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1 Introduction

Many examples have shown that String Theory inspires a deeper understanding of scat-
tering amplitudes in field theories, see e.g. [6-8, 61]. The world-sheet viewpoint on point-
particle interactions offers useful guiding principles through the multitude of Feynman
diagrams. For example, tree-level subdiagrams of external particles arise when insertion
points of string states on the world-sheet collide. This is captured by the operator product
expansion (OPE) among vertex operators.

In this work, we study this mechanism in the context of ten-dimensional super Yang-
Mills (SYM) theory. Its superspace description benefits from the use of pure spinors [42—44],
and this formulation directly descends from the pure spinor superstring [17]. In previous
work, a family of so-called BRST building blocks was identified in the pure spinor for-
malism [12-14] which encompasses the superfield degrees of freedom of several external
particles. These BRST blocks were argued to represent tree-level subdiagrams and led
to an elegant and manifestly supersymmetric solution for multileg tree-level amplitudes
in SYM theory [12] and the full-fledged open superstring! [13, 14]. As initially suggested
in [45], the driving forces in these constructions were:

(i) The (iterated) OPE of gluon multiplet vertex operators

(ii) The action of the BRST operator on the OPE output to identify the symmetry
components in the cohomology

(iii) BRST-invariance of the full amplitude dictates the composition of BRST-covariant
tree diagrams

In step (ii), we benefit from the simple form of the BRST action on kinematic degrees of
freedom, based on the SYM equations of motion for the superfields [15, 16]. This appears
to be special to the pure spinor formalism, at least we are not aware of an analogous
implementation in the Ramond-Neveu-Schwarz (RNS) [52-54] or Green-Schwarz (GS) [50,
51] framework.

The tree-level setup of [12-14] only made use of the mixed OPEs between one unin-
tegrated vertex operator V and one integrated version U. In recent one- and three-loop-
calculations [10, 20, 41], on the other hand, it became clear that pieces of the OPE among
U vertices had similar covariant BRST properties leading to a simplified description of
the amplitudes. In the following, we will complete the list of such BRST-covariant OPE
ingredients and introduce multiparticle versions of the integrated vertex operator.

The multiparticle vertex operators are defined in terms of multiparticle superfields of
ten-dimensional SYM theory. The latter in turn are constructed recursively where the
rule for adding particles is extracted from the OPE among single particle vertex operators.
The BRST transformation of these vertex operators is equivalent to equations of motion
for the multiparticle superfields, which take the same form as their single-particle counter-
parts [15, 16], but are enriched by contact terms. It points to very fundamental structures

'See [5] for an indirect derivation of open superstring trees among gluons, based on bosonic gauge
invariance and kinematic constraints from the RNS worldsheet prescription.



of SYM theory that these combinations of single-particle fields reproduce the “elementary”
equations of motions.

In more mathematical terms [3, 4, 24], the recursion rule fusing two multiparticle super-
fields to a larger representative can be viewed as a Lie bracket operation which implements
the algebraic structure of tree level graphs. In particular, the aforementioned contact terms
present in multiparticle equations of motion directly realize the Lie symmetries of tree sub-
diagrams. This carries the flavour of a kinematic algebra which might shed further light
on the duality between color and kinematics [26] in ten dimensions.? More specifically, the
Lie symmetries of multiparticle BRST blocks imply kinematic Jacobi relations within the
corresponding tree subdiagrams.

The multiparticle superfields and their BRST properties turn out to guide the con-
struction of BRST-invariant kinematic factors. Together with the tight contraints from
zero-mode saturation, this allows to anticipate the structure of scattering amplitudes in
both field theory and string theory. As an example, we conclude this paper with an appli-
cation to one-loop amplitudes of the open and closed (type II) superstring. The pure spinor
formulation of the five graviton amplitude in [20] gave an example of how vector contrac-
tions between left- and right-moving superfields can be implemented in a BRST-invariant
way. The backbone of this superspace construction is a vectorial BRST cohomology ele-
ment which we recursively extend to higher multiplicity. From the field theory perspective,
this amounts to identifying loop momentum dependent parts of the numerators, see [21, 56].

The limit of infinite string tension o/ — 0 leads to a worldline realization of the pure
spinor setup [1] (see also [47, 48] for the RNS equivalent). It has been shown in [2] that
the worldline modifications of the worldsheet vertex operators and their OPEs give rise to
the same SYM tree amplitudes as previously obtained from superstring methods [12-14].
Accordingly, it would be interesting to find the worldline equivalent of the present BRST
block constructions.

2 Review

2.1 Ten-dimensional SYM theory

Linearized super-Yang-Mills theory in ten dimensions can be described using the super-
fields® A, (x,0), Ap(x,0), W (x,0) and F,,,(x,0) satisfying [15, 16]

2D(aA5) = 70%Am DoAm = (ymW)a + kmAa 2.1)
B Fon. '

«

1
Do Frn = 2k (W) DaW? = Z(fym")

with gauge transformations 6 A, = D,$2 and J A, = k;, ) for any superfield €2. The above
equations of motion imply that the superfields A,,, W and F"™" can be derived from the

2See [40],[64] for related work on the kinematic algebra in four and arbitrary dimensions.
3Tt is customary to use a calligraphic letter for the superfield field-strength. However in this paper
calligraphic letters will denote the Berends-Giele currents associated to the superfields, see section 4.



spinor superpotential A,

1 1 1
AT = S(DY"A), W = —E’yf,‘f(kmAg — DgA™),  Fpp = g(%n)aﬁpgvva. (2.2)
The notion that the superfield A, is enough to derive the others will be used in the next
section to obtain a multiparticle generalization of the above equations of motion.

2.2 BRST building blocks from vertex operators

In the pure spinor formalism the massless sector of the open superstring (i.e. the gluon
multiplet) is described by the vertex operators

V =)%A,, U=00%, + 1T A,,, + d WV + %Nm"an : (2.3)

The superfields K € {A,, Ap,, W, Fn} and the pure spinor ghost A% carry conformal

weight zero whereas the worldsheet fields {96%, 11", d,, N} have conformal weight one.

When the superfields are on-shell and the pure spinor constraint (Ay”*\) = 0 is imposed,
the vertices satisfy [17]

QV =0, QU =0V, (2.4)

where Q = A*D,, is the BRST charge. The above fields obey the following OPEs [17, 62],

Do K KK
da(zi)K(Zj) - P Hm(ZZ)K(ZJ) — — ,
) Zij
" mAoH o mn
do ()11 (25) — (72) I (2) 11" (25) — —nZ—Q,
ij i
2.5)
7 ™I, (
Qa0 (2) = dal0)da(z) » —2,
ij ij
55 1 (\y™n)e
da()007(5) = 05 NN () - P
2 ij
and 4 6
N (2;) Npg(2;) — ;jN[m[p5Z]] 2 o, (2.6)
where z;; = 2z; — z; are worldsheet positions. By K(x,0), we collectively denote any

superfield containing only zero-modes of #“ and whose x dependence is entirely given by
the plane wave factor® e*?.
Starting with the recursive definition of
lim V)U2(5) — 22, Tim Logsy (o1 (21)UP(2,) — Lagt..(p-1)ipt (2.7)
Zo—21 291 ’ 2p—21 -~ (p—1) P Zp1 )
fermionic ghost-number one BRST building blocks were defined in [12-14] by removal of
BRST exact terms,

Ti23..p = Lo1z1.p — Q(...). (2.8)

4To avoid factors of i in the formulae, we define k™ = k™.
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Figure 1. The correspondence of cubic graphs and BRST building blocks.

They transform covariantly under BRST variation, for instance
QT2 = (k' - K*) T\ T, QT3 = (k' - k*)(ThTos + T1sTo) + (k' - k*)T1o T

at rank two and three. More generally,

p
QTiz.p=_ > (K> k)T i1 (a1 Tigsays (2.9)
j:2 QGP(IB]')

where 3; = {j +1,...,p} and P(B;) is the powerset of ;. Moreover, we identify T; = V;

123...p _ p i
m =) i1k

for a single-particle label ¢ and abbreviate multiparticle momenta by k
2.3 Lie symmetries of BRST building blocks

After removal of @ exact terms in (2.8), BRST building blocks T2, , satisfy all the Lie
symmetries £}, of tree-level graphs for 2 < k < p, where®

Lr=2n41" T2 nifnt2f2n—-12n,20+1]).]] — Lont1. nt2nt1].321]]..]] = (2.10)
Lp=on: T2, 1l 2n—202n-1.20])..]) T Ton.ntinl.321])..) = 0

Defining the operator £;0 as the “Lie symmetry generator”, the first few examples of the
symmetries (2.10) are

0= 4Ly0T19 =T12+ T,
0= £30T93 = Th23 + To31 + 1312, (2.11)

0= £y40T1934 = Th234 — Th243 + T3412 — T3421.

The symmetries (2.10) have been denoted “Lie” because a contraction of Lie algebra struc-
ture constants satisfies the same symmetries [10],5

T1234..p < flooe poedas pasdas - pap1pdp (2.12)

and therefore the building blocks have the correct behavior to describe the kinematic
numerators of cubic graphs, see figure 1.

"Throughout this work, antisymmetrization over N labels associated with external particles (as in (2.10))
does not contain an overall 1/N!. However, antisymmetrized Lorentz indices m,n,p,... are presented in
the convention Ap,,) = %(Amn — Anm).

SUnder the Dynkin bracketing operation, the building blocks satisfy Tj[. ([1,2],3],..],0) = PT123..p and
therefore they belong to Lie(p). See e.g. Proposition 13.2.3 of [24].
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Figure 2. Four superfield realizations K € {AZ, AB W&, FB 1 of cubic tree graphs B =
biby ...b,. This generalizes the mapping in figure 1 from previous work [12-14] where only one

representative T at ghost number one was given.

2.4 Lie symmetries versus BRST variations

It is crucial to notice the interplay between the BRST variations (2.9) and the Lie symme-
tries (2.10) of cubic tree level subdiagrams: at rank two and three, we have

Q(Th2+T5) =0, Q(T123 + To13) = Q(T23 + Th31 + T312) =0, (2.13)

and the BRST variation (2.9) always has the precise form to make the sums in (2.10)
BRST closed. This closure even holds before the redefinitions (2.8) are performed, e.g.
Q(L1a + Loy) = 0 for the direct outcome of the OPE (2.7). Any such BRST closed
combination is also BRST exact since its conformal weight ~ k%2__p is different from zero
(unless p = 1).7 As detailed in [12-14], this implies that BRST exact terms (such as
Q(A1 - A2) = Loy + Li2)) can be subtracted in the definition of Th2., given in (2.8).
Therefore the Lie symmetries obeyed by T2, , are a consequence of the underlying BRST
cohomology nature of the pure spinor superspace expressions which will ultimately describe
the scattering amplitudes.

