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1 Introduction

Many examples have shown that String Theory inspires a deeper understanding of scat-

tering amplitudes in field theories, see e.g. [6–8, 61]. The world-sheet viewpoint on point-

particle interactions offers useful guiding principles through the multitude of Feynman

diagrams. For example, tree-level subdiagrams of external particles arise when insertion

points of string states on the world-sheet collide. This is captured by the operator product

expansion (OPE) among vertex operators.

In this work, we study this mechanism in the context of ten-dimensional super Yang-

Mills (SYM) theory. Its superspace description benefits from the use of pure spinors [42–44],

and this formulation directly descends from the pure spinor superstring [17]. In previous

work, a family of so-called BRST building blocks was identified in the pure spinor for-

malism [12–14] which encompasses the superfield degrees of freedom of several external

particles. These BRST blocks were argued to represent tree-level subdiagrams and led

to an elegant and manifestly supersymmetric solution for multileg tree-level amplitudes

in SYM theory [12] and the full-fledged open superstring1 [13, 14]. As initially suggested

in [45], the driving forces in these constructions were:

(i) The (iterated) OPE of gluon multiplet vertex operators

(ii) The action of the BRST operator on the OPE output to identify the symmetry

components in the cohomology

(iii) BRST-invariance of the full amplitude dictates the composition of BRST-covariant

tree diagrams

In step (ii), we benefit from the simple form of the BRST action on kinematic degrees of

freedom, based on the SYM equations of motion for the superfields [15, 16]. This appears

to be special to the pure spinor formalism, at least we are not aware of an analogous

implementation in the Ramond-Neveu-Schwarz (RNS) [52–54] or Green-Schwarz (GS) [50,

51] framework.

The tree-level setup of [12–14] only made use of the mixed OPEs between one unin-

tegrated vertex operator V and one integrated version U . In recent one- and three-loop-

calculations [10, 20, 41], on the other hand, it became clear that pieces of the OPE among

U vertices had similar covariant BRST properties leading to a simplified description of

the amplitudes. In the following, we will complete the list of such BRST-covariant OPE

ingredients and introduce multiparticle versions of the integrated vertex operator.

The multiparticle vertex operators are defined in terms of multiparticle superfields of

ten-dimensional SYM theory. The latter in turn are constructed recursively where the

rule for adding particles is extracted from the OPE among single particle vertex operators.

The BRST transformation of these vertex operators is equivalent to equations of motion

for the multiparticle superfields, which take the same form as their single-particle counter-

parts [15, 16], but are enriched by contact terms. It points to very fundamental structures

1See [5] for an indirect derivation of open superstring trees among gluons, based on bosonic gauge

invariance and kinematic constraints from the RNS worldsheet prescription.
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of SYM theory that these combinations of single-particle fields reproduce the “elementary”

equations of motions.

In more mathematical terms [3, 4, 24], the recursion rule fusing two multiparticle super-

fields to a larger representative can be viewed as a Lie bracket operation which implements

the algebraic structure of tree level graphs. In particular, the aforementioned contact terms

present in multiparticle equations of motion directly realize the Lie symmetries of tree sub-

diagrams. This carries the flavour of a kinematic algebra which might shed further light

on the duality between color and kinematics [26] in ten dimensions.2 More specifically, the

Lie symmetries of multiparticle BRST blocks imply kinematic Jacobi relations within the

corresponding tree subdiagrams.

The multiparticle superfields and their BRST properties turn out to guide the con-

struction of BRST-invariant kinematic factors. Together with the tight contraints from

zero-mode saturation, this allows to anticipate the structure of scattering amplitudes in

both field theory and string theory. As an example, we conclude this paper with an appli-

cation to one-loop amplitudes of the open and closed (type II) superstring. The pure spinor

formulation of the five graviton amplitude in [20] gave an example of how vector contrac-

tions between left- and right-moving superfields can be implemented in a BRST-invariant

way. The backbone of this superspace construction is a vectorial BRST cohomology ele-

ment which we recursively extend to higher multiplicity. From the field theory perspective,

this amounts to identifying loop momentum dependent parts of the numerators, see [21, 56].

The limit of infinite string tension α′ → 0 leads to a worldline realization of the pure

spinor setup [1] (see also [47, 48] for the RNS equivalent). It has been shown in [2] that

the worldline modifications of the worldsheet vertex operators and their OPEs give rise to

the same SYM tree amplitudes as previously obtained from superstring methods [12–14].

Accordingly, it would be interesting to find the worldline equivalent of the present BRST

block constructions.

2 Review

2.1 Ten-dimensional SYM theory

Linearized super-Yang-Mills theory in ten dimensions can be described using the super-

fields3 Aα(x, θ), Am(x, θ), Wα(x, θ) and Fmn(x, θ) satisfying [15, 16]

2D(αAβ) = γmαβAm DαAm = (γmW )α + kmAα

DαFmn = 2k[m(γn]W )α DαW
β =

1

4
(γmn) β

α Fmn.

(2.1)

with gauge transformations δAα = DαΩ and δAm = kmΩ for any superfield Ω. The above

equations of motion imply that the superfields Am, Wα and Fmn can be derived from the

2See [40],[64] for related work on the kinematic algebra in four and arbitrary dimensions.
3It is customary to use a calligraphic letter for the superfield field-strength. However in this paper

calligraphic letters will denote the Berends-Giele currents associated to the superfields, see section 4.
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spinor superpotential Aα,

Am =
1

8
(DγmA), Wα = −

1

10
γαβm (kmAβ −DβA

m), Fmn =
1

8
(γmn)α

βDβW
α . (2.2)

The notion that the superfield Aα is enough to derive the others will be used in the next

section to obtain a multiparticle generalization of the above equations of motion.

2.2 BRST building blocks from vertex operators

In the pure spinor formalism the massless sector of the open superstring (i.e. the gluon

multiplet) is described by the vertex operators

V = λαAα, U = ∂θαAα +ΠmAm + dαW
α +

1

2
NmnFmn . (2.3)

The superfields K ∈ {Aα, Am,Wα, Fmn} and the pure spinor ghost λα carry conformal

weight zero whereas the worldsheet fields {∂θα,Πm, dα, N
mn} have conformal weight one.

When the superfields are on-shell and the pure spinor constraint (λγmλ) = 0 is imposed,

the vertices satisfy [17]

QV = 0, QU = ∂V , (2.4)

where Q = λαDα is the BRST charge. The above fields obey the following OPEs [17, 62],

dα(zi)K(zj) →
DαK

zij
,

dα(zi)Π
m(zj) →

(γm∂θ)α
zij

dα(zi)θ
β(zj) →

δ
β
α

zij

dα(zi)∂θ
β(zj) →

δ
β
α

z2ij
,

Πm(zi)K(zj) → −
kmK

zij
,

Πm(zi)Π
n(zj) → −

ηmn

z2ij
,

dα(zi)dβ(zj) → −
γmαβΠm

zij
,

Nmn(zi)λ
α(zj) → −

1

2

(λγmn)α

zij

(2.5)

and

Nmn(zi)Npq(zj) →
4

zij
N

[m
[pδ

n]
q] −

6

z2ij
δn[pδ

m
q] , (2.6)

where zij = zi − zj are worldsheet positions. By K(x, θ), we collectively denote any

superfield containing only zero-modes of θα and whose x dependence is entirely given by

the plane wave factor4 ek·x.

Starting with the recursive definition of

lim
z2→z1

V 1(z1)U
2(z2) →

L21

z21
, lim

zp→z1
L2131...(p−1)1(z1)U

p(zp) →
L2131...(p−1)1p1

zp1
, (2.7)

fermionic ghost-number one BRST building blocks were defined in [12–14] by removal of

BRST exact terms,

T123...p = L2131...p −Q(. . .). (2.8)

4To avoid factors of i in the formulae, we define ikm ≡ km.
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Figure 1. The correspondence of cubic graphs and BRST building blocks.

They transform covariantly under BRST variation, for instance

QT12 = (k1 · k2)T1T2, QT123 = (k1 · k2)(T1T23 + T13T2) + (k12 · k3)T12T3

at rank two and three. More generally,

QT12...p =

p
∑

j=2

∑

α∈P (βj)

(k12...j−1 · kj)T12...j−1,{α} Tj,{βj\α}, (2.9)

where βj = {j + 1, . . . , p} and P (βj) is the powerset of βj . Moreover, we identify Ti ≡ Vi

for a single-particle label i and abbreviate multiparticle momenta by k
123...p
m ≡

∑p
i=1 k

i
m.

2.3 Lie symmetries of BRST building blocks

After removal of Q exact terms in (2.8), BRST building blocks T12...p satisfy all the Lie

symmetries £k of tree-level graphs for 2 ≤ k ≤ p, where5

£k=2n+1 : T12...n+1[n+2[...[2n−1[2n,2n+1]]...]] − T2n+1...n+2[n+1[...[3[21]]...]] = 0

£k=2n : T12...n[n+1[...[2n−2[2n−1,2n]]...]] + T2n...n+1[n[...[3[21]]...]] = 0.
(2.10)

Defining the operator £k◦ as the “Lie symmetry generator”, the first few examples of the

symmetries (2.10) are

0 = £2 ◦ T12 ≡ T12 + T21,

0 = £3 ◦ T123 ≡ T123 + T231 + T312,

0 = £4 ◦ T1234 ≡ T1234 − T1243 + T3412 − T3421.

(2.11)

The symmetries (2.10) have been denoted “Lie” because a contraction of Lie algebra struc-

ture constants satisfies the same symmetries [10],6

T1234...p ↔ f12a2 fa23a3 fa34a4 . . . fap−1pap (2.12)

and therefore the building blocks have the correct behavior to describe the kinematic

numerators of cubic graphs, see figure 1.

5Throughout this work, antisymmetrization over N labels associated with external particles (as in (2.10))

does not contain an overall 1/N !. However, antisymmetrized Lorentz indices m,n, p, . . . are presented in

the convention A[mn] =
1
2
(Amn −Anm).

6Under the Dynkin bracketing operation, the building blocks satisfy T[[...[[1,2],3],...],p] = pT123...p and

therefore they belong to Lie(p). See e.g. Proposition 13.2.3 of [24].
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Figure 2. Four superfield realizations KB ∈ {AB
α , A

B
m,Wα

B , F
B
mn} of cubic tree graphs B =

b1b2 . . . bp. This generalizes the mapping in figure 1 from previous work [12–14] where only one

representative TB at ghost number one was given.

2.4 Lie symmetries versus BRST variations

It is crucial to notice the interplay between the BRST variations (2.9) and the Lie symme-

tries (2.10) of cubic tree level subdiagrams: at rank two and three, we have

Q(T12 + T21) = 0, Q(T123 + T213) = Q(T123 + T231 + T312) = 0 , (2.13)

and the BRST variation (2.9) always has the precise form to make the sums in (2.10)

BRST closed. This closure even holds before the redefinitions (2.8) are performed, e.g.

Q(L12 + L21) = 0 for the direct outcome of the OPE (2.7). Any such BRST closed

combination is also BRST exact since its conformal weight ∼ k212...p is different from zero

(unless p = 1).7 As detailed in [12–14], this implies that BRST exact terms (such as

Q(A1 · A2) = L21 + L12)) can be subtracted in the definition of T12...p given in (2.8).

Therefore the Lie symmetries obeyed by T12...p are a consequence of the underlying BRST

cohomology nature of the pure spinor superspace expressions which will ultimately describe

the scattering amplitudes.

However, it was a matter of trial and error to find the BRST-“ancestors” of Q-closed

L21...p1 combinations, such as (A1·A2) in the rank-two example and more lengthy expression

at rank ≤ 5 given in [13, 14]. In the following section, we develop a constructive method to

generate these BRST completions in (2.8) without any guesswork. Moreover, our current

approach based on integrated vertex operators Ui delays the need for redefinitions (2.8) to

rank three; all the rank-two BRST blocks will automatically be antisymmetric since they

follow from the simple pole of the OPE between two integrated vertices.

The BRST building blocks play a key role in the recursive BRST cohomology method

to compute SYM tree-level amplitudes [12, 45] and in obtaining a manifestly local represen-

tation of BCJ-satisfying [26] tree-level numerators [23]. However, their explicit superspace

expressions in [13, 14] following from the more and more cumbersome OPE computa-

tions (2.7) become lengthy for higher rank and lack an organizing principle. We will

describe a recursive method in the next section to find compact representations and to

completely bypass the CFT calculations beyond rank two.

