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Regularized Bayesian Estimation of Generalized
Threshold Regression Models

Friederike Greb ∗ , Tatyana Krivobokova † , Axel Munk ‡ ,
and Stephan von Cramon-Taubadel §

Abstract. In this article we discuss estimation of generalized threshold regression
models in settings when the threshold parameter lacks identifiability. In particu-
lar, if estimation of the regression coefficients is associated with high uncertainty
and/or the difference between regimes is small, estimators of the threshold and,
hence, of the whole model can be strongly affected. A new regularized Bayesian
estimator for generalized threshold regression models is proposed. We derive con-
ditions for superiority of the new estimator over the standard likelihood one in
terms of mean squared error. Simulations confirm excellent finite sample proper-
ties of the suggested estimator, especially in the critical settings. The practical
relevance of our approach is illustrated by two real-data examples already analyzed
in the literature.
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1 Introduction

Modeling a response variable as a linear combination of some covariates with regression
coefficients that vary between (possibly several) regimes is known as threshold regres-
sion. The choice of regime is determined by a transition function, which depends on a
transition variable as well as a threshold parameter. Transition functions can be either
smooth (Van Dijk et al. 2002, provide a comprehensive overview) or step functions. In
the following, we restrict attention to the latter. In principle, the response variable can
follow any distribution from the exponential family. However, such generalized thresh-
old regression models have only recently been formally introduced by Samia and Chan
(2011), and most of the literature on threshold regression deals with models with a
piecewise linear mean. In this article we concentrate on generalized regression mod-
els with regimes controlled by a step transition function and refer to such models as
generalized threshold regression models.

Generalized threshold regression models are employed in a wide range of different fields
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of application. Hansen (2011) provides an overview of the extensive use of generalized
threshold regression models in economic applications including e.g. models of output
growth, forecasting, and the term structure of interest rates or stock returns. Samia et al.
(2007) employ a generalized threshold regression model to analyze plague outbreaks, and
Lee et al. (2011) complement these applications with examples in finance, sociology, and
biostatistics among others.

Obviously, a good threshold estimator is crucial for the entire threshold regression model
estimation. In this paper we discuss settings in which threshold identification becomes
difficult. Typically, threshold parameters are estimated by the maximization of the
corresponding profile likelihood using a grid search, as the likelihood function is not
differentiable with respect to the threshold parameter. This estimation procedure itself
has an intrinsic problem: the profile likelihood is not defined for thresholds that leave
fewer observations in one of the regimes than are necessary to estimate the regression
coefficients. Hence, in practice it is unavoidable to restrict the domain of the threshold
parameters depending on the dimension of the regression coefficients. The literature
offers arbitrary constraints including one observation per dimension of the regression
coefficient (Samia and Chan 2011) or 15% of the observations (Andrews 1993) to give
just two examples. This restriction can be problematic in small samples, especially if
the true threshold is close to the boundary of its domain.

Another problem occurs if the threshold parameter itself lacks identifiability. In particu-
lar, if differences between regimes are small and/or the regression coefficients’ estimators
are highly variable, the uncertainty of the threshold estimator increases. Note that the
large variance of the regression coefficients’ estimator is likely to be found in small sam-
ples, for the true threshold at the boundary of its domain and also if the signal-to-noise
ratio is low. We are not aware of any work that points out these deficiencies of the
common threshold estimator even though the problematic settings frequently occur in
empirical applications. Macro-economic data are often only available for a small sam-
ple, e.g. if observations correspond to different countries. Spatial arbitrage modeling is
another example (Greb et al. 2013).

Bayesian methods are also popular to estimate threshold regression models. In the liter-
ature Bayesian estimation is typically based on non-informative priors, leading to what
we refer to as the non-informative Bayesian estimator. For the threshold estimator in
the case of a threshold regression model with piecewise linear mean, Yu (2012) shows
that, regardless of the choice of priors, Bayesian threshold estimators are asymptotically
efficient among all estimators in the locally asymptotically minimax sense. However, in
the critical small sample settings described above, the non-informative Bayesian esti-
mator shares all the drawbacks of the standard likelihood estimator and can completely
fail in certain cases, as we discuss in Section 3.2.

In this article, we suggest an alternative estimator, which we call the regularized
Bayesian estimator. Contrary to previous work on estimation in threshold regression
(Samia and Chan 2011; Yu 2012), we focus on the estimator’s performance in critical
small sample situations. Simulations confirm that it yields good results even in settings
in which likelihood and non-informative Bayesian estimators are highly susceptible to
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faults. Given the threshold parameter’s crucial function within the model, our idea
is to improve estimation of the whole model by improving estimation of this essential
parameter.

To summarize the intuition for the new threshold estimator: If regression coefficients
were known, none of the problems in threshold estimation outlined above would exist.
This suggests that stabilizing their estimates might help to prevent them from distorting
the threshold estimates. In addition, regularization of regression coefficient estimates
allows us to obtain a posterior density that is well-defined on the entire domain of the
threshold parameters. We achieve regularization by a particular specification of priors.
While it proves to be beneficial in the critical small sample situations, the choice of priors
does not have an impact asymptotically (as Yu 2012 shows for a threshold regression
model with piecewise linear mean and independent observations). We further derive
an explicit (approximate) expression of the posterior density, which allows us to utilize
existing functions for mixed models in standard software to easily compute the threshold
estimator and simultaneously obtain estimates for the remaining model parameters.

The rest of this article is organized as follows. We specify the generalized threshold re-
gression model in the second section. In the third section, we review existing estimators
for threshold regression models and point out their deficiencies. Here, we concentrate
on estimators for the crucial threshold parameter. The regularized Bayesian estimator
is introduced in the fourth section. In the fifth section, we derive conditions under
which the regularized Bayesian estimates fare better than their likelihood counterparts.
Simulation results are presented in the sixth section. We use the last section to discuss
two empirical applications. The appendix contains some technical details.

2 Model

Observations
(
yi,X

T
i , qi

)
∈ R× Rp × R, i = 1, . . . , n, are assumed to be realizations of

random variables that follow a generalized threshold regression model with threshold
parameter ψ ∈ R, regression coefficients β1,β2 ∈ Rp and scale (or dispersion) parameter
ϕ ∈ R+, that is

µi = E
(
yi|XT

i , qi
)
= h(ηi) (1)

where h is a known one-to-one function, the inverse of the link function g = h−1, and

ηi = I (qi ≤ ψ)XT
i β1 + I (qi > ψ)XT

i β2, (2)

with I(·) as the indicator function. Moreover, conditional on the design vector XT
i and

the transition variable qi, the response variables yi are independently drawn from an
exponential family distribution with density

f(yi|ψ, ϕ,β1,β2) = exp

{
yiθi − b(θi)

ϕ
+ c(yi, ϕ)

}
, (3)

characterized by known functions b and c together with the natural parameter θi = θ(µi).
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Above and in the following, the same symbol denotes both a random variable and its
realization; the context should eliminate ambiguities. To use matrix notation, we define
vectors µ, η, y, q, I(q ≤ ψ) and I(q > ψ) by stacking µi, ηi, yi, qi, I(qi ≤ ψ) and
I(qi > ψ), respectively, and create an n× p matrix X with rows XT

i , i = 1, . . . , n. With
diag {I(·)} the diagonal matrix with entries I(·) along the diagonal and β = (βT1 ,β

T
2 )
T ,

we can write

η = diag {I(q ≤ ψ)}Xβ1 + diag {I(q > ψ)}Xβ2 = X1β1 +X2β2 = Xψβ.