However, it was a matter of trial and error to find the BRST-“ancestors” of Q-closed
Lo p1 combinations, such as (A1-Asz) in the rank-two example and more lengthy expression
at rank < 5 given in [13, 14]. In the following section, we develop a constructive method to
generate these BRST completions in (2.8) without any guesswork. Moreover, our current
approach based on integrated vertex operators U; delays the need for redefinitions (2.8) to
rank three; all the rank-two BRST blocks will automatically be antisymmetric since they
follow from the simple pole of the OPE between two integrated vertices.

The BRST building blocks play a key role in the recursive BRST cohomology method
to compute SYM tree-level amplitudes [12, 45] and in obtaining a manifestly local represen-
tation of BCJ-satisfying [26] tree-level numerators [23]. However, their explicit superspace
expressions in [13, 14| following from the more and more cumbersome OPE computa-
tions (2.7) become lengthy for higher rank and lack an organizing principle. We will
describe a recursive method in the next section to find compact representations and to
completely bypass the CFT calculations beyond rank two.

"Recall that in a topological conformal field theory Qby = Lo implies that if Q¢ = 0 and Lo¢n = hon,
then ¢p, = (1/h)Q(bo¢pn) for h # 0. See e.g. [35].



3 Pure spinor BRST blocks

In this section we will show how to recursively define multiparticle superfields Ag(a:, 0),
AB(x,0), Wi (z,0) and F"(z,0). As we will see, the recursion is driven by the OPE
among two single-particle vertex operators and a system of multiparticle SYM equations
of motion which generalize the standard description of (2.1). Throughout this paper, upper
case letters from the beginning of the Latin alphabet will represent multiparticle labels, e.g.
B = b1by. . .b, at rank p = |B|. In particular, whenever they are attached to a multiparticle
superfield Kp € {AZ, AB W& FB 1 (without any hats or primes), the B = b1bs. . .b, carry
the same Lie symmetries (2.10),

Ly—ongt: K. niint2l.2n—12n2n+1]]..]) — Eont1.nt2int1l.3r1)...) =0 (3.1)

Lp=on: K1 nfnsif.2n—22n-1.2n])..)] T E2n.ntifnl..321))..] = 0-

The superfields {AZ, AZ W& FB % of multiplicity p = | B| satisfying all the Lie symmetries
£y, for k < p will be referred to as BRST blocks.® Given the symmetry matching relation

Kigga. p ¢ f1202 fo2d0s postan | pap-1pdp (3.2)

with color factors, the BRST blocks reproduce symmetry properties of Lie algebraic struc-
ture constants. The BCJ compatibility of the explicit tree-level numerators in [23] are
based on A*AP satisfying this symmetry matching. As described in the mathematics lit-
erature [3, 24], the associated cubic graphs shown in figure 2 (planar binary trees in math-
ematical jargon) can be mapped to iterated brackets and thereby give rise to a general
construction of a Lie algebra basis. More details are given in appendix A.

The BRST variation of the multiparticle unintegrated vertex operator defined by VB =
A*AB will be shown to have the same functional form as the BRST variation (2.9) of
Tp, thereby constituting a new representation of such objects. BRST-invariants built
from Tp do not change under a global redefinition Tp — Vp, hence the representations
are equivalent. From now on, T from [12-14] will not be used anymore and the new
representation Vp will take its place because it follows from simpler principles.

3.1 Rank two

The way towards multiparticle BRST blocks is suggested by the OPE between two inte-
grated vertex operators. This is the largest and only CFT computation relevant for this
work and has been firstly performed in [11],

UN(21)U%(29) — 257 %1 <aea [(k' - Ag) AL — (k- A1) A2 + Do AZW{ — Do ALWY]

+ I [(K' - Ag) AL, — (K% - A1) AL 4 k2, (A W) =k (A Wa) — (Wiym Wa)]

1 1
+do [(K' - )W — (K- Ay)Ws' + Z(anwl)aﬂin - i(vm"WﬁaFﬁm}

8Throughout this paper, we will distinguish BRST building blocks T as reviewed in section 2 from
BRST blocks Kp € {AB, A2 W5, FB } to be constructed in this section.



1
+ iNm” (k' - A9)Ey,, — (K- A1) 2, — 2k 2 (Wi Wa) — 2F5 Fo a])

(L4 KRz T2 (A W) + (A7) — (A - A9)]. (3.3)

Using the relation 0K = 00*D, K +11"k,, K for superfields K independent on 96% and \¢,

. . —_ 1- 2— . . . .
we can absorb the most singular piece ~ zuk ¥=2 into total 21, 29 derivatives and rewrite

1
U (21)U%(22) — — 235 ¥ [aam}f + AR + d W + 2N””F,}fn]

1

+ 0 (zmkkl [2(141 - Ap) — (A1W2)]> (3.4)

— Oy <Z12k1~k21 B(Al - Ag) — (AM)D

where

1
AR = =5 [AL(K! - A%) + AL ("W P)a — (14 2)]

1
A2 = 5 [Alp? — AL (K A% + (W, W) — (1 2)}

P~ pm

1
Wiy = Z(’V’””W2)°‘Fﬁm + WS (K- AY) — (1 2) (3-5)

FR2 = F2, (k2 AY) + FRPEL 4 kY Wiy W) — (1 45 2)

= KA AT (8 ) (AL, AL — A7)

Note that the last line can be viewed as a multiparticle generalization of the field-strength
relation F!,, = ki A, — k! Ap,, modified by the contact terms (k! - k?)(AL A2 — AL A2).

In the prescription for computing string amplitudes the vertex operators are integrated

over the worldsheet so the total derivatives can be dropped? and the composite superfields
in (3.5) can be picked up via

Ut = - § A E U )0 )

(3.6)
1
= 90“A2 + T A2 + d W + iNm"Fg;.
One can check using (2.1) that the above superfields satisfy
2D AG = A + (K- k) (AL AG + ARAY) (3.7)
DA = (W) + E2A2 4 (k1 k)AL A2, — A2AL) (3.8)
1
DaWiy = 1 (7" Fyi 4 (K- K2 ) (AW — AZW) (3.9)

9In string calculations this cancellation involves a subtle interplay of BRST-exact terms and total deriva-
tives on the worldsheet, see [45] and [57] for five- and six-point examples at tree level. One manifesta-
tion is the agreement of the superfields along with 91,92 in (3.4) with the BRST-exact admixtures in
Vi(z1)Ua(22) = 25 7 (Vi + QA W) — J(As - Ao))).



DoF2 = E2(y, W), — k2 (4, W'2) o 4 (K- k2 (ALE2 — A2FL ) (3.10)

a” mn o mn

+(k1 ) k'Q)(Arlz('VmWQ)a - Ai('yle)a - Avln('VnWQ)a + Agn('Vnwl)a)>

which is a clear generalization of the standard equations of motion (2.1) with corrections
proportional to the conformal weight ~ 3 (k! + k2)? = (k' - k?) of the superfields. Further-
more, the single-particle relations k™A%, = 0 and ky,(Y"W;)s = 0 imply that,

mAZ =0 (3.11)
ke (VW) = (K- B [AL, (VMW — (1 4 2)] (3.12)
mE2 = (kL. k2) (A2 + AL (K- A%) — (1 + 2)]. (3.13)

In other words, the (supersymmetrized) Dirac and YM equations ki (y"W?%), = 0 and

kTann = 0 for single-particle superfields are modified by the same kind of contact term

~ (k' -k?) as the field strength relation in (3.5) and the equations of motion (3.7) to (3.10).
Defining the rank-two unintegrated vertex operator as

ViZ = \>al2 (3.14)
analogously to V¢ = A\*A’ | one can show that

QV = (k' EHWVV; (3.15)
QU =ov12 4 (k- EH(VIU? - ViU, (3.16)

which generalizes (2.4) by contact terms and reproduces the BRST variation of the building
block T2 of [12]. It is interesting to note that (3.16) is compatible with the standard
prescription relating integrated and unintegrated vertices, U'? = b_; V2 [25].

Note that all rank-two BRST blocks are antisymmetric and therefore U'? = —U?!.

3.2 Rank three

Since the rank-two BRST blocks obey generalized SYM equations of motion one is tempted
to define the rank-three BRST blocks following a similar approach. We know from (2.1)
that the standard superfields A,,, W% and F"™" can be obtained from the spinor super-
potential A, by recursively computing covariant derivatives. We will show that the a
similar approach can be used to obtain their multiparticle generalizations starting from
the following ansatz for the superpotential,

Az —% [A2(K12 . A%) 4 A2(ym W), — (12 ¢ 3)] . (3.17)

This is a direct generalization of the expression for AL? in (3.5) as obtained from the OPE
of U'(21)U?(22). We have now inserted two-particle data represented by A2 k12 Al2 and
W5 into the OPE-inspired recursion. Once the BRST-trivial symmetry components are
subtracted from A'?3 (see section 3.2.1), the definition (3.17) can be interpreted in terms of

a “grafting” procedure defined for example in [4]. As illustrated in figure 3, (3.17) amounts



K2 K Kia3

Figure 3. The essentials of the first rank three BRST block Kja3 € {Al?3, ...} are captured by
combining K12 € {AL2, AT5, W} and K3 € {A3, A7 W}, At the level of diagrams, this can be
interpreted as grafting the trees associated with Ki5 and K.

to adjoining a further leg to the cubic graph associated with the BRST blocks Ko at rank
two, see appendix A for more details.

A short computation shows that the action of the covariant derivative can be written
in a form similar to (3.8) and therefore can be used to define A3,

Do A + D AlP = s AL
+ (k' K [ALAR + AP AL — (14 2)] (3.18)
+ (" K% [AZAS — (12  3)]

where

Al — % ALES, — AR (K™ - A%) + (WPy, WP) — (12 4 3)] . (3.19)

In turn, computing the covariant derivative of (3.19) and rewriting the result in a form
analogous to the standard equation of motion for A™ leads to the definition of Whs,

1123 123 123 4123
DaAm - (’YmW )Oé + km Aa
+ (k' k) [ALAZS + AP AZ — A A — AZALY (3.20)
R (ARAS, - AT

where 1
Wiy = —(K"2 - )Wy + ("W FZ — (12 ¢ 3)
4
. (3.21)
+ 5(k:l k) [Ws (Al A7) — (14 2)].
Computing the covariant derivative of (3.21) leads to the definition of F}23,

1
DaWiss = 70™)a’ o

+ (kB [ALW + ARWY — (1 2)] (3.22)
+ (B2 B3 [ARWY — (12 < 3)]
where (3.12) has been used to arrive at,

Foow = (K° - APVED, + Fo2 F 4 2ki2 (Wi W2) — (12 5 3)

[m* nla [m
3.23
+ (k' k?) %F;n(Al-A3)+2A1 (W39, W?) = (1 + 2)|. (3.23)

[m

,10,



And finally,

D, P 2k323<mw123>
K)[ALES, ¢ ABE2 (14 9)]

a”™ mn

)[A12F3 — (12 + 3)] (3.24)
KUk 240, (rmW)a + 2457 (1 W2)a — (1 4 2)]
)

+ (k'
(k'
(
(' - k) 2402 (1 WP)a — (12 > 3)] .