7Recall that in a topological conformal field theory Qb0 = L0 implies that if Qφh = 0 and L0φh = hφh,

then φh = (1/h)Q(b0φh) for h 6= 0. See e.g. [35].
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3 Pure spinor BRST blocks

In this section we will show how to recursively define multiparticle superfields AB
α (x, θ),

Am
B (x, θ), Wα

B(x, θ) and Fmn
B (x, θ). As we will see, the recursion is driven by the OPE

among two single-particle vertex operators and a system of multiparticle SYM equations

of motion which generalize the standard description of (2.1). Throughout this paper, upper

case letters from the beginning of the Latin alphabet will represent multiparticle labels, e.g.

B = b1b2. . .bp at rank p ≡ |B|. In particular, whenever they are attached to a multiparticle

superfield KB ∈ {AB
α , A

B
m,Wα

B , F
B
mn} (without any hats or primes), the B = b1b2. . .bp carry

the same Lie symmetries (2.10),

£k=2n+1 : K12...n+1[n+2[...[2n−1[2n,2n+1]]...]] −K2n+1...n+2[n+1[...[3[21]]...]] = 0

£k=2n : K12...n[n+1[...[2n−2[2n−1,2n]]...]] +K2n...n+1[n[...[3[21]]...]] = 0.
(3.1)

The superfields {AB
α , A

B
m,Wα

B , F
B
mn} of multiplicity p ≡ |B| satisfying all the Lie symmetries

£k for k ≤ p will be referred to as BRST blocks.8 Given the symmetry matching relation

K1234...p ↔ f12a2 fa23a3 fa34a4 . . . fap−1pap (3.2)

with color factors, the BRST blocks reproduce symmetry properties of Lie algebraic struc-

ture constants. The BCJ compatibility of the explicit tree-level numerators in [23] are

based on λαAB
α satisfying this symmetry matching. As described in the mathematics lit-

erature [3, 24], the associated cubic graphs shown in figure 2 (planar binary trees in math-

ematical jargon) can be mapped to iterated brackets and thereby give rise to a general

construction of a Lie algebra basis. More details are given in appendix A.

The BRST variation of the multiparticle unintegrated vertex operator defined by V B ≡

λαAB
α will be shown to have the same functional form as the BRST variation (2.9) of

TB, thereby constituting a new representation of such objects. BRST-invariants built

from TB do not change under a global redefinition TB → VB, hence the representations

are equivalent. From now on, TB from [12–14] will not be used anymore and the new

representation VB will take its place because it follows from simpler principles.

3.1 Rank two

The way towards multiparticle BRST blocks is suggested by the OPE between two inte-

grated vertex operators. This is the largest and only CFT computation relevant for this

work and has been firstly performed in [11],

U1(z1)U
2(z2) → z−k1·k2−1

12

(

∂θα
[

(k1 ·A2)A
1
α − (k2 ·A1)A

2
α +DαA

2
βW

β
1 −DαA

1
βW

β
2

]

+Πm
[

(k1 ·A2)A
1
m−(k2 ·A1)A

2
m+k2m(A2W1)−k1m(A1W2)− (W1γmW2)

]

+ dα
[

(k1 ·A2)W
α
1 − (k2 ·A1)W

α
2 +

1

4
(γmnW1)

αF 2
mn −

1

4
(γmnW2)

αF 1
mn

]

8Throughout this paper, we will distinguish BRST building blocks TB as reviewed in section 2 from

BRST blocks KB ∈ {AB
α , A

B
m,Wα

B , FB
mn} to be constructed in this section.

– 7 –
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+
1

2
Nmn

[

(k1 ·A2)F
1
mn − (k2 ·A1)F

2
mn − 2k12m (W1γnW2)− 2F 2

maF
3 a
n

]

)

+ (1 + k1 · k2)z−k1·k2−2
12

[

(A1W2) + (A2W1)− (A1 ·A2)
]

. (3.3)

Using the relation ∂K = ∂θαDαK+ΠmkmK for superfields K independent on ∂θα and λα,

we can absorb the most singular piece ∼ z−k1·k2−2
12 into total z1, z2 derivatives and rewrite

U1(z1)U
2(z2) →− z−k1·k2−1

12

[

∂θαA12
α +ΠmA12

m + dαW
α
12 +

1

2
NmnF 12

mn

]

+ ∂1

(

z−k1·k2−1
12

[

1

2
(A1 ·A2)− (A1W2)

])

− ∂2

(

z−k1·k2−1
12

[

1

2
(A1 ·A2)− (A2W1)

])

(3.4)

where

A12
α = −

1

2

[

A1
α(k

1 ·A2) +A1
m(γmW 2)α − (1 ↔ 2)

]

A12
m =

1

2

[

A1
pF

2
pm −A1

m(k1 ·A2) + (W 1γmW 2)− (1 ↔ 2)
]

Wα
12 =

1

4
(γmnW 2)αF 1

mn +Wα
2 (k

2 ·A1)− (1 ↔ 2)

F 12
mn = F 2

mn(k
2 ·A1) + F 2

[m
pF 1

n]p + k
[m
12 (W1γ

n]W2)− (1 ↔ 2)

= k12mA12
n − k12n A12

m − (k1 · k2)(A1
mA2

n −A1
nA

2
m).

(3.5)

Note that the last line can be viewed as a multiparticle generalization of the field-strength

relation F i
mn = kimAn − kinAm, modified by the contact terms (k1 · k2)(A1

mA2
n −A1

nA
2
m).

In the prescription for computing string amplitudes the vertex operators are integrated

over the worldsheet so the total derivatives can be dropped9 and the composite superfields

in (3.5) can be picked up via

U12 = −

∮

zk
1·k2

12 U1(z1)U
2(z2)

= ∂θαA12
α +ΠmA12

m + dαW
α
12 +

1

2
NmnF 12

mn.

(3.6)

One can check using (2.1) that the above superfields satisfy

2D(αA
12
β) = γmαβA

12
m + (k1 · k2)(A1

αA
2
β +A1

βA
2
α) (3.7)

DαA
12
m = (γmW 12)α + k12mA12

α + (k1 · k2)(A1
αA

2
m −A2

αA
1
m) (3.8)

DαW
β
12 =

1

4
(γmn)α

βF 12
mn + (k1 · k2)(A1

αW
β
2 −A2

αW
β
1 ) (3.9)

9In string calculations this cancellation involves a subtle interplay of BRST-exact terms and total deriva-

tives on the worldsheet, see [45] and [57] for five- and six-point examples at tree level. One manifesta-

tion is the agreement of the superfields along with ∂1, ∂2 in (3.4) with the BRST-exact admixtures in

V1(z1)U2(z2) → z−k1·k2−1
12 (V12 +Q[(A1W2)−

1
2
(A1 ·A2)]).

– 8 –
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DαF
12
mn = k12m (γnW

12)α − k12n (γmW 12)α + (k1 · k2)(A1
αF

2
mn −A2

αF
1
mn) (3.10)

+(k1 · k2)(A1
n(γmW 2)α −A2

n(γmW 1)α −A1
m(γnW

2)α +A2
m(γnW

1)α),

which is a clear generalization of the standard equations of motion (2.1) with corrections

proportional to the conformal weight ∼ 1
2(k

1 + k2)2 = (k1 · k2) of the superfields. Further-

more, the single-particle relations kmAi
m = 0 and km(γmWi)α = 0 imply that,

km12A
12
m = 0 (3.11)

k12m (γmW 12)α = (k1 · k2)
[

A1
m(γmW 2)α − (1 ↔ 2)

]

(3.12)

km12F
12
mn = (k1 · k2)

[

A12
n +A1

n(k
1 ·A2)− (1 ↔ 2)

]

. (3.13)

In other words, the (supersymmetrized) Dirac and YM equations kim(γmW i)α = 0 and

kmi F i
mn = 0 for single-particle superfields are modified by the same kind of contact term

∼ (k1 ·k2) as the field strength relation in (3.5) and the equations of motion (3.7) to (3.10).

Defining the rank-two unintegrated vertex operator as

V 12 = λαA12
α (3.14)

analogously to V i = λαAi
α, one can show that

QV 12 = (k1 · k2)V1V2 (3.15)

QU12 = ∂V 12 + (k1 · k2)(V 1U2 − V 2U1) , (3.16)

which generalizes (2.4) by contact terms and reproduces the BRST variation of the building

block T12 of [12]. It is interesting to note that (3.16) is compatible with the standard

prescription relating integrated and unintegrated vertices, U12 = b−1V
12 [25].

Note that all rank-two BRST blocks are antisymmetric and therefore U12 = −U21.

3.2 Rank three

Since the rank-two BRST blocks obey generalized SYM equations of motion one is tempted

to define the rank-three BRST blocks following a similar approach. We know from (2.1)

that the standard superfields Am, Wα and Fmn can be obtained from the spinor super-

potential Aα by recursively computing covariant derivatives. We will show that the a

similar approach can be used to obtain their multiparticle generalizations starting from

the following ansatz for the superpotential,

Â123
α = −

1

2

[

A12
α (k12 ·A3) +A12

m (γmW 3)α − (12 ↔ 3)
]

. (3.17)

This is a direct generalization of the expression for A12
α in (3.5) as obtained from the OPE

of U1(z1)U
2(z2). We have now inserted two-particle data represented by A12

α , k12m , A12
m and

Wα
12 into the OPE-inspired recursion. Once the BRST-trivial symmetry components are

subtracted from Â123
α (see section 3.2.1), the definition (3.17) can be interpreted in terms of

a “grafting” procedure defined for example in [4]. As illustrated in figure 3, (3.17) amounts
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Figure 3. The essentials of the first rank three BRST block K123 ∈ {A123
α , . . .} are captured by

combining K12 ∈ {A12
α , Am

12,W
α
12} and K3 ∈ {A3

α, A
m
3 ,Wα

3 }. At the level of diagrams, this can be

interpreted as grafting the trees associated with K12 and K3.

to adjoining a further leg to the cubic graph associated with the BRST blocks K12 at rank

two, see appendix A for more details.

A short computation shows that the action of the covariant derivative can be written

in a form similar to (3.8) and therefore can be used to define Âm
123,

DαÂ
123
β +DβÂ

123
α = γmαβÂ

123
m

+ (k1 · k2)
[

A1
αA

23
β +A13

α A2
β − (1 ↔ 2)

]

+ (k12 · k3)
[

A12
α A3

β − (12 ↔ 3)
]

(3.18)

where

Â123
m =

1

2

[

A
p
12F

3
pm −A12

m (k12 ·A3) + (W 12γmW 3)− (12 ↔ 3)
]

. (3.19)

In turn, computing the covariant derivative of (3.19) and rewriting the result in a form

analogous to the standard equation of motion for Am leads to the definition of Wα
123,

DαÂ
123
m = (γmW 123)α + k123m Â123

α

+ (k1 · k2)
[

A1
αA

23
m +A13

α A2
m −A23

α A1
m −A2

αA
13
m

]

+ (k12 · k3)(A12
α A3

m −A3
αA

12
m )

(3.20)

where

Wα
123 = −(k12 ·A3)Wα

12 +
1

4
(γrsW 3)αF 12

rs − (12 ↔ 3)

+
1

2
(k1 · k2)

[

Wα
2 (A

1 ·A3)− (1 ↔ 2)
]

.

(3.21)

Computing the covariant derivative of (3.21) leads to the definition of F 123
mn ,

DαW
β
123 =

1

4
(γmn)α

βF 123
mn

+ (k1 · k2)
[

A1
αW

β
23 +A13

α W
β
2 − (1 ↔ 2)

]

+ (k12 · k3)
[

A12
α W

β
3 − (12 ↔ 3)

]

,

(3.22)

where (3.12) has been used to arrive at,

F 123
mn = (k3 ·A12)F 3

mn + F 12
a[mF 3

n]a + 2k12[m(W 3γn]W
12)− (12 ↔ 3)

+ (k1 · k2)

[

1

2
F 2
mn(A

1 ·A3) + 2A1
[m(W 3γn]W

2)− (1 ↔ 2)

]

.
(3.23)
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And finally,

DαF
123
mn = 2k123[m (γn]W

123)α

+ (k1 · k2)
[

A1
αF

23
mn +A13

α F 2
mn − (1 ↔ 2)

]

+ (k12 · k3)
[

A12
α F 3

mn − (12 ↔ 3)
]

+ (k1 · k2)
[

2A1
[n(γm]W

23)α + 2A13
[n (γm]W

2)α − (1 ↔ 2)
]

+ (k12 · k3)
[

2A12
[n (γm]W

3)α − (12 ↔ 3)
]

.