We consider generalized threshold regression models with one threshold to keep the ex-
position simple; extension to generalized threshold regression models with more thresh-
olds is straightforward (see e.g. Greb et al. 2013).

Naturally, our model covers yi = I (qi ≤ ψ)XT
i β1 + I (qi > ψ)XT

i β2 + εi, εi ∼ N (0, s)
and i = 1, . . . , n. This is by far the most frequently encountered generalized threshold
regression model in the literature. It is broad enough to comprise the popular threshold
autoregressive model in which the transition variable qi is an element of Xi (see Tong
and Lim 1980; Tong 2011, for a review of the development of the model).

Depending on the assumptions on the data generating process, inferences (or estimators)
for model (1) – (3) can take on different asymptotic behavior. A first differentiation re-
gards the transition variable qi. Change point models are characterized by deterministic
qi = i, while for threshold models qi is a random variable which follows any continu-
ous distribution. This is reflected in distinct limit likelihood ratio processes and, hence,
asymptotic behavior of the maximum likelihood estimators for ψ in the two models. The
limiting likelihood ratio process involves a functional of random walks for change point
models and of compound Poisson processes for threshold models. Check Bai (1997) for
more details on the asymptotic properties in the former, and Samia and Chan (2011)
for the limiting behavior of the profile log-likelihood and the asymptotic distribution of
the profile likelihood threshold estimator in the latter case.

If the transition variable coincides with one of the covariates and the regression function
is continuous at the threshold, least squares estimates are known to be normally dis-
tributed (for threshold models, see Chan and Tsay 1998; Feder 1975 treats change-point
models), which simplifies inference. Clearly, once the data is sampled, the estimation
procedure in both change point and threshold models is the same. Referring to a thresh-
old regression model with piecewise linear mean, Hansen (2000) points out that “if the
observed values of qi are distinct, the parameters can be estimated by sorting the data
based on qi, and then applying known methods for change point problems”.

As the focus of this article is on estimation problems that arise in small samples, we
do not further differentiate between models. In the real-data examples, we concentrate
on discontinuous threshold models since they are frequently encountered in applications
and have not been studied as extensively as change point models due to their more
intricate limiting behavior.
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3 Estimation of threshold regression models

3.1 The likelihood estimator

As noted in the introduction, the prevalent estimator of threshold regression models is
the likelihood estimator, see e.g. Samia and Chan (2011) or Hansen (2000). Thereby, the
threshold parameter is estimated from the corresponding profile likelihood Lp, which is

constructed from the likelihood function L, by replacing nuisance parameters βT ∈ R2p

and ϕ ∈ R with their maximum likelihood estimates at given values of ψ (which are
just standard (weighted) least squares estimators). More specifically, we work with the
conditional profile likelihood function given X and q,

Lp(ψ) =
n∏
i=1

f(yi|ψ, ϕ̂ψ, β̂ψ) = exp

[
n∑
i=1

{
yiθ̂i − b(θ̂i)

ϕ̂ψ
+ c(yi, ϕ̂ψ)

}]
,

where θ̂i = θ {h(η̂i)} = θ
[
h
{
I(qi ≤ ψ)XT

i β̂1ψ
+ I(qi > ψ)XT

i β̂2ψ

}]
and β̂ψ and ϕ̂ψ are

maximum likelihood estimators at a fixed ψ. In the following, we assume a canonical
link, that is, θi = ηi. All developments still hold approximately if this assumption does
not hold. We denote the profile log-likelihood with ℓp(ψ) = logLp(ψ).

In generalized threshold regression models, the domain of the threshold parameter ψ
is restricted to a random set Ψ =

{
ψ ∈ R|q(1) ≤ ψ ≤ q(n)

}
⊆ R, where q(i) denotes the

ith order statistic. To measure the proximity of a threshold ψ to the boundary of its
domain Ψ, we introduce d(ψ) = min(j, n− j)/p with j such that q(j) ≤ ψ < q(j+1).
The quantity d(ψ) is the distance between ψ and Ψ’s boundary in terms of the number
of observations between them relative to the dimension of the regression coefficients,
p = dim (βk), k = 1, 2. When d(ψ) = 1, ψ assigns at least p observations to each of
the regimes. The allocation of 5% of the observations into one of the regimes can be
expressed as d(ψ) = 0.05 n/p.

Clearly, Lp(ψ) is not defined for d(ψ) < 1, since in this case ψ does not leave enough
observations for the estimation of βk in one of the regimes. Hence, in practice it is
inevitable to restrict Ψ to Ψ∗(c) = {Ψ| d(ψ) > c} for some c ≥ 1. In the literature
different heuristic suggestions for the choice of c have been proposed. For example,
Hansen and Seo (2002) propose c = 0.05 n/p, we find c = 0.15 n/p in Andrews (1993)
and Samia and Chan (2011) even use c = 0.25 n/p for their application.

The profile likelihood threshold estimator is then given by

ψ̂pL = argmax
ψ∈Ψ∗(c)

Lp(ψ).

This definition based on the restricted domain Ψ∗(c) immediately suggests that in set-

tings in which d (ψ0) < c for a true threshold ψ0, ψ̂pL is inconsistent. The left panel of
Figure 1 illustrates this showing the profile log-likelihood for a sample run of a general-
ized threshold regression model corresponding to the simulation setting 1C detailed in
Section 6. If Ψ∗(1) = [0.3, 0.7] would be restricted any further, e.g. to be [0.31, 0.69],
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Figure 1: For a sample run corresponding to setting 1C of Section 6, ℓp(ψ) is shown on
the left, log pnB(ψ|y,X, q) in the middle and log prB(ψ|y,X, q) on the right.

then the true threshold ψ0 = 0.3 would be excluded from the threshold domain and ψ̂pL
would move to the next extremum. For small n, large p and ψ0 close to the bound-
ary of Ψ, d (ψ0) < c is likely to be the case. Altogether, subjective restriction of the
threshold domain is an undesirable property of threshold estimation based on the profile
likelihood.

The same plot in Figure 1 also exemplifies that in certain small-sample settings the pro-
file (log-)likelihood can be jagged and have multiple extrema, leading to an estimated
threshold that is very sensitive to the initialization of the search. Large variance of β̂ψ
and/or small differences between regimes compared to the noise level can have a strong
distorting effect on the profile (log-)likelihood and are associated with settings charac-
terized by small n relative to p, but can also be due to low signal-to-noise ratio, model
misspecifications (e.g. overdispersion), or a threshold that is close to the boundary of
its domain. This is exposed in the left as compared with the middle plot of Figure
2; the log-likelihoods depicted in these plots belong to models which only differ in one
aspect: in the plot on the left-hand side, the residual standard deviation is 0.75, while
in the middle plot it is 1.5, increasing the signal-to-noise ratio and var(β̂ψ). Clearly, the
log-likelihood in the middle plot is highly distorted over the whole range of Ψ, trigger-
ing multiple extrema and a highly variable estimator for ψ. Moving the true threshold
closer to the boundary, as shown in the right plot of Figure 2, leads to an even stronger
deformation of the log-likelihood.