+
_|_
_|_

The above equations give rise to a natural rank-three definition of multiparticle SYM
equations of motion: the non-contact terms in (3.18), (3.20), (3.22) and (3.24) perfectly tie
in with those in the two-particle equations of motion (3.7) to (3.10). Note that the contact
terms in D, A5, and DQVVIB23 are related via A% <+ W& where C denotes a multiparticle
label, see (3.20) and (3.22). The additional contact terms of the form A]fl(fym]Wc) in

[
D, F123 have their two-particle analogues in the second line of (3.10).

3.2.1 Symmetry properties at rank three

The rank-three superfields defined above are manifestly antisymmetric in the first two
labels, so they satisfy £9 from (3.1). However, one can show using the explicit expressions
above that only a subset of the rank-three superfields satisfies £3,

£30AB £0, £30AB 40, L£30Why = £30F2 =0, (3.25)

This explains the non-hatted notation for W4, and F12%; they are BRST blocks already. To
obtain BRST blocks for the other superfields they need to be redefined in order to satisfy the
symmetry £3. Fortunately, the underlying system of equations of motion greatly simplifies
this task.

To see this, note that since £3 0 Wi, = 0 equation (3.20) implies that,
Do (£30 AlB) = |12 (£50 ALP). (3.26)

And it turns out that k.23 can be factored out in the cyclic sum of /1}33 )

£30 ATy = 3K Hyas, (3.27)
where .
H'? = G (A~ A%) — (k2 — k) AT (A? - A%) + cyclic(123)] . (3.28)

Therefore the redefinitions
123 7123 123 77123
A=A — kP H ™,

A123 — A123 o DaH123 (329)

imply that A% and A2 are BRST blocks since,

£20 AP = £20 A = £30 AP = £30 AP =
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This is a significant simplification compared to the redefinition (2.8). The latter required
an “inversion” of the BRST charge on £3 0 (L2131 + ...) whereas (3.27) extracts the rank-
three redefinition Hya3 from a straightforward £3 operation on the known expression (3.19)
for A%3

It is easy to show that F}23 from (3.23) can now be rewritten as a field-strength using
the BRST block A!23,

F123 — k123A123 o k123A123
— (k' k) [ALAZ — AL AZ — (1 & 2)] (3.30)
— (K- E*)[AZAY — (12 +5 3)].

Thus (3.23) satisfying the symmetry £30F123 = 0 can be understood as a property inherited
from A"}, since the contact term structure of (3.30) is the same as in the equation of motion
D, AL% from which the BRST symmetry was derived in the first place.

Defining rank-three vertex operators

mn

1
Vigg = NMALE, UM = 00" AP + TIMALE + do Wiy + S N™ Foi? (3.31)

it follows that (2.4) as well as (3.15) and (3.16) have a rank-three counterpart,

QViog = (k' - K*)(ViVag + VizVa) + (K12 - k3) V1o Vs, (3.32)
QUizs = Vg + (k' - k%) [Vilas + VisUs — (1 <5 2)]
+ (' - k%) [Vi2Us — (12 +» 3)]. (3.33)

It is interesting to observe that £3 action translates to a total derivative
ﬁlQS + 0231 + U312 — (80aDa + Hmk,}r?g)HIQS — 8H123, (334)

where U123 is related to U'? in the obvious way A12% <+ A123 and A123 +» A123 The total
worldsheet derivative suggests that the failure of the £3 symmetries in (3.34) decouples
from string amplitudes and their SYM limit. In view of the diagrammatic interpretation of
K123 shown in figure 3, the vanishing of U3 + U?3! 4 U312 can be viewed as the kinematic
dual of the Jacobi identity f12@fe3b 4 f23afalb 4 ¢3la fa2b — () among color factors. This
indicates that the rank three superfields Ki23 of SYM carry the fingerprints of the BCJ
duality between color and kinematics [26].

3.3 Rank four

The patterns from the discussions above suggest how to proceed. The following superfields

N 1

ALzt _ - [Af?’(km?’ AN+ AB (i, — (123 < 4)} , (3.35)
N 1 11,74 A

A71n234 — 3 [A;l)%F;m - Arln?3(k123 . A4) + ( 123’YmW4) _ (123 4)] (3.36)

1o Lo s ey ~
Wik = 5 (v WhHOELZ (B2 AMY W, — (123 < 4)
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K23 Ky K234

Figure 4. Up to £4 symmetry redefinitions, the recursions (3.35) to (3.37) yield rank-four BRST
blocks K934 by combining Ki93 with K. At the level of diagrams, this can be interpreted as
grafting the associated trees.

S (k) [ WAL A%+ WS (A A% — (145 2)

i B

52k (Ws(A12- 4% — (12 6 3) (3.37)

manifestly satisfy the £9 and £3 symmetries of (3.1). In general, by using the fully
redefined BRST-blocks A5> 71, A5 p—qand Wi 4 in the recursive definition of AP,
there is only one novel Lie symmetry to impose at each rank. This is much more economic
compared to the p—1 redefinitions to arrive at T2, in [13, 14] (which additionally required
“inverting” the BRST charge and were much more laborious). Once the last Lie symmetry
£4 is enforced in section 3.3.1, the recursions (3.35) to (3.37) for Kj234 can be given a
grafting interpretation similar to rank three, see figure 4 and appendix A.

The rank-four definitions (3.35) to (3.37) are guided by the same key principles applied
at rank three: repetition of the recursive pattern (3.17), (3.19) and (3.21) as well as mul-
tiparticle equations of motion as in (3.18), (3.20) and (3.22). Straightforward but tedious
calculations show that

Daz‘igﬂ n DBA3234 _ 70%1‘1,1334

AL AL AP AT — (1 2)

+ (K2R [AZAY + AAL - (12 ¢ 3)]

+ (K12 BN [AP AL — (123 © 4)] (3.38)
D AL234 — (v, TW1234) 4 1234 j1234

+ (k- R [ALAZ - APAZ + AP AL+ A AZ - (16 2)]

P R[AZ AL+ A4S (12 0 3)

+ (K2 Y [AZP AL — (123 & 4)] (3.39)
Do Wiy = %(’Ymn)aﬂﬁrlnf"*

(k1 R [AL WGy, + AW - APWE, + ANWE - (16 2)]

+ (K2 B [ARWE + AW — (12 & 3)]

+ (K2 R [AZBW] — (123 ¢ 4)] (3.40)
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for some ng‘* whose form is not important at this point. Note that the rank-three su-

perfields in the terms proportional to (k23 - k*) are the true BRST blocks and not their
hatted versions.
3.3.1 Symmetry properties at rank four

The hatted superfields appearing in the right-hand side of (3.38) to (3.40) can be rewritten
in terms of BRST blocks by using the rank three redefinitions A2 = A2 + D, H)93 and
A123 A123 k}f‘H 123. The terms containing H;j; can be manipulated to the left-hand
side in order to redefine the rank-four superfields. The outcome is,

Kiogy = Kiags — (k' - k%) (Ko Hygg — K1Has) — (k' - k%) H124 K3 (3.41)
where K denotes any of the BRST blocks, [AZ, A Wg]. For example,
A2234 = A(11234 — (k‘l . ]{32) (A(QIH134 — A(IXH234) — (k‘u . k‘3)H124Az. (342)

After the redefinitions of (3.41) it turns out that the superfield W/{%,, satisfies all the Lie
symmetries (3.1) up to rank four,

Lo o0 Wl’%34 = 4£30 W1,334 =4£40 Wﬁu =0, (3.43)

and therefore Wis, = W{35, is a BRST block.
Since Wiy, satisfies (3.43), it immediately follows from the contact term structure
of (3.39) that (3.26) has the following rank-four analogue

Do (£40 ANPPY) = kP (£40 ARP). (3.44)
Furthermore, a straightforward calculation shows that k1234 factorizes in £4 0 A/1234
£40 A2 — 41234 1234 (3.45)

and the explicit expression for Hio34 is displayed in appendix C.
Hence, the redefined superfields

A1234 A/1234 k1234H1234
m

(3.46)
AL24 _ pN234 _ py pr1234
obey the required BRST symmetries:
£ o A1234 £ o A1234 £ o A1234 _ O,
(3.47)

£20 AP = £30 A = £40 A =0,

and therefore define rank-four BRST blocks.
Once the expression for A3, is known the superfield F123* can be written down
immediately in field-strength form,

FT%LQSA _ k1234A1234 . krll234A%334
(51 [ALAZ 4 A2 AR ATAT )
(k'12 ki3) [A12A34 AqlfL24A$n o (m o n)]
(k123 k4) [A123A4 A71733Ai] )

(3.48)
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A straightforward but tedious calculation then shows that its expected equation of motion
indeed holds,

DOCF%%,LSZL _ k,1234(,an1234) o k%234('7mwl234)a

AL+ AR, + ADER + AV, (Lo
(k12 ) |AREY, + AR, — (12 6 3)]
+(k123 k4)[A123F4 A4F123]
(3.49)
(k) 240, (g W)+ 2488 (3 W2

+ 245 (g W) + 248 (g W) = (1 2)]
(B2 ) 242 (g W) + 2432 (3, W) — (12 5 3)]
+ (K1Y [ZA[lfg(’ym]W‘l)a — (123 & 4)} .

