sec. II A it is possible to map the SR optical configuration
a three-mirror cavity with only the ETM movable. We sha
see explicitly in this section that, since the very short
cavity can be regarded as a single effective mirror, we
further map the SR interferometer to a single-detuned ca
with only the ETM movable, which is exactly the system th
Khalili discussed in Ref.@13#. @More specifically, the single-
detuned cavity has~complex! free optical resonant frequenc
v02l2 i e, ETM massmarm5marm/25m, and circulating
power I arm52I c . See Eqs.~1!, ~2!, and~3!.#
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If the output quadraturei is measured, the noise spectr
density expressed in terms of the operatorsZi8 andFi8 can be
written as

Sh,i~V!5
Rxx

2 ~V!

L2
@@x i

eff~V!#22SZ
i8Z

i8
~V!1SF

i8F
i8
~V!#.

~75!

In order to make explicit the connection with Ref.@13#, we
evaluate the noise spectral density forxGW[Lh/2 and we
denote it bySxGW

. It reads:

SxGW ,i~V!5
1

marm
2 V4

3H Fx i
eff~V!

4 G22 SZ
i8Z

i8
~V!

4
14SF

i8F
i8
~V!J ,

~76!

where as discussed abovemarm5marm/25m. By rewriting
the generalized susceptibility into the form,

x i
eff~V!

4
5

1

2marmV214Ki
eff~V!

, i 51,2, ~77!

we introduce, as Khalili also did@13#, the effectiverigidity
Ki

eff(V), defined by

Ki
eff~V![

SZiFi
~V!

SZiZi
~V!

. ~78!

More explicitly,

K1
eff~V!5

Icl

4

2e21l22V2

@~V2l!21e2#@~V1l!21e2#
, ~79!

K2
eff~V!5

Icl

4

3e21l22V2

@~V2l!21e2#@~V1l!21e2#
.

~80!

Those expressions, in particular Eqs.~76!, ~80! agree with
those derived by Khalili@13# for a single detuned cavity@see
Eqs. ~19! and ~21! in Ref. @13## if we make the following
identifications ~this paper → Khalili !: l→d, e
→g, 2LI arm/c[4LI c /c→E ~energy stored in the single
cavity!, x i

eff/4→x, and 4Ki
eff→K. Note that in Ref.@13# it is

always assumed that the second quadrature is measure
The description of the measurement system in terms

the uncorrelated fields,Zi8 and Fi8 , yields another way of
understanding why in SR interferometers the free mass S
Sh

SQL[hSQL
2 , loses its significance. Indeed, by using Eq.~74!,

we getSZ
i8Z

i8
5\2/SF

i8F
i8
. Plugging this expression into Eq

~75!, minimizing with respect toSF
i8F

i8
, we obtain
2-10
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SF
28F

28
min

~V!5
\

u11Rxx~V!K2
eff~V!u

1

Rxx~V!
, ~81!

and the minimal noise spectral density is

Sh,i
min~V!5

2\

L2 URxx
2 ~V!

x i
eff~V!

U5Sh
SQLURxx~V!

x i
eff~V!

U , ~82!

which can be formally regarded as a non-free-mass SQL
the effectivedynamics described byx i

eff . To give an ex-
ample, in Fig. 5 we plot the square root of the noise spec
densitiesSh,2 and Sh,2

min versus frequencyf having fixed e
52p325.0 Hz, l52p3191.3 Hz, for two different val-
ues of the laser power circulating in the arm cavities:I c
5300 kW andI c5600 kW. For comparison we also plot th
free-mass SQL line. As we can see from the plot,Sh,2

min can go
quite below the free-mass SQL.

The effective dynamics can be also used to optimize
performance of SR interferometers@13#. The roots of the
following equation,

Ki
eff~V!2

m

4
V250, ~83!

correspond to resonances produced by the effective rigi
at whichxeff→` and, using Eq.~82!,

Sh,i
min~V!→0. ~84!

As observed by Khalili@13#, we could expect that the mor
the roots of Eq.~83! coincide, the more broadband the noi
curve will be. For example, we could expect that interfero
eter configurations with double or triple zeros be optim
However, as we shall see, those configurations are not m
better than some of the three-single-zero cases.