In summary, in small samples and particular settings exemplified above, the profile
likelihood threshold estimator can perform poorly, being very sensitive to inappropri-
ate estimates of the nuisance parameters and relying on a subjective restriction of its
domain.

3.2 The Bayesian estimator

For threshold regression models with piecewise linear mean, there is a long tradition of
using Bayesian techniques in applied work beginning with Bacon and Watts (1971) and
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Figure 2: Sample (log) profile likelihood functions ℓp(ψ) for different settings.

including Geweke and Terui (1993) among many others. This popularity can be at least
partially attributed to practical advantages, since the Bayesian approach offers a natural
framework for inference and accounts for the uncertainty of the nuisance parameters.
The Bayesian regression coefficients estimators coincide with the maximum likelihood
ones for non-informative priors. The theoretical properties of Bayesian threshold es-
timators in certain generalized threshold regression models have been investigated by
Yu (2012). He shows that for independently and identically distributed observations
Bayesian threshold estimators are asymptotically efficient among all estimators in the
locally asymptotically minimax sense and strictly more efficient than the maximum like-
lihood estimator. In a related paper, Chan and Kutoyants (2012) examine asymptotic
properties of Bayesian estimators in threshold autoregression models. They note that in
the limit, the variance of the Bayesian estimator is smaller than that of the maximum
likelihood estimator.

Without any prior knowledge of possible parameter values, it is natural to assume a
uniform prior for the threshold parameter and non-informative priors for the regression
coefficients; these choices are (almost) omnipresent in the Bayesian literature on gener-
alized threshold regression models with piecewise linear mean. While the priors do not
have an impact asymptotically, it turns out that they do affect the performance of the
Bayesian threshold estimator in finite samples. We show that non-informative priors
can distort estimates, especially in small samples.

It is straightforward to obtain an approximation of a generalized threshold regression
model’s posterior density pnB(ψ|ϕ,y,X, q) associated with non-informative (improper)
priors p(β) ∝ 1 and p(ψ|q) ∝ I(ψ ∈ Ψ) based on a Laplace approximation (Shun and
McCullagh 1995; Severini 2000) of the integral for fixed p≪ n

∫
R2p

p(y|ψ, ϕ,β,X, q)dβ = Lp(ψ)(2π)p
∣∣∣∣− ∂2ℓ

∂β∂βT

(
ψ, ϕ, β̂ψ

)∣∣∣∣−1/2

+O
(
n−1

)
,
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with ℓ(ψ, ϕ,β) = logL(ψ, ϕ,β). As
∣∣∣−∂2ℓ/∂β∂βT (ψ, ϕ, β̂ψ)∣∣∣ = ∣∣∣XT

ψWXψ

∣∣∣, we get

pnB(ψ|ϕ,y,X, q) = Lp(ψ)(2π)p
∣∣∣XT

ψWXψ

∣∣∣−1/2

I(ψ ∈ Ψ)/p(y) +O
(
n−1

)
.

With this, the prevalent Bayesian threshold estimator in the literature is the poste-
rior mean ψ̂nB =

∫
Ψ∗
ψpnB(ψ|ϕ,y,X, q)dψ. Comparing pnB(ψ|ϕ,y,X, q) with Lp(ψ),

we note that they differ by a term proportional to
∣∣∣XT

ψWXψ

∣∣∣−1/2

. In the case of

Gaussian observations, W = In/σ
2. Since

∣∣∣XT
ψWXψ

∣∣∣ = ∣∣XT
1 WX1

∣∣ · ∣∣XT
2 WX2

∣∣→ 0

for d(ψ) → 0, pnB(ψ|ϕ,y,X, q) becomes very large for ψ close to the boundary of Ψ.
Moreover, as the profile likelihood function requires d(ψ) ≥ 1 to be well-defined, so
does the calculation of the posterior density. Again, the only solution in the literature
is to restrict the parameter space Ψ (which in our Bayesian framework is equivalent to
working with a uniform prior ψ ∼ U [Ψ∗] instead of ψ ∼ U [Ψ]). In this case, however,
pnB(ψ|ϕ,y,X, q) becomes largest exactly for values of ψ which are arbitrarily included
or excluded from Ψ∗ by varying c. Consequently, expanding or reducing Ψ∗ critically
affects the Bayesian threshold estimate, whether it is calculated as the posterior mode,
mean or median. The middle plot in Figure 1 illustrates this problem.

4 The regularized Bayesian estimator

When rethinking the threshold regression estimation, there are good arguments for
continuing to pursue Bayesian options. In general, Bayesian estimators naturally in-
corporate the uncertainty of nuisance parameters and there are reasons to expect the
threshold estimators to be (at least asymptotically) the most efficient estimators, as
discussed in Section 3.2.

Our idea now is to exploit understanding of when reliable estimation becomes particu-
larly difficult in order to regularize the posterior density. First, we define

η = X1β1 +X2β2 = (X1 +X2)β1 +X2(β2 − β1) = Xβ1 +X2δ. (4)

Here, X is independent of ψ, while X2 = X2(ψ) = diag {I(q > ψ)}X. Hence, if δ is
small and/or its estimators are highly variable, it becomes hard to identify the threshold
ψ. We, therefore, suggest to regularize the estimator for δ. In a Bayesian framework
the natural approach is to assume δ ∼ N (0, σ2

δIp). When σ2
δ tends towards infinity,

this prior becomes non-informative. However, for small values σ2
δ , we introduce prior

knowledge suggesting that δ takes values close to zero, that is there is no threshold in
the model. The most important characteristic of this new choice of priors is that it
regularizes the posterior density for ψ close to the boundary of Ψ. Putting priors on σ2

δ

(e.g. an inverse Gamma distribution) and ψ specifies a fully Bayesian model and allows
for estimation with Markov chain Monte Carlo techniques.

Alternatively, we suggest to use a Laplace approximation to get the approximate pos-
terior p(ψ|ϕ, σ2

δ ,y,X, q). This accelerates estimation and enables us to illustrate the
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regularizing effect. To evaluate the posterior density

p(ψ|ϕ, σ2
δ ,y,X, q) =

p(ψ|q)
p(y|ϕ, σ2

δ ,X, q)

∫
Rp

∫
Rp

p(y|β1, δ, ψ, ϕ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1,

we use a Laplace approximation and follow a line of reasoning closely resembling Breslow
and Clayton (1993) to obtain∫

Rp

∫
Rp

p(y|β1, δ, ψ, ϕ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

= (2π)p/2 exp

{
−1

2
(z̃−Xβ̂1)

TV −1(z̃−Xβ̂1) +
n∑
i=1

c(yi, ϕ)

}
(5)

·
∣∣σ2
δX

T
2 WX2 + Ip

∣∣−1/2 ∣∣XTV −1X
∣∣−1/2

+O
(
n−1

)
,

with the working variable z̃ defined as z̃ = Xβ̂1 +X2d̂+G(y − µ), G = diag {g′(µi)},
and V = W−1 + σ2

δX2X
T
2 for W−1 = diag

{
ϕb′′(θi)g

′(µi)
2
}
. Here, µ, G, W and V

are evaluated at the (approximate) posterior mode

(β̂1, d̂) = argmax(β1,δ)∈R2p p(β1, δ|ψ, ϕ, σ2
δ ,y,X, q), that is,

β̂1 = (XTV −1X)−1XTV −1z̃ and d̂ = σ2
δX

T
2 V

−1(z̃−Xβ̂1). Note that these regression
parameter estimators are regularized and are different from usual likelihood estimators.
Details on the derivation of (5) are provided in the appendix.