That is why the explicit form of F{S& was not strictly needed, one can directly write its
BRST-block expression at the end of the redefinition procedure.
Defining rank-four vertex operators

V1234 )\aA1234 U1234 _ aaaAéQ?A 4 HmA}i?A + dOth[Q34 4 %NmnFIQ?A (350)

mn

it follows that

QVizsa = (k' - k%) [ViVaga + VizaVa + VigVos + ViaVis]

+ (k' k) [Vi2Vas + Viga V5]

+ (k' kY Vi3V (3.51)
QUizss = OVioga + (k' - k*)[ViUsss + VigUsa + ViaUsz + VigaUs — (1 4> 2)]

+ (k' k%) [VioUss + VioaUs — (12 4> 3)]

+ (k' k%) [VigsUs — (123 > 4)]. (3.52)

And similarly as at rank three, it is interesting that the failure of the £4 symmetry to hold

for the primed superfields is equivalent to a total derivative in the integrated vertex U’!?34

(ie. U3 with AL234 — A2 and A4 — AL234). Due to the general expectation for
worldsheet derivatives to decouple from string amplitudes, this is another example for the
fundamental role played by Lie symmetries. More specifically, £4 compatibility of U134 is
a kinematic equivalent of Jacobi identities among permutations of f12@ f@30 fb4c Hence, also
the rank four BRST blocks satisfying £4 o K234 = 0 point towards the BCJ-duality [26].

3.4 Recursive construction at general rank
Suppose that all the BRST blocks up to rank p — 1 are known
{AZ M A Wy Bty 1<k<p—1 (3.53)

together with the superfields Hqo j for 3 < k < p — 1 used in their construction. The
following steps can be used to obtain the explicit expressions for the rank-p BRST blocks:
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1. Define a set of rank-p superfields IAQQ“_ = AE""’“,A},%"'?“, wa _+1} as follows,
P 12..p—1
o 1
At = = SIAE PRI AP+ AP (W) = (12...p = 1 6 p)]
N 1
Ay ? = S[A T R A AR (R - AR (WP W) — (12, — 1 5 p)]

- 1
Wi p= Z(VTSWp)aFrlf”'p_l — (k2T AW Ly~ (120~ 1 ¢ p)

p—1
=D D> RHITTRWE L ey (A0 A7) — (12,5 - 1 )]
J=26€P(v )
(3.54)
where the set v; = {j +1,...,p — 1} contains the p — j — 1 labels between j and p
and P(v;) is its power set. Note that they manifestly obey all the £}, symmetries up
to rank £ = p — 1, but not (yet) £,,.

One can check that the superfields Klg.”p satisfy equations of motion of the
form (3.61) whose right-hand side contains not only lower-rank BRST blocks but
also their hatted versions, for example,
2D(O¢A%345 _ 7(%121713345
(KL kQ)[A}lA%M‘F’ +A5’fl%45 +A;114A%35 +Aé5A%34
—|—Aé34A%35 —1—121}13514%4 —1—12154514%3 —1—121})634514% — (14 2)]

T (k2. k3)[A(112A%45 i A(1124A%5 i 12%2514%4 + A}XQ%A% — (12 3)]

+ (B [ALBAD + AP AL — (123 + 4)]

+ (B EP) [ALPAY — (1234 + 5)) .

A (3.55)

However, they can be redefined Kio,_ , — K{Q_.p such that equations of motion for

K1, , are written entirely in terms of BRST blocks with rank less than p. This leads
to the second step:

2. Redefine the superfields according to

p—1
Ky p=Kizp—Y > (K97 W)[Hy sy Kjppey — (12005 = 16 )]
J=26€P(v;)
(3.56)
with the constraints H; = H;; = 0. For example,
Kiosi5 = Kiozas
— (k' k*)[Hi345 K2 + HuasKos + HizsKoq — (1 4+ 2)] (3.57)

— (K2 k%) [H1245K3 + Hyo5K34 — H345K12}
— (k'3 k") [Higs5 K] -

At this point it turns out that Wig  satisfies all the rank-p Lie symmetries, i.e.

LyoWis , =0, 2<k<p. (3.58)
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Therefore W15 , = W{, , will be the definition of the spinor field-strength
BRST block.

As a consequence of (3.58), the following equations will hold,

Dulityo A9) =K £, 0 A1,

. (3.59)
£po A12 P ple...lez--p
where the second equation can be regarded as the definition of Hya. .
. The rank-p BRST blocks are defined as,
Aél..p _ A;lQ...p o DaH12...p
A%r%p — A;}?.A.p o k}ﬂ?.ulelup
!
Wloé...p = 1%...10 (360)

12 P — 1.12..p p12..p 12...p p12...p
hols f12p A12p _ p12.p g 12

12...5—1,{6 4
+Z Z kf12 e k‘)QA[ J— {}Aingﬁa\}
J=260€P(Bj)

where the set 5; = {j + 1,7+ 2,...,p} contains the p — j labels to the right of j
and P(f;) denotes its power set. Note that they satisfy all the Lie symmetries up to
rank p.

It is conjectured that the BRST blocks defined in the three-step procedure above will

satisfy the multiparticle equations of motion,

12..p 12...
DA™ = YapAm ™"

+ Z Z k’12 et ]{ [A(].)Q.--j—ly{é} A:g{ﬁj\‘s} o (12 ) ] 1 ,])]
J=26eP(B;)

DO&A%...p = (’)/memp) + k12 pA12...p

+Z > (k1a.jo1 -k [A”Jl{‘s}AJ{B]\é} (2..j—1<—>j)}
J=25€P(B;)

DW= ~(v"™) FiZ7

1
4
- B
12.. 1,{6 . .
—1—2226%(:5()]{?12“.]'_1 k; ) |:A =14 }Wj{ﬁj\é} (12...]—1(—)])}
J=40€ '

D F12 D ngglp(ryn]wl2p)a

p
+Z Z (k12..j—1 - kj) [AH cd a{ﬂg\é}
J=246€P(B))

W s s)a = (125 =16 )]

(3.61)

[n
+ 245, G—1,{6} (v
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Furthermore, defining the multiparticle vertex operators as

1
VB =)2AB  UP=00°A8 + I AB £ a ,W§ + 5J\V""F;En, (3.62)
one can show using the equations of motion (3.61) that they satisfy
p . .
QVi2.p= Z Z (K971 k) Via. o1 gy Vigsats
J=2 aeP(B;)
P : : 3.63
QUIQ...p — <9V12...p + Z Z (klZ...j*l k) ( )
J=2 acP(B;)

Viz.j-1 40y Uigppnay — (125 =1 )]

It is interesting to note that there is an alternative definition'® of the rank-p BRST
blocks Ax>P and ApzP in (3.60) which does not require the explicit knowledge of
the rank-p Hi2 , (assuming it exists). One can simply project ANZP and ALEP
into the kernel of £,0, for example, use 2 A/1234 4 1 (A1243 — AB412 4 A13421) pather
than (3.46) as a definition for A123* and similarly for A123*. This is convenient since
it allows to get the complete set of rank p BRST blocks using Hqs.  with & <p—1.

We have explicitly constructed BRST blocks up to rank four using the steps above.
Furthermore, preliminary checks also indicate that this construction works for rank five.

4 Berends-Giele currents

In the 1980’s, Berends and Giele introduced the concept of gluonic tree amplitudes with one
off-shell leg and found a recursive construction for these so-called “currents” [9]. Physical
amplitudes are easily recovered by removing the off-shell propagator (as represented by
the dots in figure 5) from the current. In the following, we construct ten-dimensional
superspace representations of Berends-Giele currents from multiparticle SYM superfields.
The particular combinations of rank-p superfields is firstly guided by the cubic diagrams of
a p+ 1 tree amplitude. Secondly, it turns out that the contact terms of their multiparticle
equations of motion (3.61) simplify when following the diagrammatic intuition.

This construction has been partially realized in [12] for the superpotential A(lf'”p which
suffices to determine the SYM tree amplitude from a supersymmetric Berends-Giele re-
cursion. In the superspace setup, the divergent off-shell propagator is cancelled by the
BRST charge, see section 5.1. At one-loop level [10], Berends-Giele currents from the field
strengths Wi, . F5" , were assembled to BRST-invariant kinematic factors. We shall now
provide a unified discussion of all the Berends-Giele currents associated with the multipar-
ticle superfields of the previous section.

For each multiparticle superfield Kp € {AZ AT W& Fon} with B = 12...p we
define a ghost-number zero Berends-Giele current Kp € { A5 AT WS Funl as follows:

10Tn fact, this is the representation chosen in all the checks performed with a computer.
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2\ 3 4 P
/ o Kiap

Figure 5. From cubic diagrams K 4 to Berends-Giele currents C 4.

firstly decorate the cubic diagrams represented by K with their propagators and secondly
combine the propagator-dressed diagrams such that they resemble a color-ordered Yang-
Mills tree amplitude with an off-shell leg [9], see figure 5.'1 As pointed out in [29], this is
implemented through the inverse momentum kernel [27, 28]!2

Kio(23..p) = Z S ool Kip2s..p) » (4.1)
pPESH_1
where o € S,_1, and the momentum kernel S[-|-]; is defined as

P Jj—1
S[Q,Da s 7p,0’2<77 s apU]l = H (sl,jp + e(jpv kp)sjp,kp) .
j=2 k=2

We use the shorthands s;; = k' - k7 and i, = p(i), and the object 6(j,, k,) equals 1 (zero)
if the ordering of the legs j,, k, is the same (opposite) in the ordered sets p(2,...,p) and
0(2,...,p). In other words, it keeps track of labels which swap their relative positions in
the two permutations p and o. At rank r < 4, for example,

K9 K93 K321
Kig = —, K123 = + ; (4.2)
512 5125123 5235123
1 K934 K914 Kiopa K3401 K3om
Ki234 = + + o + , (4.3)
51234 \ 5125123 5235123 512534 5345234 5235234

and figure 6 illustrates that the given expression for K234 reproduces the five cubic dia-
grams in a color-ordered SYM five-point amplitude with an off-shell leg.

The ghost-number zero Berends-Giele currents K € { A7, 15 Wi Fio )} gen-
eralize the ghost-number one analogues Mjs. ), studied in [12-14] which correspond to the

unintegrated multiparticle vertex as
Va= AL =My, (4.4)
One can show using the equations of motion (3.61) that the BRST charge acts on Berends-

Giele currents of any ghost number by simple deconcatenation of labels

p—1

QMg p=> M. ;M1 p, (4.5)
=1

HSee appendix A.3 for a more mathematical approach to this diagrammatic construction.
2Tn the conventions of [29], S[o|p]1 is symmetric under exchange of o and p. For example, the rank two
and three versions of its inverse are given by
1 1 1

_ _ _ 1
STH22li = —, ST'[23]23]: = + . ST'[23132) = — .
512 $125123 5123523 5123523
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NN N

K{[[1,2],3],4] K{[1,12,3]],4] K{[1,2],13,4]] Ki1,12,13,410] K{1,[(2,3],4]]
512512351234 523512351234 51253451234 534523451234 523523451234

Figure 6. The Berends-Giele current K234 of (4.2) is given by the sum of the superspace expres-
sions associated with the above five cubic graphs with one leg off-shell. The mapping between the
cubic graphs and BRST blocks is introduced in section 3, figure 2 and explained in more detail in
appendix A.

as well as
p—1
QAT P = (M"Wiz..p) + ki, pV12 p+2 Via.. 3“4]+1 P V]'Jrl...pA%...j)
7=1
1 Pl
QW?Q...p: Z()\’Ymn)a 12.. p+z Via.. ]Wj+1 P Vj+1---pwf2...j)
J=1
o1 (4.6)
QFE", = 2kiy (" Wiz p) + > (Va2 jFI = Vicr pFi5")
=1
p—1
+ 2[./412 ]( ]Wj+1...p)_-/4£+1 p()\'Y ]W12J)]
j=1

By comparing the above equations with (3.61) one sees that the kinematic poles in the defi-
nition of the Berends-Giele currents absorb all the explicit kinematic invariants (k2-7=1.k7)
from the right-hand side of the BRST variations. The extra simplicity of (4.5) and (4.6)
compared to (3.61) suggests that the Berends-Giele basis of tree subdiagrams is particularly
suitable for a systematic construction of BRST-invariants, see section 5.