Assuming the second quadrature (i 52) is observed, we
obtain for the triple-zero case@see also Eqs.~29!, ~30!, and
~31! in Ref. @13##:

FIG. 5. Plot ofASh,2 ~continuous lines! andASh,2
min ~dashed lines!

vs frequency f for T50.033, e52p325.0 Hz, l52p
3191.3 Hz, and two different values of the laser power circulat
in the arm cavities:I c5300 kW ~lighter-colored lines! and I c

5600 kW ~darker-colored lines!. The free-mass SQL line~black
straight line! is also shown for comparison.
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ic52S 9A1772113

49 D l3,

e5
A280221A177

7
l,

V triple zero5A2~2111A177!

7
l. ~85!

In Fig. 6 we plot the square root of the noise spectral den
Sh,2 versus frequencyf for the triple-zero case having fixe
V triple zero52p3100 Hz, i.e., the~free! oscillation frequency
l52p3123.3 Hz ande52p313.8 Hz. The SQL line is
also plotted. For comparison we also show the noise spe
density Sh,2 corresponding to a solution of Eq.~83! with
three-single zeros:l52p3191.3 Hz, e52p325.0 Hz,
and I c5590 kW. As mentioned, the spectral density in t
triple-zero case is not significantly broadband, especially
compared with the three-single-zero case.

This result originates from thenonuniversalnature of the
curveSh,i

min . The SQL~28! does not change if we adjust~by
varying the circulating power! the balance between sho
noise and radiation-pressure noise and find the interferom
parameters whose noise curve can touch it. By contrast,
curveSh,i

min changes when we adjust~by varying the circulat-
ing power or the optical resonant frequencies! the effective
shot and radiation-pressure noises,SZ

i8Z
i8

and SF
i8F

i8
. @The

change ofSh,2
min as I c is varied can be also seen from Fig. 5#

As a consequence, the fact thatSh,i
min is low and broadband for

a certain configuration cannot guarantee the noise curve
also be optimal. In particular, in the triple-zero case, Eq.~83!
already fixes all the interferometer parameters, leaving
freedom for the noise curve to really take advantage of
triple zeros. The fact that only anonuniversalminimum
noise spectral density exists in SR interferometers arise
part because of the double role played by the carrier lig
Indeed, the latter provides the means for measurement,

g

FIG. 6. Plot of the square root of the noise spectral densitySh vs
frequencyf for ~i! triple-zero case~continuous line! with l52p
3123.2 Hz, e52p313.8 Hz, and I c5320 kW and ~ii ! three-
single-zero case~dashed line! with l52p3191.3 Hz, e52p
325.0 Hz, andI c5590 kW. For comparison we also show th
free-mass SQL line~black straight line!.
2-11
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therefore determines the balance between shot and radia
pressure noises, but it also directly affects the optomech
cal dynamics of the system, originating the optical-spr
effect.

Finally, Braginsky, Khalili, and Volikov@22# have re-
cently proposed a table-top quantum-measurement ex
ment to ~i! investigate the ponderomotive rigidity effe
present in a single detuned cavity and~ii ! beat the free mas
SQL. Although the table-top experiment will concern phy
cal parameters very different from LIGO-II, e.g., the te
mass m;231022 g, L;1 cm, V;104 s21, and I c;1
210 W, however, because of the equivalence we have
plicitly demonstrated between SR interferometers and sin
detuned cavities, the results of the table-top experim
could shed new light and investigate various features of
optomechanical configurations relevant for LIGO-II.

D. Optical spring equivalent to mechanical spring
but at zero temperature

When proposing the optical-bar GW detectors@14#, Bra-
ginsky, Gorodetsky, and Khalili pointed out that the detun
optical pumping field in a Fabry-Perot resonator can conv
the free test mass into an optical spring havingvery low
intrinsic noise. In this section, we illustrate this general p
nomenon using the example of SR interferometers, and
plain in our formalism why optical springs are indeed pr
erable to mechanical springs in measuring very tiny forc

The Heisenberg operator in Fourier domainx(1)(V) de-
scribing the antisymmetric mode of motion of a SR interf
ometer, satisfies the following equation@see Eqs.~39!, ~41!
above and also Eq.~2.20! of Ref. @9##:

x(1)~V!5x~V!F (0)~V!, x~V!5
Rxx~V!

12Rxx~V!RFF~V!
.

~86!

Using Eq.~49! we get

x~V!5
4

m

l21~e2 iV!2

lic2V2@l21~e2 iV!2#
. ~87!