In contrast to the posterior based on non-informative priors, the term |XT
ψWXψ| dis-

appears, and with it the deteriorations near the boundary of Ψ observed for
pnB(ψ|ϕ,y,X, q). Moreover, p(ψ|ϕ, σ2

δ ,y,X, q) is well-defined for all ψ ∈ Ψ, indepen-

dent of d(ψ). It is easy to see that d̂→ 0 and β̂1 → (XTWX)−1XTWz̃ at the boundary
of Ψ, for X2 = 0 or X2 = X. We do not encounter the ill-posed problem of estimating
p nuisance parameters from m < p observations, or calculating β̂ψ when d(ψ) < 1, as
in profile likelihood or non-informative Bayesian estimation. Consequently, there is no
need to subjectively restrict the parameter space.

Considering

d̂ =σ2
δX

T
2 V

−1(z̃−Xβ̂1) (6)

= arg min
δ∈Rp

(z̃−Xβ̂1 −X2δ)
TW(z̃−Xβ̂1 −X2δ) +

1

σ2
δ

δT δ,

it becomes evident that the proposed prior leads to the strategy of turning an ill-posed
into a well-posed problem tracing back to Tikhonov et al. (1977). For small values of the
regularization parameter 1/σ2

δ , the first term of the functional to be minimized in (6)

will drive the resulting d̂, for large values it is the latter. For the nuisance parameter esti-
mates β̂1 and β̂2 = β̂1+ d̂, basic matrix algebra reveals that β̂1 → (XT

1 WX1)
−1XT

1 Wz̃
and β̂2 → (XT

2 WX2)
−1XT

2 Wz̃ for σ2
δ → ∞, while for σ2

δ → 0, both β̂1 and β̂2 converge
to (XTWX)−1XTWz̃.
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Clearly, the choice of the regularization parameter σ2
δ is essential to any estimate based

on p(ψ|ϕ, σ2
δ ,y,X, q). It can naturally be estimated in the fully Bayesian framework.

However, pursuing our approximate approach further we prefer to make use of the empir-
ical Bayes paradigm. In general, the empirical Bayes approach to modeling observations
y differs from the usual Bayesian setup in that the hyperparameters for the highest level
in the model’s hierarchy are replaced by their maximum likelihood estimates. In our
case, we obtain σ̂2

δ for fixed X, q and ψ by maximizing

p(y|ψ, ϕ, σ2
δ ,X, q) =

∫
Rp

∫
Rp

p(y|β1, δ, ψ, ϕ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1,

so as to base threshold estimation on

prB(ψ|y,X, q) = p(ψ|y,X, q, ϕ̂ψ, σ̂2
δ ) ∝

∣∣∣∣∣σ̂2
δX

T
2 WX2 + Ip

∣∣∣∣∣
−1/2∣∣∣∣∣XT V̂

−1
X

∣∣∣∣∣
−1/2

· exp

{
−1

2
(z̃−Xβ̂1)

T V̂
−1

(z̃−Xβ̂1) +
n∑
i=1

c
(
yi, ϕ̂ψ

)}
I(ψ ∈ Ψ),

with V̂ evaluated at σ̂2
δ . The right plot in Figure 1 shows the log of this posterior density

for a sample run corresponding to simulation setting 1 C of Section 6. It is clearly well-
defined over the whole domain of the threshold and its values are regularized at the
boundary regions, making the extremum more pronounced.

Once the posterior density is obtained, one can calculate ψ̂rB. We observed that in
critical small-sample settings the posterior density is often characterized by multiple
modes. Thus, obtaining an estimate based on numerical maximization (the posterior
mode) is likely to be challenging. The posterior mean presents a more robust alternative.
However, when the true threshold is located close to the boundary of Ψ, the posterior
distribution is skewed towards this boundary. As a result, the posterior mean tends to
be drawn towards the middle of Ψ (Doodson 1917; Kendall 1943, page 35). Hence, we
opt for the posterior median as a compromise between the latter two. Accordingly, we
suggest calculating a regularized Bayesian threshold estimator ψ̂rB as

ψ̂rB∫
q(1)

prB(ψ|y,X, q, ϕ)dψ = 0.5

assuming a prior p(ψ|q) ∝ I(ψ ∈ Ψ) for ψ.

By definition, the restricted (or residual) likelihood function (Harville 1977) of a gener-
alized linear mixed model is the approximate posterior (5). Hence, the function glmmPQL

in the R-package MASS readily provides us with the desired estimate σ̂2
δ . Moreover,

the function simultaneously produces an estimate ϕ̂ψ. For the Gaussian case, we can
employ the function lme directly (with its parameter method left at the default value
REML). It is part of the R-package nlme. This possibility to take advantage of existing
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functions implemented for mixed models greatly facilitates computation of our proposed
estimator, which can be performed in seconds.

Inference about all of the model parameters naturally follows in this Bayesian frame-
work. In particular, confidence regions for ψ are formed as credible sets; an equi-tailed
credible set C of level 1− 2α is defined as

C =

qp (1−α)∫
qp (α)

p(ψ|y,X, q, ϕ)dψ, qp(α) = inf
x∈Ψ

x
∣∣∣∣∣
∫

ψ≤x

p(ψ|y,X, q, ϕ)dψ ≥ α

 .

These credible sets are valid for change-point and threshold models, both continuous and
discontinuous. By contrast, in the frequentist framework it is straightforward to obtain
confidence intervals for continuous models. For discontinuous models the asymptotic
distribution does not readily provide a feasible way to construct confidence intervals as
it depends on (a possibly large number of) nuisance parameters.

5 Comparison of regularized Bayesian and maximum like-
lihood estimation

Our new estimation procedure results in new regularized regression coefficients estima-
tors, whose properties have not been investigated so far. In the following, we compare
regularized Bayesian and maximum likelihood approaches to estimation of threshold re-
gression models in terms of mean squared error under the frequentist model. Thereby,
we treat the threshold as fixed and known, but allow for any, not necessarily true
threshold ψ.