(3.24)

The above equations give rise to a natural rank-three definition of multiparticle SYM

equations of motion: the non-contact terms in (3.18), (3.20), (3.22) and (3.24) perfectly tie

in with those in the two-particle equations of motion (3.7) to (3.10). Note that the contact

terms in DαA
m
123 and DαW

β
123 are related via Am

C ↔ Wα
C where C denotes a multiparticle

label, see (3.20) and (3.22). The additional contact terms of the form AB
[n(γm]W

C) in

DαF
123
mn have their two-particle analogues in the second line of (3.10).

3.2.1 Symmetry properties at rank three

The rank-three superfields defined above are manifestly antisymmetric in the first two

labels, so they satisfy £2 from (3.1). However, one can show using the explicit expressions

above that only a subset of the rank-three superfields satisfies £3,

£3 ◦ Â
123
α 6= 0, £3 ◦ Â

123
m 6= 0, £3 ◦W

α
123 = £3 ◦ F

123
mn = 0. (3.25)

This explains the non-hatted notation forWα
123 and F 123

mn ; they are BRST blocks already. To

obtain BRST blocks for the other superfields they need to be redefined in order to satisfy the

symmetry £3. Fortunately, the underlying system of equations of motion greatly simplifies

this task.

To see this, note that since £3 ◦W
α
123 = 0 equation (3.20) implies that,

Dα

(

£3 ◦ Â
123
m

)

= k123m

(

£3 ◦ Â
123
α

)

. (3.26)

And it turns out that k123m can be factored out in the cyclic sum of Â123
m ,

£3 ◦ Â
m
123 = 3 km123H123 , (3.27)

where

H123 =
1

6

[

(A1 ·A23)− (k2p − k3p)A
p
1(A

2 ·A3) + cyclic(123)
]

. (3.28)

Therefore the redefinitions
A123

m = Â123
m − k123m H123 ,

A123
α = Â123

α −DαH
123 ,

(3.29)

imply that A123
α and A123

m are BRST blocks since,

£2 ◦A
123
α = £2 ◦A

123
m = £3 ◦A

123
α = £3 ◦A

123
m = 0.
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This is a significant simplification compared to the redefinition (2.8). The latter required

an “inversion” of the BRST charge on £3 ◦ (L2131 + . . .) whereas (3.27) extracts the rank-

three redefinition H123 from a straightforward £3 operation on the known expression (3.19)

for Âm
123.

It is easy to show that F 123
mn from (3.23) can now be rewritten as a field-strength using

the BRST block A123
m ,

F 123
mn = k123m A123

n − k123n A123
m

− (k1 · k2)
[

A1
mA23

n −A1
nA

23
m − (1 ↔ 2)

]

− (k12 · k3)
[

A12
mA3

n − (12 ↔ 3)
]

.

(3.30)

Thus (3.23) satisfying the symmetry£3◦F
123 = 0 can be understood as a property inherited

from Am
123 since the contact term structure of (3.30) is the same as in the equation of motion

DαA
123
m from which the BRST symmetry was derived in the first place.

Defining rank-three vertex operators

V123 = λαA123
α , U123 = ∂θαA123

α +ΠmA123
m + dαW

α
123 +

1

2
NmnF 123

mn , (3.31)

it follows that (2.4) as well as (3.15) and (3.16) have a rank-three counterpart,

QV123 = (k1 · k2)(V1V23 + V13V2) + (k12 · k3)V12V3, (3.32)

QU123 = ∂V123 + (k1 · k2)
[

V1U23 + V13U2 − (1 ↔ 2)
]

+ (k12 · k3)
[

V12U3 − (12 ↔ 3)
]

. (3.33)

It is interesting to observe that £3 action translates to a total derivative

Û123 + Û231 + Û312 = (∂θαDα +Πmk123m )H123 = ∂H123, (3.34)

where Û123 is related to U123 in the obvious way A123
α ↔ Â123

α and A123
m ↔ Â123

m . The total

worldsheet derivative suggests that the failure of the £3 symmetries in (3.34) decouples

from string amplitudes and their SYM limit. In view of the diagrammatic interpretation of

K123 shown in figure 3, the vanishing of U123+U231+U312 can be viewed as the kinematic

dual of the Jacobi identity f12afa3b + f23afa1b + f31afa2b = 0 among color factors. This

indicates that the rank three superfields K123 of SYM carry the fingerprints of the BCJ

duality between color and kinematics [26].

3.3 Rank four

The patterns from the discussions above suggest how to proceed. The following superfields

Â1234
α = −

1

2

[

A123
α (k123 ·A4) +A123

m (γmW 4)α − (123 ↔ 4)
]

, (3.35)

Â1234
m =

1

2

[

A123
p F 4

pm −A123
m (k123 ·A4) + (W 123γmW 4)− (123 ↔ 4)

]

(3.36)

Ŵα
1234 =

1

4
(γrsW 4)αF 123

rs − (k123 ·A4)Wα
123 − (123 ↔ 4)
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Figure 4. Up to £4 symmetry redefinitions, the recursions (3.35) to (3.37) yield rank-four BRST

blocks K1234 by combining K123 with K4. At the level of diagrams, this can be interpreted as

grafting the associated trees.

+
1

2
(k1 · k2)

[

Wα
23(A

1 ·A4) +Wα
2 (A

13 ·A4)− (1 ↔ 2)
]

+
1

2
(k12 · k3)

[

Wα
3 (A

12 ·A4)− (12 ↔ 3)
]

(3.37)

manifestly satisfy the £2 and £3 symmetries of (3.1). In general, by using the fully

redefined BRST-blocks A12...p−1
α , Am

12...p−1 and Wα
12...p−1 in the recursive definition of A12...p

α ,

there is only one novel Lie symmetry to impose at each rank. This is much more economic

compared to the p−1 redefinitions to arrive at T12...p in [13, 14] (which additionally required

“inverting” the BRST charge and were much more laborious). Once the last Lie symmetry

£4 is enforced in section 3.3.1, the recursions (3.35) to (3.37) for K1234 can be given a

grafting interpretation similar to rank three, see figure 4 and appendix A.

The rank-four definitions (3.35) to (3.37) are guided by the same key principles applied

at rank three: repetition of the recursive pattern (3.17), (3.19) and (3.21) as well as mul-

tiparticle equations of motion as in (3.18), (3.20) and (3.22). Straightforward but tedious

calculations show that

DαÂ
1234
β +DβÂ

1234
α = γmαβÂ

1234
m

+ (k1 · k2)
[

A1
αÂ

234
β + Â134

α A2
β +A13

α A24
β +A14

α A23
β − (1 ↔ 2)

]

+ (k12 · k3)
[

A12
α A34

β + Â124
α A3

β − (12 ↔ 3)
]

+ (k123 · k4)
[

A123
α A4

β − (123 ↔ 4)
]

(3.38)

DαÂ
1234
m = (γmŴ 1234)α + k1234m Â1234

α

+ (k1 · k2)
[

A1
αÂ

234
m + Â134

α A2
m +A13

α A24
m +A14

α A23
m − (1 ↔ 2)

]

+ (k12 · k3)
[

A12
α A34

m + Â124
α A3

m − (12 ↔ 3)
]

+ (k123 · k4)
[

A123
α A4

m − (123 ↔ 4)
]

(3.39)

DαŴ
β
1234 =

1

4
(γmn)α

βF̂ 1234
mn

+ (k1 · k2)
[

A1
αW

β
234 + Â134

α W
β
2 +A13

α W
β
24 +A14

α W
β
23 − (1 ↔ 2)

]

+ (k12 · k3)
[

A12
α W

β
34 + Â124

α W
β
3 − (12 ↔ 3)

]

+ (k123 · k4)
[

A123
α W

β
4 − (123 ↔ 4)

]

(3.40)
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for some F̂ 1234
mn whose form is not important at this point. Note that the rank-three su-

perfields in the terms proportional to (k123 · k4) are the true BRST blocks and not their

hatted versions.

3.3.1 Symmetry properties at rank four

The hatted superfields appearing in the right-hand side of (3.38) to (3.40) can be rewritten

in terms of BRST blocks by using the rank three redefinitions Â123
α = A123

α +DαH123 and

Â123
m = A123

m + k123m H123. The terms containing Hijk can be manipulated to the left-hand

side in order to redefine the rank-four superfields. The outcome is,

K ′
1234 = K̂1234 − (k1 · k2)

(

K2H134 −K1H234

)

− (k12 · k3)H124K3 (3.41)

where KB denotes any of the BRST blocks, [AB
α , A

B
m,Wα

B ]. For example,

A′1234
α = Â1234

α − (k1 · k2)
(

A2
αH134 −A1

αH234

)

− (k12 · k3)H124A
3
α. (3.42)

After the redefinitions of (3.41) it turns out that the superfield W ′α
1234 satisfies all the Lie

symmetries (3.1) up to rank four,

£2 ◦W
′α
1234 = £3 ◦W

′α
1234 = £4 ◦W

′α
1234 = 0, (3.43)

and therefore Wα
1234 ≡ W ′α

1234 is a BRST block.

Since Wα
1234 satisfies (3.43), it immediately follows from the contact term structure

of (3.39) that (3.26) has the following rank-four analogue

Dα

(

£4 ◦A
′1234
m

)

= k1234m

(

£4 ◦A
′1234
α

)

. (3.44)

Furthermore, a straightforward calculation shows that k1234m factorizes in £4 ◦A
′1234
m ,

£4 ◦A
′1234
m = 4 k1234m H1234 , (3.45)

and the explicit expression for H1234 is displayed in appendix C.

Hence, the redefined superfields

A1234
m = A′1234

m − k1234m H1234

A1234
α = A′1234

α −DαH
1234

(3.46)

obey the required BRST symmetries:

£2 ◦A
1234
α = £3 ◦A

1234
α = £4 ◦A

1234
α = 0,

£2 ◦A
1234
m = £3 ◦A

1234
m = £4 ◦A

1234
m = 0,

(3.47)

and therefore define rank-four BRST blocks.

Once the expression for Am
1234 is known the superfield F 1234

mn can be written down

immediately in field-strength form,

F 1234
mn = k1234m A1234

n − k1234n A1234
m

+ (k1 · k2)
[

A1
nA

234
m +A134

n A2
m +A13

n A24
m +A14

n A23
m − (m ↔ n)

]

+ (k12 · k3)
[

A12
n A34

m +A124
n A3

m − (m ↔ n)
]

+ (k123 · k4)
[

A123
n A4

m −A123
m A4

n

]

.

(3.48)
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A straightforward but tedious calculation then shows that its expected equation of motion

indeed holds,

DαF
1234
mn = k1234m (γnW

1234)α − k1234n (γmW 1234)α

+ (k1 · k2)
[

A1
αF

234
mn +A134

α F 2
mn +A13

α F 24
mn +A14

α F 23
mn − (1 ↔ 2)

]

+ (k12 · k3)
[

A12
α F 34

mn +A124
α F 3

mn − (12 ↔ 3)
]

+ (k123 · k4)
[

A123
α F 4

mn −A4
αF

123
mn

]

+ (k1 · k2)
[

2A1
[n(γm]W

234)α + 2A134
[n (γm]W

2)α

+ 2A14
[n (γm]W

23)α + 2A13
[n (γm]W

24)α − (1 ↔ 2)
]

+ (k12 · k3)
[

2A12
[n (γm]W

34)α + 2A124
[n (γm]W

3)α − (12 ↔ 3)
]

+ (k123 · k4)
[

2A123
[n (γm]W

4)α − (123 ↔ 4)
]

.

(3.49)

That is why the explicit form of F̂mn
1234 was not strictly needed, one can directly write its

BRST-block expression at the end of the redefinition procedure.

Defining rank-four vertex operators

V 1234 = λαA1234
α , U1234 = ∂θαA1234

α +ΠmA1234
m + dαW

α
1234 +

1

2
NmnF 1234

mn , (3.50)

it follows that

QV1234 = (k1 · k2)
[

V1V234 + V134V2 + V13V24 + V14V23

]

+ (k12 · k3)
[

V12V34 + V124V3

]

+ (k123 · k4)V123V4 (3.51)

QU1234 = ∂V1234 + (k1 · k2)
[

V1U234 + V13U24 + V14U23 + V134U2 − (1 ↔ 2)
]

+ (k12 · k3)
[

V12U34 + V124U3 − (12 ↔ 3)
]

+ (k123 · k4)
[

V123U4 − (123 ↔ 4)
]

. (3.52)

And similarly as at rank three, it is interesting that the failure of the £4 symmetry to hold

for the primed superfields is equivalent to a total derivative in the integrated vertex U ′1234

(i.e. U1234 with A1234
α → A′1234

α and A1234
m → A′1234

m ). Due to the general expectation for

worldsheet derivatives to decouple from string amplitudes, this is another example for the

fundamental role played by Lie symmetries. More specifically, £4 compatibility of U1234 is

a kinematic equivalent of Jacobi identities among permutations of f12afa3bf b4c. Hence, also

the rank four BRST blocks satisfying £4 ◦K1234 = 0 point towards the BCJ-duality [26].