The noise spectral density associated withx is

Sx~V!5ux~V!u2SF~V!, ~88!

where

pd~V2V8!Sx~V!5^0ãux(1)~V!x(1)†~V8!u0ã&,

pd~V2V8!SF~V!5^0ãuF (0)~V!F (0)†~V8!u0ã&. ~89!

More explicitly,

SF~V!5
Ic\

2

e~l21e21V2!

@~V2l!21e2#@~V1l!21e2#
. ~90!

For the optical spring, which is made up of electromagne
oscillators in their ground states~the vacuum state!, we have
~see e.g., Chap. 6 in Ref.@11#! @23#:
06200
on-
i-

g

ri-

-
t

x-
le
nt
R

d
rt

-
x-
-
.

-

c

Sx~V!>2\uI@x~V!#u, ~91!

which can be regarded as a zero-temperature version o
fluctuation-dissipation theorem. For a mechanical syst
e.g., a mechanical spring, with the same susceptibility, bu
thermal equilibrium at temperatureT@\V/k, wherek is the
Boltzmann constant, the standard version of fluctuati
dissipation theorem says

Sx~V!54
kT

V
uI@x~V!#u. ~92!

If we assumeV;2p3100 Hz, \V/k;531029 K, the
condition T@\V/k is always valid for any practical me
chanical system. As a consequence,

Sx
mech spring~V!;

kT

\V
Sx

opt spring~V!. ~93!

At T5300 K, V/2p5100 Hz, we get Sx
mech spring

;1011Sx
opt spring. Thus, because of the very large coefficie

kT/\V in Eq. ~93!, fluctuating noise in an optical spring i
always much smaller than in a mechanical spring.

For SR interferometers described in this paper, the fluc
ating noiseSx does not saturate the inequality in Eq.~91!.
This can be inferred from Fig. 7 where we plotR
[Sx(f)/(2\uI@x( f )#u) versusf, whereSx has been obtained
from Eqs.~87!, ~88!, and~90!, for the following choice of the
physical parameters: m530 kg, T50.033, g52p
398.5 Hz, with l52p3191.3 Hz, e52p325.0 Hz, and
I c5560 kW. The minimum ofR is at the frequency corre
sponding to the~free! oscillation frequency of the SR inter
ferometer, i.e.,f min5l/(2p)5191.3 Hz.

V. INPUT –OUTPUT RELATION AT ALL ORDERS IN
TRANSMISSIVITY OF INTERNAL TEST-MASS MIRRORS

To simplify the calculation and the modeling of GW in
terferometers, KLMTV@7# calculated the input–output rela
tion of a conventional interferometer at leading order inT
andVL/c. By taking only the leading order terms inT, they
ignored the radiation-pressure forces acting on the ITM d
to the electromagnetic field present in the cavity made up

FIG. 7. Plot of R[Sx( f )/(2\uI@x( f )#u) vs f when l52p
3191.3 Hz,e52p325.0 Hz, andI c5590 kW.
2-12
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FIG. 8. We plot the fractional
error Dl/l ~left panel! andDe/e
~right panel! as a function ofl
ande. The quantitiesDl andDe
are the difference between th
value of l and e obtained from
the first-order-T free optical fre-
quency ~94! and the exact one
~13!.
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ITM and BS. By limiting their analysis to the leading ord
in VL/c, they assumed that the radiation-pressure forces
ing on the ITM and ETM are equal. In conventional interfe
ometers,T alone determines the half-bandwidthg of the arm
cavities ~throughg5Tc/4L), which fully characterizes the
interferometer@see Eq.~16! in Ref. @7# and Eqs.~30!, ~31!
above#. Moreover, sinceVGW is comparable tog and T
;0.005–0.033, the two small quantities,VL/c andT are on
the same order, and the accuracy in expanding the inp
output relation in these two parameters is rather under c
trol. @Note that ifg;2p3100 Hz, we haveT;0.033.#

In describing SR interferometers, the authors of Re
@8–10# build on the leading-order results of Ref.@7#. How-
ever, in SR interferometers the accuracy of expanding iT
can be quite obscure, becauseT is not the only small quantity
characterizing SR-interferometer performances—for
ample, the SRM transmissivity can also be a small quan
Thus, to clarify the accuracy of the expansion inT, we now
derive the input–output relation at all orders inT, and com-
pare with the leading order result~24! @8,9#. The calculation
is much easier if we view the SR cavity as a single effect
mirror, as done in Sec. II. However, in doing so, we still u
the assumptions mentioned at the beginning of this sect
See also the end of Sec. II A.

