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Using the force-susceptibility formalism of linear quantum measurements, we study the

dynamics of signal recycled interferometers, such as LIGO-II. We show that, although the

antisymmetric mode of motion of the four arm-cavity mirrors is originally described by a

free mass, when the signal-recycling mirror is added to the interferometer, the radiation-

pressure force not only disturbs the motion of that “free mass” randomly due to quantum

fluctuations, but also and more fundamentally, makes it respond to forces as though it were

connected to a spring with a specific optical-mechanical rigidity. This oscillatory response

gives rise to a much richer dynamics than previously known for SR interferometers, which

enhances the possibilities for reshaping the noise curves and, if thermal noise can be pushed

low enough, enables the standard quantum limit to be beaten. We also show the possibility

of using servo systems to suppress the instability associated with the optical-mechanical

interaction without compromising the sensitivity of the interferometer.

PACS No.: 04.80.Nn, 95.55.Ym, 42.50.Dv, 03.65.Bz. GRP/00/554

I. INTRODUCTION

Next year a network of broadband ground-based laser interferometers, aimed to detect gravitational waves

(GWs) in the frequency band 10−104 Hz, will begin operations. This network is composed of the Laser Inter-

ferometer Gravitational-wave Observatory (LIGO), VIRGO (whose operation will begin in 2004), GEO600,

and TAMA 300 [1]. Given the anticipated noise spectra and the current estimates of gravitational waves

from various astrophysical sources [2], it is plausible but not probable that gravitational waves will be de-

tected with the first generation of interferometers. The original conception of LIGO included an upgrade of

LIGO to sensitivities at which it is probable to detect a rich variety of gravitational waves [2]. The LIGO

Scientific Collaboration (LSC) [3] is currently planning this upgrade to begin in 2006. This second stage

includes: (i) improvement of the seismic isolation system to push the seismic wall downward in frequency

to 10Hz, (ii) improvement of the suspension system to lower the noise in the band between ∼ 10Hz and

∼ 200Hz, (iii) increase (decrease) of light power (shot noise) circulating in the arm cavities (∼ 1 MWatt),

(iv) improvement in the optics so that they can handle the increased laser power, and (v) introduction of an

extra mirror, called a signal-recycling (SR) mirror, at the dark-port output. This upgraded configuration of

LIGO (“advanced interferometer”) is sometimes called LIGO-II and its design is sketched in Fig. 1.

The SR mirror (see Fig. 1) sends the signal coming out the dark port back into the arm cavities; in this
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FIG. 1. Schematic diagram of a signal recycled interferometer such as LIGO-II. The antisymmetric mode of motion

of the four arm-cavity mirrors (marked by arrows) is monitored by laser interferometry. A signal-recycling mirror is

used to feed the signal light back into the arm cavities, while a power-recycling mirror is introduced to feed back into

the arm cavities the unused laser light coming out the bright port.

sense it recycles the signal. 1 The optical system composed of the SR cavity and the arm cavities forms a

composite resonant cavity, whose eigenfrequencies and quality factors can be controlled by the position and

reflectivity of the SR mirror. Near its eigenfrequencies (resonances), the device can gain sensitivity. In fact,

the initial motivation for introducing the SR cavity was based on the idea of using this feature to reshape

the noise curves, enabling the interferometer to work either in broadband or in narrowband configurations,

and improving in this way the observation of specific GW astrophysical sources [2]. Historically, the first

idea for a narrowband configuration, so-called synchronous or resonant recycling, was due to Drever [4] and

was subsequently analyzed by Vinet et al. [5]. It used a different optical topology from Fig. 1. The original

idea for the optical topology of Fig. 1 was due to Meers [6], who proposed its use for dual recycling – a

scheme which by recycling the signal light increases the storage time of the signal inside the interferometer

1 The configuration of LIGO-II will also include a power-recycling (PR) mirror between the laser and the beamsplitter

(see Fig. 1). This mirror recycles back into the arm cavities the unused laser light coming out the bright port and

increases the light power at the beamsplitter. Besides this effect, the presence of the PR mirror does not affect the

derivation of the quantum noise at the dark-port output. Therefore, although in our analysis we assume high light

power, we do not need to take into account the PR mirror in deducing the interferometer’s input-output relation.

2



and lowers the shot noise. Later, Mizuno et al. [7–9] proposed another scheme called Resonant Sideband

Extraction (RSE), which also uses the optical topology of Fig. 1 but adjusts the SR mirror so that the

storage time of the signal inside the interferometer decreases while the observation bandwidth increases. In

general, by choosing appropriate detunings 2 of the SR cavity, the optical configuration can be in either of

the two regimes, or in between. These schemes have been experimentally tested by Freise et al. [10] with the

30m laser interferometer in Garching (Germany), and by Mason [11] on a table-top experiment at Caltech

(USA).

All the above mentioned theoretical analyses and experiments of SR interferometers [4–11] refer to config-

urations with low laser power, for which the radiation pressure on the arm-cavity mirrors is negligible and

the noise spectra are dominated by shot noise. However, when the laser power is increased, the shot noise

decreases while the effect of radiation-pressure fluctuation increases. LIGO-II has been planned to work at

a laser power for which the two effects are comparable in the observation band 10–200Hz [3]. Therefore, to

correctly describe the quantum optical noise in LIGO-II, the results so far obtained in the literature [4–11]

must be complemented by a thorough investigation of the influence of the radiation-pressure force on the

mirror motion.

Until recently the LIGO-II noise curves were computed using a semiclassical approach [3], which, although

capable of estimating the shot noise, is unable to take into account correctly the effects of radiation-pressure

fluctuations. Very recently, building on earlier work of Kimble, Levin, Matsko, Thorne and Vyatchanin

(KLMTV for short) [12], which describes the initial optical configuration of LIGO/TAMA/VIRGO interfer-

ometers (so-called conventional interferometers) within a full quantum-mechanical approach, we investigated

the SR optical configuration (Fig. 1) [13,14]. Our analysis revealed important new properties of SR inter-

ferometers, including: (i) the presence of correlations between shot noise and radiation-pressure noise, (ii)

the possibility of beating the standard quantum limit (SQL) by a modest amount, roughly a factor of two

over a bandwidth of ∆f ∼f 3 and (iii) the presence of instabilities in the optical-mechanical system formed

by the optical fields and the arm-cavity mirrors. We also noticed [14] that the way the SQL is beaten in

SR interferometer is quite different from standard quantum-nondemolition (QND) techniques [17] based on

building up correlations between shot noise and radiation-pressure noise by (i) injecting squeezed vacuum

into an interferometer’s dark port [18] and/or (ii) introducing two kilometer-long filter cavities into the inter-

ferometer’s output port [19,12] and applying homodyne detection on the filtered light. Indeed, our analyses

suggest that the improvement in the noise curves comes largely from the resonant features introduced by

the SR cavity: whereas the amplitude of the classical output signal is amplified near the resonances, the

output quantum fluctuation is not strongly affected by them. This way of using resonances to beat the SQL

was first proposed by Braginsky, Khalili and colleagues in their scheme of “optical bar” GW detectors [20],

2 By detuning of the SR cavity we mean the phase gained by the carrier frequency in the SR cavity, see Sec. IIIB

for details.
3 This performance refers only to the quantum optical noise. The total noise, which includes also all the other

sources of noise, such as seismic and thermal noise, can beat the SQL only if thermoelastic noise [15] can also be

pushed below the SQL.
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where similarly the test mass is effectively an oscillator whose restoring force is provided by in-cavity optical

fields. For an “optical bar” the free-mass SQL is irrelevant and we can beat the free-mass SQL using classical

techniques of position monitoring [20].

In Ref. [14] our analysis was mainly focused on determining the input–output relations for the electro-

magnetic quadrature fields in a SR interferometer, and evaluating the corresponding noise spectral density.

The resonant features of the whole device were discussed only briefly. In the present paper we give a de-

tailed description of the dynamics of the system formed by the optical fields and the mirrors, we discuss the

origin of the resonances and their possible instabilities, and we analyze the suppression of the instabilities

by an appropriate control system. In our analysis we have found the Braginsky-Khalili formalism for linear

quantum measurements [21] very powerful and intuitive, and we use it throughout this paper.

This paper is divided into two parts: the formalism and its application. In Sec. II we introduce the

force-susceptibility formalism and discuss some general features of linear quantum-measurement devices. In

particular, after briefly commenting in Sec. II A on general quantum-measurement systems, we derive in

Sec. II B the equations of motion for linear quantum-measurement devices; in Sec. II C we write down a

set of conditions on the susceptibilities of linear quantum-measurement systems; in Sec. II D we use these

conditions to construct an effective description of a quantum-measurement process which allows us to identify

in a straightforward way the shot noise and the radiation-pressure noise. In the subsequent sections we apply

the formalism developed in Sec. II to SR interferometers. In Sec. III we show that SR interferometers can

be described by the force-susceptibility formalism and we derive their equations of motion, pointing out the

existence of a “ponderomotive rigidity”. In Sec. IV we discuss in detail the oscillatory behavior of the system

induced by the ponderomotive rigidity, its resonances and instabilities. In Sec. V we describe the suppression

of the instability by a feed-back control system which does not compromise the sensitivity. Finally, Sec. VI

summarizes our main conclusions. As a foundation for our linear analysis of SR interferometers we summarize

in Appendix A some general properties of linear quantum-mechanical systems.

II. QUANTUM-MEASUREMENT SYSTEMS

A. General conditions defining a measurement system

Following Braginsky and Khalili [21], we define a measurement process as a transformation from some

original classical observable which is unknown, e.g., the gravitational-wave amplitude, into another classical

observable which is known, e.g., the data stored in the computer. Generally, the system which implements

this process is composed of a probe P , which is directly coupled to the classical observable to be measured

(for interferometers this is the antisymmetric mode of motion of the four arm-cavity mirrors, see Sec. III A),

and the detector D, which couples to the probe and produces the output observable (for interferometers

this is the optical system and the photodetector). A measurement system is drawn schematically in Fig. 2.

Because the probe and the detector are quantum mechanical systems, the overall device is called a quantum-

measurement device. The output observable Ẑ = S + Q̂ contains a classical part S, which depends on the

classical observable G to be measured, and some quantum noise Q̂ due to the probe, the detector and their

mutual interaction.
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FIG. 2. Schematic diagram of a measurement device. G is the classical observable acting on the probe that we

want to measure, and Ẑ is the detector’s observable which describes the output of the measurement system.

According to the statistical interpretation of Quantum Mechanics [23], the output of a quantum-

measurement process at different times should be simultaneously measurable. One sufficient condition for

simultaneous measurability is that the Heisenberg operators of the output observable, Ẑ(t), satisfy 4

[
Ẑ(t1), Ẑ(t2)

]
= 0 ∀t1, t2 . (2.1)

Henceforth, we shall regard Eq. (2.1) as the condition of simultaneous measurability. Although the condition

(2.1) was originally introduced by Braginsky et al. [17,21] as the definition of quantum-nondemolition (QND)

observables (see also Refs. [24–26]), we introduce and use it for different purposes, as will become clear in the

following. If the condition (2.1) is satisfied, then any sample of data
{
Ẑ(t1), Ẑ(t2), . . . , Ẑ(tn)

}
can be stored

directly as bits of classical data in a classical storage medium, and any noise from subsequent processing of

the signal can be made arbitrarily small, i.e. all quantum noises are included in the quantum fluctuations

of Ẑ(t). We want to discuss the simultaneous measurability condition (2.1) more deeply by pointing out the

following relation, which was also in part discussed by Unruh [24] and Caves, Thorne, Drever, Sandberg and

Zimmermann in Sec. IV of Ref. [25], and reviewed subsequently in Ref. [26], although from a different point

of view.

Simultaneous-Measurability – Zero-Response Relation: For a Quantum Measurement Device

(QMD), the simultaneous measurability condition for the output Ẑ(t), i.e. [Ẑ(t1), Ẑ(t2)] = 0 ∀t1, t2, is

equivalent to requiring that if the device is coupled to an external system via an interaction Hamiltonian of

the form V (Ẑ, Ê) where V is an arbitrary function and Ê belongs to the external system, then the back action

on the QMD does not alter the evolution of the output observable Ẑ.

Proof of necessity. 5 Let us suppose that our QMD with output Ẑ evolves under a Hamiltonian ĤQMD,

and that [Ẑ(t), Ẑ(t′)] = 0 for all t, t′. Now let us couple it to an arbitrary external system with Hamiltonian

ĤEXT via a generic interaction term V (Ẑ, Ê) as specified above, where Ê is an observable of the external

system. The total Hamiltonian is

Ĥ =
(
ĤQMD + ĤEXT

)
+ V (Ẑ, Ê) . (2.2)

4 We refer to this condition as sufficient since for observables that do not satisfy this condition, there may still exist

a subspace of the Hilbert space of the system in which these observables are simultaneously measurable.
5 A similar calculation was carried out by Caves et al. in Sec. IV of Ref. [25].
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If we treat the two terms in the bracket as the zeroth-order Hamiltonian and the interaction Hamiltonian

V (Ẑ, Ê) as a perturbation, by applying the results derived in the Appendix [see Eq. (A9)] we can write the

Heisenberg operator of the output variable Ẑ as,

Ẑpert(t) = Ẑ(t) +
i

h̄

∫ t

−∞

dt1

[
V (Ẑ(t1), Ê(t1)), Ẑ(t)

]
+

(
i

h̄

)2 ∫ t

−∞

dt1

∫ t1

−∞

dt2

[
V (Ẑ(t2), Ê(t2)),

[
V (Ẑ(t1), Ê(t1)), Ẑ(t)

]]
+ · · · , (2.3)

with higher order terms of the form [see Eq. (A9)]:

[
V (Ẑ(tn), Ê(tn)),

[
· · · ,

[
V (Ẑ(t2), Ê(t2)),

[
V (Ẑ(t1), Ê(t1)), Ẑ(t)

]]
· · ·
]]

. (2.4)

Here Ẑ(t) and Ê(t) evolve under the Hamiltonians ĤQMD and ĤEXT, respectively. Because they belong to

two different Hilbert spaces we have [Ẑ(t), Ê(t′)] = 0 for all t, t′. By assumption, we also have [Ẑ(t1), Ẑ(t2)] =

0 ∀t1, t2. Using these two facts, we obtain [V (Ẑ(t1), Ê(t1)), Ẑ(t2)] = 0 ∀t1, t2, and then using Eq. (2.3)

we derive Ẑpert(t) = Ẑ(t). This means that the evolution of Ẑ is not affected by the kind of external coupling

we introduced.