3.4 Recursive construction at general rank

Suppose that all the BRST blocks up to rank p− 1 are known

{A12...k
α , A12...k

m ,Wα
12...k, F

12...k
mn }, 1 ≤ k ≤ p− 1 (3.53)

together with the superfields H12...k for 3 ≤ k ≤ p − 1 used in their construction. The

following steps can be used to obtain the explicit expressions for the rank-p BRST blocks:
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1. Define a set of rank-p superfields K̂12...p = {Â12...p−1
α , Â

12...p−1
m , Ŵα

12...p−1} as follows,

Â12...p
α = −

1

2

[

A12...p−1
α (k12...p−1 ·Ap) +A12...p−1

m (γmW p)α − (12 . . . p− 1 ↔ p)
]

Â12...p
m =

1

2

[

A12...p−1
n F p

nm+Ap
m(kp ·A12...p−1)+(W 12...p−1γmW p)−(12 . . . p− 1 ↔ p)

]

Ŵα
12...p =

1

4
(γrsW p)αF 12...p−1

rs − (k12...p−1 ·Ap)Wα
12...p−1 − (12. . .p− 1 ↔ p)

−

p−1
∑

j=2

∑

δ∈P (γj)

(k1...j−1 · kj)
[

Wα
1...j−1,{δ}(A

j,{γj\δ} ·Ap)− (12 . . . j − 1 ↔ j)
]

,

(3.54)

where the set γj = {j + 1, . . . , p − 1} contains the p − j − 1 labels between j and p

and P (γj) is its power set. Note that they manifestly obey all the £k symmetries up

to rank k = p− 1, but not (yet) £p.

One can check that the superfields K̂12...p satisfy equations of motion of the

form (3.61) whose right-hand side contains not only lower-rank BRST blocks but

also their hatted versions, for example,

2D(αÂ
12345
β) = γmαβÂ

12345
m

+ (k1 · k2)
[

A1
αÂ

2345
β +A13

α Â245
β +A14

α Â235
β +A15

α A234
β

+A134
α A25

β + Â135
α A24

β + Â145
α A23

β + Â1345
α A2

β − (1 ↔ 2)
]

+ (k12 · k3)
[

A12
α Â345

β +A124
α A35

β + Â125
α A34

β + Â1245
α A3

β − (12 ↔ 3)
]

+ (k123 · k4)
[

A123
α A45

β + Â1235
α A4

β − (123 ↔ 4)
]

+ (k1234 · k5)
[

A1234
α A5

β − (1234 ↔ 5)
]

.

(3.55)

However, they can be redefined K̂12...p → K ′
12...p such that equations of motion for

K ′
12...p are written entirely in terms of BRST blocks with rank less than p. This leads

to the second step:

2. Redefine the superfields according to

K ′
12...p = K̂12...p −

p−1
∑

j=2

∑

δ∈P (γj)

(k1...j−1 · kj)
[

H1...j−1,{δ},p Kj,{γj\δ} − (12 . . . j − 1 ↔ j)
]

(3.56)

with the constraints Hi = Hij = 0. For example,

K ′
12345 = K̂12345

− (k1 · k2)
[

H1345K2 +H145K23 +H135K24 − (1 ↔ 2)
]

− (k12 · k3)
[

H1245K3 +H125K34 −H345K12

]

− (k123 · k4)
[

H1235K4

]

.

(3.57)

At this point it turns out that W ′α
12...p satisfies all the rank-p Lie symmetries, i.e.

£k ◦W
′α
12...p = 0, 2 ≤ k ≤ p. (3.58)
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Therefore W ′α
12...p ≡ Wα

12...p will be the definition of the spinor field-strength

BRST block.

As a consequence of (3.58), the following equations will hold,

Dα

(

£p ◦A
′12...p
m

)

= k12...pm £p ◦A
′12...p
α ,

£p ◦A
′m
12...p = p km12...pH12...p

(3.59)

where the second equation can be regarded as the definition of H12...p.

3. The rank-p BRST blocks are defined as,

A12...p
α = A′12...p

α −DαH
12...p

A12...p
m = A′12...p

m − k12...pm H12...p

Wα
12...p = W ′α

12...p

F 12...p
mn = k12...pm A12...p

n − k12...pn A12...p
m

+

p
∑

j=2

∑

δ∈P (βj)

(k12...j−1 · kj) 2A
12...j−1,{δ}
[n A

j,{βj\δ}
m] ,

(3.60)

where the set βj = {j + 1, j + 2, . . ., p} contains the p − j labels to the right of j

and P (βj) denotes its power set. Note that they satisfy all the Lie symmetries up to

rank p.

It is conjectured that the BRST blocks defined in the three-step procedure above will

satisfy the multiparticle equations of motion,

2D(αA
12...p
β) = γmαβA

12...p
m

+

p
∑

j=2

∑

δ∈P (βj)

(k12...j−1 · kj)
[

A12...j−1,{δ}
α A

j,{βj\δ}
β − (12 . . . j − 1 ↔ j)

]

DαA
m
12...p = (γmW12...p)α + km12...pA

12...p
α

+

p
∑

j=2

∑

δ∈P (βj)

(k12...j−1 · kj)
[

A12...j−1,{δ}
α Am

j,{βj\δ}
− (12 . . . j − 1 ↔ j)

]

DαW
β
12...p =

1

4
(γmn)α

βF 12...p
mn

+

p
∑

j=2

∑

δ∈P (βj)

(k12...j−1 · kj)
[

A12...j−1,{δ}
α W

β

j,{βj\δ}
− (12 . . . j − 1 ↔ j)

]

DαF
mn
12...p = 2k

[m
12...p(γ

n]W12...p)α

+

p
∑

j=2

∑

δ∈P (βj)

(k12...j−1 · kj)
[

A12...j−1,{δ}
α Fmn

j,{βj\δ}

+ 2A
[n
12...j−1,{δ} (γ

m]Wj,{βj\δ})α − (12 . . . j − 1 ↔ j)
]

.

(3.61)
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Furthermore, defining the multiparticle vertex operators as

V B = λαAB
α , UB = ∂θαAB

α +ΠmAB
m + dαW

α
B +

1

2
NmnFB

mn , (3.62)

one can show using the equations of motion (3.61) that they satisfy

QV12...p =

p
∑

j=2

∑

α∈P (βj)

(k12...j−1 · kj)V12...j−1,{α} Vj,{βj\α},

QU12...p = ∂V12...p +

p
∑

j=2

∑

α∈P (βj)

(k12...j−1 · kj)

[

V12...j−1,{α} Uj,{βj\α} − (12 . . . j − 1 ↔ j)
]

.

(3.63)

It is interesting to note that there is an alternative definition10 of the rank-p BRST

blocks A
12...p
α and A

12...p
m in (3.60) which does not require the explicit knowledge of

the rank-p H12...p (assuming it exists). One can simply project A
′12...p
α and A

′12...p
m

into the kernel of £p◦, for example, use 3
4A

′1234
m + 1

4

(

A′1243
m − A′3412

m + A′3421
m

)

rather

than (3.46) as a definition for A1234
m and similarly for A1234

α . This is convenient since

it allows to get the complete set of rank p BRST blocks using H12...k with k ≤ p− 1.

We have explicitly constructed BRST blocks up to rank four using the steps above.

Furthermore, preliminary checks also indicate that this construction works for rank five.

4 Berends-Giele currents

In the 1980’s, Berends and Giele introduced the concept of gluonic tree amplitudes with one

off-shell leg and found a recursive construction for these so-called “currents” [9]. Physical

amplitudes are easily recovered by removing the off-shell propagator (as represented by

the dots in figure 5) from the current. In the following, we construct ten-dimensional

superspace representations of Berends-Giele currents from multiparticle SYM superfields.

The particular combinations of rank-p superfields is firstly guided by the cubic diagrams of

a p+1 tree amplitude. Secondly, it turns out that the contact terms of their multiparticle

equations of motion (3.61) simplify when following the diagrammatic intuition.

This construction has been partially realized in [12] for the superpotential A12...p
α which

suffices to determine the SYM tree amplitude from a supersymmetric Berends-Giele re-

cursion. In the superspace setup, the divergent off-shell propagator is cancelled by the

BRST charge, see section 5.1. At one-loop level [10], Berends-Giele currents from the field

strengths Wα
12...p, F

mn
12...p were assembled to BRST-invariant kinematic factors. We shall now

provide a unified discussion of all the Berends-Giele currents associated with the multipar-

ticle superfields of the previous section.

For each multiparticle superfield KB ∈ {AB
α , A

m
B ,Wα

B , F
mn
B } with B = 12 . . . p we

define a ghost-number zero Berends-Giele current KB ∈ {AB
α ,A

m
B ,Wα

B,F
mn
B } as follows:

10In fact, this is the representation chosen in all the checks performed with a computer.
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Figure 5. From cubic diagrams KA to Berends-Giele currents KA.

firstly decorate the cubic diagrams represented by K with their propagators and secondly

combine the propagator-dressed diagrams such that they resemble a color-ordered Yang-

Mills tree amplitude with an off-shell leg [9], see figure 5.11 As pointed out in [29], this is

implemented through the inverse momentum kernel [27, 28]12

K1σ(23...p) ≡
∑

ρ∈Sp−1

S−1[σ|ρ]1K1ρ(23...p) , (4.1)

where σ ∈ Sp−1, and the momentum kernel S[·|·]1 is defined as

S[2ρ, . . . , pρ|2σ, . . . , pσ]1 ≡

p
∏

j=2

(

s1,jρ +

j−1
∑

k=2

θ(jρ, kρ)sjρ,kρ
)

.

We use the shorthands sij = ki · kj and iρ ≡ ρ(i), and the object θ(jρ, kρ) equals 1 (zero)

if the ordering of the legs jρ, kρ is the same (opposite) in the ordered sets ρ(2, . . . , p) and

σ(2, . . . , p). In other words, it keeps track of labels which swap their relative positions in

the two permutations ρ and σ. At rank r ≤ 4, for example,

K12 =
K12

s12
, K123 =

K123

s12s123
+

K321

s23s123
, (4.2)

K1234 =
1

s1234

(

K1234

s12s123
+

K3214

s23s123
+

K12[34]

s12s34
+

K3421

s34s234
+

K3241

s23s234

)

, (4.3)

and figure 6 illustrates that the given expression for K1234 reproduces the five cubic dia-

grams in a color-ordered SYM five-point amplitude with an off-shell leg.

The ghost-number zero Berends-Giele currents K ∈ {A12...p
α ,Am

12...p,W
α
12...p,F

mn
12...p} gen-

eralize the ghost-number one analogues M12...p studied in [12–14] which correspond to the

unintegrated multiparticle vertex as

VA ≡ λαAA
α ≡ MA . (4.4)

One can show using the equations of motion (3.61) that the BRST charge acts on Berends-

Giele currents of any ghost number by simple deconcatenation of labels

QM12...p =

p−1
∑

j=1

M12...jMj+1...p , (4.5)

11See appendix A.3 for a more mathematical approach to this diagrammatic construction.
12In the conventions of [29], S[σ|ρ]1 is symmetric under exchange of σ and ρ. For example, the rank two

and three versions of its inverse are given by

S−1[2|2]1 =
1

s12
, S−1[23|23]1 =

1

s12s123
+

1

s123s23
, S−1[23|32]1 = −

1

s123s23
.
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1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

K[[[1,2],3],4]

s12s123s1234

K[[1,[2,3]],4]

s23s123s1234

K[[1,2],[3,4]]

s12s34s1234

K[1,[2,[3,4]]]

s34s234s1234

K[1,[[2,3],4]]

s23s234s1234

Figure 6. The Berends-Giele current K1234 of (4.2) is given by the sum of the superspace expres-

sions associated with the above five cubic graphs with one leg off-shell. The mapping between the

cubic graphs and BRST blocks is introduced in section 3, figure 2 and explained in more detail in

appendix A.

as well as

QAm
12...p = (λγmW12...p) + km12...pV12...p +

p−1
∑

j=1

(V12...jA
m
j+1...p − Vj+1...pA

m
12...j)

QWα
12...p =

1

4
(λγmn)

αFmn
12...p +

p−1
∑

j=1

(V12...jW
α
j+1...p − Vj+1...pW

α
12...j)

QFmn
12...p = 2k

[m
12...p(λγ

n]W12...p) +

p−1
∑

j=1

(V12...jF
mn
j+1...p − Vj+1...pF

mn
12...j)

+

p−1
∑

j=1

2
[

A
[n
12...j(λγ

m]Wj+1...p)−A
[n
j+1...p(λγ

m]W12...j)
]

.