A. Free optical resonant frequencies

It is interesting to investigate the error in the prediction
the ~free! optical resonant frequency introduced by usi
only the leading order terms inT and VL/c. For a generic
set ofT, r, andf, it can be quite complicated to characteri
that error. For example, whenr.AR and f;p/2, r̃8 is
near 21 ~in the complex plane! and the expansion~15!

around r̃851 totally breaks down. However, we are on
concerned with those parameters meaningful for a GW
tector, and thus we limit our analysis to the region whe
uṼu5Al21e2;V GW,104 s21, corresponding touṼL/cu
&0.1. In this wayur̃821u is always relatively small. To tes
the accuracy, we fixT, and for eachṼ52l2 i e, we solve
Eq. ~13! for r andf. Then, we insert these values into E
~17! to get the first-order-T expression forṼ, which we de-
note byṼ (1). The result is
06200
ct-

t–
n-

.

-
y.

e

n.

f

e-
e

Ṽ (1)5
c

L S 11AR

2 D 2

tanS ṼL

c
D

5ṼF12
T

2
1O~T2!GF11

1

3
S ṼL

c
D 2

1OS Ṽ4L4

c4 D G .

~94!

From this equation we infer that sinceuṼL/cu&0.1, andT is
smaller than a few percents, the error in the~free! optical
resonant frequency is not very significant~less than a few
percents!. In Fig. 8 we plot the fractional differences~de-
noted byDl/l and De/e) between the real and imaginar
parts ofṼ (1) and Ṽ as functions ofe and l for T50.033.
The fractional differences are always smaller than 2.5%.

B. Input –output relation and noise spectral density

Using the formalism of Sec. II and Appendix A, it i
rather easy to derive the exact input–output relation in te
of l, e, andic . The input–output relation (j -k) of the arm
cavity composed of the effective ITM and ETM is

S k1

k2
D 5e2iVL/cS 1 0

2Karm 1D S j 1

j 2
D 1eiVL/cA2Karm

h

hSQL
arm S 0

1D ,

~95!

where

Karm5
8I armv0

marmV2c2
5

16I cv0

mV2c2
,

hSQL
arm 5A 8\

marmV2L2
5A 8\

mV2L2
. ~96!

Writing Eqs.~7! and ~8! in terms of quadratures, that is

S j 1

j 2
D 5A12ur̃8u2S ã1

ã2
D 1ur̃8uS cosc 2sinc

sinc cosc D S k1

k2
D ,

~97!

and
2-13
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S b̃1

b̃2
D 5A12ur̃8u2S k1

k2
D 2ur̃8uS cosc sinc

2sinc cosc D S ã1

ã2
D ,

~98!

wherec5arg(r̃8), and using Eq.~11!, we obtain the input–
output relation (ã2b̃) of the three-mirror cavity, and thu
that of the equivalent SR interferometer. They can be rep
sented in the same form as Eq.~24!, with M̃ (1), C̃i j

(1) , and

D̃ i
(1) replaced by

M̃ex5
V2c2e22iVL/c

4L2 H @12e2i (V1l1 i e)L/c#

3@12e2i (V2l1 i e)L/c#

1 i
icL

V2c
@e2i (V1l1 i e)L/c2e2i (V2l1 i e)L/c#J , ~99!

and

C̃11
ex5C̃22

ex5
V2c2

4L2 H @122e22eL/c cos~2lL/c!cos~2VL/c!

1e24eL/c cos~4lL/c!#1
icL

V2c
e24eL/c sin~4lL/c!J ,

~100!

C̃12
ex5

V2c2

4L2 H 22e22eL/c sin~2lL/c!@cos~2VL/c!

2e22eL/c cos~2lL/c!#
1
2icL

V2c
e24eL/c sin2~2lL/c!J , ~101!

06200
e-

C̃21
ex5

V2c2

4L2 H 2e22eL/c sin~2lL/c!@cos~2VL/c!

2e22eL/c cos~2lL/c!#2
2icL

V2c

3@12e24eL/c cos2~2lL/c!#J , ~102!