Proof of sufficiency. Let us suppose the evolution of Ẑ is not affected by any external system of the form

specified above. Then, in particular, it must be true for the simple interaction Hamiltonian V (Ẑ, Ê) = −αẐ E ,

where α is some coupling constant which can vary continuously, e.g., in the interval (0, 1], and we choose a

classical external coupling E . In this particular case Eq. (2.3) becomes

Ẑpert(t) = Ẑ(t) − α
i

h̄

∫ t

−∞

dt1

[
Ẑ(t1), Ẑ(t)

]
E(t1) + O(α2) , (2.5)

with higher order terms of the form: αn [Ẑ(tn), [· · · , [Ẑ(t2), [Ẑ(t1), Ẑ(t)]] · · ·]]. By assumption the LHS of

Eq. (2.5) does not change when we vary α. The RHS of Eq. (2.5) is a power series in α, and using the

uniqueness of the Taylor expansion, we deduce that all the terms beyond the zeroth order should vanish

separately. In particular, the first-order term should vanish and we conclude that [Ẑ(t), Ẑ(t′)] = 0 for all

t, t′. ✷

Let us comment on two interesting aspects of the Simultaneous-Measurability – Zero-Response Relation

given above.

• This relation links the abstract quantum mechanical idea of simultaneous measurability to the classical

dynamics of the measurement device, yielding a simple criterion for the quantum-classical transition:

the observable which corresponds to the classical output variable should have no response to external

perturbations directly coupled to it. 6 We shall use this criterion in our analysis of linear systems in

Sec. II C.

6 By directly coupling to Ẑ we mean the interaction Hamiltonian is of the form V (Ẑ, Ê), since only this form

guarantees that Ẑ is the only observable of the device that influences the interaction.
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• This relation is also interesting conceptually. In practice, the result of every measurement is read out

by coupling the measurement device to another system, and the boundary between the “measurement”

(still part of the QMD) and the “data analysis” (external to the QMD) occurs at a “stage” at which

no possible direct coupling to the output observable could change the evolution of the output observ-

able itself. Otherwise at that stage the “external coupling” should still be considered as part of the

measurement device.

Before ending this section, let us compare the point of view followed in this section to the one pursued

in previous QND analyses [24–26], especially Sec. IV of Ref. [25]. The authors of Refs. [25,26] followed two

steps in their discussion. First, they searched for a class of observables Â(t) of a quantum-mechanical system

that can be monitored without adding fundamental noise, deducing a condition for Â(t) that coincides with

Eq. (2.1). They called such observables QND observables. Secondly, they found appropriate interaction

Hamiltonians describing the coupling between Â(t) and a measuring apparatus that do not disturb the

evolution of Â(t) during the measurement process. However, in Refs. [25,26] there is no clear distinction

between what we call the detector and the external measurement system; these two systems are referred

to together as the measuring apparatus. Thus, the observable Â(t) does not necessarily coincide with the

output Ẑ(t) of our probe-detector system, and for this reason we prefer not to call it a QND observable in

the sense of Refs. [24–26].

As a final remark, we note that whereas in Refs. [25,26] the measuring apparatus and the interaction

Hamiltonian are indispensable parts of a measurement process, in this paper, by distinguishing the detector

from the external system, we use the latter only as part of a gedanken experiment, by which we clarify the

relation between simultaneous measurability and the response to external couplings, which will lead to useful

properties of linear quantum-measurement devices in Sec. II C.

B. Equations of motion of a linear quantum-measurement system: The force-susceptibility formalism

Starting in this section we shall focus on linear measurement systems. We shall see in Sec. III that GW

interferometers belong to this class of devices. Our analysis has been inspired by the formalism of linear

quantum-measurement theory introduced by Braginsky and Khalili (Chaps. V, VI and VII of Ref. [21]) and

is based on the force-susceptibility description of linearly coupled systems under linearly applied classical

forces (see, e.g., Sec. 6.4 of Ref. [21]).

In a linear measurement process, the device acts linearly and is linearly coupled to the classical observable

to be measured (see the Appendix for a precise definition of linear systems). We suppose that the device can

be artificially divided into two linearly coupled, but otherwise independent subsystems: the probe, which

is subject to the external classical force we want to measure, and the detector, which yields a classical

output. More specifically, in our Hamiltonian system the probe is coupled to the external classical force G

by −ŷ G, where ŷ is some linear observable of the probe, while the probe and the detector are coupled by

a term −x̂ F̂ , where x̂ is a generalized (linear) displacement of the probe, and F̂ is a linear observable of

the detector which describes its back-action force on the probe. In general, the observable x̂ to which the

external force is coupled and the observable ŷ that the detector directly measures might not be the same.
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FIG. 3. Schematic diagram of a linear measurement system. G is the external classical force acting on the probe

that we want to measure, x̂ is the linear observable of the probe, F̂ is the linear observable of the detector which

describes the back-action force on the probe, and Ẑ is the linear observable of the detector which describes the output

of the overall measurement system.

However, in our idealized model of GW interferometers (Sec. III below), x̂ and ŷ are actually the same

observable, namely the generalized coordinate of the antisymmetric mode of motion of the four arm-cavity

mirrors (see Fig. 1 and Sec. III A), and F̂ is the radiation-pressure force acting on this mode. Henceforth,

we shall impose ŷ ≡ x̂. Finally, we denote by Ẑ the linear observable of the detector which describes the

output of the entire device. A sketchy representation of the measurement device is drawn in Fig. 3. The

linear observables x̂ describing the probe P and Ẑ, F̂ describing the detector D belong to two different

Hilbert spaces HP and HD, respectively, and the Hilbert space of the combined system is HP ⊗ HD. The

Hamiltonian is given by

Ĥ =
[(

ĤP − x̂ G
)

+ ĤD

]
− x̂ F̂ . (2.6)

We shall now derive the equations of motion of the system composed of the linear observables x̂, Ẑ and F̂ .

As a first step in our calculation, we regard the Hamiltonians ĤP− x̂ G and ĤD as zeroth order Hamiltonians

for the subsystems P and D, respectively, and we treat −x̂ F̂ as a linear coupling between P and D. Working

in the Heisenberg picture, we obtain the following equations [see Theorem 4 of the Appendix and Eqs. (A12),

(A13)]:

Ẑ(1)(t) = Ẑ(0)(t) +
i

h̄

∫ t

−∞

dt′ CZ(0)F (0)(t, t′) x̂(1)(t′) , (2.7)

F̂ (1)(t) = F̂ (0)(t) +
i

h̄

∫ t

−∞

dt′ CF (0)F (0)(t, t′) x̂(1)(t′) , (2.8)

x̂(1)(t) = x̂(G)(t) +
i

h̄

∫ t

−∞

dt′ Cx(G)x(G)(t, t′) F̂ (1)(t′) . (2.9)

Here CAB(t, t′) is a complex number (C-number), called the (time-domain) susceptibility, and is defined by

Eq. (A11) of the Appendix, i.e.

CAB(t, t′) ≡
[
Â(t), B̂(t′)

]
. (2.10)

[Henceforth, we shall often use the expressions different-time commutator and time-domain susceptibility

interchangeably.] The superscript (1) in Eqs. (2.7)–(2.9) denotes time evolution under the total Hamiltonian

Ĥ [Eq. (2.6)], the superscript (0) on F̂ (t) and Ẑ(t) denotes time evolution under the free Hamiltonian of the

detector ĤD, while the superscript (G) on x̂(t) refers to the time evolution under the Hamiltonian ĤP − x̂ G,

which describes the probe under the sole influence of G(t).
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As a second step, we want to relate x̂(G)(t) to x̂(0)(t), which evolves under the free probe Hamiltonian

ĤP . Using Theorem 3 in the Appendix and Eqs. (A10), (A11), we deduce

x̂(G)(t) = x̂(0)(t) +
i

h̄

∫ t

−∞

dt′ Cx(0)x(0)(t, t′)G(t′) . (2.11)

Noticing from Eq. (2.11) that x̂(G) differs from x̂(0) by a time dependent C-number, we get Cx(G)x(G)(t, t′) =

Cx(0)x(0)(t, t′). Using this fact and inserting Eq. (2.11) into Eq. (2.9), we can relate the Heisenberg operators

evolving under the full Hamiltonian Ĥ to those evolving under the free Hamiltonians of the probe and the

detector ĤP and ĤD separately:

Ẑ(1)(t) = Ẑ(0)(t) +
i

h̄

∫ t

−∞

dt′ CZ(0)F (0)(t, t′) x̂(1)(t′) , (2.12)

F̂ (1)(t) = F̂ (0)(t) +
i

h̄

∫ t

−∞

dt′ CF (0)F (0)(t, t′) x̂(1)(t′) , (2.13)

x̂(1)(t) = x̂(0)(t) +
i

h̄

∫ t

−∞

dt′ Cx(0)x(0)(t, t′) [G(t′) + F̂ (1)(t′)] . (2.14)

A quantity of special interest for us is the displacement induced on a free probe (without any influence of

the detector) by G(t), namely the second term on the RHS of Eq. (2.11). For a GW interferometer this

displacement is L h(t), where L is the arm-cavity length and h(t) is the differential strain induced by the

gravitational wave on the free arm-cavity mirrors (the difference in strain between the two arms). In our

notation we denote this quantity by

L h(t) =
i

h̄

∫ t

−∞

dt′ Cx(0)x(0)(t, t′)G(t′) , (2.15)

and for a GW interferometer G(t) = (m/4)L ḧ(t), where m/4 is the reduced mass of the antisymmetric

mode of motion of the four arm-cavity mirrors (see Secs. III A and III B). [Note that each mirror has mass

m.]

Henceforth, we shall assume that both the probe and the detector have time independent Hamiltonians,

i.e. both ĤD and ĤP are time independent. In this case, as shown in the Appendix, the susceptibilities that

appear in Eqs. (2.12)–(2.14) depend only on t− t′. By transforming them into the Fourier domain, denoting

by h(Ω) the Fourier transform of h(t) and introducing the Fourier-domain susceptibility

RAB(Ω) ≡ i

h̄

∫ +∞

0

dτ eiΩτ CAB(0,−τ) , (2.16)

we derive

Ẑ(1)(Ω) = Ẑ(0)(Ω) + RZF (Ω) x̂(1)(Ω) , (2.17)

F̂ (1)(Ω) = F̂ (0)(Ω) + RFF (Ω) x̂(1)(Ω) , (2.18)

x̂(1)(Ω) = x̂(0)(Ω) + L h(Ω) + Rxx(Ω) F̂ (1)(Ω) . (2.19)

Here and below, to simplify the notation we denote RZF ≡ RZ(0)F (0) , RFF ≡ RF (0)F (0) , Rxx ≡ Rx(0)x(0) . By

solving Eqs. (2.17)–(2.19) for the full-evolution operators in terms of the free-evolution ones, we finally get:

9



x̂(1)(Ω) =
1

1 − Rxx(Ω)RFF (Ω)

[
x̂(0)(Ω) + L h(Ω) + Rxx(Ω) F̂ (0)(Ω)

]
, (2.20)

F̂ (1)(Ω) =
1

1 − Rxx(Ω)RFF (Ω)

[
F̂ (0)(Ω) + RFF (Ω)

(
x̂(0)(Ω) + L h(Ω)

)]
, (2.21)

Ẑ(1)(Ω) = Ẑ(0)(Ω) +
RZF (Ω)

1 − Rxx(Ω)RFF (Ω)

[
x̂(0)(Ω) + L h(Ω) + Rxx(Ω) F̂ (0)(Ω)

]
. (2.22)

Let us point out that if the kernel relating the full-evolution operators to the free-evolution ones, i.e. 1/(1−
Rxx RFF ), contains poles both in the lower and in the upper complex plane [with our definition of Fourier

transform given by Eq. (A14)], then by applying the standard inverse Fourier transform to Eqs. (2.20)–

(2.22), we get that x̂(1)(t), F̂ (1)(t) and Ẑ(1)(t) depend on the gravitational-wave field and the free-evolution

operators x̂(0)(t), F̂ (0)(t) and Ẑ(0)(t) both in the past and in the future. However, these are not the correct

solutions for the real motion. This situation is a very common one in physics and engineering (it occurs for

example in the theory of linear electronic networks [22] and the theory of plasma waves [27]), and the cure for

it is well known: in order to obtain the (correct) full-evolution operators x̂(1)(t), F̂ (1)(t) and Ẑ(1)(t) that only

depend on the past, we have to alter the integration contour in the inverse-Fourier transform, going above

all the poles in the complex plane. [In the language of plasma physics we have to use the Landau contours.]

This procedure, which can be justified rigorously using Laplace transforms [28], makes x̂(1)(t), F̂ (1)(t) and

Ẑ(1)(t) for many systems (including LIGO-II interferometers) infinitely sensitive to driving forces in the

infinitely distant past. The reason is simple and well known in other contexts: such quantum-measurement

systems possess instabilities, which can be deduced from the homogeneous solutions of Eqs. (2.20)–(2.22),

whose eigenfrequencies are given by the equation 1 − Rxx(Ω)RFF (Ω) = 0. The zeros of the equation

1 − Rxx(Ω)RFF (Ω) = 0 are generically complex and for unstable systems they have positive imaginary

parts, corresponding to homogeneous solutions that grow exponentially toward the future.

C. Conditions defining a linear measurement system in terms of susceptibilities

As we pointed out in Sec. II A, in order to be identified as the output of the measurement system, the

observable Ẑ should satisfy [Ẑ(t1), Ẑ(t2)] = 0, ∀ t1, t2, i.e. the condition of simultaneous measurability. In

that section, we have also proved the equivalence between this condition and the condition that any external

coupling to the measurement system through Ẑ should not change the evolution of Ẑ itself. In the following

we shall take advantage of this equivalence: By imagining that we couple the linear measurement system to

some external system through Ẑ and by looking at (possible) changes in Ẑ’s evolution, we shall obtain a set

of conditions for the susceptibilities involving Ẑ.