4.1 Symmetries of Berends-Giele currents

Under the momentum kernel multiplication (4.1), the Lie-symmetries of the multiparticle
superfields K12, are mapped to a different set of Berends-Giele symmetries of K2, 5,

Ki2+ K21 =0, K2z — K321 = K123 + Kaz1 + K312 =0,

which leave the same number (p—1)! of independent components at rank p. Universality of
the momentum kernel implies that any of the Ky, shares the same symmetry properties
as M., discussed in [12-14], namely!'?

Kisyi4ap = (=1)" Ky qupr - (4.7)

The notation {87} represents the set with the reversed ordering of its ng elements and LU
denotes the shuffle product. Furthermore, the convention K 4.8 = Zaeamﬁ /C,..{a}... has

13 As a consequence, we have K5 =0, V a, B.
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been used. The multiparticle label B in Kp now carries Berends-Giele symmetries (4.7)
rather than the Lie symmetries (3.1) of the associated Kp.

The symmetry properties (4.7) of rank-p currents can be viewed as rank-(p+1) Kleiss-
Kuijf relation [30, 31] obeyed by Yang-Mills tree amplitudes where the last leg p + 1 is
off-shell and not displayed, leaving (p — 1)! independent components. Note, however, that
the off-shell-ness of one leg in the diagrammatic interpretation of Berends-Giele currents
obstructs an analogue of the BCJ relations [26] among Yang-Mills tree amplitudes.

On the other hand, an interesting perspective on BCJ relations is opened up when the
recursions (3.54) for BRST blocks are rewritten in terms of Berends-Giele currents. This
observation is presented in appendix B, which leads to a simplified rewriting of one-loop
kinematics in terms of SYM amplitudes as compared to [10].

5 Application to the one loop cohomology

In this section, we explore examples at one-loop how the universal multiparticle equa-
tions of motions (3.61) and the simplified contact terms in the Berends-Giele picture (4.5)
and (4.6) facilitate the construction of BRST invariants. The scalar BRST cohomology at
one-loop has been investigated in [10] and identified in the non-anomalous part of open
string amplitudes. The trial-and-error construction of the invariants’ expansion in terms
of Berends-Giele currents is now replaced by a clean recursion. The same mechanisms are
applied to novel vectorial invariants which play a key role in closed string amplitudes at
one loop, e.g. for S-duality [20] and for loop momentum dependence in the numerators of
the field theory limit [21].

5.1 Tree level SYM amplitudes

As shown in [12], tree amplitudes AYM of ten-dimensional SYM theory take an elegant
form in pure spinor superspace,

AM1,2,..n) = (Biz.n1Va) - (5.1)

The central object Fqo.,—1 belongs to the BRST cohomology in the momentum phase
space of n massless particles.'* TIts explicit form can be written in terms of the Berends-
Giele currents associated with the (generalized) unintegrated vertex Vy as follows,

p—1

Ev p= ZMIQ...ij-l-l...p- (5.2)
=1

The pure spinor bracket (...) in (5.1) denotes a zero-mode integration prescription of
schematic form (A30°) = 1. It extracts the gluon and gluino components of the enclosed
superfields [17] as has been automated in [32]. The explicit form of the SYM amplitudes
in terms of polarization vectors and gaugino wavefunctions up to multiplicity eight can be
downloaded from [46].

MThe restriction on the momentum phase space follows from the fact that the solution Mi2. ,—1 in
Fr2..n—1 = QMi2.. n—1 is proportional to a divergent propagator sf;”n%.
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The BRST cohomology techniques that were used in [12] to cast the SYM scattering
amplitudes into the form (5.1) also played a crucial role in obtaining the general solution
of the n-point tree-level amplitude of massless open superstrings [13, 14].

5.2 Scalar BRST blocks at one-loop

In [10] the pure spinor zero-mode saturation rules in one-loop amplitudes of the open
superstring were used to obtain an effective prescription to identify contributing pure spinor
superspace expressions: the zero modes of d,dgN™" extracted from the external vertices
are replaced by (AMy[™),(\y™)s . This prescription leads to the BRST-closed expression
(MW (M"WI)EE - in the four-point amplitude [19] and motivates the following higher-

point definitions,?
1
TA,B,C = g(AmeWA)(ApanB)an + (C AN A7 B) ) (53)
1
MA,B,C = g(/\’YmWA)()\'YnWB)JTgm + (C > A,B) . (5.4)

Using the universal form of QW§g and QF 3", one sees that the BRST variation of (5.4) is
given by deconcatenation of the multiparticle indices. Regardless of the ranks |A|, |B| and
|C|, the pure spinor constraint projects out all terms in (4.6) with an explicit appearance
of A\, and we are left with the BRST-covariant expression

[Al-1
Q MA7B,C = Z (Mal...ag Mag+1,..a|A‘,B,C - Ma4+1...a‘A| Mal...ag,B,C' ) + (A A B7 C) . (55)
/=1
Note that Q7123 = QM 23 =0 and that T4 p,c and My g ¢ are totally symmetric in A,
B and C.

5.3 Scalar BRST cohomology at one-loop

The definition (5.4) of building blocks M 4 g ¢ was used in [10] to construct BRST invariants
Chja,B,c With up to eight particles by trial and error. We will now present a recursive
method to generate them for arbitrary ranks.

The results of [10] suggest that each term of the form M;M4 p ¢, with i a single-particle
label, can be completed to a BRST-closed expression of the schematic form

Cia,p,c = MiMa pc + Z Misy fsy(M....) (5.6)
{0}#0

As a defining property of the BRST completion for M; M4 g c, particle i always enters
in a multiparticle Berends-Giele current Mp. This is formally represented by a sum over
(non-empty) ordered subsets {0} of the labels {a;}, {b;}, {ci} in A, B, C' which join particle
i in My(sy. The functions fs) represent the accompanying linear combinations of building
blocks M4 .c.

15TA,B,C and Ma, p,c were denoted by Tﬁ,Tng and Mﬁ;MéMé in [10], and the representation of Wa
and Fp given in the reference is different from the current setup.
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Nilpotency @2 = 0 implies that QM4 g ¢ is also BRST closed, and the form of (5.5)
suggests that it can be expanded as

QMA,B,C = Ca1|a2...a|A‘,B,C’ - Ca‘A‘\al...a‘A‘_l,B,C + (A A B’ C) ° (57)

We have picked up all the terms M; Mp g r in (5.5) with single-particle label ¢ and promoted
them to BRST completions C;|p g r. Examples of (5.7) can indeed be checked to hold once
the explicit expressions for Cjp g are generated. At five points for instance, Cyjo345 =
M1M237475 + M12M37475 — M13M27475 (tO be derived ShOI‘tly) allows to verify

QMi2345 = M1 Mag a5 + MiaM3 45 — Moz My 45 — M3Mis 45
(5.8)
= C123.45 — C3)124,5-

Now we turn towards the explicit construction of the BRST completion f5 (M. ..) in (5.6).
The task is to cancel terms like M; (C’aw‘a1 aja)-1,B,C ~ Cal\az...a‘A‘,B,C) as they appear in
Q(M;Ma ) by (5.7). In order to determine fi5(M...) with this property, we define
a linear concatenation operation ®; acting on the multiparticle labels of Berends-Giele
currents M4 as follows,

M’i ®a1 Malag...am‘ = Mialag...am‘ . (59)

In order to ensure that the concatenation ®,, preserves the KK symmetries Mala%a‘ Al
of the Berends-Giele currents, we have to specify the leg a; appearing next to the con-
catenating label ¢ on the right hand side: for example, My3e # —Mjo3 implies that
My ®3 Mso 7& — My ®9 Ms3 even though Mgy = —Ms3. The definition (59) would be
inconsistent with linearity of ®; if the subscript j is unspecified. The ®; action on addi-
tional Mp ¢ p building blocks is defined to be trivial,

Mi ®a1 (Malag a|A‘MBCD) (M ®a1 Malag...a‘A|)MB,C,D-

As we will see in the following Lemma, there is a neat interplay between action of the
BRST charge and the ®; operation defined in (5.9).

Lemma 1. If Cjj4 g ¢ as defined by (5.6) is BRST closed, then its concatenation satisfies
Q(M; ®@; Cjjap,c) = MiCjjaBc- (5.10)

For example, Cy345 = M2Ms45 is BRST closed and My ®3 Co345 = Mi2Ms s
satisfies Q(M1 ®2 Cy345) = M1MaM3 a5 = M1Coj3 45

Proof. BRST closure of Cj 4 p ¢ amounts to the following ghost number four statement

CjlaB,c) Z ot Froy(M.M...) =0
{o}

with linear combinations Fi,; of ghost number three objects M.M.... Since M;(,y are
independent for different sets {o}, the F’ (o} must vanish individually. Using the deconcate-
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nation formula (4.5), one can rewrite the left hand side of (5.10) as follows:

Q(M; ®; Cjapc) =Q(MijMapc + Z Moy fay(M.,...)

