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We present our recent results of the evolution of the plasmoid-chain in a Poynting dom-
inated plasma. We model the relativistic current sheet with cold background plasma
using the relativistic resistive magnetohydrodynamic approximation, and solve its tem-
poral evolution numerically. Numerical results show that the initially induced plasmoid
triggers a secondary tearing instability. We find the plasmoid-chain greatly enhances
the reconnection rate, which becomes independent of the Lundquist number, when this
exceeds a critical value. Since magnetic reconnection is expected to play an important
role in various high energy astrophysical phenomena, our results can be used for explain-
ing the physical mechanism of them.

Keywords: Magnetic fields; magnetohydrodynamics (MHD); relativistic processes;
plasmas.
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1. Introduction

Magnetic reconnection is a process that converts magnetic field energy into thermal
and kinetic energy very efficiently. Because of this, it is believed that magnetic recon-
nection plays an important role in various phenomena from the laboratory plasma
to the astrophysical plasma. Recently, interest in the properties of relativistic mag-
netic reconnection has been growing, especially in Poynting-dominated plasmas,
which are believed to be present in various high energy astrophysical phenomena.
In those models, the Poynting energy of the plasma is assumed to be dissipated
into thermal and kinetic energy almost completely at some distance from the cen-
tral object. However, such an efficient dissipation process is still unknown. In the

∗This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution
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last decade, several studies have been performed with the goal of finding efficient
dissipation processes.1–4 Magnetic reconnection is one of the most promising can-
didates among them, and has been studied actively from analytical and numerical
points of view. Although the typical timescale of this process is much shorter than
the resistive time scale, it is still too slow to explain observed timescale of many
astrophysical phenomana. Recently, it was found that spontaneous current sheet
fragmentation in a non-relativistic plasma occurs via secondary tearing instabili-
ties when the Lundquist number exceeds a critical value, leading to the so-called
plasmoid-chain. The critical value is thought to be about 104 in the non-relativistic
plasma,5–7 and it also results in fast reconnection rate.

In this paper, we investigate the evolution of the plasmoid-chain in a cold
Poynting-dominated background plasma with large Lundquist number: SL ∼ 103 −
105. We also investigate statistical properties of the plasmoid-chain, such as the dis-
tribution function of the plasmoid width. To study the evolution of the secondary
tearing instability, we use a uniform, constant resistivity, and initialize the magnetic
field with a perturbations localized at the origin. This enables us to understand the
evolution of current sheets in which a tearing instability is triggered at a point.

2. Evolution of Plasmoid-Chain

Current sheets are unstable to the tearing instability whose typical growing
timescale can be written as:

τmax =
√

τRτA =
(

δ

cA

δ2

η

)1/2

, (1)

where τR ≡ δ2/η is the resistive diffusion timescale and τA ≡ δ/cA is the Alfvén
crossing time across a current sheet, δ is the sheet thickness, η is the resistivity, and
cA is the Alfvén velocity in the background plasma.8,9 This shows that the tearing
instability grows faster as the sheet width δ becomes small. When a plasmoid grows
along a current sheet, the current sheet behind plasmoids shrinks and this triggers
the growth of other small plasmoids. If we approximate a sheet thickness behind
plasmoids using the Sweet-Parker sheet, δ ∼ L/

√
SL where L is the sheet length

and SL ≡ LcA/η, Eq. (1) can be rewritten as follows.

τmax ∼ τA,L

S
1/4
L

, (2)

where τA,L = L/cA is the Alfvén crossing time along the sheet. This indicates that
the growth of the tearing instability becomes very fast when SL becomes larger than
104, which can be considered as the critical Lundquist number of the plasmoid-chain.
SL depends on the current sheet length L and this means current sheets will be filled
with a plasmoid-chain when the sheet length is sufficiently long.

A more complete derivation is presented in Refs. 7, 10, 11.
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3. Numerical Setup

We model a current sheet using the relativistic resistive magnetohydrodynamic
(RRMHD) approximation. We solve it using a RRMHD numerical scheme devel-
oped by Ref. 12 which preserves the divergence free constraint on the magnetic field
using the constrained transport algorithm.13 We calculate the RRMHD equations
in a conservative fashion, and used the relativistic ideal equation of state.

We prepare a square domain which is very long along the current sheet. and
divide it into homogeneous numerical meshes with size ∆ = 5δ/128 ∼ 0.04δ. For
the initial condition, we consider the static relativistic Harris current sheet:14

Bz(x) = B0 tanh(x/δ), (3)

p(x) = pin + ps/ cosh2(x/δ), (4)

ρ(x) = ρin + ρs/ cosh2(x/δ), (5)

where p, ρ are the gas pressure and the rest mass density, and other variables are
set to 0 except for a small perturbation of the magnetic field described later. For
the upstream region of the current sheet, we consider a cold plasma ps = 0.1ρs;
for the inside of the sheet, we consider a relativistically hot plasma ρs = ps where
ps = B2

0/8π. Note that the temperature of the sheet decreases with decreasing
magnetic field strength. In this calculation, we use a constant resistivity. To trigger
the initial tearing instability at the origin (x, z) = (0, 0), we add the following small
perturbation to the magnetic field:

δAy = −0.03B0δ exp[−(x2 + z2)/4δ2]. (6)

To model magnetic reconnection in high energy astrophysical phenomena, we con-
sider magnetically dominated plasma with magnetization parameter σin = 14.