Let us first restrict ourselves to the simplest possible external coupling, V̂ = −Ẑ E , where E is a classical

external force. The total Hamiltonian (2.6) becomes

Ĥ =
[(

ĤP − x̂ G
)

+ ĤD

]
− x̂ F̂ − Ẑ E =

[(
ĤP − x̂ G

)
+
(
ĤD − Ẑ E

)]
− x̂ F̂ . (2.23)

To derive the equations of motion for the Hamiltonian (2.23) we apply the procedure used in Sec. II B to

deduce the equations of motion for the Hamiltonian (2.6). First, we consider (ĤP − x̂ G) and (ĤD − Ẑ E)

as zeroth order Hamiltonians and relate the operators Ẑ
(1)
pert, F̂

(1)
pert and x̂

(1)
pert, which evolve under the full
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Hamiltonian (2.23), to the operator x̂(G), which evolves under the Hamiltonian (ĤP−x̂ G), and the operators

Ẑ(E) and F̂ (E), evolving under the Hamiltonian (ĤD − Ẑ E),

Ẑ
(1)
pert(t) = Ẑ

(E)
pert(t) +

i

h̄

∫ t

−∞

dt′ CZ(E)F (E)(t, t′) x̂
(1)
pert(t

′) , (2.24)

F̂
(1)
pert(t) = F̂

(E)
pert(t) +

i

h̄

∫ t

−∞

dt′ CF (E)F (E)(t, t′) x̂
(1)
pert(t

′) , (2.25)

x̂
(1)
pert(t) = x̂(G)(t) +

i

h̄

∫ t

−∞

dt′ Cx(G)x(G)(t, t′) F̂
(1)
pert(t

′) . (2.26)

Second, we relate the operators x̂(G), Ẑ(E) and F̂ (E) to the operators x̂(0), Ẑ(0) and F̂ (0) which evolve under

ĤP and ĤD:

Ẑ
(E)
pert(t) = Ẑ(0)(t) +

i

h̄

∫ t

−∞

dt′ CZ(0)Z(0)(t, t′) E(t′) , (2.27)

F̂
(E)
pert(t) = F̂ (0)(t) +

i

h̄

∫ t

−∞

dt′ CF (0)Z(0)(t, t′) E(t′) , (2.28)

x̂(G)(t) = x̂(0)(t) +
i

h̄

∫ t

−∞

dt′ Cx(0)x(0)(t, t′)G(t′) . (2.29)

Noticing that Ẑ
(E)
pert, F̂

(E)
pert and x̂(G) differ from Ẑ(0), F̂ (0) and x̂(0) only by time dependent C-numbers,

we obtain the following relations: CZ(E)F (E)(t, t′) = CZ(0)F (0)(t, t′), CF (E)F (E)(t, t′) = CF (0)F (0)(t, t′) and

Cx(G)x(G)(t, t′) = Cx(0)x(0)(t, t′). Then, by inserting Eqs. (2.27)–(2.29) into Eqs. (2.24)–(2.26), we deduce the

equations of motion of Ẑ, F̂ and x̂ under the Hamiltonian (2.23):

Ẑ
(1)
pert(t) = Ẑ(0)(t) +

i

h̄

∫ t

−∞

dt′
[
CZ(0)Z(0)(t, t′) E(t′) + CZ(0)F (0)(t, t′) x̂

(1)
pert(t

′)
]

, (2.30)

F̂
(1)
pert(t) = F̂ (0)(t) +

i

h̄

∫ t

−∞

dt′
[
CF (0)Z(0)(t, t′) E(t′) + CF (0)F (0)(t, t′) x̂

(1)
pert(t

′)
]

, (2.31)

x̂
(1)
pert(t) = x̂(0)(t) +

i

h̄

∫ t

−∞

dt′ Cx(0)x(0)(t, t′)
[
G(t′) + F̂

(1)
pert(t

′)
]

. (2.32)

From Eqs. (2.30)–(2.32) we infer that there are two ways the external force E can influence the evolution of

Ẑ
(1)
pert: (i) E can affect Ẑ

(1)
pert directly, through the first term in the bracket of Eq. (2.30), unless CZ(0)Z(0)(t, t′) =

0 for all t > t′ (and thus for all pairs of t and t′); and (ii) E can influence the evolution of Ẑ
(1)
pert indirectly,

affecting the evolution of F̂
(1)
pert [first term in the bracket of Eq. (2.31)], and through it the evolution of x̂

(1)
pert

and Ẑ
(1)
pert [second terms in the brackets of Eqs. (2.32), (2.30)], unless CF (0)Z(0)(t, t′) = 0 for all t > t′.

Now we are ready to deduce the conditions that must be satisfied in order that the evolution of Ẑ not be

changed by the external coupling E . In principle the two ways E affects the evolution of Ẑ may cancel each

other. However, noticing the fact that case (i) does not depend on the probe (only CZ(0)Z(0) matters), but

case (ii) does (Cx(0)x(0) also matters), we see that the cancellation will not always occur if we assume that,

whatever probe the detector is coupled to, Ẑ always corresponds to the output of the measurement process.

Thus both conditions must be satisfied: CZ(0)Z(0) = 0 and CF (0)Z(0) = 0.

This argument for both conditions can be made more clear by assigning an “effective mass” µ to the probe

and consider a continuous family of probes labeled by µ (for interferometers the family of probes are the
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family of mirrors with different masses). The susceptibility of the coordinate x̂ depends on the effective mass

as

Cx(0)x(0) ∝ 1

µ
, (2.33)

which simply says that the probe’s response to external forces decreases as its effective mass increases.

Because Ẑ(0) and F̂ (0) are operators evolving under the free Hamiltonian of the detector, they do not

depend on µ. Now consider two cases: First, the limiting case of µ → ∞. Then Cx(0)x(0) → 0 and from

Eq. (2.32) we get x̂
(1)
pert(t) = x̂(0)(t). As a consequence, E affects the evolution of Ẑ

(1)
pert only through the

first term in the bracket of Eq. (2.30) [see case (i) above], unless CZ(0)Z(0)(t, t′) = 0 for all pairs of t and t′.

Second, consider the case of finite mass µ, and then conclude that E will affect the evolution of Ẑ
(1)
pert only

through the second term in the bracket of Eq. (2.30) [see case (ii) above], unless CF (0)Z(0)(t, t′) = 0 for all

t > t′.

In conclusion we have found that if, whatever the probe is, Ẑ always corresponds to the output of the

linear measurement device, then the following conditions must be satisfied

LQM :

{
CZ(0)Z(0)(t, t′) ≡ [Ẑ(0)(t), Ẑ(0)(t′)] = 0 ∀ t, t′

CF (0)Z(0)(t, t′) ≡ [F̂ (0)(t), Ẑ(0)(t′)] = 0 ∀ t > t′ .
(2.34)

In the frequency domain these conditions read

RZZ(Ω) = 0 = RFZ(Ω) . (2.35)

It is possible to show that LQM [Eqs. (2.34)] are also sufficient conditions for the simultaneous measurabil-

ity condition (2.1) be satisfied independently of the probe’s nature; imagine coupling our linear measurement

system to an external system with an arbitrary Hamiltonian HEXT via a generic coupling V (Ẑ, Ê), Ê being

an external observable, and check whether the evolution of Ẑ is affected by this coupling. The check can be

achieved by writing the total Hamiltonian as

Ĥ =
[(

ĤP − x̂ G
)

+
(
ĤD − Ẑ Ê + ĤEXT

)]
− x̂ F̂ , (2.36)

and re-doing all the steps followed earlier in this section. It is helpful to notice that the evolutions of Ẑ

and F̂ under ĤD − ẐÊ + ĤEXT are the same as those under ĤD, once the condition LQM, or Eqs. (2.34),

is satisfied. The result, after a long calculation is that conditions (2.34) are sufficient to guarantee that the

evolution of Ẑ is unaffected by the coupling. The technical details of the proof are left as an exercise for the

reader.

D. Effective description of measurement systems

It is common to normalize the output observable Ẑ to unit signal — e.g., in the case of GW interferometer,

it is common to set to unity the coefficient in front of the (classical) observable L h we want to measure so

the normalized output Ẑ has the form:

Ô = N̂ + L h , (2.37)

12



where N̂ is the so-called signal-referred quantum noise. The observable Ô can be easily deduced in the

frequency domain by renormalizing Eq. (2.22),

Ô(Ω) =
1 − Rxx(Ω)RFF (Ω)

RZF (Ω)
Ẑ(1)(Ω)

=
Ẑ(0)(Ω)

RZF (Ω)
+ Rxx(Ω)

[
F̂ (0)(Ω) − RFF (Ω)

Ẑ(0)(Ω)

RZF (Ω)

]
+ x̂(0)(Ω) + L h(Ω) , (2.38)

that is

Ô(Ω) = Ẑ(Ω) + Rxx(Ω) F̂(Ω) + x̂(0)(Ω) + L h(Ω) . (2.39)

Here we have introduced two linear observables Ẑ and F̂ defined in the Hilbert space HD of the detector,

Ẑ(Ω) ≡ Ẑ(0)(Ω)

RZF (Ω)
, F̂(Ω) ≡ F̂ (0)(Ω) − RFF (Ω)

Ẑ(0)(Ω)

RZF (Ω)
. (2.40)

In the time domain the output observable Ô(t) reads

Ô(t) =

∫ +∞

−∞

dt′ K(t − t′) Ẑ(1)(t′) (2.41)

where

K(t) =

∫ +∞

−∞

1 − Rxx(Ω)RFF (Ω)

RZF (Ω)
e−i Ω t dΩ

2π
. (2.42)

Thus

Ô(t) = Ẑ(t) +
i

h̄

∫ t

−∞

dt′Cx(0)x(0)(t, t′) F̂(t′) + x̂(0)(t) + L h(t) . (2.43)

Using the two properties given by Eqs. (A17) of the Appendix, and applying the conditions LQM [Eqs. (2.34)],

we obtain the following commutation relations for the observables Ẑ(t) and F̂(t) in the Fourier domain

[
Ẑ(Ω), Ẑ†(Ω′)

]
= 0 =

[
F̂(Ω), F̂†(Ω′)

]
,

[
Ẑ(Ω), F̂†(Ω′)

]
= −2π ih̄ δ(Ω − Ω′) , (2.44)

or in the time domain: 7

[
Ẑ(t), Ẑ(t′)

]
= 0 =

[
F̂(t), F̂(t′)

]
∀ t, t′ , (2.45)

[
Ẑ(t), F̂(t′)

]
= −ih̄ δ(t − t′) ∀ t, t′ . (2.46)

It is interesting to notice that, because the observables Ẑ(t) and F̂(t) satisfy the commutation relations

(2.45), they can be regarded at different times as describing different degrees of freedom. Moreover, because

7 Note that, if we use the commutator of Ẑ and F̂ to evaluate the susceptibilities, we find naively that RFZ and

RZF are proportional to
∫

∞

0
dτδ(τ ), which is not a well defined quantity. However, introducing an upper cut-off Λ

in the frequency domain we can write δ(τ ) as δ(τ ) = sin Λτ/πτ for Λ → +∞, which is symmetric around the origin.

With this prescription
∫ +∞

0
dτδ(τ ) = 1/2, and the susceptibilities: RZZ = RFF = 0, RFZ = 1/2, RZF = −1/2.
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of Eq. (2.46), the observables Ẑ(t) and F̂(t) can be seen at each instant of time as the canonical momentum

and coordinate of different effective monitors (probe-detector measuring devices). Therefore, Ẑ(t) and F̂(t)

define an infinite set of effective monitors, indexed by t, similar to the successive independent monitors of

von Neumann’s model [23] for quantum-measurement processes investigated by Caves, Yuen and Ozawa [29].

However, by contrast with von Neumann’s model, the monitors defined by Ẑ(t) and F̂(t) at different t’s

are not necessarily independent. They may, in fact, have nontrivial statistical correlations, embodied in the

relations

〈Ẑ(t) Ẑ(t′)〉 6= const × δ(t − t′) , 〈F̂(t) F̂(t′)〉 6= const × δ(t − t′) , 〈Ẑ(t) F̂(t′)〉 6= const × δ(t − t′) , (2.47)

where “〈 〉” denotes the expectation value in the quantum state of the system. These correlations can be

built up automatically by the internal dynamics of the detector – for example they are present in LIGO-type

GW interferometers [12–14].

Let us now comment on the origin of the various terms appearing in Eq. (2.43):

• The first term Ẑ(t) describes the quantum fluctuations in the monitors’ readout variable [see also

Eq. (2.40)] which are independent of the probe. In particular, Ẑ does not depend on the effective mass

µ of the probe. Henceforth, we refer to Ẑ as the effective output fluctuation. For an interferometer,

the quantum noise embodied in Ẑ is the well-known shot noise.

• The second term in Eq. (2.43) is the effective response of the output at time t to the monitor’s back-

action force at earlier times t′ < t. Since Cx(0)x(0) ∝ 1/µ this part of the output depends on the

effective mass of the probe. For GW interferometers the back action is caused by radiation-pressure

fluctuations acting on the four arm-cavity mirrors. In the following we refer to F̂ as the effective

back-action or radiation-pressure force. The noise embodied in F̂ is called the back-action noise. [In

the case of GW interferometers, it is also called the radiation-pressure noise, since the back-action is

just the radiation-pressure force.]

• The third term in Eq. (2.43) is the free-evolution operator of the probe’s coordinate. In principle, this

is also a noise term. However, in many cases the free-evolution of the probe coordinate is confined to

a certain uninteresting frequency range, so if we make measurements outside this range, the noise due

to the free evolution of the probe will not affect the measurement. We shall see in Sec. III B that this

will be the case for GW interferometers, as has been pointed out and discussed at length by Braginsky,

Gorodetsky, Khalili, Matsko, Thorne and Vyatchanin (BGKMTV for short) [30].

• The last term in Eq. (2.43) is the displacement induced on the probe by the classical observable we

want to measure.

Within the effective description of the measurement’s renormalized output [Eq. (2.43)], it is instructive to

analyze how the simultaneous measurability condition [Ô(t1), Ô(t2)] = 0 ∀t1, t2, is enforced by the probe-

detector interaction. To evaluate explicitly the commutation relations of the observable Ô, we notice that in

Eq. (2.43) the first two terms always commute with the third term, because they belong to the two different

Hilbert spaces HD and HP . The other terms give
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[
Ô(t1), Ô(t2)

]
=

[
Ẑ(t1) +

i

h̄

∫ t1

−∞

dt′1Cx(0)x(0)(t1, t
′
1) F̂(t′1), Ẑ(t2) +

i

h̄

∫ t2

−∞

dt′2Cx(0)x(0)(t2, t
′
2) F̂(t′2)

]

+
[
x̂(0)(t1), x̂

(0)(t2)
]

. (2.48)

Hence, the two-time commutator of Ô(t) is the sum of two terms: the first term depends solely on detector

observables, while the second term is just the two-time commutator of the free-probe coordinate x̂(0)(t).

Using the commutation relations of Ẑ(t) and F̂(t) given by Eqs. (2.45), (2.46) it is straightforward to deduce

that in Eq. (2.48) the detector commutator exactly cancels the probe commutator. This clean cancellation is

a very interesting property of probe-detector kinds of quantum-measurement systems and has been recently

pointed out and discussed at length by BGKMTV in Ref. [30].