{6340
= M;M;Mapc+ Y MMy frsy(M...) + > Mjoy Fiop (MM, )
{6}#0 {o}
= Mi{MjMA,B,C + Z Mj{a}f{a}(M-,-,-)}
{6}#0

= M;CjjaB,c -
(5.11)
In the first step, we have isolated the first term of QM;j51 = M; M5y +. .. and the second
step made use of Fy,) =0V {0} as argued above. [J

The following recursive definition can be checked to generate BRST closed expressions
for arbitrary ranks

Cijas.c = MiMap.c+ [Mi®a; Cayjas...a 4.8, ~ Mi®a s Ca g |ar.a g _1.8.0+ (A < B,C)]

(5.12)
Q-invariance follows from (5.7) and Lemma 1 (using the definition Cjy 4 p = 0 for single-
particle slots). The are 7 — 2k terms in (5.12) where k is the number of single-particle slots
among A, B,C. Since M;®; increases the multiplicity of Cjp g on the right hand side
by one, we can regard (5.12) as a recursion in |A| + |B| + |C|. Its first applications up to
multiplicity 1+ |A| + |B| + |C| = 6 are listed below

Cij234 = M1Ma 34 (5.13)
Cija3a5 = Mi1Mas a5 + M1 ®2Cy3 45 — M1®3C5245
= M1 Moz 45 + MioM3 45 — Mi3Ms 45
Chj23a,56 = M1Maza 56 + M1®@2C3456 — M1®4Cy 2356
= M1 Mo3y 56 + MiaM3za 56 + MiogMys56 — Mi2aMs 56
— MyyMs3 56 — MisoM3 56 + MiazMos 6
Chi23,45,6 = M1Mas 456 + M1®@2C545 36 — M1®3C34526 + M1®@4Cyp356 — M1®5C5)23 4.6
= M1 Ms3 456 + MioMys 36 — M13Mys 26 + MiaMog 56 — MisMaz a6
+ Mi2aM3 56 — Mi3aMos 6 + Miaa M3 56 — Misa M3 46
— Miyos M3 46 + Migs Mo a6 — MiagMo 56 + Misz Mo ap,

and higher-rank expressions are easily obtained as well. Even though the number of terms
in Cyo3456 and Cypa3 456 can be reduced by virtue of the Berends-Giele symmetry Moy +
M40 = —Mos14, we keep the expression in the form M compatible with further recursion
steps (5.12).

As detailed in appendix B, the €4 g ¢ boil down to linear combinations of SYM tree
amplitudes [10]. Nevertheless, their component expansion up to multiplicity seven can be
downloaded from [46].
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5.4 Vector BRST blocks at one-loop

In the five-point closed string computation of [20] the zero mode saturation in the left /right-
mixing sector where the b-ghost contributes II"d.dg led to the definition

1
Wikas = ﬁ()\fy"WQ)()\fpr?’)(W4fym"pW5) +(2,3]2,3,4,5), (5.14)
which satisfies
QW%A,E) = —()\’}/mWQ)T3’4’5 — (2 <~ 3,4, 5). (5.15)
The notation (1,42 | 71, ..., 4,) means a sum over all possible ways of choosing two indices
71 and 49 out of i1, ..., 1,, for a total of (g) terms. Furthermore, another type of left /right-

mixing zero-mode saturation was possible which required taking II™d,dgNy, from the
integrated vertex operators, leading to terms of the form A5'T345. The key observation
in [20] was that the vectorial superfield

T3 45 = A3 Ts45 + (24> 3,4,5) + W35 45 (5.16)
has a BRST variation in which the vector index is carried only by momenta
QTZW,?SA,E) = kganTgA,g, -+ (2 ~ 3,4, 5) . (5.17)

This fact played a crucial role in demonstrating BRST invariance of the closed-string five-

point amplitude [20] because it allows the BRST variation of the terms contracting left-

and right-movers to factorize and cancel the variation of the holomorphic squared terms.
To generalize this construction to higher multiplicity one defines

1
Wisep = E(/\'YnWA)()"YPWB)(WC’YmanD) + (A, B|A, B,C, D)

(5.18)
TI{LB,C,D = AZLTB7C7D + (A — B, C, D) + WZB,C,D
with multiparticle labels A, B, C, D as well as their Berends-Giele counterparts,
1
WXB,C’,D = ﬁ(AVnWA)()"YpWB)(WC’YmnPWD) + (Av B|A7 B,C, D) ( )
5.19

Mipgcp=AlMpcp+ (A< B,C,D)+Wigcep,

which are totally symmetric in A, B, C, D. The BRST variations (4.6) — in particular the
universality of the non-contact terms to arbitrary A, B, C and D — imply that

QWipcop= —(M"Wa)Mpcp (5.20)
|A|—1

m m
+ § (Mal-naj aj+1,..a|A‘,B,C,D - Maj-&-lu-a\A\Wal...aj,B,C,D)
7=1

+ (A< B,C,D)

QMZpop=kiMaMpcp (5.21)
|A[—1
m m
+ Z (Mal-"aj Maj+1~--(l|A‘,B,C,D - Maj+1~--a\,4|MalA..aj,B,C,D)
Jj=1

+ (A< B,C,D).
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The vectorial building block M} ¢ p causes the first explicit appearance of multiparti-
cle vector superfield A%, see (5.19). Its multiparticle equation of motion in (4.6) is re-
quired to derive (5.21) at arbitrary multiplicities |A|,...,|D|. With Mg = A*AZ and the
Wg, Fg™ constituents in the definition (5.4) of M ¢ p, we have by now seen all the four
superfields {AB, AR W, F"} in the multiparticle vertex operator Up entering one-loop

a

BRST blocks.

5.5 Vector BRST cohomology at one-loop

It is interesting to study vectorial uplifts MsMpc p — MAMEL,C’DJ- of the scalar BRST
invariants C|4 g,c as given by (5.13). The deconcatenation terms due to the second line
of (5.21) drop out from the BRST variation, but the contributions from the first line remain
where the free vector index is carried by external momenta k™. The first example

Bilosas = MiM3s,5, QBlhz,5=— [k E1aMsas + (2 ¢ 3,4,5)] (5.22)

obtained from (' 3 4 appeared in the context of the five point closed string amplitude [20].
Its six point generalization

Bﬁ23,4,5,6 = M1M£,4,5,6 + My ®2 B£7|13,4,5,6 — My ®3 Bgr2,4,5,6
resembles (93 4 5 and satisfies,
QB{l3.456 = —ks E132Mas6 + k3" E123Mys6 + [E{ViCliazs6 + (44 5,6)] . (5.23)

The higher-multiplicity examples are similarly analysed. The fact that the £[" coefficients
in both (5.22) and (5.23) are Q-exact!® hints the existence of vectorial BRST invariants.

Vector BRST invariants can be constructed using the same procedures as in the scalar
case. We assume that each superspace expression MMy g o p with single-particle label ¢
admits a BRST-invariant completion of the form

Clypop=MMigop+ Z Mgy iy (kM. M) (5.24)
{8120

Any term in the sum over ordered subsets {6} of AU B U C U D incorporates label i in a
multiparticle M;¢s1. The accompanying f{%} denote vector combinations of building blocks
M p g (see (5.19)) and k}fMp Fc.

Then, as already argued in the scalar case, Q> = 0 and the assumed uniqueness of
the BRST completions (5.6) and (5.24) implies that the BRST variation (5.21) can be
rewritten as

QMXByc7D = CCTL?|a2...a‘A‘,B,C,D - CCTLTAHal...a‘AFl,B,C,D + 5\A|,1k£rical\B,C,D + (A e B? C? D)

(5.25)
In the single-particle case |A| = 1, the first line of (5.21) generates the defining term
M;Mp c,p of a scalar invariant (5.6), and the definition C'Z.%,B,Cp = 0 must then be

16Recall that Elzmp = QMlzmp and V401\23,5,6 = Q(M4 X1 01\23,5,6) by Lemma 1.

— 26 —



used to suppress the first two terms of (5.25). We take advantage of (5.25) to rewrite
Q(MiMZfB,QD) in terms of MiC;?B,C,D,E and M;Cj g o pky. Hence, the BRST comple-
tions ffg} in (5.24) are determined by the BRST ancestors of M;Cj ,c,p and MiCﬁB,C,D,E'
The former are already known from Lemma 1, and the latter can be easily found by the
same properties of the concatenation operation (5.9). Similar to the scalars Mp ¢ p, the
®; action on vector BRST blocks is defined to be trivial,

M; Qq, (M:f@,,,a‘AlMB,C,D,E) = (M; Rq, Malaz...aw)Mﬁcp,E-
Lemma 2. If CﬁA,B,C,D as defined by (5.24) is BRST closed, then its concatenation
satisfies
QM; ®; CiYy po.p) = MiClls g.c,p- (5.26)
Proof. The arguments used in the proof of Lemma 1 can be repeated for vectorial combi-
nations f?g} of K™M... and M™. . at ghost number two as well as

QCapop) =Y My Py (B MM. ., MM™. ) =0.
{o}
The ghost-number-three objects Ff;} built from k™M.M... and M .M  again vanish by
independence of the M;(,y such that

QM; ®; Ciy pop) = Mi{MJMZfB,C,D + ) My f fg}} +Y My iy
{0370 {o} (5.27)
= MiCﬁLA,B,C,D

by (5.24). O

Then, again in analogy with the scalar case, a recursive definition of vector invariants
can be obtained from (5.25) as follows,

m — m m . m
C'|A,B,C,D ZMiMA,B,C,D + [5|A|,1ka1Mi ®ay C'allB,C,D + M; ®q, ailaz...a;4),B,C,D

' - (5.28)
- MZ ®Q\A| Ca|A‘|a1...a|A‘_1,B,C,D + (A A B7 C7 D)] .

BRST invariance follows from (5.25) and Lemma 2. In view of the four slots A, B,C, D,
the bracket [...] on the right hand side of (5.28) contains 8 —n terms where n is the number
of single-particle slots.

The first non-trivial applications of (5.28) are easily checked to be BRST closed,

Thsas = MIM3's 45+ [K3' M1 @2 O35+ (2 ¢ 3,4,5)]
= MiM3% 45+ (ko MiaMs a5 + (2 <5 3,4,5)]
C{TQSA,S,G = M1M£,4,5,6 + M ®2 Cg|13,4,5,6 — My ®3 C§T2,4,5,6
+ [k My ®4 Cyjaz56 + (4 4+ 5,6)]
= M1 M3 456+ MioM3'y 5 6 — M1z M3y 5 6
+ [k§ MiasMyse + (3 <> 4,5,6)] — [k5* MigaMyss + (2 <> 4,5,6)]

+ [kf'M1aMas 56 + MigoMs 56 — MisgMas g+ (4 <+ 5,6)]
(5.29)
and higher-multiplicity analogues are also straightforward to obtain. Component expansion
up to multiplicity seven are available from [46].
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6 Conclusion and outlook

In this work, we have constructed multiparticle vertex operators U'?+P through a recur-
sive prescription described in subsection 3.4. This generalizes and streamlines the earlier
construction of BRST-covariant building blocks in [12-14]. The coefficients of conformal
weight-one fields {06, 11", d,, N™"} in Up are interpreted as multiparticle superfields
Kp € {AB AB W& FB 1} of ten-dimensional SYM with shorthands B = 12...p for ex-
ternal p-particle trees. Their equations of motions are shown to have the same structure
as their single-particle relatives — see (3.61) versus (2.1). In addition, they are enriched
by contact terms where the multiparticle label B is distributed into two smaller subsets.