A natural measure for comparing coefficient estimates is the mean squared error

M(Xψβ̂) = E
(
Xψβ̂ −Xψβ

)T(
Xψβ̂ −Xψβ

)
, where E denotes the conditional ex-

pectation without averaging over the prior assumptions, i.e. expectation with respect
to the distribution of Y given δ, which corresponds to the usual frequentist framework.
In the context of ridge regression, this approach has been criticized for indiscriminately
putting together the mean squared errors of the components (Nelder 1972; Theobald
1974). As an alternative, Theobald (1974) suggested to consider a weighted sum

MA(Xψβ̂) = E
(
Xψβ̂ −Xψβ

)T
A
(
Xψβ̂ −Xψβ

)
for a non-negative definite matrixA.

Here, ψ is an arbitrary, fixed threshold. Of course, a comparison between M(Xψβ̂) (or

MA(Xψβ̂)) for different β̂ is both interesting for such general ψ as well as the true
threshold ψ0. With this in mind, we state the following result.

Theorem 1 For maximum likelihood estimates β̂ML = (XT
ψWXψ)

−1XψWz and reg-

ularized Bayesian estimates β̂rB = (XT
ψWXψ+H)−1XψWz of β based on a threshold

ψ ≤ ψ0, ψ0 the true threshold,
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(i) MA

(
Xψβ̂ML

)
−MA

(
Xψβ̂rB

)
≥ 0 for all non-negative definite matrices A

⇔ D
{
(I +C)H − (B+H)ββT

(
BT +H

)
+CBββTBTCT

}
DT

is non-negative definite.

(ii) M
(
Xψβ̂ML

)
−M

(
Xψβ̂rB

)
≥ 0

⇔ tr
{
HDTD (I +C)

}
− βT

{(
BT +H

)
DTD (B+H) +BTDT

0 D0B
}
β ≥ 0.

Here, W−1 = diag
{
ϕb′′(θi)g

′(µi)
2
}
, G = diag {g′(µi)}, and z = Xψβ + G(y − µ),

H = 1/σ2
δ

(
Ip −Ip
−Ip Ip

)
, D = Xψ

(
XT
ψWXψ +H

)−1

, D0 = Xψ

(
XT
ψWXψ

)−1

,

C = I +H
(
XT
ψWXψ

)−1

, and B =

(
0 0

−XT
[ψ,ψ0]WX [ψ,ψ0] XT

[ψ,ψ0]WX [ψ,ψ0]

)
with

X [ψ,ψ0] = diag{I(ψ < q ≤ ψ0)}X.

Remark 1 For the Gaussian model with W = 1/sIn and at the true threshold ψ = ψ0,
equivalence (i) reduces to

MA

(
Xψβ̂ML

)
−MA

(
Xψβ̂rB

)
≥ 0 for all non-negative definite matrices A

⇔ δT (2σ2
δ/sI + Z)−1δ ≤ s, (7)

where Z = (XT
1 X1)

−1 + (XT
2 X2)

−1, while equivalence (ii) reduces to

M
(
Xψβ̂ML

)
−M

(
Xψβ̂rB

)
≥ 0

⇔ δTZ
(
s/σ2

δIp + Z
)−2

δ ≤ s
{
p− tr

(
Ip + s/σ2

δZ
)−2
}
. (8)

Remark 2 Using a singular value decomposition Z = Udiag (η1, . . . , ηp)U
T and writing

UT δ = α, inequality (8) is equivalent to

p∑
i=1

ηi
(
2σ2

δ/s+ ηi − α2
i /s
)

(σ2
δ/s+ ηi)

2 ≥ 0,

which holds in particular if

α2
max − ηmins

2
≤ σ2

δ (9)

with αmax = max
1≤i≤p

αi and ηmin = min
1≤i≤p

ηi. Analogously, we obtain

pα2
max − ηmins

2
≤ σ2

δ (10)
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Normal response (1)

A B C D

ψ0 0.5 0.5 0.3 0.3

δ U [−0.5, 0.5] U [−0.5, 0.5] U [−0.5, 0.5] U [−0.25, 0.25]

var(yi) 0.752 1.52 1.52 0.252

xij U [0, 1] U [0, 1] U [0, 1] U [0, 1]

p 30 30 30 10

Poisson response (2)

A B C D

ψ0 0.5 0.5 0.3 0.3

δ U [10, 20] U [0, 10] U [0, 10] U [10, 20]

xij U [0, 0.01] U [0, 0.01] U [0, 0.01] U [0, 0.01]

p 30 30 30 10

Table 1: Differences between simulation settings.

as a condition for inequality (7) to be satisfied.

Remark 3 The left-hand side of inequalities (7) – (10) decreases when δ1, . . . , δp di-
minish in magnitude, while the right-hand side increases with growing variance s, that
is, when the signal-to-noise ratio becomes smaller. Hence, it is reasonable to expect
regularized Bayesian regression coefficient estimates to be particularly superior to their
profile likelihood counterparts in settings previously identified as problematic.

Remark 4 The regularized Bayesian estimator for the regression coefficients β̂rB =
(XT

ψWXψ +H)−1XψWz closely resembles the ridge estimator. However, the special

form of the penalty matrix H = σ−2
δ

(
Ip −Ip
−Ip Ip

)
(instead of just σ−2

δ I2p in the ridge

regression) has considerable implications for the estimator.

6 Simulations

To assess the performance of the suggested approach and the estimator ψ̂rB in par-
ticular we performed a simulation study. We report results for eight different settings
summarized in Table 1 covering both situations in which common estimators produce
reliable results and others in which they are prone to be distorted.

The difference between setting 1 and setting 2 is in the conditional distribution of yi: in
the first case, yi|XT

i , qi is normally distributed, in the second case it follows a Poisson
distribution. The design matrix X is random, each entry xij ∼ U [0, 1] for setting 1,
xij ∼ U [0, 0.01] for setting 2. The transition variable follows a uniform distribution
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Figure 3: Boxplots for different threshold estimators and selected simulations. Dashed
lines indicate the true threshold ψ0, black lines in the boxes are sample means.

qi ∼ U [0, 1]. As this implies P (d (ψ0) < 1) ≈ 0.46 for setting C, we base our simulations
on a fixed sample of transition variables qi = i/n, i = 1, . . . , n. This way, we ensure that
d (ψ0) = 1, hence, that Lp (ψ0) is always well-defined. While settings A and B differ
from setting C in the threshold (ψ0 = 0.5 for A and B; ψ0 = 0.3 for C), setting A is
distinct from settings B and C in the signal-to-noise ratio, which we control by the choice
of δ = β2 − β1 relative to the variance of the observations. For setting 1 A – C, the
difference δ ∼ U [−0.5, 0.5] and random variables are simulated with variances var(yi) =
0.752 (setting A) and var(yi) = 1.52 (settings B and C). The effects of increasing the
signal-to-noise ratio and shifting ψ0 on ℓp(ψ) are illustrated in Figure 2. The mode of
ℓp(ψ) is less pronounced in setting 1B than in 1A. Further, the number of local maxima
rises and they become more distinctive as we move to setting 1B and then to 1C. For
setting 2 A the difference δ ∼ U [10, 20], whereas δ ∼ U [0, 10] for settings 2 B and C.
Setting D features fewer nuisance parameters than A – C; p = dim(β1) = dim(β2) = 10
for D, p = 30 for A – C. The sample size is n = 100.