III. DYNAMICS OF SIGNAL RECYCLED INTERFEROMETERS: EQUATIONS OF MOTION

In this section we investigate the dynamics of a SR interferometer, showing that it is a probe-detector

linear quantum-measurement device as defined and investigated in Sec. II.
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FIG. 4. On the left panel we draw a SR interferometer, showing the antisymmetric mode of mirror motion (marked

by arrows), the dark-port and SR optical fields âi, . . . , f̂i and the bright-port fields ĝi, ĥi, i = 1, 2. The conven-

tional-interferometer optical scheme is contained inside the dashed box. In the right panel we identify the variables,

x̂ ≡ x̂antisym = (x̂n1 − x̂n2) − (x̂e1 − x̂e2), Ẑ and F̂ , describing the dynamics of the SR interferometer.
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A. Identifying the dynamical variables and their interactions

In gravitational-wave interferometers composed of equal-length arms (the optical configuration adopted by

LIGO/VIRGO/GEO/TAMA), laser interferometry is used to monitor the displacement of the antisymmetric

mode of the four arm-cavity mirrors induced by the passage of a gravitational wave (see Fig. 4).

Recently Kimble, Levin, Matsko, Thorne and Vyatchanin (KLMTV for short) [12] described a conventional

(LIGO-I type) interferometer using a full quantum mechanical approach (see the optical scheme inside the

dashed box in the left panel of Fig. 4). KLMTV [12] showed (as has long been known [31]) that in this

kind of interferometer the antisymmetric mode of motion of the four arm-cavity mirrors and the dark-port

sideband fields (ĉi and d̂i
8 in Fig. 4) are decoupled from other degrees of freedom, i.e. from other modes

of motion of the four arm-cavity mirrors and from the bright-port sideband fields (ĝi and ĥi in Fig. 4). As

a consequence, the dynamics relevant to the output signal and the corresponding noise are described only

by the antisymmetric mode of motion of the four arm-cavity mirrors and the dark-port sideband fields (see

Appendix B of KLMTV [12] for details). This result remains valid for SR interferometers [13,14]: we only

need to include in the analysis all the optical fields inside the SR cavity, such as ĉi, d̂i, êi and f̂i [but not ĝi

or ĥi], and those outside the SR cavity, such as âi and b̂i.

The coordinate of the antisymmetric mode of motion is defined by KLMTV [see Fig. 3 and Eq. (12) of

Ref. [12], and the right panel of Fig. 4 in our paper] as:

x̂antisym ≡ (x̂n1 − x̂n2) − (x̂e1 − x̂e2) , (3.1)

and we identify it with the dynamical variable x̂ introduced in Sec. II B [see Eq. (2.9)]. The output of the

detector can be constructed from two independent output observables, the two quadratures b̂1 and b̂2 of

the outgoing electromagnetic field immediately outside the SR mirror (see the left panel of Fig. 4). If a

homodyne-detection read-out scheme is implemented, then the output is a linear combination of the two

quadratures, that is

b̂ζ ≡ sin ζ b̂1 + cos ζ b̂2 , ζ = const , (3.2)

which is a generic quadrature field. 9 We thus identify the dynamical variable Ẑ introduced in Sec. II B

[Eq. (2.7)] as:

Ẑζ ≡ b̂ζ . (3.3)

In particular, when ζ = π/2 and ζ = 0 we have Ẑ1 ≡ b̂1 and Ẑ2 ≡ b̂2.

8 Here âi, b̂i, ĉi, . . . with i = 1, 2 stand for the two quadrature operators of the electromagnetic field. This formalism

was developed by Caves and Schumaker [32], adopted by KLMTV [12] and the authors [13,14].
9 Rigorously speaking, the output is the photocurrent, which in the homodyne detection scheme is almost precisely

proportional to the output quadrature field, but not quite so; see Ref. [30] and the Appendix of Ref. [14] for more

discussion on this point.
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The radiation-pressure force acting on the arm-cavity mirrors, and coupled to the antisymmetric mode,

can be directly related to the dark-port quadrature fields. This result was explicitly derived in Appendix B

of KLMTV [12]. As a foundation for subsequent calculations, we shall summarize the main steps of their

derivation: The force acting on each arm-cavity mirror is 2W/c, where W is the power circulating in each

arm cavity, which is proportional to the square of the amplitude of the electric field propagating toward the

mirror. In the arm cavities, the electric field can be decomposed into two parts: the carrier and the sideband

fields. Introducing the carrier amplitude C and the sideband quadrature operators ŝ1,2, we have

Ê(t) = C cosω0t + cosω0t

[∫ +∞

0

dΩ

2π
e−i Ωt ŝ1 + h.c.

]
+ sin ω0t

[∫ +∞

0

dΩ

2π
e−i Ωt ŝ2 + h.c.

]
, (3.4)

where h.c. stands for Hermitian conjugate. (Note that by writing the carrier field as C cosω0t, we have

adopted the convention used by KLMTV [12].) Taking the square of Ê(t), we obtain

Ê2(t) = [DC component] + [high frequency component (>ω0)]

+ C

[∫ +∞

0

dΩ

2π
e−i Ωt ŝ1 + h.c.

]
+ (quadratic terms in ŝ1, ŝ2) , (3.5)

where we have used the fact that in the integral Ω < ω0. The DC and ω0 ∼ 1015 sec−1 components are not in

the detection band of GW interferometers, 10 Hz ≤ Ω/2π ≤ 104 Hz; in practice they will be counteracted by

control systems. We also ignore the quadratic terms in Eq. (3.5), since they are much smaller than the linear

terms. Thus, modulo a factor of proportionality, we obtain in the Fourier domain the following expression

for the radiation-pressure force acting on each mirror:

F̂RP(Ω) ∝ C ŝ1(Ω) . (3.6)

As shown in Appendix B of Ref. [12], the in-cavity quadrature field ŝ1 is a combination of the incoming

quadratures from both the dark and the bright ports. However, the contribution from the bright-port fields

do not couple to the antisymmetric mode, so the force acting on the antisymmetric mode is due only to

the incoming fields from the dark port. More specifically, in Sec. 4 of Appendix B of Ref. [12], KLMTV

related the in-cavity carrier amplitude C and the sideband quadrature ŝ1 (which they denoted by ĵ1
10)

to the input carrier amplitude and ingoing dark-port quadrature ĉ1 (which they denoted by â1). Although

they did not give the explicit expression we need here for F̂RP, it is straightforward to recover it. Using the

arrows indicated in the right panel of Fig. 4 as positive directions, we find11

F̂RP =

√
2I0h̄ω0

(Ω2 + γ2) L2
ei β ĉ1, (3.7)

10 We ignore the effect of the arm-cavity optical losses, thus in this case the quadratures ĵi and k̂i in Ref. [12] are

equal.
11 This result can be obtained from Eq. (B21) of KLMTV [12] using the fact that x̂BA = −4/mΩ2 F̂RP. Since in

this paper we ignore optical losses, in Eq. (B21) we can replace β∗ and K∗ by β and K and ignore the noise operator

n̂1.

17



where ω0 is the carrier laser frequency, I0 is the carrier light power entering the beamsplitter, 2β =

2 arctanΩ/γ is the net phase gained by the sideband frequency Ω while in the arm cavity, γ = Tc/4L

is the half bandwidth of the arm cavity (T is the power transmissivity of the input mirrors and L is the

length of the arm cavity). We identify the force F̂RP with the dynamical variable F̂ introduced in Sec. II B

[see Eq. (2.8)]:

F̂ ≡ F̂RP =

√
2I0h̄ω0

(Ω2 + γ2)L2
ei β ĉ1 . (3.8)

Applying Newton’s law to the four mirrors, we deduce

m ¨̂x = 4F̂ + other forces , (3.9)

where “other forces” refer to forces not due to the optical-mechanical interaction, e.g., the force due to the

gravitational wave and thermal forces. By identifying the reduced mass of the antisymmetric mode as m/4,

we obtain that the coupling term in the total Hamiltonian (2.6) is −x̂ F̂ . [The reduced mass coincides with

the effective mass of the probe µ introduced in Sec. II.]

Note that, by assuming the four forces acting on the arm-cavity mirrors are equal, we have made the

approximation used by KLMTV [12] of disregarding the motion of the mirrors during the light’s round-trip

time (quasi-static approximation). 12

B. Free evolutions of test mass and optical field

In this section we derive the dynamics of the free probe and the detector, i.e. that of the antisymmetric

mode of motion of the arm-cavity mirrors when there is no light in the arm cavities, and that of the optical

fields when the arm-cavity mirrors are held fixed. The full, coupled dynamics will be discussed in the

following section.

The mirror-endowed test masses are suspended from seismic isolation stacks and have free oscillation

frequency ∼1 Hz. However, since we are interested in frequencies above ∼10 Hz (below these frequencies the

seismic noise is dominant), we can approximate the antisymmetric-mode coordinate as the coordinate of a

free particle with (reduced) mass m/4 — as is also done by KLMTV [12]. Hence, its free evolution is given

by

x̂(0)(t) = x̂s +
4

m
p̂s t , (3.10)

where x̂s and p̂s are the Schrödinger operators of the canonical coordinate and momentum of the mode.

Inserting Eq. (3.10) into Eqs. (2.10), (2.16) and using the usual commutation relations [x̂s, p̂s] = ih̄, it is

straightforward to derive

12 The description of a SR interferometer beyond the quasi-static approximation [33,34] introduces nontrivial cor-

rections to the back-action force, proportional to the power transmissivity of the input arm-cavity mirrors. Since

the power transmissivity expected for LIGO-II is very small, we expect a small modification of our results, but an

explicit calculation is much needed to quantify this effect.
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Rxx = − 4

mΩ2
. (3.11)

As discussed in detail by BGKMTV [30], since at frequencies below <∼ 10 Hz the data will be filtered out,

the free evolution observable x̂(0)(t), whose Fourier component has support only at zero frequency (in a real

interferometer it has support at the pendulum frequency ∼ 1 Hz), does not contribute to the output noise.

For this reason, henceforth, we shall disregard the free-evolution observable x̂(0)(t) in the equations of motion

describing the dynamics of GW interferometers.

Concerning the free detector (the light with fixed mirrors), we can solve its dynamics by expressing the

various quantities in terms of the quadrature operators of the input field at the SR mirror, âi, i = 1, 2 (see

Fig. 4). For LIGO-II the input field will be in the vacuum state. All the quantum fluctuations affecting the

output optical field b̂i are due to the vacuum fluctuations âi entering the interferometer from the SR mirror.

Through Eqs. (3.3), (3.8), we have already expressed Ẑ and F̂ in terms of the quadrature fields b̂ζ and

ĉ1; thus we need now to relate the latter to âi, i = 1, 2, This can be done using Eqs. (2.11),(2.15)–(2.19) of

Ref. [14], in the case of fixed mirrors. First, for the input-output relation at the beam splitter (see Fig. 4)

we have

d̂1 = ĉ1 e2iβ , d̂2 = ĉ2 e2iβ , (3.12)

which is obtained from Eq. (2.11) of Ref. [14], or Eq. (16) of Ref. [12] in the limit I0 → 0 and h → 0,

i.e. when we neglect the effects of mirror motion under radiation pressure and gravitational waves. Second,

propagating the quadrature fields inside the SR cavity, we obtain [see Eqs. (2.16), (2.17) of Ref. [14]]

f̂1 = (d̂1 cosφ − d̂2 sin φ) , f̂2 = (d̂1 sin φ + d̂2 cosφ) , (3.13)

ê1 = (ĉ1 cosφ + ĉ2 sin φ) , ê2 = (−ĉ1 sin φ + ĉ2 cosφ) , (3.14)

where φ ≡ [ω0l/c]mod 2π is the phase gained by the carrier frequency ω0 traveling one-way in the SR cavity,

and for simplicity we have neglected the tiny additional phase Φ ≡ Ωl/c gained by the sideband frequency

Ω/2π in the SR cavity. [The length of the SR cavity is typically l ∼ 10 m, hence Φ ≪ 1.] From the

reflection/transmission relations at the SR mirror we derive [see Eqs. (2.18), (2.19) of Ref. [14]]

ê1 = τ â1 + ρ f̂1 , ê2 = τ â2 + ρ f̂2 , (3.15)

b̂1 = τ f̂1 − ρ â1 , b̂2 = τ f̂2 − ρ â2 , (3.16)

where τ and ρ are the transmissivity and reflectivity of the SR mirror, with τ2 + ρ2 = 1. 13 Solving

Eqs. (3.12)–(3.16) and using Eq. (3.3), we obtain for the free-evolution operators

Ẑ
(0)
1 (Ω) ≡

[
b̂1(Ω)

]

mirrors fixed
=

e2iβ

M0

{[(
1 + ρ2

)
cos 2φ − 2ρ cos 2β

]
â1 − τ2 sin 2φ â2

}
, (3.17)

Ẑ
(0)
2 (Ω) ≡

[
b̂2(Ω)

]

mirrors fixed
=

e2iβ

M0

{
τ2 sin 2φ â1 +

[(
1 + ρ2

)
cos 2φ − 2ρ cos 2β

]
â2

}
, (3.18)

[ĉ1(Ω)]mirrors fixed =
τ
[(

1 − ρ e2iβ
)

cosφ â1 −
(
1 + ρ e2iβ

)
sin φ â2

]

M0
(3.19)

13 For simplicity we ignore the effects of optical losses which were discussed in Sec. V of Ref. [14].
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where we have defined,

M0(Ω) ≡ 1 + ρ2 e4iβ − 2ρ cos 2φ e2iβ =
(
1 + 2ρ cos 2φ + ρ2

) (Ω − Ω+) (Ω − Ω−)

(Ω + iγ)2
, (3.20)

and

Ω± =
1

1 + 2ρ cos 2φ + ρ2

[
±2ρ γ sin 2φ − iγ (1 − ρ2)

]
. (3.21)

Note that Ẑ
(0)
ζ can be computed from Eqs. (3.17), (3.18) by taking the linear combination of Ẑ

(0)
1 and Ẑ

(0)
2 , in

the manner of Eqs. (3.2), (3.3). From Eqs. (3.8) and (3.19) we obtain for the free-evolution radiation-pressure

force: 14

F̂ (0)(Ω) = τ

√
2I0h̄ω0

(Ω2 + γ2)L2

ei β

M0

[(
1 − ρ e2iβ

)
cosφ â1 −

(
1 + ρ e2iβ

)
sin φ â2

]
. (3.22)

Using Eqs. (3.17), (3.18) and (3.22), and the fact that ζ is frequency independent, we have explicitly checked

that the susceptibilities of the free-evolution operators, Ẑ
(0)
ζ and F̂ (0), satisfy the necessary and sufficient

conditions LQM, given in Sec. II C, which define a linear quantum-measurement system with output Ẑ.