These multiparticle SYM fields furnish a kinematic analogue of the structure con-
stants f%¢ of the color sector, and their Lie symmetries (3.1) guarantee that the tree-level
subgraphs described by Kp are compatible with the BCJ duality between color and kine-
matics [26]. Since the BCJ duality has been observed to hold in various dimensions, it will
be interesting to explore lower-dimensional setups for multiparticle equations of motion.

It is worth emphasizing that the Lie-algebraic nature of the BRST blocks is com-
pletely general and can be understood in terms of its basic SYM superfield constituents.
The particular combinations of single-particle superfields constituting their multiparticle
generalizations defined in this paper are suggested by OPE computations among vertex
operators in the pure spinor formalism. Moreover, they are in lines with the BRST co-
homology organization of scattering amplitudes suggested in [45] and brought to fruition
in [10, 12-14]. Given the general Lie symmetries obeyed by the multiparticle SYM su-
perfields and their appearance in the OPEs of vertex operators, it is therefore natural to
suspect that the BCJ duality between color and kinematics might be valid at the level of
external tree subdiagrams to all loop-orders [63].

In section 5, which is devoted to one-loop applications, the zero mode saturation of
the minimal pure spinor formalism [19] singles out some elementary combinations of Kp
with beneficial BRST properties — such as scalars M4 g ¢ in (5.4) and vectors Mg cp
in (5.19). We have derived recursions (5.12) and (5.28) to construct scalar and vectorial
cohomology elements at arbitrary multiplicity out of MpMy g c and M EMT,B,C, p- We
can learn from the five-point results in [20, 21] that vector invariants are crucial for one-
loop amplitudes among closed string states, where cross-contractions between left- and
right-moving worldsheet fields occur.

Since the number of left-right contractions is unbounded for multiparticle one-loop am-
plitudes, the need for BRST invariants extends to tensors of arbitrary rank. The construc-
tion of tensorial BRST-blocks generalizing Ma p,c and Mj'p -, as well as their BRST-
invariant embedding into full-fledged closed string amplitudes is left for future work [39].
Moreover, it remains to clarify how these tensors are related to the gauge anomaly of open
superstring amplitudes and its cancellation [36, 37].

For all of the aforementioned building blocks, the superspace representation in terms
of elementary SYM superfields is explicitly accessible from this work. So the zero mode
integration prescription of the schematic form (A\36°) = 1 [17] as automated in [32] allows
to derive supermultiplet components in terms of gluon polarization vectors and gaugino
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wave functions. The gluon components of all the scalar and vector cohomology elements
up to multiplicity seven can be found on the website [46].

Finally, it is worthwhile to note that the (non-minimal) pure spinor formalism can be
interpreted as a critical topological string [18]. As shown in [60], the BRST cohomology of
a topological CFT is endowed with a Gerstenhaber algebra structure and it would therefore
be interesting to investigate possible connections with the BRST covariance property of
multiparticle vertex operators. As pointed out by in [59], the associated Gerstenhaber
bracket among vertex operators is a promising starting point to relate string amplitudes of
different particle content. These references motivate further study of multiparticle vertex
operators in view of both mathematical structures and applications to scattering of massive
string states.
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A Physics of BRST blocks versus mathematics of cubic graphs

In this appendix we connect the recursive construction of BRST blocks with mathematical
operations on planar binary trees, see [3, 4, 24] and references therein. As explained in
the references, a mapping between planar binary trees and iterated brackets gives rise to
an explicit Lie algebra basis construction. This will be used to manifest the Lie symme-
tries (3.1) of the BRST blocks and emphasize their connection with cubic graphs which
play a central role for the duality between color and kinematics [26].

A.1 Iterated bracket notation

The antisymmetry of a rank-two BRST block K, 4, can be made manifest with the notation
K4, ,a5) = Kajay- In general, the defining property of a rank-p BRST block to satisty all
Lie symmetries £ with k < p motivates the following notation with iterated brackets,

K[a1,a2] = Kajas
K[[al,az},as] = K[amz,as] = Kajazas (A1)
K([...[[a1,a2) 3], ap-1].ap] = Klaraz...ap_1.ay) = Karaz..ap -

The virtue of this bracket structure for the duality between color and kinematics was
already emphasized in [58]. The above notation reminds of the recursive definition of
BRST blocks which features a repeated antisymmetrization (aias...aj—1 <> a;) with j =
2,3,...,p. Moreover, they are in lines with the symmetry matching (3.2) with color factors
upon expanding the structure constants

K.

a17a2]7a3]7“-]7a1771]7

o 5 te ([ [T, T, T%), .. ], T%1], %)) . (A.2)

— 29 —



AU

K12 1,2],3],4 K([11,2),3],4,5]]

Figure 7. Examples of the mapping between cubic graphs with one leg off-shell and BRST blocks.
Together with the conventions (A.1), the fact that the BRST blocks furnish an explicit representa-
tion of the “Jacobi identity of trees” of the type discussed in [26] becomes manifest.

Furthermore, more general bracketing patterns can always be brought to the canoni-
cal form (A.1) by using the antisymmetry and Jacobi identity satisfied by the brackets.
For example,
K pang = —Kjz2s,1,4 = K314 (A3)
Kin2,3.4) = K(1,2,31,4) — K[[[1,2),4),3) = K1234 — K243 .
Using the iterated bracket notation introduced above the explicit expressions for the
Lie symmetries (3.1) can be easily reproduced. To see this one uses the antisymmetry of
the outer commutator to write K4 g = —K|[p, 4 (here A and B represent arbitrary com-
binations of brackets acting on the multiparticle labels) and applies the conventions (A.1).
For example, the £4 symmetry in (3.1) is reproduced by Kjj1 9 (3.4 = —K]3,4],1,2]]> Which
implies that Ki234 — K1243 = — K312 + K3401.

A.2 Diagrammatic representation of BRST blocks and their recursion

In the mathematics literature, such as [3, 4, 24] and references therein, there is a well-known
mapping between planar binary trees'” and iterated brackets which is used to construct
an explicit Lie algebra basis [3]. Given the iterated bracket convention discussed above,
this can be immediately borrowed to create a mapping between cubic graphs with one leg
off-shell and BRST blocks,'® see figure 7. The algorithm is as follows. First index the
external legs with the labels {1,2,...,n} from left to right and, starting from the left, for
each vertex associate the bracket [A, B] where A and B represent the labels to the left and
to the right of the vertex (which may already be partially bracketed themselves).

Given the mapping described above, it is interesting to consider the effect of the graft-
ing [4, 24] operation of trees in their associated BRST block images. The grafting of two
planar binary trees t4 and tp is represented by t4 Vtp and joins the roots (i.e. the off-shell
leg) of t4 and tp to create a new root. It is not difficult to see that if K4 and Kp are
the BRST blocks associated with t4 and ¢p then t4 Vip is mapped to K4 pj, see figure 8.
Note that the definition of A3***? in section 3 can be interpreted (up to the redefinitions
by Hiz. ) as the grafting of two trees with multiplicity p — 1 and 1.

"The precise definitions can be found in [3, 24]. But for our purposes, a planar binary tree is nothing
more than a cubic graph with one leg off-shell.

18This prescription was already hinted (up to an overall sign) in the diagrammatic derivation of the
symmetries obeyed by the building block T discussed in [13, 14]. The mapping now extends to the whole
class of multiparticle superfields Kp € {AZ AT W§, FE™}.
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aq as CL‘A| b1 bg b\B| a ... a|A| b|B|

K4 Kp KB

Figure 8. The grafting operation on trees and its corresponding mapping in terms of BRST blocks.

1 2 3 1 2 3

K11,2),3) K71, (2,3))
8125123 5235123
Figure 9. A diagrammatic derivation of the Berends-Giele current Ki23. The two cubic graphs

correspond to the two possibilities of bracketing three external legs, [[12]3],[1[23]] and give rise
Kaoa 4 Kaor  ypder the mapping described below together with the

to the expression Kio3 = T+ A

conventions (A.1).

A.3 Diagrammatic construction of Berends-Giele currents

It is possible to find the explicit expressions of Berends-Giele currents g in terms of BRST
blocks Kp with a diagrammatic prescription which uses the mapping discussed above. This
can be used as an alternative to the inverse momentum kernel formula given in (4.1).
The Berends-Giele current with multiplicity p is obtained by the sum of the expressions
associated with all the p + 1 cubic graphs with one leg off-shell, whose total number is
given by the Catalan number C,_;. It is convenient to recall that the Catalan number
Cp—1 represents the number of different ways that p factors can be bracketed and each
possibility has a direct representation in terms of cubic graphs. To each graph a BRST
block K7 ;. is assigned with the corresponding bracketing (which reflects the vertex
structure). In addition, an inverse Mandelstam invariant should be multiplied for each

non-external edge.

The two possibilities of bracketing three external legs, namely [[12]3] and [1]23]], give
rise to the expression for K193 under the mapping described above, see figure 9. Similarly,
the five different bracketing possibilities of four external legs

[[[1213]4], [[1[23]}4], [[12][34]], [1[2[34]]], [1[[23]4]] (A4)

and their corresponding mapping in terms of cubic graphs and BRST blocks leading
to the expression Kjo34 were depicted in figure 6. Higher-multiplicity examples are
similarly handled.
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A.4 Different superfield representations versus Lie symmetries

The definition of the hatted BRST blocks at multiplicity p has an explicit antisymmetriza-
tion of the form 12...p — 1 <> p, where p is a single-particle label. As discussed above,
the resulting BRST block is represented by a iterated bracket where the second slot of the
outer bracket is a single-particle label. This motivates to check the outcome of a more
general hatted superfield definition featuring a multiparticle label instead of p. As the
brief discussion below suggests, the result is compatible with a linear combination of the
“standard” BRST blocks following from the iterated bracket notation.