D̃1
ex5

V2c2

4L2
@22e22eL/ceiVL/csin~2lL/c!#

3A~12e24eL/c!icL

V2c
, ~103!

D̃2
ex5

V2c2

4L2
@2e2 iVL/c22e22eL/ceiVL/c cos~2lL/c!#

3A~12e24eL/c!icL

V2c
. ~104!

In order to compare with the results obtained in Re
@8–10#, we have also to relateã, b̃ to a and b. The exact
transformations@to be compared with Eqs.~22!, ~23!# are

S ã1

ã2
D 5

1

A112rAR cos 2f1r2R

3S ~11rAR!cosf 2~12rAR!sinf

~12rAR!sinf ~11rAR!cosf
D S a1

a2
D ,

~105!
and

al

FIG. 9. Comparison of first-orderT-expanded~dashed line! and exact~continuous line! noise spectral densityASh vs frequencyf. In the

left panel we use the parametersT50.033,r50.9, f5p/220.47,m530 kg, andI c5592 kW and show the curves for the two orthogon

quadraturesb̃1 ~lighter-colored lines! and b̃2 ~darker-colored lines!. In the right panel we useT50.005, r50.964, f5p/220.06, m
540 kg, I c5840 kW, andz51.3p/2.
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FIG. 10. Comparison of first-orderl-e-ic
1/3-expanded~dashed line! and exact~continuous line! noise spectral densityASh vs frequency

f. In the left panel we useT50.033, r50.9, f5p/220.47, m530 kg, andI c5592 kW, and show the curves for the two orthogon

quadraturesb̃1 ~lighter-colored lines! and b̃2 ~darker-colored lines!. In the right panel we useT50.005, r50.964, f5p/220.06, m
540 kg, I c5840 kW, andz51.3p/2.
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S b̃1

b̃2
D 5

1

A112rARcos 2f1r2R

3S ~11rAR!cosf ~12rAR!sinf

2~12rAR!sinf ~11rAR!cosf
D S b1

b2
D .

~106!

As an example, we compare in the left panel of Fig. 9
exact and first-orderT-expanded noise spectral densities
the two orthogonal quadraturesb̃1 and b̃2, having fixedT
50.033, r50.9, f5p/220.47, m530 kg, and I c
5592 kW ~which corresponds toI 05I SQL at BS! as used in
Refs.@8–10#. TheT-expanded noise spectral density is giv
by Eq. ~37!, where we used forl, e and the redefined out
put quadratures Eqs.~18!, ~19!. The exact noise spectral den
sity is obtained from Eq.~36! by replacingM̃ (1), C̃i j

(1) , and

D̃ i
(1) with M̃ex, C̃i j

ex, andD̃ i
ex. From Fig. 9, we see that ther

is a discernible difference. In the right panel of Fig. 9, w
compare the exact and first-orderT-expanded noise spectra
densities using the reference-design parameters of LIG
@18#: T50.005, r50.964, f5p/220.06, m540 kg, I c
5840 kW, andz51.3p/2. In this case, the two curves agre
nicely with each other, presumably becauseT is rather small.
In the general case, if we want to trust the leading or
calculation, it is not obvious how smallT can be, sincer and
f have to change along withT to preserve the invariance o
interferometer performance. For this reason, it is more c
venient to seek an expansion that is also scaling invari
i.e., whose accuracy only depends on the scaling-invar
properties of the interferometer. To this respect, the se
quantitieslL/c, eL/c, ic

1/3L/c, and VL/c, which are all
small and on the same order, is a good choice. It is t
meaningful to expand with respect to these quantities
take the leading order terms. We denote the noise spe
density obtained in this way by first-orderl-e-ic

1/3-expanded
noise spectral density.~This technique of identifying and ex
panding in small quantities of the same order can be v
convenient and powerful in the analysis of complicated
terferometer configurations, e.g., the speed meter interfer
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eter@24#.! Not surprisingly, doing so gives us right away th
scaling-invariant input–output relation~24!. In the left and
right panels of Fig. 10 we compare the exact and first-or
l-e-ic

1/3-expanded noise spectral densities for the two

thogonal quadraturesb̃1,2, with the same parameters used
Fig. 9, i.e., T50.033, r50.9, f5p/220.47, m530 kg,
and I c5592 kW ~left panel! and T50.005, r50.964, f
5p/220.06, m540 kg, I c5840 kW, andz51.3p/2 ~right
panel!. The first-orderl-e-ic

1/3-expanded noise spectral de
sity is obtained using forl, e and the redefined outpu
quadratures Eqs.~13!, ~105!. The agreement between the e
act and first-orderl-e-ic

1/3-expanded noise spectral densiti
is much better than the agreement between the exact
T-expanded noise spectral densities, given in Fig. 9.