Regression coefficients β1 are drawn from a Poisson distribution with mean 10. To be
unambiguous, parameters δ and β1 are fixed; we randomly generate them once at the
beginning of the simulation according to the distributions specified. Our Monte Carlo
sample contains R = 1000 replications. With regard to the threshold parameter, we
summarize simulation results in Figure 3, where the boxplots of the threshold estimators

are shown and in the left half of Table 2, where MSE
(
ψ̂
)
=

1

R

R∑
r=1

(
ψ̂(r)

/
ψ − 1

)2

are reported. All three estimators ψ̂pL, ψ̂nB and ψ̂rB perform well given a high signal-
to-noise ratio and ψ0 in the middle of Ψ (setting A). Lowering the signal-to-noise ratio

(setting B) alters the results: we observe nearly unbiased estimates ψ̂pL, ψ̂nB and ψ̂rB,
but due to its very small variance the latter stands out by its small mean squared
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MSE(ψ̂) MSE(Xψ̂β̂)

pL nB rB pL rB

1 A 0.006 0.035 0.002 0.00002 0.00001

1 B 0.040 0.093 0.024 0.00009 0.00005

1 C 0.272 0.264 0.089 0.00009 0.00005

1 D 0.401 0.738 0.191 0.00001 0.00001

2 A 0.000 0.003 0.000 0.05953 0.01947

2 B 0.013 0.115 0.004 0.07625 0.02916

2 C 0.083 0.116 0.014 0.57250 0.02266

2 D 0.146 0.358 0.036 0.72387 0.18669

Table 2: Simulation results.

error. When we shift the true threshold towards the boundary of Ψ (setting C), ψ̂rB
clearly outperforms both ψ̂pL and ψ̂nB. The differences in mean squared error are more
pronounced with a greater number of nuisance parameters p, but are still visible in
simulations with smaller ratio p/n (setting D).

To complement findings for the threshold estimators with results concerning estimation
of the model as a whole, in particular including the regression coefficients’ estimator,
we consider the mean squared error for the entire model. The regularized Bayesian
approach fares better in general. While the mean squared error is much lower for
simulations with normal than with Poisson response, differences between the likelihood
and regularized Bayesian framework are more marked for the latter. The right half of
Table 2 contains details. We denote

MSE
(
Xψ̂β̂

)
=

1

R

R∑
r=1

1

n

(
X

(r)

ψ̂(r)
β̂
(r)

/
X

(r)
ψ β − 1

)T (
X

(r)

ψ̂(r)
β̂
(r)

/
X

(r)
ψ β − 1

)

with the division X
(r)

ψ̂(r)
β̂
(r)

/
X

(r)
ψ β defined elementwise and 1 = (1, . . . , 1)T ∈ Rn.

Note that in settings 2 the Fisher scoring algorithm for the estimation of generalized
regression models can be unstable for small sample sizes, sometimes leading to a false
convergence. Therefore, we excluded such outliers (5% of the Monte Carlo sample) from
the calculation of MSE(Xψ̂β̂) for settings 2 A – D.

7 Applications

This work is originally motivated by the application of threshold vector error correc-
tion models in price transmission analysis. Such models are rather involved, but one
important characteristic in this context is that they contain a large number of parame-
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ζ̂ β̂ π̂1 π̂2 π̂3

1st regime

pL
4.31 -0.66 0.23 -0.29 0.02

(3.21) (0.33) (0.14) (0.92) (0.11)

rB
3.36 -0.41 0.47 -0.60 0.22

(0.85) (0.08) (0.09) (0.28) (0.06)

2nd regime

pL
3.66 -0.32 0.50 -0.49 0.36

(0.85) (0.07) (0.11) (0.30) (0.07)

rB
3.37 -0.38 0.47 -0.62 0.20

(0.85) (0.07) (0.09) (0.28) (0.07)

Table 3: Regressions coefficient estimates. “pL” refers to the profile likelihood, “rB” to
the regularized Bayesian framework. Standard errors in parentheses below the estimates.

ters besides the threshold and available data series are typically short in relation to the
complexity of the model. Greb et al. (2013) investigate the merits of the regularized
Bayesian approach for this particular model; simulations demonstrate the superiority
of the regularized Bayesian threshold estimator (see Figure 1, Figure 2, and Table 1 in
Greb et al. 2013) and two real data examples confirm its relevance in practice.

7.1 Cross-country growth behavior

As another application of the regularized Bayesian threshold estimator, we consider the
case of economic growth modeling. Durlauf and Johnson (1995) estimate a standard
growth model using cross-sectional data on a sample of 96 countries and investigate
whether the coefficients of this model differ across sub-sets of countries depending on
their initial conditions. Their analysis is based on the so-called regression tree method-
ology (Breiman et al. 1984), which suggests three thresholds based on two different
transition variables for this application.

Hansen (2000) revisits their paper. Using the Durlauf and Johnson data he estimates a
regression

log (GDP )i,1985 − log (GDP )i,1960 =ζ + β log (GDP )i,1960 + π1 log (INV )i

+ π2 log(ni + g + δ) + π3 log (SCHOOL)i + εi

which explains real GDP growth between 1960 and 1985 in country i, log (GDP )i,1985 −
log (GDP )i,1960, using real GDP in 1960 GDPi,1960, the investment to GDP ratio INVi,
the growth rate of the working-age population ni, the rate of technological change g,
the rate of depreciation of physical and human capital stocks δ, and the fraction of
working-age population enrolled in secondary school (SCHOOL)i. With reference to
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Durlauf and Johnson (1995), he sets g + δ = 0.05. He tests for a threshold effect
based on either one of the transition variables they propose. He only finds evidence
based on the transition variable log (GDP )i,1960 and calculates the profile likelihood

(or, equivalently, least squares) estimate as ψ̂pL = 6.76 together with an asymptotic
95% confidence interval [6.39, 7.49].
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Figure 4: Profile likelihood and regularized posterior density for a threshold based on
the transition variable qi = log (GDP )i,1960.

This corresponds to an estimate of $863 per capita GDP in 1960 with an associated
confidence interval of [$594, $1794]. Hansen (2000) acknowledges that while the confi-
dence interval seems rather tight (given observations for GDPi,1960 ranging from $383
to $12362), it effectively contains 40 of the 96 countries in the sample. This is in line
with the number of local maxima in the profile likelihood function which hints at the
uncertainty inherent in this method (Figure 4). In addition, the fact that ψ̂pL leaves
only 18 observations in the first regime gives rise to concern that the threshold might
be located close to the boundary of Ψ. We know that the profile likelihood is typi-
cally distorted if this is the case. Hence, we reestimate the model with the regularized
Bayesian estimator. The latter depends on the parameterization of the transition vari-
able. As log (GDP )i,1960 is an explanatory variable, we choose the parameterization
qi = log (GDP )i,1960. Figure 4 shows that the resulting posterior density differs consid-
erably from the profile likelihood function and that the location of the maximum shifts.
This is not surprising given the deformations often observed for the profile likelihood
function close to the boundary of the threshold parameter space. The posterior median
is located at ψ̂rB = 7.37 compared with Hansen’s (2000) ψ̂pL = 6.76. It implies that,
for the 43 poorest countries, coefficients for the growth model are distinct from the
rest, whereas the profile likelihood estimate implicates that this is only the case for the
poorest 18 countries.
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While it is not possible to state conclusively that the regularized Bayesian estimate is
more appropriate from an economic perspective, the shapes of the likelihoods in Figure
4 and the fact that the profile likelihood estimate is near the boundary of its domain
suggests that the latter may be distorted by the weaknesses of the profile likelihood
method discussed above.