To see this, consider a rank-four hatted BRST block with the symmetry structure
(12 <> 34) instead of (123 <+ 4) as in (3.35). For example,

All234) — [A}f(ku AR L AR, (12 & 34)] ‘ (A.5)

1
2
It is not difficult to show that 17[[172}7[374“ = /\QAOELQ]’B’A‘” satisfies

QV[[LQ],[SAH = (k' k?) [V2V341 — (1 2)] + (K kY [V3‘7124 — (B3 )]+ (K2 ViV

(A.6)
where the equation of motion for D(aflg) was contracted with A*\? for the sake of sim-
plicity. Therefore the redefinition

Vinapa) = Vinapay + (' k%) [VeHsa — (1< 2)] + (k% - k%) [VaHiz4 — (3 <> 4)] (A7)

satisfies
QVij12),3.4) = @V1234 — QVi243 . (A.8)

This is compatible with the expectation from the bracket notation since V][ 9] 34 = Vi234—
V1243, see (A3)

B BCJ relations and one-loop scalar cohomology elements

The scalar cohomology elements Cyj4 g ¢ constructed in section 5.3 were argued in [10] to
be linear combinations of SYM tree-level amplitudes multiplied by quadratic polynomials of
Mandelstam invariants. Momentum conservation as well as BCJ and KK relations among
color ordered SYM amplitudes AYM(...) [26, 30, 31] lead to a multitude of different such
representations for Cy 4 p,c. In the following, we provide convenient representations at all
multiplicities!® in the sense that the total number of terms is systematically reduced and

AYM

inverse powers of Mandelstam invariants are avoided. As we shall see, these represen-

tations of C|4 ¢ are intriguingly related to BCJ relations among tree-level amplitudes.

19The explicit representation given at multiplicity five in [10] fails to satisfy the above criterion of having
local Mandelstam coefficients along with A¥™(...). The six-point representation was given only indirectly
4
as an expansion in terms of AT | which represent the o' corrections of the string tree-level amplitudes.

— 32 —



Figure 10. Diagrammatic interpretation of Mg4, pi-

B.1 A shuffle formula for BCJ relations

Let us first define an operation S[A, B] which concatenates two multiparticle labels A and
B with Berends-Giele symmetries (see section 4.1) into one such set,
|Al B
_ i—j+]A]—1
MS[A,B] - Z Z(_]‘)Z J | ‘ SaibjM(alag...ai_lma‘Na‘A‘,1...ai+1)aibj(bj_l...bgbll_ubj_;,_l...b‘B‘)'
i=1 j=1
(B.1)
One can interpret Mg(4 p) in (B.1) as attaching two Berends-Giele currents M4 and Mp to
a cubic vertex and expressing the resulting diagram in terms of Mo at overall multiplicity
|C| = |A| + | B, see figure 10. For example,
Mg ,9) = s12Ma2
Mgy 23] = s12M123 — s13M132 (B.2)
M1 ,234) = s12Mi234 — 813(Mi324 + Mi3a2) + s14Mi432
Mg12,34) = —s13M2134 + s14M2143 + S23M1234 — S24Mi243 -
It turns out that the S[A, B] product defined by (B.1) can be used to generate BCJ
relations among tree amplitudes [26]. Recalling [12] that SYM tree amplitudes are given
by AYM(1,2,...,n) = (ViEas. ,,), BCJ relations among AYM can be written as

(ViEsap) =0, VA,B, (B.3)
for example
0= (ViEspay) = s234™(1,2,3,4) — s244¥M(1,2,4,3)
0= (ViEgpa15) = s23A"M(1,2,3,4,5) + s3554Y"(1,2,5,4,3)
— s594(AYM(1,2,4,3,5) + AYM(1,2,4,5,3))
0= (ViEgpsa5) = s3aA " M(1,2,3,4,5) — s354¥"(1,2,3,5,4)
— 500 AYM(1,3,2,4,5) + s25AYM(1,3,2,5,4).
0= (ViEspaus6) = s234 M (1,2,3,4,5,6) — 5564V (1,2,6,5,4,3)
— 504(AYM(1,2,4,3,5,6) + AYM(1,2,4,5,3,6) + AYM(1,2,4,5,6,3))

+ 505(AYM(1,2,5,6,4,3) + AY(1,2,5,4,6,3) + AY™(1,2,5,4,3,6)).
(B.4)
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Similar formulee for BCJ relations using shuffle products can be found in?° [7, 8, 49]. We
have explicitly verified that (B.3) holds up to multiplicity |A| + |B| + 1 = 7 using the data
from [46].

B.2 (Cya,B,c) from the BCJ shuffle formula

Since (B.3) also holds for A or B of the form S[C, D], we can iterate the product (B.1)

and generate further vanishing identities for SYM subamplitudes from FEgg(a p),c). Any

AYM

partition of A, B and C' leads to an relation with local polynomials of degree two in

Mandelstam invariants. The examples

0 = (ViEsgsp3),4) = 5235344 M (1,2,3,4) — 52350447 (1,3,2,4)

0= (ViEssps23) = — 345454 ™M(1,2,3,4,5) + sg55454 ™M (1,2,3,5,4)

+ 594545AYM(1,3,2,4,5) — so5545 A (1,3,2,5,4)
0= (ViEssis.281) = — 565454 M (1,2,3,4,5,6) + sses06A (1,2, 3,4,6,5)
M(1,2,4,3,5,6) — s56536AM(1,2,4,3,6,5)
M(1,4,2,3,5,6) — s56536AYM(1,4,2,3,6,5)
M(1,4,3,2,5,6) + s56506A7M (1,4, 3,2,6,5)
(1,2,3,4,5,6)

+ 856835AY
Y

+ S56535 A
Y

— 8565254

0= (ViEs(s(s.45,23]) = + S46534A M (1,2,3,4,5,6) + s56531 A" (B.5)

+ 546534 AM(1,2,3,4,6,5) — 346535AYM( 2,3,5,4,6)
— s56535AYM(1,2,3,5,4,6) — sse53547M(1,2,3,5,6,4)
— 546536 AM(1,2,3,6,4,5) + s56536 A M (1,2,3,6,5,4)
— 546504 AYM(1,3,2,4,5,6) — s56504AYM(1,3,2,4,5,6)
— 546524 AM(1,3,2,4,6,5) + 46525 A" M(1,3,2,5,4,6)
+ 556505 A M(1,3,2,5,4,6) + ss65054YM(1,3,2,5,6,4)
+ s46506 A% (1,3,2,6,4,5) — s5596AY (1 3,2,6,5,4)

can be checked to be a consequence of the BCJ relations [26]. Note that Egg(4, 5], in the
five-point example is chosen as (A, B, C = 4,5, 23) rather than (A, B,C = 23,4,5) in order
to minimize the number of terms.

The motivation to delve on the redundant BCJ relations (B.5) in addition to (B.4)
stems from their intriguing connection with the AYM representation of the scalar cohomol-
ogy elements Cyj4 p.c. Up to six-points, we have

—(Clj2,34) = —s04803AM(1,3,2,4)
—(Chj23,4,5) = —S455344 YM(1,2,3,4,5) + s45500AM(1,3,2,4,5)
—(Chj2sap6) = —s56515A7 (1, 2,3,4,5,6) + s56s354" (1, 2,4,3,5,6) (B.5)
+ s56535AYM(1,4,2,3,5,6) — s565254 M(1 4,3,2,5,6) '
—(C1)23,45,6) = —5465364 YM(1,2,3,6,4,5) + s5es36A (1, 2,3,6,5,4)
+ 546526 AYM(1,3,2,6,4,5) — 565064 (1,3,2,6,5,4)

*OWe thank Henrik Johansson for pointing out reference [49].
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and we observe that the expressions on the right hand side can be found by systematically
deleting subsets of the terms in (B.5): only those terms in (V1 Egs(a, p],c)) are kept where
the Mandelstam bilinear takes the form s.;$.. with a € A, b € B and ¢ € C. The following
algorithm allows to translate any (Cy4,p,c) into SYM trees:

1. Reorder the labels A, B and C such that |[A| < |B| < |C].
2. Apply the formula (B.1) recursively to evaluate Egisia, p),c)-
3. Substitute E,, 5, — AM1 a9, ... 00).

4. Keep only the terms containing Mandelstams with labels distributed as in sgpsqc,
with single-particle labels a € A, b € B and ¢ € C. Delete terms of the form s4;Spc.

5. The result is —(C1j4,p,0)-

We have explicitly checked with the data available from [46] that the algorithm above
is correct for all scalar cohomology elements up to multiplicity |A|+ |B|+ |C|+1 = 7. For
example, it leads to

—(Chpaas.6,7) = —sersse A M(1,2,3,4,5,6,7) +367346A M(1,2,3,5,4,6,7)

+ sersas AYM(1,2,5,3,4,6,7) — serszs AV M(1,2,5,4,3,6,7)

+ sersa6 AT M(1,5,2,3,4,6,7) —367536AY (1,5,2,4,3,6,7)

— se7s36 AV M(1,5,4,2,3,6,7) + sersas AT M(1,5,4,3,2,6,7) B
—(Cljozaser) = —ss7sarAYM(1,2,3,4,7,5,6) + sgrsar A" (1,2,3,4,7,6,5) '

+ 557537 AYM(1,2,4,3,7,5,6) — sers3rAYM(1,2,4,3,7,6,5)

+ s57537AYM(1,4,2,3,7,5,6) — serszrAYM(1,4,2,3,7,6,5)

— 557507 AYM(1,4,3,2,7,5,6) + sersar AYM(1,4,3,2,7,6,5)

and a slightly longer 32-term representation of (Cja3 45 67) Which is commented out in the

TEX source.

It will be interesting to understand the origin of the intriguing patterns described in
this appendix. They hint a deeper connection between the fusion of Berends-Giele currents
via (B.1) (see figure 10 for a diagrammatic interpretation), general BCJ relations [26, 49]
and the scalar cohomology elements (C’1| A,B,c) generating the non-anomalous kinematics
in one-loop amplitudes of the open superstring [10].

C The explicit expression for Hqs34

The Lie symmetry of rank-four BRST blocks is restored by the redefinition (3.46) with the
following expression for Hyss4:

4H 1234 = ng)sz; - HSA)B + HéZb - H:EZ%l (C.1)
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By construction, it is the £, image of a more elementary expression

a 1 1 1 1 .
Hfggﬂ _ 1(Alz ) A34) + p (A12 ) A3)(k3 ) A4) -3 (A12 ) A3)(k12 ) A4) + 5 (A125 ) A4)
+ %A}?’?A?LFfrm + é (Al X A23)(k‘123 . A4) _ é (A2 . AlS)(k,123 X A4)
 ap—r b b b b b
T (H§2?34 + H§4)12 + H§4)23 + H§3)14 + H3E1)24 + H§4?31)
(C.2)
with
Bl = 2 (AT AR AN AT~ (2 AT)
1
s AL (K- AN((K - A7) — (k2 - A7) (C.3)

- % (A'- A%)[(K* - A% (k' - A% — (K- A%)(K* - AY)] .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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