When eitherlL/c, eL/c, ic
1/3L/c, or VL/c is not small

enough, the first-orderl-e-ic
1/3 expansion fails. An interest

ing example of astrophysical relevance is the configurat
with largel and smalle, which has narrow-band sensitiv
ties centered around a high~optical! resonant frequency. In
the left panel of Fig. 11 we compare the first-ord
l-e-ic

1/3-expanded noise spectral density with the exact o

for the two quadraturesb̃1,2 having fixed:l52p3900 Hz,
e520 Hz, m530 kg, andI c5600 kW. Near the lower op-
tomechanical resonant frequency, the first-orderl-e-ic

1/3 ex-
pansion deviates from the exact one by significant amou
However, it is sufficient to expand up to the second orde
lL/c, eL/c, ic

1/3L/c, andVL/c to get a much better agree
ment, as we infer from the right panel of Fig. 11.~The input–
output relation expanded at second order is given in App
dix C.!

VI. CONCLUSIONS

In this paper we showed that, under the assumptions u
to describe SR interferometers@8–10#, i.e., radiation pres-
sure forces acting on ETMs and ITMs equally, and ETM a
ITM motions neglected during the light round-trip time
arm cavities, the SR cavity can be viewed as a single ef
tive ~fixed! mirror located at the ITM position. We then ex
plicitly map the SR optical configuration to a three-mirr
cavity @15,16# @see, e.g., Sec. II# or even a single detune
2-15
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FIG. 11. For the two orthogonal quadraturesb̃1 ~lighter-colored lines! and b̃2 ~darker-colored lines! we compare the first-orde
l-e-ic

1/3-expanded noise spectral density~dashed line! with the exact~continuous line! noise spectral density~left panel! and the second-orde
l-e-ic

1/3-expanded noise spectral density~dashed line! with the exact~continuous line! noise spectral density~right panel!. For all the cases
we fix l52p3900 Hz, e52p320 Hz, m530 kg, andI c5600 kW.
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cavity @13# @see Sec. IV B#. The mapping has revealed a
interesting scaling law present in SR interferometers.
varying the SRM reflectivityr, the SR detuningf, and the
ITM transmissivity T in such a way that the circulatin
power I c and the~free! optical resonant frequency~or more
specifically its real and imaginary partsl and e) remain
fixed @see Eq.~18!#, the input–output relation and the opto
mechanical dynamics remain invariant.

We expressed the input–output relation~24!, noise spec-
tral density~36!, and all quantities characterizing the optom
echanical dynamics, such as the radiation-pressure force~44!
and ponderomotive rigidity~49!, in terms of the scaling in-
variant quantities or characteristic parameters. The var
formulas are much simpler than the ones obtained in
original description@8–10#. The scaling invariant formalism
will be certainly useful in the process of optimizing the S
optical configuration of LIGO-II@19# and for investigating
advanced LIGO configurations. Moreover, the equivala
we explicitly showed between the SR interferometer a
single detuned cavity, could also make the table-top exp
ments of the kind recently suggested in Ref.@22# more rel-
evant to the development of LIGO-II.

In this paper we also evaluated the input–output relat
for SR interferometers at all orders in the transmissivity
ITMs @see Sec. V#. So far, the calculations were limited t
the leading order. We found that the differences betw
leading-order and all-order noise spectral densities for bro
band configurations of advanced LIGO do not differ mu
@see Fig. 9#. However, for narrow-band configurations, whic
have an astrophysical interest, the differences can be q
noticeable@see the left panel of Fig. 11#. In any case, we
showed that by using the~very simple! next-to-leading-order
input–output relation, explicitly derived in Appendix C, w
can recover the all-order results with very high accuracy@see
the right panel of Fig. 11#.