More specifically, using the commutation relations among the quadrature fields â1 and â2 [Eqs. (7a), (7b) of

Ref. [12]], namely

[â1, â
†
2′ ] = −[â2, â

†
1′ ] = 2π i δ(Ω − Ω′) , (3.23)

[â1, â
†
1′ ] = 0 = [â1, â1′ ] , [â2, â

†
2′ ] = 0 = [â2, â2′ ] , (3.24)

we have derived that

RZζZζ
= 0 = RFZζ

; (3.25)

and we have also derived that

RFF (Ω) =
2I0 ω0

L2

ρ sin 2φ

1 + 2ρ cos 2φ + ρ2

1

(Ω − Ω+) (Ω − Ω−)
, (3.26)

RZ1F (Ω) = −i

√
2I0 ω0

h̄ L2

τ sin φ

1 + 2ρ cos 2φ + ρ2

(1 − ρ)Ω + i(1 + ρ) γ

(Ω − Ω+) (Ω − Ω−)
, (3.27)

RZ2F (Ω) = i

√
2I0 ω0

h̄ L2

τ cosφ

1 + 2ρ cos 2φ + ρ2

(1 + ρ)Ω + i(1 − ρ) γ

(Ω − Ω+) (Ω − Ω−)
, (3.28)

RZζF (Ω) = RZ1F (Ω) sin ζ + RZ2F (Ω) cos ζ . (3.29)

In actuality the commutation relations (3.23), (3.24) are approximate expressions for Ω ≪ ω0. However,

this is a good approximation since the sideband frequency Ω/2π varies over the range 10− 104 Hz, which is

14 Note that if we take the limit τ → 0, F̂ (0)(Ω) does not go to zero but ∼ δ(Ω ± γ tan φ). Thus the main

contribution of the fluctuating force comes from frequencies close to Ω = ±γ tan φ, which are the optical resonances

of the interferometer with arm-cavity mirrors fixed.
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ten orders of magnitude smaller than ω0/2π∼1014 Hz. If we had used the exact commutation relations (see

Caves and Schumaker [32] or Eqs. (2.4), (2.5) of Ref. [14]), we would still have RFZζ
= 0, 15 but we would

have correction terms in the other susceptibilities. In particular, RZζZζ
would not vanish, but would instead

be on the order of Ω/ω0. These issues are discussed in the Appendix of Ref. [14].

Before ending this section we want to discuss the resonant features of the free-evolution optical fields, which

originally motivated the Signal Recycling (SR) [4–6] and Resonant Sideband Extraction (RSE) schemes [7–9].

By definition a resonance is an infinite response to a driving force acting at a certain (complex) frequency.

Mathematically, it corresponds to a pole of the Fourier-domain susceptibility at that (complex) frequency.

From Eqs. (3.26)–(3.29) we deduce that RFF and RZζF have only two poles Ω±, given by Eq. (3.21), which

are the two complex resonant frequencies of the free optical fields, Eqs. (3.17), (3.18). The corresponding

eigenmodes are of the form e−t/τdecay e−i Ωosc t, with oscillation frequency

Ωosc± = ℜ(Ω±) = ± 2ρ γ sin 2φ

1 + 2ρ cos 2φ + ρ2
, (3.30)

and decay time

τdecay = − 1

ℑ(Ω±)
=

1 + 2ρ cos 2φ + ρ2

γ (1 − ρ2)
. (3.31)

This oscillation frequency and decay time give information on the frequency of perturbations to which

the optical fields are most sensitive, and on the time these perturbations last in the interferometer before

leaking out. Let us focus on several limiting cases:

(i) For ρ = 0, i.e. the case of a conventional (LIGO-I type) of interferometer, we have Ωosc = 0 and

τdecay = 1/γ. Thus, there is no oscillation, while the decay time 1/γ of the entire interferometer is just

the storage time of the arm cavity.

(ii) For ρ → 1, i.e. when the SR optical system is nearly closed, we have Ωosc = ±γ tan φ and τdecay → +∞,

which corresponds to a pure oscillation. Noticing that for sideband fields with frequency Ω/2π, the

phase gained in the arm cavity is 2β = 2 arctanΩ/γ and the phase gained during a round trip in the

SR cavity is 2φ = 2ω0l/c, we obtain that Ωosc is just the frequency at which the total round-trip phase

in the entire cavity (arm cavity + SR cavity) is 2πn, with n an integer.

(iii) For 0 < ρ < 1 and φ = 0, we get Ωosc = 0 and τdecay = (1 + ρ)/[γ (1 − ρ)] > 1/γ. This is the so-called

tuned SR configuration [4–6], where the sideband fields remain in the inteferometer for a time longer

than the storage time of the arm cavities [cf. (i)].

(iv) For 0 < ρ < 1 and φ = π/2, we get Ωosc = 0 and τdecay = (1 − ρ)/[γ (1 + ρ)] < 1/γ. This is the

so-called tuned RSE configuration [7–9], where the sideband fields remain in the interferometer for a

time shorter than the storage time of the arm cavities [cf. (i)].

15 It is quite straightforward to understand why RF Zζ
must be zero. In fact Ẑζ is the amplitude of an outgoing

wave; thus, the operator Ẑζ at an earlier time cannot be causally correlated with F̂ at any later time, and as a

consequence [F̂ (0)(t1), Ẑ
(0)
ζ (t2)] = 0 for t1 > t2.
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C. Coupled evolution of test mass and optical field: ponderomotive rigidity

In Sec. II B we have solved the equations of motion for a generic quantum-measurement device by ex-

pressing the full-evolution operators in terms of the free-evolution operators [see Eqs. (2.20)–(2.22)]. Using

the free-evolution optical-field operators (3.17), (3.18) and (3.22) and the optical-field susceptibilities (3.26)–

(3.29), along with the susceptibility of the antisymmetric mode (3.11), 16 we can now obtain the full evolution

of the antisymmetric mode x̂(1) and that of the output optical field Ẑ
(1)
ζ for a SR interferometer. In Ref. [14],

we evaluated the output quadrature fields by a slightly different method, introduced by KLMTV [12]. How-

ever, the approach followed in this paper provides the output field in a more straightforward way, and gives

a clearer understanding of the interferometer dynamics. Moreover, we think this method is more convenient

when the optical configuration of the interferometer is rather complex.

We start by investigating the interaction between the probe and the detector. The equations that couple

the various quantities x̂, F̂ and Ẑ are [Eqs. (2.17)–(2.19)]:

Ẑ
(1)
ζ (Ω) = Ẑ

(0)
ζ (Ω) + RZζF (Ω) x̂(1)(Ω) , (3.32)

F̂ (1)(Ω) = F̂ (0)(Ω) + RFF (Ω) x̂(1)(Ω) , (3.33)

x̂(1)(Ω) = Rxx(Ω) [G(Ω) + F̂ (1)(Ω)] . (3.34)

In these equations, we have made explicit the dependence on the gravitational force G(Ω) = −(m/4)Ω2 h(Ω)

[see also Eq. (2.15)] and have neglected the free evolution operator x̂(0) (see the discussion at the beginning

of Sec. III B).

Equation (3.34) is the equation of motion of the antisymmetric mode under the GW force G and the

radiation-pressure force F̂ , with response function Rxx. Equations (3.32) and (3.33) are the equations of

motion of the optical fields Ẑζ and F̂ under the modulation of the antisymmetric mode of motion of the four

arm-cavity mirrors x̂, with response functions RZζF (Ω) and RFF (Ω), respectively.

The optical-mechanical interaction in a conventional interferometer (ρ = 0 and φ = 0) was analyzed by

KLMTV in Ref. [12]. Here we summarize only the main features. Inside the arm cavity the electric field is

[see Eq. (3.4)]

Ê(t) ∝ C cosω0t + Ŝ1(t) cosω0t + Ŝ2(t) sin ω0t ,

≈ C

[
1 +

Ŝ1(t)

C

]
cos

[
ω0t −

Ŝ2(t)

C

]
, (3.35)

with

Ŝj(t) =

∫ +∞

0

dΩ

2π
e−i Ω t ŝj + h.c. , j = 1, 2 , (3.36)

where in Eq. (3.35) we have assumed that the sideband amplitudes are much smaller than the carrier

amplitude. From Eq. (3.35) we infer that the sideband fields Ŝ1 and Ŝ2 modulate the amplitude and the

16 As was discussed at the beginning of Sec. IIIB, the free-evolution operator x̂(0) describing the antisymmetric

mode is irrelevant since it will be filtered out during the data analysis.
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phase of the carrier field. If the arm-cavity mirrors are not moving, then it is easy to deduce that b̂1 ∝ ŝ1 ∝ â1

and b̂2 ∝ ŝ2 ∝ â2 (see Fig. 4). Thus, given our conventions for the quadratures, we can refer to ŝ1, â1 and

b̂1 as amplitude quadratures, and ŝ2, â2 and b̂2 as phase quadratures in the present case of a conventional

interferometer. When the arm-cavity mirrors move, their motion modulates the phase of the carrier field,

pumping part of it into the phase quadrature Ŝ2(t), and thus into b̂2 [see Appendix B of Ref. [12], especially

Eq. (B9a)]. As a consequence RZ2F 6= 0 but RZ1F = 0. On the other hand, the radiation-pressure force

acting on the arm-cavity mirrors is determined by the amplitude modulation Ŝ1(t) and does not respond to

the motion of the arm-cavity mirrors; thus RFF = 0.

Let us now analyze a SR interferometer. As pointed out above, the antisymmetric mode of motion of the

arm-cavity mirrors, x̂, only appears in the phase quadrature d̂2. [Note that now ĉi and d̂i take the place of

âi and b̂i in the above analysis of conventional interferometers.] Schematically,

(
ĉ1

ĉ2

)
arm

cavity−→ ei (phase)

(
ĉ1

ĉ2

)
+

(
0

x̂

)
⇔
(

d̂1

d̂2

)
. (3.37)

Because of the presence of the SR mirror, part of the field coming out from the beamsplitter is reflected by

the SR mirror and fed back into the arm cavities. Due to the propagation inside the SR cavity, the outgoing

amplitude/phase quadrature fields at the beamsplitter, d̂1,2, get rotated [see Eqs. (3.13), (3.14)]. Moreover,

whereas part of the light leaks out from the SR mirror, contributing to the output field, some vacuum fields

leak into the SR cavity from outside [see Eqs. (3.15), (3.16)]. When the light reflected by the SR mirror,

along with the vacuum fields that have leaked in, reaches the beamsplitter again, the rotation angle is 2φ .

Schematically, we can write

(
d̂1

d̂2

)
SR

cavity−→ ρ

(
cos 2φ − sin 2φ

sin 2φ cos 2φ

)(
d̂1

d̂2

)
+ τ

(
vacuum fields

from outside

)
⇔
(

ĉ1

ĉ2

)
, (3.38)

where ρ and τ are the amplitude reflectivity and transmissivity of the SR mirror.

In the particular case of φ = 0 or π/2, namely the tuned SR/RSE configurations [6–9], the rotation matrix

in Eq. (3.38) is diagonal. Since x̂ appears only in d̂2 [see Eq. (3.37)], the fact that the propagation matrix

is diagonal guarantees that x̂ remains only in the quadratures d̂2 and ĉ2. As a result, the radiation-pressure

force, which is proportional to ĉ1 [see Eq. (3.8)], is not affected by the antisymmetric mode of motion,

and RFF = 0 [see Eq. (3.26)] as in conventional interferometers. Moreover, since the quadratures at the

beamsplitter d̂1,2 are rotated by an angle of φ when they reach the SR mirror [see Eq. (3.13)], the information

on the motion of the arm-cavity mirrors is contained only in the output quadrature b̂2 for φ = 0 and b̂1 for

φ = π/2. Therefore RZ1F = 0 for φ = 0 and RZ2F = 0 for φ = π/2, as obtained directly from Eqs. (3.27),

(3.28).

For a generic configuration with φ 6= 0 or π/2, which is often referred to as the detuned case [6], x̂ appears

in both the quadratures ĉ1,2 as a consequence of the nontrivial rotation in Eq. (3.38). Thus the radiation-

pressure force and both the output quadratures respond to x̂, i.e. RFF 6= 0 and RZζF 6= 0 for all ζ, as can

be seen from Eqs. (3.26)–(3.28).

Before ending this section let us make some remarks. When RFF = 0, as occurs in conventional interfer-

ometers and the tuned SR/RSE configurations, we infer from Eqs. (3.11), (3.33) and (3.34) that

23



− m

4
Ω2 x̂(1)(Ω) = G(Ω) + F̂ (0)(Ω) . (3.39)

This means that the antisymmetric mode of motion of the four arm-cavity mirrors behaves as a free test mass

subject to the GW force G(Ω) and the fluctuating radiation-pressure force F̂ (0). It is well known that for such

systems the Heisenberg uncertainty principle imposes a limiting noise spectral density SSQL
h = 8h̄/(mΩ2L2)

for the dimensionless gravitational-wave signal h(t) = ∆L/L [35]. This limiting noise spectral density is called

the standard quantum limit (SQL) for GW interferometers, and LIGO/VIRGO/GEO/TAMA interferometers

can beat this SQL only if correlations among the optical fields are introduced [18,19,12–14].

When RFF 6= 0, Eqs. (3.11), (3.33) and (3.34) give

− m

4
Ω2 x̂(1)(Ω) = G(Ω) + F̂ (0)(Ω) + RFF (Ω) x̂(1)(Ω) . (3.40)

Thus the antisymmetric mode of motion of the four arm-cavity mirrors is not only disturbed randomly by

the fluctuating force F̂ (0), but also, and more fundamentally, is subject to a linear restoring force with a

frequency-dependent rigidity (or “spring constant”) K(Ω) = −RFF (Ω) 6= 0, generally called a ponderomotive

rigidity [20]. This phenomenon was originally analyzed in “optical-bar” GW detectors by Braginsky, Khalili

and colleagues, where the ponderomotive rigidity affects the internal mirror, i.e. an intra-cavity meter which

couples the two resonators with end-mirror–endowed test masses [20]. Hence, SR interferometers do not

monitor the displacements of a free test mass but instead that of a test mass subject to a force field

F̂res(Ω) = −K(Ω) x̂(1)(Ω). This suggests that the SQL, derived from the monitoring of a free test mass, is

irrelevant for detuned SR interferometers. Indeed, in Ref. [13,14] we found that there exists a region of the

parameter space ρ, φ and I0 for which the quantum noise curves can beat the SQL by roughly a factor of

two over a bandwidth ∆f ∼f .

IV. DYNAMICS OF SIGNAL RECYCLED INTERFEROMETERS: RESONANCES AND

INSTABILITIES

In the previous section we have shown that in a SR interferometer the four arm-cavity mirrors are subject to

a frequency dependent restoring force. Thus we expect the mirrors’ motion be characterized by resonances

and possible instabilities. In Refs. [13,14], we have identified those resonances by evaluating the input-

output relation for the quadrature fields b̂i (âi, h). In this section, by using the dynamics of the whole

system composed of the optical fields and the mirrors, we shall investigate in more detail the features of

those resonances and instabilities.