(4.6)

By comparing the above equations with (3.61) one sees that the kinematic poles in the defi-

nition of the Berends-Giele currents absorb all the explicit kinematic invariants (k12...j−1·kj)

from the right-hand side of the BRST variations. The extra simplicity of (4.5) and (4.6)

compared to (3.61) suggests that the Berends-Giele basis of tree subdiagrams is particularly

suitable for a systematic construction of BRST-invariants, see section 5.

4.1 Symmetries of Berends-Giele currents

Under the momentum kernel multiplication (4.1), the Lie-symmetries of the multiparticle

superfields K12...p are mapped to a different set of Berends-Giele symmetries of K12...p,

K12 +K21 = 0 , K123 −K321 = K123 +K231 +K312 = 0, . . .

which leave the same number (p−1)! of independent components at rank p. Universality of

the momentum kernel implies that any of the K12...p shares the same symmetry properties

as M12...p discussed in [12–14], namely13

K{β},1,{α} = (−1)nβK1,α�βT . (4.7)

The notation {βT } represents the set with the reversed ordering of its nβ elements and �

denotes the shuffle product. Furthermore, the convention K...α�β... ≡
∑

σ∈α�β K...{σ}... has

13As a consequence, we have Kα�β = 0, ∀ α, β.
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been used. The multiparticle label B in KB now carries Berends-Giele symmetries (4.7)

rather than the Lie symmetries (3.1) of the associated KB.

The symmetry properties (4.7) of rank-p currents can be viewed as rank-(p+1) Kleiss-

Kuijf relation [30, 31] obeyed by Yang-Mills tree amplitudes where the last leg p + 1 is

off-shell and not displayed, leaving (p− 1)! independent components. Note, however, that

the off-shell-ness of one leg in the diagrammatic interpretation of Berends-Giele currents

obstructs an analogue of the BCJ relations [26] among Yang-Mills tree amplitudes.

On the other hand, an interesting perspective on BCJ relations is opened up when the

recursions (3.54) for BRST blocks are rewritten in terms of Berends-Giele currents. This

observation is presented in appendix B, which leads to a simplified rewriting of one-loop

kinematics in terms of SYM amplitudes as compared to [10].

5 Application to the one loop cohomology

In this section, we explore examples at one-loop how the universal multiparticle equa-

tions of motions (3.61) and the simplified contact terms in the Berends-Giele picture (4.5)

and (4.6) facilitate the construction of BRST invariants. The scalar BRST cohomology at

one-loop has been investigated in [10] and identified in the non-anomalous part of open

string amplitudes. The trial-and-error construction of the invariants’ expansion in terms

of Berends-Giele currents is now replaced by a clean recursion. The same mechanisms are

applied to novel vectorial invariants which play a key role in closed string amplitudes at

one loop, e.g. for S-duality [20] and for loop momentum dependence in the numerators of

the field theory limit [21].

5.1 Tree level SYM amplitudes

As shown in [12], tree amplitudes AYM of ten-dimensional SYM theory take an elegant

form in pure spinor superspace,

AYM(1, 2, . . . , n) = 〈E12...n−1Vn〉 . (5.1)

The central object E12...n−1 belongs to the BRST cohomology in the momentum phase

space of n massless particles.14 Its explicit form can be written in terms of the Berends-

Giele currents associated with the (generalized) unintegrated vertex VA as follows,

E12...p =

p−1
∑

j=1

M12...jMj+1...p . (5.2)

The pure spinor bracket 〈. . .〉 in (5.1) denotes a zero-mode integration prescription of

schematic form 〈λ3θ5〉 = 1. It extracts the gluon and gluino components of the enclosed

superfields [17] as has been automated in [32]. The explicit form of the SYM amplitudes

in terms of polarization vectors and gaugino wavefunctions up to multiplicity eight can be

downloaded from [46].

14The restriction on the momentum phase space follows from the fact that the solution M12...n−1 in

E12...n−1 = QM12...n−1 is proportional to a divergent propagator s−1
12...n−1.
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The BRST cohomology techniques that were used in [12] to cast the SYM scattering

amplitudes into the form (5.1) also played a crucial role in obtaining the general solution

of the n-point tree-level amplitude of massless open superstrings [13, 14].

5.2 Scalar BRST blocks at one-loop

In [10] the pure spinor zero-mode saturation rules in one-loop amplitudes of the open

superstring were used to obtain an effective prescription to identify contributing pure spinor

superspace expressions: the zero modes of dαdβN
mn extracted from the external vertices

are replaced by (λγ[m)α(λγ
n])β . This prescription leads to the BRST-closed expression

(λγmW i)(λγnW j)F k
mn in the four-point amplitude [19] and motivates the following higher-

point definitions,15

TA,B,C ≡
1

3
(λγmWA)(λγnWB)F

mn
C + (C ↔ A,B) , (5.3)

MA,B,C ≡
1

3
(λγmWA)(λγnWB)F

mn
C + (C ↔ A,B) . (5.4)

Using the universal form of QWα
B and QFmn

B , one sees that the BRST variation of (5.4) is

given by deconcatenation of the multiparticle indices. Regardless of the ranks |A|, |B| and

|C|, the pure spinor constraint projects out all terms in (4.6) with an explicit appearance

of λα, and we are left with the BRST-covariant expression

QMA,B,C =

|A|−1
∑

ℓ=1

(

Ma1...aℓ Maℓ+1...a|A|,B,C −Maℓ+1...a|A|
Ma1...aℓ,B,C

)

+(A ↔ B,C) . (5.5)

Note that QT1,2,3 = QM1,2,3 = 0 and that TA,B,C and MA,B,C are totally symmetric in A,

B and C.

5.3 Scalar BRST cohomology at one-loop

The definition (5.4) of building blocksMA,B,C was used in [10] to construct BRST invariants

C1|A,B,C with up to eight particles by trial and error. We will now present a recursive

method to generate them for arbitrary ranks.

The results of [10] suggest that each term of the formMiMA,B,C , with i a single-particle

label, can be completed to a BRST-closed expression of the schematic form

Ci|A,B,C ≡ MiMA,B,C +
∑

{δ}6=∅

Mi{δ}f{δ}(M·,·,·) . (5.6)

As a defining property of the BRST completion for MiMA,B,C , particle i always enters

in a multiparticle Berends-Giele current MD. This is formally represented by a sum over

(non-empty) ordered subsets {δ} of the labels {ai}, {bi}, {ci} in A,B,C which join particle

i in Mi{δ}. The functions f{δ} represent the accompanying linear combinations of building

blocks MA,B,C .

15TA,B,C and MA,B,C were denoted by T i
AT

j
BT

k
C and M i

AM
j
BM

k
C in [10], and the representation of WA

and FB given in the reference is different from the current setup.
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Nilpotency Q2 = 0 implies that QMA,B,C is also BRST closed, and the form of (5.5)

suggests that it can be expanded as

QMA,B,C = Ca1|a2...a|A|,B,C − Ca|A||a1...a|A|−1,B,C + (A ↔ B,C) . (5.7)

We have picked up all the termsMiMD,E,F in (5.5) with single-particle label i and promoted

them to BRST completions Ci|D,E,F . Examples of (5.7) can indeed be checked to hold once

the explicit expressions for Ci|D,E,F are generated. At five points for instance, C1|23,4,5 =

M1M23,4,5 +M12M3,4,5 −M13M2,4,5 (to be derived shortly) allows to verify

QM123,4,5 = M1M23,4,5 +M12M3,4,5 −M23M1,4,5 −M3M12,4,5

= C1|23,4,5 − C3|12,4,5.
(5.8)

Now we turn towards the explicit construction of the BRST completion f{δ}(M·,·,·) in (5.6).

The task is to cancel terms like Mi(Ca|A||a1...a|A|−1,B,C − Ca1|a2...a|A|,B,C) as they appear in

Q(MiMA,B,C) by (5.7). In order to determine f{δ}(M·,·,·) with this property, we define

a linear concatenation operation ⊗j acting on the multiparticle labels of Berends-Giele

currents MA as follows,

Mi ⊗a1 Ma1a2...a|A|
≡ Mia1a2...a|A|

. (5.9)

In order to ensure that the concatenation ⊗a1 preserves the KK symmetries Ma1a2...a|A|

of the Berends-Giele currents, we have to specify the leg a1 appearing next to the con-

catenating label i on the right hand side: for example, M132 6= −M123 implies that

M1 ⊗3 M32 6= −M1 ⊗2 M23 even though M32 = −M23. The definition (5.9) would be

inconsistent with linearity of ⊗j if the subscript j is unspecified. The ⊗j action on addi-

tional MB,C,D building blocks is defined to be trivial,

Mi ⊗a1 (Ma1a2...a|A|
MB,C,D) ≡ (Mi ⊗a1 Ma1a2...a|A|

)MB,C,D.

As we will see in the following Lemma, there is a neat interplay between action of the

BRST charge and the ⊗j operation defined in (5.9).

Lemma 1. If Cj|A,B,C as defined by (5.6) is BRST closed, then its concatenation satisfies

Q(Mi ⊗j Cj|A,B,C) = MiCj|A,B,C . (5.10)

For example, C2|3,4,5 = M2M3,4,5 is BRST closed and M1 ⊗2 C2|3,4,5 = M12M3,4,5

satisfies Q(M1 ⊗2 C2|3,4,5) = M1M2M3,4,5 = M1C2|3,4,5.

Proof. BRST closure of Cj|A,B,C amounts to the following ghost number four statement

Q(Cj|A,B,C) =
∑

{σ}

Mj{σ}F{σ}(M·M·,·,·) = 0

with linear combinations F{σ} of ghost number three objects M·M·,·,·. Since Mj{σ} are

independent for different sets {σ}, the F{σ} must vanish individually. Using the deconcate-

– 23 –



J
H
E
P
0
7
(
2
0
1
4
)
1
5
3

nation formula (4.5), one can rewrite the left hand side of (5.10) as follows:

Q(Mi ⊗j Cj|A,B,C) = Q
(

MijMA,B,C +
∑

{δ}6=∅

Mij{δ}f{δ}(M·,·,·)
)

= MiMjMA,B,C +
∑

{δ}6=∅

MiMj{δ}f{δ}(M·,·,·) +
∑

{σ}

Mij{σ}F{σ}(M·M·,·,·)

= Mi

{

MjMA,B,C +
∑

{δ}6=∅

Mj{δ}f{δ}(M·,·,·)

}

= MiCj|A,B,C .

(5.11)

In the first step, we have isolated the first term of QMij{δ} = MiMj{δ}+ . . . and the second

step made use of F{σ} = 0 ∀ {σ} as argued above.

The following recursive definition can be checked to generate BRST closed expressions

for arbitrary ranks

Ci|A,B,C = MiMA,B,C+
[

Mi⊗a1Ca1|a2...a|A|,B,C−Mi⊗a|A|
Ca|A||a1...a|A|−1,B,C+(A ↔ B,C)

]

.

(5.12)

Q-invariance follows from (5.7) and Lemma 1 (using the definition C1|∅,A,B = 0 for single-

particle slots). The are 7−2k terms in (5.12) where k is the number of single-particle slots

among A,B,C. Since Mi⊗j increases the multiplicity of Cj|D,E,F on the right hand side

by one, we can regard (5.12) as a recursion in |A| + |B| + |C|. Its first applications up to

multiplicity 1 + |A|+ |B|+ |C| = 6 are listed below

C1|2,3,4 ≡ M1M2,3,4 (5.13)

C1|23,4,5 ≡ M1M23,4,5 +M1⊗2C2|3,4,5 −M1⊗3C3|2,4,5

= M1M23,4,5 +M12M3,4,5 −M13M2,4,5

C1|234,5,6 ≡ M1M234,5,6 +M1⊗2C2|34,5,6 −M1⊗4C4|23,5,6

= M1M234,5,6 +M12M34,5,6 +M123M4,5,6 −M124M3,5,6

−M14M23,5,6 −M142M3,5,6 +M143M2,5,6

C1|23,45,6 ≡ M1M23,45,6 +M1⊗2C2|45,3,6 −M1⊗3C3|45,2,6 +M1⊗4C4|23,5,6 −M1⊗5C5|23,4,6

= M1M23,45,6 +M12M45,3,6 −M13M45,2,6 +M14M23,5,6 −M15M23,4,6

+M124M3,5,6 −M134M2,5,6 +M142M3,5,6 −M152M3,4,6

−M125M3,4,6 +M135M2,4,6 −M143M2,5,6 +M153M2,4,6 ,

and higher-rank expressions are easily obtained as well. Even though the number of terms

in C1|234,5,6 and C1|23,45,6 can be reduced by virtue of the Berends-Giele symmetry M124 +

M142 = −M214, we keep the expression in the form M1... compatible with further recursion

steps (5.12).