Finally, it will be rather interesting to investigate how th
results change if we relax the assumption of disregarding~i!
the motion of ITMs and ETMs during the light round-tri
time in arm cavities and~ii ! the radiation-pressure forces o
ITMs due to light power present in the cavity composed
ITM and BS. This analysis is left for future work.
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APPENDIX A: USEFUL RELATIONS
IN THE QUADRATURE FORMALISM

As in Refs.@7,8# we describe the interferometer’s light b
the electric field evaluated on the optic axis, i.e., on the c
ter of light beam. Correspondingly, the electric fields that
write down will be functions of time only. All dependence o
spatial position will be suppressed from our formulas.

The input field at the bright port of the beam splitte
which is assumed to be infinitesimally thin, is a carrier fie
described by a coherent state with powerI 0 and ~angular!
frequencyv0. We denote byf GW5V/2p the GW frequency,
which lies in the range 10–104 Hz. The interaction of a
gravitational wave with the optical system produces sideb
frequenciesv06V in the electromagnetic field at the dark
port output. We describe the quantum optics inside the in
ferometer using the two-photon formalism developed
Caves and Schumaker@25#. The quantized electromagnet
field in the Heisenberg picture evaluated at some fixed p
on the optic axis is@7,8#

E~ t !5A2p\v0

Ac
e2 iv0tE

0

1`

@a1~V!e2 iVt

1a2~V!eiVt#
dV

2p
1H.c., ~A1!
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where H.c. means Hermitian conjugate and we deno
a1(V)[av01V and a2(V)[av02V . HereA is the effec-
tive cross sectional area of the laser beam andc is the speed
of light. The annihilation and creation operatorsa6(V) in
Eq. ~A1! satisfy the commutation relations:

@a1 ,a18
†

#52pd~V2V8!, @a2 ,a28
†

#52pd~V2V8!,

~A2!

@a1 ,a18#505@a2 ,a28#, @a1
† ,a18

†
#505@a2

† ,a28
†

#,

@a1 ,a28#505@a1 ,a28
†

#. ~A3!

Following the Caves-Schumaker two-photon formalism@25#,
we introduce the amplitudes of the two-photon modes as

a15
a11a2

†

A2
, a25

a12a2
†

A2i
; ~A4!

a1 and a2 are called quadrature fields and they satisfy
commutation relations:

@a1 ,a28
†

#52@a2 ,a18
†

#52p id~V2V8!,

@a1 ,a18
†

#505@a1 ,a18#, @a2 ,a28
†

#505@a2 ,a28#.
~A5!

The electric field~A1! in terms of the quadratures reads

E~ai ;t !5cos~v0t !E1~a1 ;t !1sin~v0t !E2~a2 ;t !, ~A6!

where

Ej~aj ;t !5A4p\v0

Ac E
0

1`

~aje
2 iVt1aj

†eiVt!
dV

2p
j 51,2.

~A7!

Any linear relation among the fieldsa6(V) of the kind:

b6~V!5 f 6~V! a6~V!, f 1~V![ f ~v01V!,

f 2~V![ f ~v02V!, ~A8!

can be transformed into the following relation among t
quadrature fields:

S b1

b2
D 5

1

2 S ~ f 11 f 2* ! i ~ f 12 f 2* !

2 i ~ f 11 f 2* ! ~ f 11 f 2* !
D S a1

a2
D . ~A9!

In general, the above equation can be very complicated
this paper we restrict ourselves to two special cases. The
case is whenu f 1u5u f 2u and we write

f 6~V!5F~V!eiC6(V) ; V.0, ~A10!

and Eq.~A9! becomes:
06200
d

e

In
rst

S b1

b2
D 5F~V!ei (C12C2)/2

3S cos
C11C2

2
2sin

C11C2

2

sin
C11C2

2
cos

C11C2

2

D S a1

a2
D .

~A11!

It is easily checked that the input–output relation for t
following processes:~i! free propagation in space,~ii ! reflec-
tion and transmission from a thin mirror,~iii ! reflection and
transmission from one~or more! Fabry-Perot cavity for
which v0 is either resonant or antiresonant, and~iv! reflec-
tion and transmission from one~or more! FP cavity whose
bandwidth is much larger than the range of values ofV we
are interested in@in this casef (V) can be considered as
constant~complex! number# are all special cases~or linear
combinations! of the relation~A11!.

The second case of interest for us is when there isone
resonance atv01V r , with V r complex. In this casef (V) is
of the form:

f ~v!5
g~v!

v2v02V r
, ~A12!

whereg(v) does not have poles. ForV.0, we have

f 15
g~v01V!