Comparing profile likelihood estimates for the regression coefficients with their regular-
ized Bayesian counterparts, we note that there is much less difference between regimes
(see Table 3). Moreover, the difference between the two regimes as estimated within
the regularized Bayesian framework is negligible. This is in line with Hansen’s (2000)
finding that the null hypothesis of no threshold is not rejected at the 5%-level (Hansen
2000, page 587). The example demonstrates the effect of using the suggested regu-
larized Bayesian estimator instead of the profile likelihood estimator in small samples
with a multi-modal profile likelihood and high uncertainty attached to the estimate ψ̂pL
obtained by maximizing it.

7.2 Effects of climate on snowshoe hare survival
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Figure 5: Annual hare abundance. Observations estimated to belong to the lower regime
are plotted as dots, observations estimated to belong to the upper regime as triangles.
The horizontal grey line indicates the location of the estimated threshold, ψ̂rB = 22.

In our final example, we study a famous dataset of snowshoe hare abundance in the
main drainage of Hudson Bay in Canada. It consists of annual observations starting in
the 19th century. A preeminent feature of the data is cyclical fluctuations in the hare
population, see Figure 5. These have been ascribed to the predator-prey relationship
between lynx and snowshoe hares. Samia and Chan (2011) highlight selected references
and further investigate one strand of the discussion focusing on the effect of snow con-
ditions on hunting efficiency in different phases of the cycle. To this end, they estimate
a generalized threshold regression model with the hare count yt as a Poisson distributed
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response whose mean is related to the explanatory variables via a log-link,

log(µt) = β0 + β1Dt +


3∑
i=1

β1,i log(yt−i + 1) + β1,4wt−1 yt−d ≤ ψ,

3∑
i=1

β2,i log(yt−i + 1) + β2,4wt−1 yt−d > ψ

for the years t = 1844, . . . , 1904. Apart from the regression coefficients and the thresh-
old, the delay of the transition variable d is included as an additional parameter,
d ∈ {1, 2, 3}. As the count for the year t = 1863 is considered an outlier, the model
contains a dummy variable Dt = I(t = 1863). The covariate wt denotes the detrended
annual winter climate index of the North Atlantic Oscillation, published at http:

//www.cru.uea.ac.uk/cru/data/nao.
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Figure 6: Log-likelihood functions (upper row) and log-posterior densities (lower row)
for different delays of the transition variable.

We follow Samia and Chan (2011) in estimating this model. Our analysis is based on
the series of hare abundance initially presented graphically by MacLulich (1937) which
we calibrate with data available online; it is included in the supplementary material to
this paper. The series of 61 observations is rather short and maximizing out regression
coefficients leaves us with a profile likelihood function for (d, ψ) which is characterized
by various local maxima; it is displayed in the upper row of Figure 6 for d = 1, 2, 3 and
ψ ∈ Ψ∗(1). In addition, we cannot rule out overdispersion. Hence, we are confronted
with a setting in which the regularized Bayesian estimate can be more reliable than
the profile likelihood estimate. This becomes evident in the second row of Figure 6,

http://www.cru.uea.ac.uk/cru/data/nao
http://www.cru.uea.ac.uk/cru/data/nao
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which shows the posterior densities for ψ corresponding to d = 1, 2, 3. While we obtain
a profile likelihood estimate (d̂pL, ψ̂pL) = (3, 55), the regularized Bayesian estimator

yields (d̂rB, ψ̂rB) = (2, 22) with d̂rB calculated as the posterior median based on a flat
prior on {1, 2, 3}.

When referring to Samia and Chan (2011) we have to keep in mind that their re-
sults diverge slightly from ours and are not directly comparable as we were not able
to obtain the data they used. Yet, their profile likelihood estimate is still very close,
(d̂pL, ψ̂pL) = (3, 69). However, they discard this estimate in favor of (d̂, ψ̂) = (2, 25), giv-
ing heuristic arguments based on residual analysis. The latter also allows for a very plau-
sible interpretation. Apparently, our regularized Bayesian estimate (d̂rB, ψ̂rB) = (2, 22)
is close to the preferred estimate in Samia and Chan (2011). In fact, the difference in
estimated thresholds only has implications for a single observation (t = 1869). Except
for this, thresholds induce identical allocations of observations to regimes (in the re-
spective datasets), as is clearly visible when comparing our Figure 5 with Figure 1 in
Samia and Chan (2011). Hence, the regularized Bayesian estimator enables us to attain
a meaningful estimate directly, avoiding any arbitrary modification of the suggested es-
timation method as done by Samia and Chan (2011). Coefficient estimates are similar
in both modeling frameworks.

8 Conclusions

In this work we describe settings in which estimation of generalized threshold regression
models can be problematic. We suggest a new regularized Bayesian estimator which
outperforms standard estimators. In particular, the suggested threshold estimator is
defined on the whole parameter space and thus circumvents the subjective and often
misleading restriction of the threshold domain which standard estimators require. More-
over, regularizing the posterior density at the boundary of its domain helps to improve
estimation, especially if the true threshold is close to this boundary. Employing the
empirical Bayes approach, we can use built-in functions for generalized linear mixed
models in statistics software and obtain estimates with little additional numerical ef-
fort and without the use of Markov chain Monte Carlo or other sampling techniques.
Inference about the estimated parameter can be carried out in the standard Bayesian
manner. Simulation studies and a real-data example confirm the effectiveness and rele-
vance of our method.
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Appendix

Derivation of equation (5)

We obtain the approximate posterior (5) as follows. Laplace approximation produces∫
Rp

∫
Rp

p(y|β1, δ, ψ, ϕ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

= (2π)−p/2|σ2
δIp|−1/2

∫
Rp

∫
Rp

exp {−κ (δ,β1)} dδdβ1

= (2π)p/2|σ2
δIp|−1/2exp

{
−κ
(
d̂, β̂1

)} ∣∣∣∣ ∂2κ

∂(δ,β1)∂(δ,β1)
T
(d̂, β̂1)

∣∣∣∣−1/2

+O
(
n−1

)
for κ (δ,β1) = −

n∑
i=1

yiθi − b(θi)

ϕ
− c(yi, ϕ) +

1

2σ2
δ

δT δ and
(
d̂, β̂1

)
= argmax

(δ,β1)∈R2p

−

κ (δ,β1).