As detailed in appendix B, the C1|A,B,C boil down to linear combinations of SYM tree

amplitudes [10]. Nevertheless, their component expansion up to multiplicity seven can be

downloaded from [46].
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5.4 Vector BRST blocks at one-loop

In the five-point closed string computation of [20] the zero mode saturation in the left/right-

mixing sector where the b-ghost contributes Πmdαdβ led to the definition

Wm
2,3,4,5 ≡

1

12
(λγnW 2)(λγpW 3)(W 4γmnpW 5) + (2, 3 | 2, 3, 4, 5), (5.14)

which satisfies

QWm
2,3,4,5 = −(λγmW2)T3,4,5 − (2 ↔ 3, 4, 5). (5.15)

The notation (i1, i2 | i1, . . ., in) means a sum over all possible ways of choosing two indices

i1 and i2 out of i1, . . ., in, for a total of
(

n
2

)

terms. Furthermore, another type of left/right-

mixing zero-mode saturation was possible which required taking ΠmdαdβNnp from the

integrated vertex operators, leading to terms of the form Am
2 T3,4,5. The key observation

in [20] was that the vectorial superfield

Tm
2,3,4,5 ≡ Am

2 T3,4,5 + (2 ↔ 3, 4, 5) +Wm
2,3,4,5 (5.16)

has a BRST variation in which the vector index is carried only by momenta

QTm
2,3,4,5 = km2 V2T3,4,5 + (2 ↔ 3, 4, 5) . (5.17)

This fact played a crucial role in demonstrating BRST invariance of the closed-string five-

point amplitude [20] because it allows the BRST variation of the terms contracting left-

and right-movers to factorize and cancel the variation of the holomorphic squared terms.

To generalize this construction to higher multiplicity one defines

Wm
A,B,C,D ≡

1

12
(λγnWA)(λγ

pWB)(WCγ
mnpWD) + (A,B|A,B,C,D)

Tm
A,B,C,D ≡ Am

ATB,C,D + (A ↔ B,C,D) +Wm
A,B,C,D

(5.18)

with multiparticle labels A,B,C,D as well as their Berends-Giele counterparts,

Wm
A,B,C,D ≡

1

12
(λγnWA)(λγ

pWB)(WCγ
mnpWD) + (A,B|A,B,C,D)

Mm
A,B,C,D ≡ Am

AMB,C,D + (A ↔ B,C,D) +Wm
A,B,C,D ,

(5.19)

which are totally symmetric in A,B,C,D. The BRST variations (4.6) — in particular the

universality of the non-contact terms to arbitrary A, B, C and D — imply that

QWm
A,B,C,D = − (λγmWA)MB,C,D (5.20)

+

|A|−1
∑

j=1

(

Ma1...ajW
m
aj+1...a|A|,B,C,D −Maj+1...a|A|

Wm
a1...aj ,B,C,D

)

+ (A ↔ B,C,D)

QMm
A,B,C,D = kmAMAMB,C,D (5.21)

+

|A|−1
∑

j=1

(Ma1...ajM
m
aj+1...a|A|,B,C,D −Maj+1...a|A|

Mm
a1...aj ,B,C,D)

+ (A ↔ B,C,D) .
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The vectorial building block Mm
A,B,C,D causes the first explicit appearance of multiparti-

cle vector superfield Am
B , see (5.19). Its multiparticle equation of motion in (4.6) is re-

quired to derive (5.21) at arbitrary multiplicities |A|, . . . , |D|. With MB = λαAB
α and the

Wα
B , F

mn
B constituents in the definition (5.4) of MA,C,D, we have by now seen all the four

superfields {AB
α , A

m
B ,Wα

B , F
mn
B } in the multiparticle vertex operator UB entering one-loop

BRST blocks.

5.5 Vector BRST cohomology at one-loop

It is interesting to study vectorial uplifts MAMB,C,D → MAM
m
B,C,D,i of the scalar BRST

invariants C1|A,B,C as given by (5.13). The deconcatenation terms due to the second line

of (5.21) drop out from the BRST variation, but the contributions from the first line remain

where the free vector index is carried by external momenta km. The first example

Bm
1|2,3,4,5 ≡ M1M

m
2,3,4,5, QBm

1|2,3,4,5 = −
[

km2 E12M3,4,5 + (2 ↔ 3, 4, 5)
]

(5.22)

obtained from C1|2,3,4 appeared in the context of the five point closed string amplitude [20].

Its six point generalization

Bm
1|23,4,5,6 ≡ M1M

m
23,4,5,6 +M1 ⊗2 B

m
2|3,4,5,6 −M1 ⊗3 B

m
3|2,4,5,6

resembles C1|23,4,5 and satisfies,

QBm
1|23,4,5,6 = −km2 E132M4,5,6 + km3 E123M4,5,6 +

[

km4 V4C1|23,5,6 + (4 ↔ 5, 6)
]

. (5.23)

The higher-multiplicity examples are similarly analysed. The fact that the kmi coefficients

in both (5.22) and (5.23) are Q-exact16 hints the existence of vectorial BRST invariants.

Vector BRST invariants can be constructed using the same procedures as in the scalar

case. We assume that each superspace expression MiM
m
A,B,C,D with single-particle label i

admits a BRST-invariant completion of the form

Cm
i|A,B,C,D ≡ MiM

m
A,B,C,D +

∑

{δ}6=∅

Mi{δ}f
m
{δ}(k

m
· M·,·,·,M

m
·,·,·,·) . (5.24)

Any term in the sum over ordered subsets {δ} of A ∪ B ∪ C ∪D incorporates label i in a

multiparticle Mi{δ}. The accompanying fm
{δ} denote vector combinations of building blocks

Mm
E,F,G,H (see (5.19)) and kmHME,F,G.

Then, as already argued in the scalar case, Q2 = 0 and the assumed uniqueness of

the BRST completions (5.6) and (5.24) implies that the BRST variation (5.21) can be

rewritten as

QMm
A,B,C,D = Cm

a1|a2...a|A|,B,C,D −Cm
a|A||a1...a|A|−1,B,C,D + δ|A|,1k

m
a1
Ca1|B,C,D +(A ↔ B,C,D).

(5.25)

In the single-particle case |A| = 1, the first line of (5.21) generates the defining term

MiMB,C,D of a scalar invariant (5.6), and the definition Cm
i|∅,B,C,D

≡ 0 must then be

16Recall that E12...p = QM12...p and V4C1|23,5,6 = Q(M4 ⊗1 C1|23,5,6) by Lemma 1.
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used to suppress the first two terms of (5.25). We take advantage of (5.25) to rewrite

Q(MiM
m
A,B,C,D) in terms of MiC

m
j|B,C,D,E

and MiCj|B,C,Dk
m
E . Hence, the BRST comple-

tions fm
{δ} in (5.24) are determined by the BRST ancestors of MiCj|B,C,D and MiC

m
j|B,C,D,E

.

The former are already known from Lemma 1, and the latter can be easily found by the

same properties of the concatenation operation (5.9). Similar to the scalars MB,C,D, the

⊗j action on vector BRST blocks is defined to be trivial,

Mi ⊗a1 (M
m
a1a2...a|A|

MB,C,D,E) ≡ (Mi ⊗a1 Ma1a2...a|A|
)Mm

B,C,D,E .

Lemma 2. If Cm
j|A,B,C,D

as defined by (5.24) is BRST closed, then its concatenation

satisfies

Q(Mi ⊗j C
m
j|A,B,C,D) = MiC

m
j|A,B,C,D. (5.26)

Proof. The arguments used in the proof of Lemma 1 can be repeated for vectorial combi-

nations fm
{δ} of km· M·,·,· and Mm

·,·,·,· at ghost number two as well as

Q(Cm
j|A,B,C,D) =

∑

{σ}

Mj{σ}F
m
{σ}(k

m
· M·M·,·,·,M·M

m
·,·,·,·) = 0 .

The ghost-number-three objects Fm
{σ} built from km· M·M·,·,· and M·M

m
·,·,·,· again vanish by

independence of the Mj{σ} such that

Q(Mi ⊗j C
m
j|A,B,C,D) = Mi

{

MjM
m
A,B,C,D +

∑

{δ}6=∅

Mj{δ}f
m
{δ}

}

+
∑

{σ}

Mij{σ}F
m
{σ}

= MiC
m
j|A,B,C,D

(5.27)

by (5.24).

Then, again in analogy with the scalar case, a recursive definition of vector invariants

can be obtained from (5.25) as follows,

Cm
i|A,B,C,D ≡MiM

m
A,B,C,D +

[

δ|A|,1k
m
a1
Mi ⊗a1 Ca1|B,C,D +Mi ⊗a1 C

m
a1|a2...a|A|,B,C,D

−Mi ⊗a|A|
Cm
a|A||a1...a|A|−1,B,C,D + (A ↔ B,C,D)

]

.
(5.28)

BRST invariance follows from (5.25) and Lemma 2. In view of the four slots A,B,C,D,

the bracket [. . .] on the right hand side of (5.28) contains 8−n terms where n is the number

of single-particle slots.

The first non-trivial applications of (5.28) are easily checked to be BRST closed,

Cm
1|2,3,4,5 = M1M

m
2,3,4,5 +

[

km2 M1 ⊗2 C2|3,4,5 + (2 ↔ 3, 4, 5)
]

= M1M
m
2,3,4,5 +

[

k2mM12M3,4,5 + (2 ↔ 3, 4, 5)
]

Cm
1|23,4,5,6 = M1M

m
23,4,5,6 +M1 ⊗2 C

m
2|3,4,5,6 −M1 ⊗3 C

m
3|2,4,5,6

+
[

km4 M1 ⊗4 C4|23,5,6 + (4 ↔ 5, 6)
]

= M1M
m
23,4,5,6 +M12M

m
3,4,5,6 −M13M

m
2,4,5,6

+
[

km3 M123M4,5,6 + (3 ↔ 4, 5, 6)
]

−
[

km2 M132M4,5,6 + (2 ↔ 4, 5, 6)
]

+
[

km4 M14M23,5,6 +M142M3,5,6 −M143M2,5,6 + (4 ↔ 5, 6)
]

,

(5.29)

and higher-multiplicity analogues are also straightforward to obtain. Component expansion

up to multiplicity seven are available from [46].
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6 Conclusion and outlook

In this work, we have constructed multiparticle vertex operators U12...p through a recur-

sive prescription described in subsection 3.4. This generalizes and streamlines the earlier

construction of BRST-covariant building blocks in [12–14]. The coefficients of conformal

weight-one fields {∂θα,Πm, dα, N
mn} in UB are interpreted as multiparticle superfields

KB ∈ {AB
α , A

B
m,Wα

B , F
B
mn} of ten-dimensional SYM with shorthands B = 12 . . . p for ex-

ternal p-particle trees. Their equations of motions are shown to have the same structure

as their single-particle relatives — see (3.61) versus (2.1). In addition, they are enriched

by contact terms where the multiparticle label B is distributed into two smaller subsets.

These multiparticle SYM fields furnish a kinematic analogue of the structure con-

stants fabc of the color sector, and their Lie symmetries (3.1) guarantee that the tree-level

subgraphs described by KB are compatible with the BCJ duality between color and kine-

matics [26]. Since the BCJ duality has been observed to hold in various dimensions, it will

be interesting to explore lower-dimensional setups for multiparticle equations of motion.

It is worth emphasizing that the Lie-algebraic nature of the BRST blocks is com-

pletely general and can be understood in terms of its basic SYM superfield constituents.

The particular combinations of single-particle superfields constituting their multiparticle

generalizations defined in this paper are suggested by OPE computations among vertex

operators in the pure spinor formalism. Moreover, they are in lines with the BRST co-

homology organization of scattering amplitudes suggested in [45] and brought to fruition

in [10, 12–14]. Given the general Lie symmetries obeyed by the multiparticle SYM su-

perfields and their appearance in the OPEs of vertex operators, it is therefore natural to

suspect that the BCJ duality between color and kinematics might be valid at the level of

external tree subdiagrams to all loop-orders [63].