V2V r
, f 2* 52

g* ~v02V!

V1V r*
, ~A13!

and thus

f 11 f 2* 5
~V1V r* !g~v01V!2~V2V r!g* ~v02V!

~V2V r!~V1V r* !
,

~A14!

f 12 f 2* 5
~V1V r* !g~v01V!1~V2V r!g* ~v02V!

~V2V r!~V1V r* !
.

~A15!

Since the quadrature field atV mixes the frequenciesv0
1V and v02V, the single resonant frequencyV r appears
in the above equation as a pair of resonant frequen
$V r ,2V r* %.

APPENDIX B: THE STOKES RELATIONS

The transmission and reflection coefficients of a system
mirrors, or more generally of a two-port linear optical sy
tem, can always be expressed in terms of four effective tra
missivities and reflectivities:r̃, t̃, r̃8, and t̃8 ~see Fig. 12!.
These quantities are generally frequency dependent~com-
plex! numbers. For the fields shown in Fig. 12, we have:

j v5 r̃8kv1 t̃av , ~B1!
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bv5 t̃8kv1 r̃av . ~B2!

Imposing that the two-port linear optical system satisfies
conservation of energy, we have

ur̃u21u t̃u251, ur̃8u21u t̃8u251. ~B3!

If we take the complex conjugates of all the complex amp
tudes and revert their propagation directions, the resul
configuration is also a solution of the optical system, in
sense that the new fields are also related by the same se
effective transmissivities and reflectivities. Thus, the syst
is invariant under time reversal. By applying explicitly th
symmetry, it is straightforward to derive

r̃ r̃* 1 t̃8t̃* 51, r̃* t̃1 t̃* r̃850, ~B4!

r̃8r̃8*1 t̃ t̃8* 51, r̃8* t̃81 t̃8* r̃50. ~B5!

Equations~B3!–~B5! are the well-known Stokes relation
@26#. If we rewrite the transmissivity and reflectivity coeffi
cients as

r̃5ur̃ueim, t̃5u t̃uein, ~B6!

r̃85ur̃8ueim8, t̃85u t̃8uein8, ~B7!

and insert them into the Stokes relations~B4! and ~B5!, we
obtain

FIG. 12. A two-port linear optical system can always be e
pressed in terms of four effective transmissivities and reflectivit

r̃8, t̃8 ~for fields entering from the right side!, andr̃, t̃ ~for fields
entering from the left side!. By taking the complex conjugates o
the field amplitudes and inverting their propagation directions
new set of fields related by the same set of transmissivities
reflectivities is obtained.
SC
GO
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ur̃u5ur̃8u, u t̃u5u t̃8u, ur̃u21u t̃u251; ~B8!

ein5ein8, ei (m1m8)52e2in. ~B9!

APPENDIX C: INPUT –OUTPUT RELATIONS
AT SECOND ORDER IN TRANSMISSIVITY

OF INTERNAL TEST MASSES

The input–output relation expanded up to second orde
lL/c, eL/c, ic

1/3L/c, and VL/c can be obtained in a
straightforward way by expanding Eqs.~99!–~104!. The new
coefficientsM̃ (2), C̃i j

(2) , and D̃ i
(2) are very simple. In fact,

they can be represented in terms of the first-order ones,M̃ (1),
C̃i j

(1) , andD̃ i
(1) given by Eqs.~25!–~27!, through the follow-

ing formulas~truncated at the next-to-leading order!:

M̃ (2)5~122eL/c!M̃ (1), ~C1!

S C̃11
(2) C̃12

(2)

C̃21
(2) C̃22

(2)D 5~122eL/c!S 1 lL/c

2lL/c 1 D
3S C̃11

(1) C̃12
(1)

C̃21
(1) C̃22

(1)D S 1 lL/c

2lL/c 1 D ,

~C2!

and

S D̃1
(2)

D̃2
(2)D 5~122eL/c!S 1 lL/c

2lL/c 1 D S D̃1
(1)

D̃2
(1)D .

~C3!

It is quite remarkable that, at second order, the optomech
cal resonances, determined byM̃ (2)50, remain unchanged
with respect to the first order result obtained imposi
M̃ (1)50. Apart from a~frequency-independent! rotation of
the quadrature phases, the input–output relation at nex
leading order is very similar to the leading-order one.
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