A. Physical origins of the two pairs of resonances

Let us first seek a qualitative understanding of the resonances. In Fig. 5 we draw the amplitude and the

phase of the ponderomotive rigidity RFF , given by Eq. (3.26), for a typical choice of LIGO-II parameters:

φ = π/2 − 0.47, ρ = 0.9 and I0 ≃ 104 W. The amplitude and phase of RFF resemble those of the response

function of a damped harmonic oscillator, except for the fact that the phase of RFF is reversed. From

Fig. 5 we infer that when the frequency f = Ω/2π is small, |RFF | is almost constant, while the phase
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is nearly −180◦. Thus in this frequency region the spring constant is approximately a constant positive

number ∼K(Ω = 0) = −RFF (Ω = 0) > 0. However, K(Ω = 0) is positive only if 0 < φ < π/2, while for

π/2 < φ < π the spring constant at low frequencies is negative. As a consequence, for π/2 < φ < π, there

is a non-oscillating instability, namely a pair of complex-conjugate purely imaginary resonant frequencies.

[Note that because the SR-interferometer dynamics is invariant under the transformation φ → φ + π [14],

we can restrict ourselves to 0 ≤ φ ≤ π.]

For larger f = Ω/2π, K(Ω) = −RFF (Ω) has a resonant peak centered at Ω = Ωosc, with width ∼1/τdecay

[see Eqs. (3.30), (3.31)].
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FIG. 5. Amplitude (on the left panel) and phase (on the right panel) of RF F as a function of the sideband frequency

f = Ω/2π for φ = π/2 − 0.47, ρ = 0.9 and I0 ≃ 104 W. Note that the amplitude of RF F is shown in arbitrary unit.

Hence, the dynamics of the system composed of the optical field and the arm-cavity mirrors in a SR

interferometer is analogous to the dynamics of a massive spring, with an internal mode, attached to a test

mass. When the test mass moves at low frequency, i.e. Ω ≪ Ωosc, the internal configuration of the spring

has time to keep up with its motion and it remains uniform, providing a linear restoring force which induces

a pair of resonances at frequencies Ωmech = ±
√

4K(Ω ≪ Ωosc)/m∼±
√

4K(Ω = 0)/m.

When the test mass moves at high frequency, the internal mode of the spring is excited, providing another

pair of resonances to the system. Inserting the equation of motion (3.34) of x̂ and the expression for RFF ,

Eq. (3.26), into the equation of motion (3.33) of F̂ , we obtain

− (Ω − Ω+) (Ω − Ω−) F̂ (1)(Ω) = driving terms +
4

mΩ2

2I0ω0

L2

ρ sin 2φ

1 + 2ρ cos 2φ + ρ2
F̂ (1)(Ω) . (4.1)

In the absence of the SR mirror, i.e. for ρ = 0, the term proportional to F̂ (1) on the RHS of Eq. (4.1)

vanishes, and the optical field is characterized by the two resonant frequencies Ω± given by Eq. (3.21). By

contrast, when the SR mirror is present, the term proportional to F̂ (1) on the RHS of Eq. (4.1) shifts the

resonant frequencies away from the values Ω±.

In conclusion, the dynamics of SR interferometers is characterized by two (pairs of) resonances with
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different origin: the (pair of) resonances at low frequency have a “mechanical” origin, coming from the

linear restoring force due to the ponderomotive rigidity; the (pair of) resonances at higher frequency have an

“optical” origin. Because of the motion of the arm-cavity mirrors the optical resonant frequencies get shifted

away from the free-evolution SR resonant frequencies Ω±. In this sense we can regard the SR interferometer

as an “optical spring” [See Fig. 6].

FIG. 6. The SR-interferometer dynamics resembles the dynamics of a massive spring with one internal oscilla-

tion mode (and damping) attached to a test mass. The overall dynamical system is characterized by two pairs of

resonances.

B. Quantitative investigation of the resonances

Equations (3.32)–(3.34) describe the coupled evolution of the dynamical variables x̂, F̂ and Ẑ:

x̂(1)(Ω) =
Rxx(Ω)

1 − Rxx(Ω)RFF (Ω)

[
G(Ω) + F̂ (0)(Ω)

]
, (4.2)

F̂ (1)(Ω) =
1

1 − Rxx(Ω)RFF (Ω)

[
F̂ (0)(Ω) + RFF (Ω)Rxx(Ω)G(Ω)

]
, (4.3)

Ẑ
(1)
ζ (Ω) = Ẑ

(0)
ζ (Ω) +

RZζF (Ω)Rxx(Ω)

1 − Rxx(Ω)RFF (Ω)

[
G(Ω) + F̂ (0)(Ω)

]
. (4.4)

Let us first analyze these equations in the low–laser-power limit, which has long been considered in the

literature for the SR/RSE schemes [4–9] and has recently been tested experimentally [10,11]. For LIGO-II

[3] low–laser-power limit corresponds to I0 ≪ 104 W. Using Eqs. (3.26)–(3.29), and the fact that Ẑ
(0)
ζ does

not depend on I0, and F̂ (0) ∝ √
I0 [see Eqs. (3.17), (3.18) and (3.22)], we deduce that RFF ∝ I0 and

RZζF ∝ √
I0. Therefore, for very low laser power, if we restrict ourselves only to terms up to the order of

√
I0, we can reduce Eq. (4.4) to:

[
Ẑ

(1)
ζ (Ω)

]

low power
= Ẑ

(0)
ζ (Ω) + RZζF (Ω)Rxx(Ω)G(Ω) , (4.5)

which says that the response of Ẑ
(1)
ζ to the GW force G is given by the product of Rxx, the response of x̂

to G, times RZζF , the response of Ẑζ to F̂ . Hence, for low laser power the dynamics is characterized by

four decoupled resonant frequencies: two of them, Ω2 = 0 (degenerate), are those of the free test mass as

embodied in Rxx; the other two, Ω = Ω± [see Eq. (3.21)], are those of the free-evolution optical fields as

embodied in RZζF . As was discussed in Sec. II B, when the imaginary part of the resonant frequency is
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negative (positive) the mode is stable (unstable). Therefore the decoupled “mechanical” resonances Ω2 = 0

are marginally stable, while the decoupled “optical” resonances Ω± are stable. [We remind the reader that

ℑ(Ω±) < 0.]

If we increase the laser power sufficiently, the effect of the radiation pressure is no longer negligible, and

from Eqs. (4.2)–(4.4) we derive the following condition for the resonances:

Rxx(Ω)RZζF (Ω)

1 − Rxx(Ω)RFF (Ω)
→ +∞ (4.6)

which simplifies to,

Ω2 (Ω − Ω+) (Ω − Ω−) +
I0 γ3

2ISQL
(Ω+ − Ω−) = 0 . (4.7)

In these equations we have adopted as a reference light power ISQL ≡ m L2 γ4/4ω0, introduced by KLMTV

[12]; this is the light power at the beamsplitter needed by a conventional interferometer to reach the SQL

at Ω = γ. Because of the presence of the term proportional to I0 in Eq. (4.7), Ω2 = 0 and Ω = Ω± are no

longer the resonant frequencies of the coupled SR dynamics.

If the laser power is not very high, we expect the roots of Eq. (4.7) to differ only slightly from the decoupled

ones. Let us then apply a perturbative analysis. Concerning the double roots Ω2 = Ω2
0 = 0, working at

leading order in the frequency shift ∆Ω0 = Ω − Ω0 = Ω, we derive

(∆Ω0)
2 = − I0 γ3

2ISQL

(Ω+ − Ω−)

Ω+ Ω−

=
I0

ISQL

(2ρ γ2 sin 2φ) (1 + 2ρ cos 2φ + ρ2)

4ρ2 sin2 2φ + (1 − ρ2)2
. (4.8)

If the SR detuning phase lies in the range 0 < φ < π/2, then (∆Ω0)
2 is always positive. Hence, at leading

order, the initial double zero resonant frequency Ω2 = 0 splits into two real resonant frequencies having

opposite signs and proportional to (I0/ISQL)1/2 γ. The imaginary parts of these resonant frequencies appear

only at the next to leading order, and it turns out (as discussed later on in this section) that they always

increase (becoming more positive) as I0/ISQL grows, generating instabilities.

If the SR detuning phase lies in the range π/2 < φ < π, then at leading order (∆Ω0)
2 is negative, and we

get two complex-conjugate purely imaginary roots. The system is therefore characterized by a non-oscillating

instability.

Regarding the roots Ω = Ω±, we can expand Eq. (4.7) with respect to ∆Ω± = Ω−Ω±. A simple calculation

gives

∆Ω± = ∓ I0 γ3

2ISQL

1

(Ω±)2
. (4.9)

Using Eq. (3.21) we find that

ℜ(∆Ω±) = ∓ I0 γ

2ISQL

[4ρ2 sin2 2φ − (1 − ρ2)2] (1 + 2ρ cos 2φ + ρ2)2

[4ρ2 sin2 2φ + (1 − ρ2)2]2
, (4.10)

ℑ(∆Ω±) = − I0

ISQL

[2ρ γ sin 2φ (1 − ρ2)] (1 + 2ρ cos 2φ + ρ2)2

[4ρ2 sin2 2φ + (1 − ρ2)2]2
. (4.11)

This says that, if the SR detuning phase lies in the range 0 < φ < π/2, then ℑ(∆Ω±) always decreases

(becoming more negative) as I0/ISQL increases. Hence, the imaginary parts of the resonant frequencies are
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pushed away from the real Ω axis, i.e. the system remains stable. On the other hand, ℜ(∆Ω±) may either

increase or decrease as I0/ISQL grows. If π/2 < φ < π then the imaginary parts become less negative as the

laser power increases, so the system becomes less stable.
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FIG. 7. Shift of the resonances in a SR interferometer induced by the radiation pressure force as I0 increases from

∼0 up to ISQL. This figure is drawn for a SR mirror reflectivity ρ = 0.9.

Note that, although turning up the laser power drives the optical resonant frequencies away from their

nonzero values Ω±, their changes are very small or comparable to their original values. By contrast, the

mechanical resonant frequencies move away from zero; hence their motion is very significant. In this sense,

as the laser power increases, the mechanical (test-mass) resonant frequencies move faster than the optical

ones. This fact can also be understood by observing that ∆Ω0 is proportional to the square root of I0, while

∆Ω± is proportional to I0 itself. For the optical configurations of interest for LIGO-II, we found [14] that

when we increase the laser power from I0 = 0 to I0 = ISQL, the optical resonant frequencies stay more or

less close to their original values while the mechanical ones, which start from zero at I0 = 0, move into the

observation band of LIGO-II as I0 → ISQL.

To get a more intuitive idea of the shift in the resonant frequencies for high laser power, we have explored

the resonant features numerically. In Fig. 7 we plot the trajectories of the resonant frequencies when I0

varies from ∼ 0 to ISQL (the arrows indicate the directions of increasing power), for two choices of SR

parameters: ρ = 0.9, and φ = π/2 ∓ 0.47, for which the decoupled resonant frequencies Ω± coincide. The

behaviours of the optical resonant frequencies under an increase of the power agree with the conclusion of

the perturbative analysis deduced above. For φ = π/2 − 0.47, or more generally for 0 < φ < π/2, the

imaginary part of the optical resonant frequency becomes more negative when the laser power increases, and

the resonance becomes more stable; for φ = π/2 − 0.47, or generically for π/2 < φ < π, the imaginary part

becomes slightly less negative when the laser power increases. The behavior of the mechanical resonance is

particularly interesting. For φ = π/2 − 0.47, or generically for 0 < φ < π/2, and for very low laser power

28



I0 the two resonant frequencies separate along the real axis, as anticipated by the perturbative analysis.

Moreover, as I0 increases they both gain a positive imaginary part. However, since the trajectory is tangent

to the real axis, the growth of the imaginary parts is much smaller than the growth of the real parts. For

φ = π/2+0.47, or more generally for π/2 < φ < π, the two resonant frequencies separate along the imaginary

axis, moving in that direction as I0 increases.

We finally note that whenever the SR detuning φ is different from 0 and π/2, the mechanical resonance is

always unstable. We shall discuss this issue in more detail in the next section.

C. Characterization of mechanical instabilities

As discussed in the previous section, the coupled mechanical resonant frequencies always have a positive

imaginary part, corresponding to an instability. The growth rate of this unstable mode is proportional to

the positive imaginary part of the resonant frequency. The time constant, or e-folding time of the mode, is

1/ℑ(Ω). Hence, the larger the ℑ(Ω) the more unstable the system is.

In order to quantify the consequences of the instability, we have solved numerically the condition of

resonances, Eq. (4.7). In the left panel of Fig. 8, we plot the imaginary parts of the four resonant frequencies,

in units of γ = Tc/4L (the bandwidth of the arm cavity, see Sec. III A), as a function of the detuning phase

0 < φ < π of the SR cavity, fixing I0 = ISQL ≃ 104 W and ρ = 0.9. For an interferometer with arm-cavity

length L = 4 km, and internal-mirror power reflectivity T = 0.033, which is the value anticipated by the

LIGO-II community [3], we get γ = 619 s−1. Hence, the storage time of the arm cavity is 1/γ ≃ 1.6 ms.

From the left panel of Fig. 8 we infer that the imaginary parts of the two coupled optical resonant

frequencies (shown with a solid line) coincide over the entire range 0 < φ < π. The imaginary parts of the

two coupled mechanical resonant frequencies (drawn by a long-dashed line) also coincide for 0 < φ < π/2,

but they have opposite imaginary parts for π/2 < φ < π (see also Fig. 7 for two special choices of φ).

From the various plots we conclude that the region characterized by the weakest instability is φ<∼ π/2. It is

important to note that for these values of the detuning phase the noise curves of a SR interferometer have

two distinct valleys that beat the SQL (see Sec. IV of [14]). 17 In Ref. [14] the authors pointed out that

the positions of the valleys of the noise curves coincide roughly with the real parts of the system’s coupled

mechanical and optical resonant frequencies. By taking into account Fig. 5 and the dynamics of the system,

discussed in Sec. IVA, we can make the following remark. The “spring constant” K(Ω) is real only for

Ω ≪ Ω±. For larger Ω’s, its imaginary part contributes to that of the resonant frequency, and thus to the

instability. Therefore, the farther the coupled mechanical resonant frequency is from the decoupled optical

resonant frequency (Ω±), the less unstable it is. However, the distance between the coupled mechanical

resonant frequency and the decoupled optical resonant frequency (Ω±) is directly related to the distance

between the coupled mechanical and coupled optical resonant frequencies. Therefore, the more separate the

17 In this paper we are only concerned with the quantum noise. Thermal noise also contributes significantly to the

total interferometer noise; for the current baseline design it is estimated to be slightly above the SQL [15], but design

modifications are being explored [16] which would reduce it to about half the SQL in amplitude.
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two coupled resonances are, i.e. the farther apart the two valleys of the noise curve are, the more stable the

mechanical resonance is.