In section 5, which is devoted to one-loop applications, the zero mode saturation of

the minimal pure spinor formalism [19] singles out some elementary combinations of KB

with beneficial BRST properties — such as scalars MA,B,C in (5.4) and vectors Mm
A,B,C,D

in (5.19). We have derived recursions (5.12) and (5.28) to construct scalar and vectorial

cohomology elements at arbitrary multiplicity out of MDMA,B,C and MEM
m
A,B,C,D. We

can learn from the five-point results in [20, 21] that vector invariants are crucial for one-

loop amplitudes among closed string states, where cross-contractions between left- and

right-moving worldsheet fields occur.

Since the number of left-right contractions is unbounded for multiparticle one-loop am-

plitudes, the need for BRST invariants extends to tensors of arbitrary rank. The construc-

tion of tensorial BRST-blocks generalizing MA,B,C and Mm
A,B,C,D as well as their BRST-

invariant embedding into full-fledged closed string amplitudes is left for future work [39].

Moreover, it remains to clarify how these tensors are related to the gauge anomaly of open

superstring amplitudes and its cancellation [36, 37].

For all of the aforementioned building blocks, the superspace representation in terms

of elementary SYM superfields is explicitly accessible from this work. So the zero mode

integration prescription of the schematic form 〈λ3θ5〉 = 1 [17] as automated in [32] allows

to derive supermultiplet components in terms of gluon polarization vectors and gaugino
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wave functions. The gluon components of all the scalar and vector cohomology elements

up to multiplicity seven can be found on the website [46].

Finally, it is worthwhile to note that the (non-minimal) pure spinor formalism can be

interpreted as a critical topological string [18]. As shown in [60], the BRST cohomology of

a topological CFT is endowed with a Gerstenhaber algebra structure and it would therefore

be interesting to investigate possible connections with the BRST covariance property of

multiparticle vertex operators. As pointed out by in [59], the associated Gerstenhaber

bracket among vertex operators is a promising starting point to relate string amplitudes of

different particle content. These references motivate further study of multiparticle vertex

operators in view of both mathematical structures and applications to scattering of massive

string states.
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A Physics of BRST blocks versus mathematics of cubic graphs

In this appendix we connect the recursive construction of BRST blocks with mathematical

operations on planar binary trees, see [3, 4, 24] and references therein. As explained in

the references, a mapping between planar binary trees and iterated brackets gives rise to

an explicit Lie algebra basis construction. This will be used to manifest the Lie symme-

tries (3.1) of the BRST blocks and emphasize their connection with cubic graphs which

play a central role for the duality between color and kinematics [26].

A.1 Iterated bracket notation

The antisymmetry of a rank-two BRST blockKa1a2 can be made manifest with the notation

K[a1,a2] ≡ Ka1a2 . In general, the defining property of a rank-p BRST block to satisfy all

Lie symmetries £k with k ≤ p motivates the following notation with iterated brackets,

K[a1,a2] ≡ Ka1a2

K[[a1,a2],a3] ≡ K[a1a2,a3] ≡ Ka1a2a3

...

K[[[...[[a1,a2],a3],...],ap−1],ap] ≡ K[a1a2...ap−1,ap] ≡ Ka1a2...ap .

(A.1)

The virtue of this bracket structure for the duality between color and kinematics was

already emphasized in [58]. The above notation reminds of the recursive definition of

BRST blocks which features a repeated antisymmetrization (a1a2 . . . aj−1 ↔ aj) with j =

2, 3, . . . , p. Moreover, they are in lines with the symmetry matching (3.2) with color factors

upon expanding the structure constants

K[[[...[[a1,a2],a3],...],ap−1],ap] ↔ tr ([[[. . . [[T a1 , T a2 ], T a3 ], . . .], T ap−1 ], T ap ]) . (A.2)
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1 2 1 2 3 1 2 3 4 1 2 3 4 5

K[1,2] K[[1,2],3] K[[[1,2],3],4] K[[[1,2],3],[4,5]]

Figure 7. Examples of the mapping between cubic graphs with one leg off-shell and BRST blocks.

Together with the conventions (A.1), the fact that the BRST blocks furnish an explicit representa-

tion of the “Jacobi identity of trees” of the type discussed in [26] becomes manifest.

Furthermore, more general bracketing patterns can always be brought to the canoni-

cal form (A.1) by using the antisymmetry and Jacobi identity satisfied by the brackets.

For example,

K[[1,[2,3]],4] = −K[[[2,3],1],4] = −K2314

K[[1,2],[3,4]] = K[[[1,2],3],4] −K[[[1,2],4],3] = K1234 −K1243 .
(A.3)

Using the iterated bracket notation introduced above the explicit expressions for the

Lie symmetries (3.1) can be easily reproduced. To see this one uses the antisymmetry of

the outer commutator to write K[A,B] = −K[B,A] (here A and B represent arbitrary com-

binations of brackets acting on the multiparticle labels) and applies the conventions (A.1).

For example, the £4 symmetry in (3.1) is reproduced by K[[1,2],[3,4]] = −K[[3,4],[1,2]], which

implies that K1234 −K1243 = −K3412 +K3421.

A.2 Diagrammatic representation of BRST blocks and their recursion

In the mathematics literature, such as [3, 4, 24] and references therein, there is a well-known

mapping between planar binary trees17 and iterated brackets which is used to construct

an explicit Lie algebra basis [3]. Given the iterated bracket convention discussed above,

this can be immediately borrowed to create a mapping between cubic graphs with one leg

off-shell and BRST blocks,18 see figure 7. The algorithm is as follows. First index the

external legs with the labels {1, 2, . . . , n} from left to right and, starting from the left, for

each vertex associate the bracket [A,B] where A and B represent the labels to the left and

to the right of the vertex (which may already be partially bracketed themselves).

Given the mapping described above, it is interesting to consider the effect of the graft-

ing [4, 24] operation of trees in their associated BRST block images. The grafting of two

planar binary trees tA and tB is represented by tA∨ tB and joins the roots (i.e. the off-shell

leg) of tA and tB to create a new root. It is not difficult to see that if KA and KB are

the BRST blocks associated with tA and tB then tA ∨ tB is mapped to K[A,B], see figure 8.

Note that the definition of Â123...p
α in section 3 can be interpreted (up to the redefinitions

by H12...p) as the grafting of two trees with multiplicity p− 1 and 1.

17The precise definitions can be found in [3, 24]. But for our purposes, a planar binary tree is nothing

more than a cubic graph with one leg off-shell.
18This prescription was already hinted (up to an overall sign) in the diagrammatic derivation of the

symmetries obeyed by the building block TB discussed in [13, 14]. The mapping now extends to the whole

class of multiparticle superfields KB ∈ {AB
α , A

m
B ,Wα

B , Fmn
B }.
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a1 a2 . . . a|A|

∨

b1 b2 . . . b|B|

=

a1 . . . a|A| . . . b|B|

KA KB K[A,B]

Figure 8. The grafting operation on trees and its corresponding mapping in terms of BRST blocks.

1 2 3 1 2 3

K[[1,2],3]

s12s123

K[1,[2,3]]

s23s123

Figure 9. A diagrammatic derivation of the Berends-Giele current K123. The two cubic graphs

correspond to the two possibilities of bracketing three external legs, [[12]3], [1[23]] and give rise

to the expression K123 = K123

s12s123
+ K321

s23s123
under the mapping described below together with the

conventions (A.1).

A.3 Diagrammatic construction of Berends-Giele currents

It is possible to find the explicit expressions of Berends-Giele currents KB in terms of BRST

blocks KB with a diagrammatic prescription which uses the mapping discussed above. This

can be used as an alternative to the inverse momentum kernel formula given in (4.1).

The Berends-Giele current with multiplicity p is obtained by the sum of the expressions

associated with all the p + 1 cubic graphs with one leg off-shell, whose total number is

given by the Catalan number Cp−1. It is convenient to recall that the Catalan number

Cp−1 represents the number of different ways that p factors can be bracketed and each

possibility has a direct representation in terms of cubic graphs. To each graph a BRST

block K[[...,...],...] is assigned with the corresponding bracketing (which reflects the vertex

structure). In addition, an inverse Mandelstam invariant should be multiplied for each

non-external edge.

The two possibilities of bracketing three external legs, namely [[12]3] and [1[23]], give

rise to the expression for K123 under the mapping described above, see figure 9. Similarly,

the five different bracketing possibilities of four external legs

[[[12]3]4], [[1[23]]4], [[12][34]], [1[2[34]]], [1[[23]4]] (A.4)

and their corresponding mapping in terms of cubic graphs and BRST blocks leading

to the expression K1234 were depicted in figure 6. Higher-multiplicity examples are

similarly handled.
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A.4 Different superfield representations versus Lie symmetries

The definition of the hatted BRST blocks at multiplicity p has an explicit antisymmetriza-

tion of the form 12 . . . p − 1 ↔ p, where p is a single-particle label. As discussed above,

the resulting BRST block is represented by a iterated bracket where the second slot of the

outer bracket is a single-particle label. This motivates to check the outcome of a more

general hatted superfield definition featuring a multiparticle label instead of p. As the

brief discussion below suggests, the result is compatible with a linear combination of the

“standard” BRST blocks following from the iterated bracket notation.

To see this, consider a rank-four hatted BRST block with the symmetry structure

(12 ↔ 34) instead of (123 ↔ 4) as in (3.35). For example,

Â[[1,2],[3,4]]
α = −

1

2

[

A12
α (k12 ·A34) +A12

m (γmW 34)α − (12 ↔ 34)
]

. (A.5)

It is not difficult to show that V̂[[1,2],[3,4]] ≡ λαÂ
[[1,2],[3,4]]
α satisfies

QV̂[[1,2],[3,4]] = (k1 · k2)
[

V2V̂341 − (1 ↔ 2)
]

+ (k3 · k4)
[

V3V̂124 − (3 ↔ 4)
]

+ (k12 · k34)V12V34 .

(A.6)

where the equation of motion for D(αÂβ) was contracted with λαλβ for the sake of sim-

plicity. Therefore the redefinition

V[[1,2],[3,4]] ≡ V̂[[1,2],[3,4]] + (k1 · k2)
[

V2H341 − (1 ↔ 2)
]

+ (k3 · k4)
[

V3H124 − (3 ↔ 4)
]

(A.7)

satisfies

QV[[1,2],[3,4]] = QV1234 −QV1243 . (A.8)

This is compatible with the expectation from the bracket notation since V[[1,2],[3,4]] = V1234−

V1243, see (A.3).

B BCJ relations and one-loop scalar cohomology elements

The scalar cohomology elements C1|A,B,C constructed in section 5.3 were argued in [10] to

be linear combinations of SYM tree-level amplitudes multiplied by quadratic polynomials of

Mandelstam invariants. Momentum conservation as well as BCJ and KK relations among

color ordered SYM amplitudes AYM(. . .) [26, 30, 31] lead to a multitude of different such

representations for C1|A,B,C . In the following, we provide convenient representations at all

multiplicities19 in the sense that the total number of terms is systematically reduced and

inverse powers of Mandelstam invariants are avoided. As we shall see, these AYM represen-

tations of C1|A,B,C are intriguingly related to BCJ relations among tree-level amplitudes.

19The explicit representation given at multiplicity five in [10] fails to satisfy the above criterion of having

local Mandelstam coefficients along with AYM(. . .). The six-point representation was given only indirectly

as an expansion in terms of AF4

, which represent the α′2 corrections of the string tree-level amplitudes.

– 32 –



J
H
E
P
0
7
(
2
0
1
4
)
1
5
3

Figure 10. Diagrammatic interpretation of MS[A,B].

B.1 A shuffle formula for BCJ relations

Let us first define an operation S[A,B] which concatenates two multiparticle labels A and

B with Berends-Giele symmetries (see section 4.1) into one such set,

MS[A,B] ≡

|A|
∑

i=1

|B|
∑

j=1

(−1)i−j+|A|−1saibjM(a1a2...ai−1�a|A|a|A|−1...ai+1)aibj(bj−1...b2b1�bj+1...b|B|).