4. Results

Figure 1 shows a snapshot of a pressure profile at the time when the largest plasmoid
to result from the initial perturbation reaches the edge of numerical domain. Since
plasmoids move at approximately the Alfvén velocity of the upstream flow unless
the plasmoid inertia is comparable to the magnetic field energy, the escape time
is of the order of tA. We find that many plasmoids evolve along the current sheet.

Fig. 1. Snapshots of the pressure profile just before the largest plasmoid run away from the
numerical domain.
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Fig. 2. Left: The temporal evolution of the reconnection rate. Right:The plot of the time averaged

reconnection rate 〈vR/cA〉 over the statistical equilibrium region with respect to the Lundquist
number SL.

As we mentioned in the previous section, the evolution of a plasmoid induces a
thinner current sheet behind it, leading to a secondary tearing instability and the
generation of a the plasmoids-chain.

Left panel of Fig. 2 shows the time evolution of the reconnection rate in units
of the Alfvén crossing time, Lz/cA ≡ tA. The reconnection rate is defined as:

vR/cA ≡ − c

B0cALz

∫ Lz

0

dzEy(x = 0, z). (7)

The reconnection rate grows until the largest plasmoid, which is initially triggered
at the origin, escapes from the numerical domain, at which point the reconnection
rate has increased up to ∼ 0.05cA. After this, the plasmoid-chain reaches a sta-
tistical steady state and the averaged reconnection rate is about 0.03cA, which is
approximately twice that of the relativistic tearing instability without a plasmoid-
chain.15

Right panel of Fig. 2 is the time-averaged reconnection rate 〈vR/cA〉 as a function
of the Lundquist number SL. We calculate the time average of the reconnection
rate curves over the plateau region where the plasmoid-chain reaches a statistical
equilibrium state. As in the non-relativistic case, we find that the reconnection rate
becomes independent of the Lundquist number when it is larger than a critical
value Sc. For small Lundquist numbers, we find the Sweet-Parker sheet dependence
S
−1/2
L of the reconnection rate predicted by Refs. 16 and 17. In our calculations, the

critical value is Sc ∼ 2−3×103, which is a little less than that of the weak magnetic
field case. As pointed out by Ref. 7, the reconnection rate of the plasmoid-chain can
be written as, vR/cA ∼ 1/

√
Sc, using the relation of the Sweet-Parker sheet. If we

use the above critical values, Sc = 3 × 103, in the strongly magnetized case, the
reconnection rate is ∼ 0.02cA, which agrees with the values indicated in the top
panel of Fig. 2.

In Fig. 3, we plot the time-averaged distribution functions after the initially
triggered plasmoids escaped. In the small plasmoid region, the distribution function
has an index of −2 as predicted by previous works for the non-relativistic case.7 In
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Fig. 3. The time-averaged distribution of plasmoid size perpendicular to the current sheet. The
distribution functions are averaged over after t = 2.2tA.

the larger plasmoid region, w > δ, the distribution drops rapidly. We consider this
is due to the effect of the plasmoid loss by advection. Since the initially triggered
plasmoid already escaped from the simulation domain in this case, the plasmoids
can freely escape from the domain and this results in the exponential decay of the
distribution function.

5. Summary

In this paper, we investigated the evolution of the plasmoid-chain in a high-σ plasma.
We modeled the relativistic current sheet with cold background plasma using the
relativistic resistive magnetohydrodynamic approximation, and solved its temporal
evolution numerically. We performed various calculations using large magnetization
parameter and different Lundquist numbers with respect to the sheet length from
SL ∼ 103 to SL ∼ 105. The numerical results show that the initially induced plas-
moid triggers a secondary tearing instability and the current sheet is gradually filled
with many plasmoids, that is, it evolves into a plasmoid-chain, as predicted by non-
relativistic work. As expected, this plasmoid instability enhances the reconnection
rate, which grows until the initially triggered plasmoid escapes from the simula-
tion domain, reaching up to ∼ 0.05cA. Subsequently, the plasmoid-chain reaches a
statistically equilibrium state, and the temporally averaged reconnection rate in a
steady state becomes ∼ 0.03cA. Since the maximum value of the Alfvén velocity is
the light velocity c, our numerical calculation indicates the maximum reconnection
rate of the plasmoid-chain is 0.03c.

We also investigated the plasmoid size distribution. Our numerical results show
that in strongly magnetized cases the distribution becomes power law with index
−2 in the small plasmoid region. This indicates that the plasmoid loss is mainly due
to mergers. In large plasmoid region, the distribution function shows exponential
decay because of the free advective escape of plasmoids from the domain.
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