0 0.5 1 1.5 2 2.5 3
φ

-1

-0.5

0

0.5

1


 Im
(Ω

)/
γ

optical resonance
mechanical resonance

1 1.1 1.2 1.3 1.4 1.5
φ

0

0.05

0.1

0.15

0.2

ρ= 0.8
ρ= 0.9
ρ= 0.95
ρ= 0.98

Im
(Ω

)/
γ

FIG. 8. The growth of instabilities for highly reflecting SR mirrors. In the left panel we plot the imaginary

part of the resonant frequencies, obtained solving Eq. (4.7), versus the SR detuning phase φ, for ρ = 0.9 and

I0 = ISQL ≃ 104 W. On the right panel we blow up the plot shown in the left panel for the detuning region

D = {φ : arctan[(4I0/ISQL)1/3] < φ < π/2}, fixing ρ = 0.8, 0.9, 0.95, 0.98 and I0 = ISQL ≃ 104 W. This range of

physical parameters corresponds to interesting LIGO-II noise curves [13,14].

In Ref. [14], by analyzing the case of very highly reflecting SR mirrors (ρ → 1) the authors found interesting

noise curves for the detuning range D = {φ : arctan[(4I0/ISQL)1/3] < φ < π/2} [see Sec. IV A and, in

particular, Eq. (4.4) of Ref. [14]]. In the right panel of Fig. 8, we blow up the left panel around this region

D and plot various curves obtained by varying the SR reflectivity ρ = 0.8, 0.9, 0.95 and 0.98. We observe

that, for this parameter set, the largest growth rate is ∼0.2γ ∼124 s−1, corresponding to an e-folding time

of 8 ms, which is five times larger than the arm-cavity storage time.

Finally, we notice that the kind of instability we have found in SR interferometers has an origin similar

to the dynamical instability induced in a detuned Fabry-Perot cavity by the radiation-pressure force acting

on the mirrors [36,33,34].

V. CONTROL SYSTEMS FOR SIGNAL RECYCLED INTERFEROMETERS

In this section we discuss how to suppress the instabilities present in SR interferometers by a suitable

servo system. Since the control system must sense the mirror motion inside the observation band and act

on (usually damp) it, there is an issue to worry about: If the dynamics is changed by the control system,

it is not clear a priori whether the resonant dips (or at least the mechanical one which corresponds to the

unstable resonance), which characterize the noise curves in the uncontrolled SR interferometer [13,14], will

survive. In the following we shall show the existence of control systems that suppress the instability without

altering the noise curves of uncontrolled interferometers, thereby relieving ourselves from the above worry.
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FIG. 9. Scheme of the control system introduced to quench the instabilities present in a SR interferometer. The

output Ẑ, which contains the GW signal and the quantum noise, is sent through a linear filter with output Ĉ = KC Ẑ,

and is then fed back onto the probe, i.e. the antisymmetric mode of motion of the four arm-cavity mirrors.

A. Generic feed-back control systems: changing the dynamics without affecting the noise

We shall identify a broad category of control systems for which, if the instability can be suppressed, the

noise curves are not altered. We suppose that the output signal Ẑ is sent through a linear filter KC and then

applied to the antisymmetric mode of the arm-cavity mirrors (see the schematic drawing in Fig. 9). This

operation corresponds to modifying the Hamiltonian (2.6) into the form

Ĥ = [(ĤP − x̂ G) + ĤD] − x̂ F̂ − x̂ Ĉ , (5.1)

where Ĉ is a detector observable whose free Heisenberg operator (evolving under HD) at time t is given, as

required by causality, by an integration over t′ < t,

Ĉ(0)(t) =

∫ t

−∞

dt′ KC(t − t′) Ẑ(0)(t′) . (5.2)

Physically the filter kernel KC(τ) should be a function defined for τ > 0 and should decay to zero when

τ → +∞. However, in order to apply Fourier analysis, we can extend its definition to τ < 0 by imposing

KC(τ < 0) ≡ 0, thereby obtaining

Ĉ(0)(t) =

∫ +∞

−∞

dt′ KC(t − t′) Ẑ(0)(t′). (5.3)

Therefore, in the Fourier domain we have

Ĉ(0)(Ω) = KC(Ω)Ẑ(0)(Ω), (5.4)

where KC(Ω) is the Fourier transform of KC(τ). It is straightforward to show that the two time-domain

properties KC(τ < 0) = 0 and KC(τ → +∞) → 0 correspond in the Fourier domain to the requirement that

KC(Ω) have poles only in the lower-half Ω plane.

Working in the Fourier domain and assuming that the readout scheme is homodyne detection with detec-

tion phase ζ = const, we derive a set of equations of motion similar to Eqs. (3.32)–(3.34),
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Ẑ
(1)
ζ (Ω) = Ẑ

(0)
ζ (Ω) +

[
RZζF (Ω) + RZζCζ

(Ω)
]

x̂(1)(Ω) , (5.5)

F̂ (1)(Ω) = F̂ (0)(Ω) +
[
RFF (Ω) + RFCζ

(Ω)
]

x̂(1)(Ω) , (5.6)

x̂(1)(Ω) = Rxx(Ω) [G(Ω) + F̂ (1)(Ω) + Ĉ(1)
ζ (Ω)] , (5.7)

Ĉ(1)
ζ (Ω) = Ĉ(0)

ζ (Ω) +
[
RCζF (Ω) + RCζCζ

(Ω)
]

x̂(1)(Ω) . (5.8)

Each of Eqs. (5.5), (5.6) and (5.8) has two response terms due to the two coupling terms between the

probe and the detector in the total Hamiltonian (5.1). However, some of the responses are actually zero. In

particular, inserting Eq. (5.2) into [F̂ (0)(t), Ĉ(0)
ζ (t′)] and using the fact that [F̂ (0)(t), Ẑ

(0)
ζ (t′)] = 0 for t > t′ [see

Eq. (2.34)], we find RFCζ
(Ω) = 0. Combining Eq. (5.2) with the fact that [Ẑ

(0)
ζ (t), Ẑ

(0)
ζ (t′)] = 0 for all t, t′

[see Eq. (2.34)], we have RZζCζ
(Ω) = 0 = RCζCζ

(Ω). Moreover, the fact that KC(t− t′) = 0 = CZ(0)F (0)(t, t′)

for t < t′ gives the equality RCζF (Ω) = KC(Ω)RZζF (Ω). Imposing these conditions, we deduce a simplified

set of equations of motion:

Ẑ
(1)
ζ (Ω) = Ẑ

(0)
ζ (Ω) + RZζF (Ω) x̂(1)(Ω) , (5.9)

F̂ (1)(Ω) = F̂ (0)(Ω) + RFF (Ω) x̂(1)(Ω) , (5.10)

x̂(1)(Ω) = Rxx(Ω) [G(Ω) + F̂ (1)(Ω) + Ĉ(1)
ζ (Ω)] , (5.11)

Ĉ(1)
ζ (Ω) = KC(Ω) Ẑ(1)(Ω) . (5.12)

Solving Eqs. (5.9)–(5.12), we obtain

x̂(1)(Ω) =
Rxx

1 − Rxx

(
RFF + RZζF KC

)
[
G(Ω) + F̂ (0)(Ω) + KC(Ω) Ẑ

(0)
ζ (Ω)

]
, (5.13)

Ẑ
(1)
ζ (Ω) =

1 − Rxx RFF

1 − Rxx

(
RFF + RZζF KC

)
{

Ẑ
(0)
ζ (Ω) +

RZζF Rxx

1 − Rxx RFF

[
G(Ω) + F̂ (0)(Ω)

]}
, (5.14)

F̂ (1)(Ω) =
1 − KC Rxx RZζF

1 − Rxx

(
RFF + RZζF KC

)
{

F̂ (0)(Ω) +
RFF Rxx

1 − KC Rxx RZζF

[
G(Ω) + KC Ẑ(0)(Ω)

]}
. (5.15)

From the above equations (5.13)–(5.15), we infer that the stability condition for the controlled system is

determined by the positions of the roots of [1 − Rxx(RFF + RZζF KC)]. Therefore, by choosing the filter

kernel KC appropriately, it may be possible that all the roots have negative imaginary part, in which case

the system will be stable.

Before working out a specific control kernel KC that suppresses the instability, let us notice that different

choices of KC give outputs (5.14) that differ only by an overall frequency-dependent normalization factor.

This factor does not influence the interferometer’s noise, since from Eq. (5.14) we can see that the relative

magnitudes of the signal (term proportional to G) and the noise (terms proportional to Ẑ
(0)
ζ and F̂ (0))

depend only on the quantities inside the brackets { } and not on the factor multiplying the bracket [see

Ref. [14] for a detailed discussion of the noise spectral density]. Therefore if this control system can suppress

the instability, the resulting well-behaved controlled SR interferometer will have the same noise as evaluated

in Refs. [13,14] for the uncontrolled SR interferometer. This important fact can be easily understood by

observing that, because the whole output (the GW signal h and the noise N) is fed back onto the arm-cavity

mirrors, h and N are suppressed in the same way by the control system, and thus their relative magnitude

at any frequency Ω is the same as if the SR interferometer had been uncontrolled.
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B. An example of a servo system: effective damping of the test-mass

Physically, it is quite intuitive to think of the feed-back system as a system that effectively “damps” the

test-mass motion. When the control system is present, the equation of motion for the antisymmetric mode

can be obtained from Eqs. (5.11), (5.9) and (5.12). It reads [as compared to Eq. (3.34)]:

x̂(1)(Ω) =
Rxx

1 − KC Rxx RZζF

[
G(Ω) + F̂ (1)(Ω) + KC Ẑ

(0)
ζ (Ω)

]
. (5.16)

Denoting by RC
xx the response of x̂(1) to G and F̂ (1) when the servo system is present, i.e.

RC
xx =

Rxx

1 − KC Rxx RZζF
, (5.17)

we can rewrite the overall normalization factor which appears in Eqs. (5.13)–(5.15) as

1

1 − Rxx

(
RFF + RZζF KC

) =
RC

xx

Rxx

1

1 − RC
xx RFF

. (5.18)

A sufficient condition for stability is that both RC
xx/Rxx and 1/(1 − RC

xxRFF ) have poles only in the lower-

half complex plane. [Note that when the servo system is present RC
xx replaces Rxx in the stability condition

of the system, see Sec. II B, Eqs. (2.20)–(2.22) and discussions after them.]
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FIG. 10. Effective damping due to a servo system with control kernel given by Eq. (5.21). We have fixed: λ = 0.05 γ,

ρ = 0.9, φ = π/2 − 0.47 and I0 from ∼ 0 up to ISQL ≃ 104 W. The arrows indicate the directions of increasing light

power I0. The originally unstable mechanical resonance (solid line) is pushed downward in the complex Ω-plane, and

stabilized (dashed line). The figure also shows the effect of the control system on the stable optical resonances.
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We have found it natural to choose for RC
xx(Ω) the susceptibility of a damped oscillator (with effective

mass m/4), having both poles in the lower-half Ω plane at Ω = −iλ, i.e. 18

RC
xx(Ω) = − 4

m

1

(Ω + iλ)2
, (5.20)

with λ a real parameter. This choice automatically ensures that RC
xx/Rxx has poles only in the lower-half

complex plane. Moreover, by choosing λ appropriately we can effectively push the roots of (1 − RC
xx RFF )

in Eq. (5.18) to the lower-half Ω plane, as shown in Fig. 10 for ρ = 0.9, φ = π/2 − 0.47, λ = 0.05 γ and I0

from ∼ 0 up to ISQL.

However, we also need to check that KC(Ω) has poles only in the lower-half Ω plane. Using Eqs. (5.17),

(5.20) we obtain the following explicit expression for the kernel:

KC(Ω) =
1

RZζF

(
1

Rxx
− 1

RC
xx

)

=
mλ

2 τ

√
h̄L2

2I0ω0

(
Ω +

iλ

2

)
(1 + 2ρ cos 2φ + ρ2)(Ω − Ω−)(Ω − Ω+)

(Ω + iγ) cos(φ + ζ) + ρ(Ω − iγ) cos(φ − ζ)
. (5.21)

For ζ = 0 or ζ = π/2, i.e. when either of the two quadratures b̂1 or b̂2 is measured, the control kernel (5.21)

indeed has poles only in the lower-half complex plane. More generally, we have shown that if 0 < φ < π/2,

the control kernel (5.21) has poles in the lower-half complex plane for all π/2 ≤ ζ ≤ π, regardless of the

value of ρ, but it may become unphysical in the region 0 < ζ < π/2. However, for the unphysical values of

ζ there are various feasible ways out. For example, we could change RC
xx by replacing m in Eq. (5.20) with

a slightly smaller quantity mC . In this case

(
1

Rxx
− 1

RC
xx

)
= −m

4

[
Ω

(
1 −

√
mC

m

)
− iλ

√
mC

m

] [
Ω

(
1 +

√
mC

m

)
+ iλ

√
mC

m

]
. (5.22)

By choosing mC appropriately, we can use the first factor in Eq. (5.22), which has a root in the upper-half

complex plane, to cancel the bad pole coming from RZζF in Eq. (5.21), so that KC will have poles only in the

lower-half complex plane. Finally, we must adjust λ so that the effective damping suppress the instability.

Of course, the servo electronics employed to implement the control system will inevitably introduce some

noise into the interferometer. In our investigation we have not modelled this noise. However, LIGO exper-

imentalists have seen no fundamental noise limit in implementing control kernels of the kind we discussed,

and deem it technically possible to suppress any contribution coming from the electronics to within 10% of

the total predicted quantum noise [37,38]. This issue deserves a more careful study and it will be tackled

elsewhere [39].

In this paper we have restricted ourselves to the readout scheme of frequency independent homodyne

detection, in which only one (frequency independent) quadrature bζ is measured. The issue of control-system

18 In the time domain this choice of RC
xx(Ω) corresponds to the equation of motion

m

4
ẍ = −

mλ

2
ẋ −

mλ2

4
x + forces . (5.19)
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design when other readout schemes are present, e.g., the so-called radio-frequency modulation-demodulation

design, is currently under investigation [39].

Finally, for simplicity we have limited our discussion to lossless SR interferometers. When optical losses

are taken into account, we have found that the instability problem is still present [14] and we have checked

that those instabilities can be cured by the same type of control system as was discussed above for lossless

SR interferometers.