Given the derivatives

∂κ

∂δ
(δ) = −

n∑
i=1

(yi − µi)(X2)i
ϕb′′(θi)g′(µi)

+
1

σ2
δ

δ = −XT
2 WG(y − µ) +

1

σ2
δ

δ,

∂κ

∂β1

(β1) = −
n∑
i=1

(yi − µi)(X)i
ϕb′′(θi)g′(µi)

= −XTWG(y − µ),

and

∂2κ

/
∂(δ,β1)∂(δ,β1)

T =

(
XT

2 WX2 +
(
1/σ2

δ

)
Ip XT

2 WX
XTWX2 XTWX

)
(11)

for W−1 = diag
{
ϕb′′(θi)g

′(µi)
2
}
and G = diag {g′(µi)}, we obtain∣∣∣∣∣∂2κ

/
∂(δ,β1)∂(δ,β1)

T

∣∣∣∣∣ =
∣∣∣∣∣XT

2 WX2 +
(
1/σ2

δ

)
Ip

∣∣∣∣∣
∣∣∣∣∣XTV −1X

∣∣∣∣∣
using basic matrix algebra.

To find d̂ and β̂1, we iteratively solve

XT
2 WG(y − µ) =

1

σ2
δ

δ and XTWG(y − µ) = 0

via Fisher-scoring: Starting at d̂ = δ0 and β̂1 = (β1)0, we solve

I(δm,βm)

(
δm+1

(β1)m+1

)
= I(δm,βm)

(
δm

(β1)m

)
+ s(δm, (β1)m),
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I = ∂2κ

/
∂(δ,β1)∂(δ,β1)

T and s = −∂κ

/
∂(δ,β1), or, more explicitly,

{
XT

2 WmX2 +
1

σ2
δ

Ip

}
δm+1 +XT

2 WmX(β1)m+1 = XTWmzm

and

XTWmX2δm+1 +XTWmX(β1)m+1 = XTWmzm,

where zm = X2δm +X(β1)m +Gm(y − µm). This yields

β̂1 =
(
XTV −1X

)−1
XTV −1z̃ and d̂ = σ2

δX
T
2 V

−1(z̃−Xβ̂1),

where V = W−1 + σ2
δX2X

T
2 and z̃ = XT

2 d̂ + Xβ̂1 + G(y − µ), with W, G and µ

evaluated at δ = d̂ and β1 = β̂1 (Harville 1977).

With this, we can now further simplify the posterior. Following Breslow and Clayton
(1993) in replacing

−2

n∑
i=1

{yiθi − b(θi)} by the chi-squared statistic

n∑
i=1

(yi − µi)
2

b′′(θi)

we can exploit the identity

V −1
(
z̃− β̂1

)
= W

(
z̃−Xβ̂1 −X2d̂

)
,

which results in(
z̃−Xβ̂1 −X2d̂

)T
W

(
z̃−Xβ̂1 −X2d̂

)
=
(
z̃− β̂1

)T
V −1

(
z̃− β̂1

)
− 1

σ2
δ

d̂T d̂,

and, hence,

exp


n∑
i=1

yiθi − b(θi)

ϕ
+ c(yi, ϕ)−

1

2σ2
δ

d̂T d̂


≈ exp

{
−1

2

(
z̃−Xβ̂1 −X2d̂

)T
W
(
z̃−Xβ̂1 −X2d̂

)
+

n∑
i=1

c(yi, ϕ)−
1

2σ2
δ

d̂T d̂

}

= exp

{
−1

2

(
z̃− β̂1

)T
V −1

(
z̃− β̂1

)
+

n∑
i=1

c(yi, ϕ)

}
.
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Altogether, this leaves us with∫
Rp

∫
Rp

p(y|β1, δ, ψ, ϕ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

=(2π)p/2|σ2
δIp|−1/2exp

{
n∑
i=1

yiθi − b(θi)

ϕ
+ c(yi, ϕ)−

1

2σ2
δ

d̂T d̂

}∣∣∣∣∣XTV −1X

∣∣∣∣∣
−1/2

·

∣∣∣∣∣XT
2 WX2 +

(
1/σ2

δ

)
Ip

∣∣∣∣∣
−1/2

+O
(
n−1

)
≈(2π)p/2 exp

{
−1

2

(
z̃− β̂1

)T
V −1

(
z̃− β̂1

)
+

n∑
i=1

c(yi, ϕ)

}∣∣∣∣∣XTV −1X

∣∣∣∣∣
−1/2

·

∣∣∣∣∣σ2
δX

T
2 WX2 + Ip

∣∣∣∣∣
−1/2

+O
(
n−1

)
.

Details for Theorem 1

Basic matrix algebra yields a representation of the regularized Bayesian estimators

β̂1 =
(
XTVX

)−1
XTV−1z and β̂2 = β̂1 + d̂ = β̂1 + σ2

δX
T
2 V

−1
(
z−Xβ̂1

)
,

where V = W−1 + σ2
δX2X

T
2 , as β̂rB =

(
XT
ψWXψ +H

)−1

XT
ψWz. To obtain equiv-

alence (i), we employ a theorem by Theobald (1974, theorem 1) stating that for two
estimators β̂

⋆
and β̂

⋆⋆

MA(β̂
⋆
)−MA(β̂

⋆⋆
) ≥ 0 for all non-negative definite matrices A

⇔ E
(
β̂
⋆
− β

)(
β̂
⋆
− β

)T
− E

(
β̂
⋆⋆

− β
)(

β̂
⋆⋆

− β
)T

is non-negative definite.

The equivalence then follows from

E
(
Xψβ̂rB −Xψβ

)(
Xψβ̂rB −Xψβ

)T
= Xψ

(
XT
ψWXψ +H

)−1

XT
ψWXψ

(
XT
ψWXψ +H

)−1

XT
ψ

+Xψ

(
XT
ψWXψ +H

)−1

(B+H)ββT
(
BT +H

) (
XT
ψWXψ +H

)−1

XT
ψ .

Using E
(
β̂rB−β

)T(
β̂rB−β

)
= tr

{
E
(
β̂rB − β

)(
β̂rB − β

)T}
then yields equivalence

(ii).

For remark 1, ψ = ψ0 implies B = 0. Consequently,

D
{
(I +C)H − (B+H)ββT

(
BT +H

)
+CBββTBTCT

}
DT ≥ 0
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reduces to
D
{
(I +C)H −HββTH

}
DT ≥ 0.

Assuming that rank(X) = p, this is equivalent to(
XT
ψWXψ +H

)−1 {
(I +C)H −HββTH

}(
XT
ψWXψ +H

)−1

≥ 0

⇔ (I +C)H −HββTH = 2H +H
(
XT
ψWXψ

)−1

H −HββTH ≥ 0

since XT
ψWXψ +H is positive definite and symmetric. Taking advantage of a result

by Gruber (1990, theorem 2.5.3), this amounts to

βTH

(
2σ2

δH + σ2
δH

(
XT
ψWXψ

)−1

H

)+

Hβ ≤ 1/σ2
δ

⇔ δT
{
2σ2

δI + (XT
1 WX1)

−1 + (XT
2 WX2)

−1
}−1

δ ≤ 1,

where A+ denotes the Moore-Penrose inverse of a matrix A. For W = 1/σ2
δI this is

equivalent to

δT
{
2σ2

δ/sI + (XT
1 X1)

−1 + (XT
2 X2)

−1
}−1

δ ≤ s.

Basic matrix calculations suffice to obtain the rest of this as well as the following re-
marks.
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