(B.1)

One can interpret MS[A,B] in (B.1) as attaching two Berends-Giele currents MA and MB to

a cubic vertex and expressing the resulting diagram in terms of MC at overall multiplicity

|C| = |A|+ |B|, see figure 10. For example,

MS[1,2] = s12M12

MS[1,23] = s12M123 − s13M132

MS[1,234] = s12M1234 − s13(M1324 +M1342) + s14M1432

MS[12,34] = −s13M2134 + s14M2143 + s23M1234 − s24M1243 .

(B.2)

It turns out that the S[A,B] product defined by (B.1) can be used to generate BCJ

relations among tree amplitudes [26]. Recalling [12] that SYM tree amplitudes are given

by AYM(1, 2, . . . , n) = 〈V1E23...n〉, BCJ relations among AYM can be written as

〈V1ES[A,B]〉 = 0, ∀ A,B , (B.3)

for example

0 = 〈V1ES[2,34]〉 = s23A
YM(1, 2, 3, 4)− s24A

YM(1, 2, 4, 3)

0 = 〈V1ES[2,345]〉 = s23A
YM(1, 2, 3, 4, 5) + s25A

YM(1, 2, 5, 4, 3)

− s24(A
YM(1, 2, 4, 3, 5) +AYM(1, 2, 4, 5, 3))

0 = 〈V1ES[23,45]〉 = s34A
YM(1, 2, 3, 4, 5)− s35A

YM(1, 2, 3, 5, 4)

− s24A
YM(1, 3, 2, 4, 5) + s25A

YM(1, 3, 2, 5, 4) .

0 = 〈V1ES[2,3456]〉 = s23A
YM(1, 2, 3, 4, 5, 6)− s26A

YM(1, 2, 6, 5, 4, 3)

− s24(A
YM(1, 2, 4, 3, 5, 6) +AYM(1, 2, 4, 5, 3, 6) +AYM(1, 2, 4, 5, 6, 3))

+ s25(A
YM(1, 2, 5, 6, 4, 3) +AYM(1, 2, 5, 4, 6, 3) +AYM(1, 2, 5, 4, 3, 6)).

(B.4)
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Similar formulæ for BCJ relations using shuffle products can be found in20 [7, 8, 49]. We

have explicitly verified that (B.3) holds up to multiplicity |A|+ |B|+1 = 7 using the data

from [46].

B.2 〈C1|A,B,C〉 from the BCJ shuffle formula

Since (B.3) also holds for A or B of the form S[C,D], we can iterate the product (B.1)

and generate further vanishing identities for SYM subamplitudes from ES[S[A,B],C]. Any

partition of A,B and C leads to an AYM relation with local polynomials of degree two in

Mandelstam invariants. The examples

0 = 〈V1ES[S[2,3],4]〉 = s23s34A
YM(1, 2, 3, 4)− s23s24A

YM(1, 3, 2, 4)

0 = 〈V1ES[S[4,5],23]〉 = − s34s45A
YM(1, 2, 3, 4, 5) + s35s45A

YM(1, 2, 3, 5, 4)

+ s24s45A
YM(1, 3, 2, 4, 5)− s25s45A

YM(1, 3, 2, 5, 4)

0 = 〈V1ES[S[5,6],234]〉 = − s56s45A
YM(1, 2, 3, 4, 5, 6) + s56s46A

YM(1, 2, 3, 4, 6, 5)

+ s56s35A
YM(1, 2, 4, 3, 5, 6)− s56s36A

YM(1, 2, 4, 3, 6, 5)

+ s56s35A
YM(1, 4, 2, 3, 5, 6)− s56s36A

YM(1, 4, 2, 3, 6, 5)

− s56s25A
YM(1, 4, 3, 2, 5, 6) + s56s26A

YM(1, 4, 3, 2, 6, 5)

0 = 〈V1ES[S[6,45],23]〉 = + s46s34A
YM(1, 2, 3, 4, 5, 6) + s56s34A

YM(1, 2, 3, 4, 5, 6)

+ s46s34A
YM(1, 2, 3, 4, 6, 5)− s46s35A

YM(1, 2, 3, 5, 4, 6)

− s56s35A
YM(1, 2, 3, 5, 4, 6)− s56s35A

YM(1, 2, 3, 5, 6, 4)

− s46s36A
YM(1, 2, 3, 6, 4, 5) + s56s36A

YM(1, 2, 3, 6, 5, 4)

− s46s24A
YM(1, 3, 2, 4, 5, 6)− s56s24A

YM(1, 3, 2, 4, 5, 6)

− s46s24A
YM(1, 3, 2, 4, 6, 5) + s46s25A

YM(1, 3, 2, 5, 4, 6)

+ s56s25A
YM(1, 3, 2, 5, 4, 6) + s56s25A

YM(1, 3, 2, 5, 6, 4)

+ s46s26A
YM(1, 3, 2, 6, 4, 5)− s56s26A

YM(1, 3, 2, 6, 5, 4)

(B.5)

can be checked to be a consequence of the BCJ relations [26]. Note that ES[S[A,B],C] in the

five-point example is chosen as (A,B,C = 4, 5, 23) rather than (A,B,C = 23, 4, 5) in order

to minimize the number of terms.

The motivation to delve on the redundant BCJ relations (B.5) in addition to (B.4)

stems from their intriguing connection with the AYM representation of the scalar cohomol-

ogy elements C1|A,B,C . Up to six-points, we have

−〈C1|2,3,4〉 = −s24s23A
YM(1, 3, 2, 4)

−〈C1|23,4,5〉 = −s45s34A
YM(1, 2, 3, 4, 5) + s45s24A

YM(1, 3, 2, 4, 5)

−〈C1|234,5,6〉 = −s56s45A
YM(1, 2, 3, 4, 5, 6) + s56s35A

YM(1, 2, 4, 3, 5, 6)

+ s56s35A
YM(1, 4, 2, 3, 5, 6)− s56s25A

YM(1, 4, 3, 2, 5, 6)

−〈C1|23,45,6〉 = −s46s36A
YM(1, 2, 3, 6, 4, 5) + s56s36A

YM(1, 2, 3, 6, 5, 4)

+ s46s26A
YM(1, 3, 2, 6, 4, 5)− s56s26A

YM(1, 3, 2, 6, 5, 4) ,

(B.6)

20We thank Henrik Johansson for pointing out reference [49].
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and we observe that the expressions on the right hand side can be found by systematically

deleting subsets of the terms in (B.5): only those terms in 〈V1ES[S[A,B],C]〉 are kept where

the Mandelstam bilinear takes the form sabsac with a ∈ A, b ∈ B and c ∈ C. The following

algorithm allows to translate any 〈C1|A,B,C〉 into SYM trees:

1. Reorder the labels A,B and C such that |A| ≤ |B| ≤ |C|.

2. Apply the formula (B.1) recursively to evaluate ES[S[A,B],C].

3. Substitute Eσ2...σn → AYM(1, σ2, . . . , σn).

4. Keep only the terms containing Mandelstams with labels distributed as in sabsac,

with single-particle labels a ∈ A, b ∈ B and c ∈ C. Delete terms of the form sabsbc.

5. The result is −〈C1|A,B,C〉.

We have explicitly checked with the data available from [46] that the algorithm above

is correct for all scalar cohomology elements up to multiplicity |A|+ |B|+ |C|+1 = 7. For

example, it leads to

−〈C1|2345,6,7〉 = −s67s56A
YM(1, 2, 3, 4, 5, 6, 7) + s67s46A

YM(1, 2, 3, 5, 4, 6, 7)

+ s67s46A
YM(1, 2, 5, 3, 4, 6, 7)− s67s36A

YM(1, 2, 5, 4, 3, 6, 7)

+ s67s46A
YM(1, 5, 2, 3, 4, 6, 7)− s67s36A

YM(1, 5, 2, 4, 3, 6, 7)

− s67s36A
YM(1, 5, 4, 2, 3, 6, 7) + s67s26A

YM(1, 5, 4, 3, 2, 6, 7)

−〈C1|234,56,7〉 = −s57s47A
YM(1, 2, 3, 4, 7, 5, 6) + s67s47A

YM(1, 2, 3, 4, 7, 6, 5)

+ s57s37A
YM(1, 2, 4, 3, 7, 5, 6)− s67s37A

YM(1, 2, 4, 3, 7, 6, 5)

+ s57s37A
YM(1, 4, 2, 3, 7, 5, 6)− s67s37A

YM(1, 4, 2, 3, 7, 6, 5)

− s57s27A
YM(1, 4, 3, 2, 7, 5, 6) + s67s27A

YM(1, 4, 3, 2, 7, 6, 5)

(B.7)

and a slightly longer 32-term representation of 〈C1|23,45,67〉 which is commented out in the

TEX source.

It will be interesting to understand the origin of the intriguing patterns described in

this appendix. They hint a deeper connection between the fusion of Berends-Giele currents

via (B.1) (see figure 10 for a diagrammatic interpretation), general BCJ relations [26, 49]

and the scalar cohomology elements 〈C1|A,B,C〉 generating the non-anomalous kinematics

in one-loop amplitudes of the open superstring [10].

C The explicit expression for H1234

The Lie symmetry of rank-four BRST blocks is restored by the redefinition (3.46) with the

following expression for H1234:

4H1234 = H
(a)
1234 −H

(a)
1243 +H

(a)
3412 −H

(a)
3421 (C.1)
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By construction, it is the £4 image of a more elementary expression

H
(a)
1234 =

1

4
(A12 ·A34) +

1

6
(A12 ·A3)(k3 ·A4)−

1

3
(A12 ·A3)(k12 ·A4) +

1

2
(A123 ·A4)

+
1

2
A12

mA3
nF

4
mn +

1

6
(A1 ·A23)(k123 ·A4)−

1

6
(A2 ·A13)(k123 ·A4)

+
1

4

(

H
(b)
1234 +H

(b)
3412 +H

(b)
1423 +H

(b)
2314 +H

(b)
3124 +H

(b)
2431

)

(C.2)

with

H
(b)
1234 =

1

6
(A1 ·A2)(k4 ·A3)((k1 ·A4)− (k2 ·A4))

−
1

6
(A1 ·A2)(k3 ·A4)((k1 ·A3)− (k2 ·A3))

+
1

3
(A1 ·A2)

[

(k2 ·A3)(k1 ·A4)− (k1 ·A3)(k2 ·A4)
]

.

(C.3)
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[3] G. Melançon and C. Reutenauer, Free Lie superalgebras, trees and chains of partitions, J.

Alg. Comb. 5 (1996) 337.

[4] J.L. Loday and M.O. Ronco, Hopf algebra of the planar binary trees, Adv. Math. 139 (1998)

293.

[5] L.A. Barreiro and R. Medina, RNS derivation of N-point disk amplitudes from the revisited

S-matrix approach, arXiv:1310.5942 [INSPIRE].

[6] H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and

open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

[7] N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory

amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].

[8] S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211

[INSPIRE].

[9] F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons,

Nucl. Phys. B 306 (1988) 759 [INSPIRE].

[10] C.R. Mafra and O. Schlotterer, The structure of n-point one-loop open superstring

amplitudes, arXiv:1203.6215 [INSPIRE].

[11] C.R. Mafra, Simplifying the tree-level superstring massless five-point amplitude,

JHEP 01 (2010) 007 [arXiv:0909.5206] [INSPIRE].

– 36 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP03(2014)017
http://arxiv.org/abs/1311.4156
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4156
http://dx.doi.org/10.1007/JHEP04(2014)046
http://arxiv.org/abs/1312.5485
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5485
http://arxiv.org/abs/1310.5942
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.5942
http://dx.doi.org/10.1016/0550-3213(86)90362-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B269,1
http://dx.doi.org/10.1103/PhysRevLett.103.161602
http://arxiv.org/abs/0907.1425
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1425
http://arxiv.org/abs/0907.2211
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2211
http://dx.doi.org/10.1016/0550-3213(88)90442-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B306,759
http://arxiv.org/abs/1203.6215
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6215
http://dx.doi.org/10.1007/JHEP01(2010)007
http://arxiv.org/abs/0909.5206
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.5206


J
H
E
P
0
7
(
2
0
1
4
)
1
5
3

[12] C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM

n-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].

[13] C.R. Mafra, O. Schlotterer and S. Stieberger, Complete n-point superstring disk amplitude I.

pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].

[14] C.R. Mafra, O. Schlotterer and S. Stieberger, Complete n-point superstring disk amplitude II.

Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461

[arXiv:1106.2646] [INSPIRE].

[15] E. Witten, Twistor-like transform in ten-dimensions, Nucl. Phys. B 266 (1986) 245

[INSPIRE].

[16] W. Siegel, Superfields in higher dimensional space-time, Phys. Lett. B 80 (1979) 220

[INSPIRE].
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