VI. CONCLUSIONS

Using the formalism of linear quantum-measurement theory, extended by Braginsky and Khalili [21] to

GW detectors, we have described the optical-mechanical dynamics of SR interferometers such as LIGO-II [3].

This analysis has allowed us to work out various significant features of such interferometers, which previous

investigations [4–8] could not reveal.

We have found that when the (carrier) laser frequency is detuned in the SR cavity, the arm-cavity mirrors

are not only perturbed by a random fluctuating force but are also subject to a linear restoring force with a

specific frequency-dependent rigidity. This phenomenon is not unique to SR interferometers; it is a generic

feature of detuned cavities [36,20,33,34] and was originally used by Braginsky, Khalili and colleagues in

designing the “optical bar” GW detectors [20].

Our analysis has revealed that, for SR interferometers, the dynamics of the whole optical-mechanical

system, composed of the arm-cavity mirrors and the optical field, resembles that of a free test mass (mirror

motion) connected to a massive spring (optical fields). When the test mass and the spring are not connected

(e.g., for very low laser power) they have their own eigenmodes, namely the uniform translation mode for

the free test mass (free antisymmetric mode), and the longitudinal-wave mode for the spring (decoupled

SR optical resonance). However, as soon as the free test mass is connected to the massive spring (e.g, for

LIGO-II laser power), the two free modes get shifted in frequency, so the entire coupled system can resonate

at two pairs of finite frequencies (coupled mechanical and optical resonances). From this point of view a SR

interferometer behaves like an “optical spring” detector. For LIGO-II parameters, both resonant frequencies

can lie in the observation band 10 Hz < f < 10 kHz and they are responsible for the beating of the SQL in

SR interferometers [13,14].

The formalism used in the present paper has allowed us to analyze in more detail the features of the insta-

bilities in SR interferometers, pointed out in Refs. [13,14]. Most importantly, we have shown the possibility

of using a feed-back control system to cure such instabilities without compromising the performance of the

interferometer. However, before any practical implementation, a much more careful and precise study should

be carried out, including various readout schemes [39].

Finally, the general discussion based on the Braginsky-Khalili force-susceptibility formalism, given in the

first part of this paper (Sec. II), and the application to a specific type of GW interferometer, the LIGO-II

SR interferometer, given in the second part of it (Secs. III–V), may provide, along with Refs. [12,14], a

framework for future investigations of quantum noise in advanced, more complex, optical configurations.

35



ACKNOWLEDGMENTS

We wish to thank P. Fritschel, J. Mason, N. Mavalvala, G. Mueller and K.A. Strain for very interesting,

helpful discussions and/or comments. It is also a pleasure to thank V.B. Braginsky for pointing out the

importance of optical-mechanical oscillations in GW detectors, F.Ya. Khalili for very stimulating interactions

concerning the optical-mechanical rigidity in LIGO-II and Yu. Levin for very lively discussions which further

motivated our descriptions of SR interferometers using the force-susceptibility approach. Finally, we are

deeply indebted to K.S. Thorne for his constant support and for offering numerous useful comments and

suggestions.

This research was supported by NSF grants PHY-9900776 and PHY-0099568 and also for AB by Caltech’s

Richard Chase Tolman Fellowship.

36



APPENDIX A: BASIC PROPERTIES OF LINEAR SYSTEMS

In this Appendix, to clarify the formalism used in Sec. II, we summarize some well-known basic properties

of linear systems linearly coupled to each other or to external classical forces. Much of this material can be

found in Sakurai [40], and for its application to quantum-measurement processes in Braginsky and Khalili

[21] and Caves et al. [25].

Definition 1 (Linear systems) Any system whose Hamiltonian is at most quadratic in its canonical co-

ordinates and momenta is a linear system.

Definition 2 (Linear observables) Any linear combination (either time dependent or time independent)

of the canonical coordinates and momenta of a linear system, plus a possible complex number (C-number),

is a linear observable of the system.

Denoting all the canonical coordinates and momenta by Ĉi with i = 1, 2, · · ·, the Hamiltonian of a linear

system can be written as

Ĥ(t) =
∑

i,j

Lij
2 (t) Ĉi Ĉj +

∑

i

Li
1(t) Ĉi + L0(t) , (A1)

where Lij
2 (t) is symmetric in i and j. The equations of motion of the canonical observables in the Heisenberg

picture read [we use the fact that ĈjH does not depend explicitly on time]:

ih̄
d

dt
ĈjH(t) =

[
ĈjH(t), ĤH(t)

]
,

= Û †(−∞, t)
[
ĈjS , ĤS(t)

]
Û(−∞, t) ,

= Û †(−∞, t)




∑

l,m

2 Llm
2 (t)Cjl ĈmS +

∑

l

Ll
1(t)Cjl



 Û(−∞, t) ,

=
∑

l,m

2 Llm
2 (t)Cjl ĈmH(t) +

∑

l

Ll
1(t) djl . (A2)

Here the subscripts S and H stand for Schrödinger and Heisenberg pictures respectively, Cjl ≡ [ĈjS , ĈlS ] is

the commutator between the canonical operators, which is a C-number, and Û(−∞, t) is the time-evolution

operator which satisfies the Schrödinger equation

ih̄
d

dt
Û(−∞, t) = ĤS Û(−∞, t) (A3)

with initial condition Û(−∞,−∞) = 1. The solution to Eq. (A2) is of the form

ĈjH(t) =
∑

k

αjk(t) ĈkH(−∞) + βj(t) =
∑

k

αjk(t) ĈkS + βj(t) , (A4)

where αjk(t) and βj(t) are time dependent C-numbers.

For any linear observable A it follows from linearity that ÂH(t) =
∑

j aj(t) ĈjH(t) + b(t), which, along

with Eq. (A4), leads to:
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ÂH(t) =
∑

j

aj(t) ĈjH(t) + b(t) =
∑

j,k

aj(t)αjk(t) ĈkS +
∑

j

aj(t)βj(t) + b(t) . (A5)

This provides the following theorem:

Theorem 1 At any time the operator of a linear observable in the Heisenberg picture can always be written

as a linear combination of operators of the (time-independent) canonical variables in the Schrödinger picture

plus a possible C-number.

Applying the above theorem to any two linear observables A and B, recalling that Cjk ≡ [ĈjS , ĈkS ] is a

C-number and the commutator between a C-number and any operator is zero, we find
[
ÂH(t), B̂H(t′)

]
=
∑

j,k

γA
j (t) γB

k (t′)Cjk , (A6)

which is a C-number. Therefore, the following theorem holds:

Theorem 2 In the Heisenberg picture, the commutator of the operators of any two linear observables at two

times is a C-number.

We are interested in the evolution of a linear system subject to a classical external linear force or linearly

coupled to another independent linear system. A force-susceptibility kind of formulation can be introduced in

these cases (as is done by Braginsky and Khalili, see Sec. 6.4 of Ref. [21]). We shall describe the system using a

perturbative approach. Thus we write the total Hamiltonian in the Schrödinger picture as ĤS = Ĥ0S +V̂S(t),

where V̂S(t) is treated as a perturbation with respect to the zeroth order Hamiltonian Ĥ0S . It is generally

convenient to introduce the so-called Interaction picture (see, e.g., Sections 5.5 and 5.6 of Ref. [40]), in which

the evolution operator ÛI is defined by the relation Û(−∞, t) ≡ Û0(−∞, t) ÛI(−∞, t), where Û0(−∞, t) is

the evolution operator associated with Ĥ0S and Û is defined by Eq. (A3). Then, ÛI(−∞, t) satisfies the

equations

ih̄
d

dt
ÛI(−∞, t) = V̂I(t) ÛI(−∞, t) , ÛI(−∞,−∞) = 1 , (A7)

with V̂I(t) ≡ Û †
0 (−∞, t) V̂S(t) Û0(−∞, t). The solution of Eq. (A7) can be written as a perturbative expan-

sion,

ÛI(−∞, t) = 1 +
1

ih̄

∫ t

−∞

dt1V̂I(t1) +

(
1

ih̄

)2 ∫ t

−∞

dt1

∫ t1

−∞

dt2V̂I(t1)V̂I(t2) + · · · ,

=

∞∑

n=0

1

n!

(
1

ih̄

)n

T

{[∫ t

−∞

dt1V̂I(t1)

]n
}

, (A8)

where T denotes the time-ordered product [41]. The Heisenberg operator associated with any observable A,

evolving under the full Hamiltonian Ĥ , is linked to the corresponding Heisenberg operator evolving under

the Hamiltonian Ĥ0 by the relation ÂH(t) = Û †
I (−∞, t)Â

(0)
H (t)ÛI(−∞, t), where the superscript (0) on the

observable A denotes that the evolution is due to Ĥ0. Inserting Eq. (A8) into the above equation, we get

ÂH(t) = Â
(0)
H (t) +

i

h̄

∫ t

−∞

dt1

[
V̂I(t1), Â

(0)
H (t)

]
+

(
i

h̄

)2 ∫ t

−∞

dt1

∫ t1

−∞

dt2

[
V̂I(t2),

[
V̂I(t1), Â

(0)
H (t)

]]

+ · · ·+
(

i

h̄

)n ∫ t

−∞

dt1

∫ t1

−∞

dt2 · · ·
∫ tn−1

−∞

dtn

[
V̂I(tn),

[
· · · ,

[
V̂I(t2),

[
V̂I(t1), Â

(0)
H (t)

]]
· · ·
]]

+ · · · . (A9)
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For a linear system subject to an external classical linear force G(t), the interaction term is V̂I(t) = −x̂
(0)
H G(t).

Plugging this expression into Eq. (A9) and using Theorem 2, it is straightforward to deduce that the second

and all higher order terms in Eq. (A9) vanish and the first order perturbation gives the exact solution.

Hence, we obtain the following theorem:

Theorem 3 Consider a linear system subject to a classical generalized force G(t), whose Hamiltonian is

given by Ĥ = Ĥ0 − x̂ G(t), where x̂ is a linear observable. Then, for any linear observable Â, the Heisenberg

operator ÂH(t) can be written as the sum of its free-evolution part, Â
(0)
H (t), plus a term which is due to the

presence of the external force, i.e.

ÂH(t) = Â
(0)
H (t) +

i

h̄

∫ t

−∞

dt′ CAx(t, t′)G(t′) , (A10)

where CAx(t, t′) is a C-number, called the (time-domain) susceptibility, given explicitly by

CAx(t, t′) ≡ [Â
(0)
H (t), x̂

(0)
H (t′)] . (A11)

Let us now suppose that we have two independent linear systems P (e.g., the probe) and D (e.g., the

detector), which by definition are described by two different Hilbert spaces HP and HD. We introduce the

Hilbert space H = HP⊗HD and define for any operator x̂ of the system P the corresponding operator acting

on H as x̂ ⊗ 1̂, while for any operator F̂ of the system D we introduce the operator 1̂ ⊗ F̂ which acts on H.

Henceforth, we shall limit ourselves to interaction terms V , in the total Hamiltonian Ĥ = ĤP + ĤD + V̂ ,

of the form: V̂ = −x̂ ⊗ F̂ , with x̂ and F̂ acting on P and D, respectively. Using Eq. (A9) with V̂I(t) =

−x̂
(0)
H (t)F̂

(0)
H (t), noticing that (i) the zeroth order Heisenberg operators of two observables living in different

Hilbert spaces commute and (ii) the zeroth order Heisenberg operators of two linear observables living in

the same Hilbert space have a C-number commutator, we derive the following theorem:

Theorem 4 Consider two independent linear systems P and D, and two linear observables, x̂ of P and F̂

of D. Suppose that the two systems are coupled by a term −x̂ ⊗ F̂ , i.e. the Hamiltonian of the composite

system P + D reads Ĥ = ĤP + ĤD − x̂ ⊗ F̂ . Then, for any linear observable Â of the system P and B̂ of

the system D, their full Heisenberg evolutions are given by:

ÂH(t) = Â
(0)
H (t) +

i

h̄

∫ t

−∞

dt′CAx(t, t′) F̂H(t′) , B̂H(t) = B̂
(0)
H (t) +

i

h̄

∫ t

−∞

dt′CBF (t, t′) x̂H(t′) , (A12)

where Â
(0)
H and B̂

(0)
H stand for the free Heisenberg evolutions, and the susceptibilities are defined by

CAx(t, t′) ≡ [Â
(0)
H (t), x̂

(0)
H (t′)] , CBF (t, t′) ≡ [B̂

(0)
H (t), F̂

(0)
H (t′)] . (A13)

In the case where the zeroth order Hamiltonian is time independent, it is easy and convenient to express the

above formalism in the Fourier domain. We first notice that for a time independent Ĥ0, Û0(t, t+τ) = e−iĤ0τ/h̄

and for any two linear observables Â1 and Â2 we have CA1A2(t + τ, t′ + τ) = CA1A2(t, t
′), i.e. CA1A2(t, t

′)

depends only on t − t′. Defining the Fourier transform of any observable Â(t) as

Â(Ω) ≡
∫ +∞

−∞

dt eiΩt Â(t) , (A14)
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Eq. (A10) becomes ÂH(Ω) = Â
(0)
H (Ω) + RAx(Ω)G(Ω) while Eq. (A12) can be recast in the form

ÂH(Ω) = Â
(0)
H (Ω) + RAx(Ω) F̂H(Ω) , B̂H(Ω) = B̂

(0)
H (Ω) + RBF (Ω) x̂H(Ω) , (A15)

where RAB(Ω) is the susceptibility in the Fourier-domain, given by

RAB(Ω) =
i

h̄

∫ +∞

−∞

dτ eiΩτ Θ(τ)CAB(0,−τ) =
i

h̄

∫ +∞

0

dτ eiΩτ CAB(0,−τ) , (A16)

with Θ(τ) the step function. For future reference, let us point out two properties which RAB(Ω) satisfies

and that we use repeatedly in Sec. II:

R∗
AB(Ω) = RAB(−Ω) ,

[
Â

(0)
H (Ω1), B̂

(0)
H (Ω2)

]
= −2πih̄δ(Ω1 + Ω2) [RAB(Ω1) − RBA(Ω2)] . (A17)

To deduce the first identity in Eq. (A17), we consider the complex (Hermitian) conjugate of Eq. (A16)

and use the Hermiticy of Â
(0)
H (t) and B̂

(0)
H (t). For the second identity in Eq. (A17), we take the double

Fourier transform of [Â
(0)
H (t1), B̂

(0)
H (t2)] with respect to t1 and t2, and then using Eq. (A16) we find that the

region corresponding to t1 > t2 in the double integral yields the RAB term of Eq. (A17), while the region

corresponding to t1 < t2 gives the RBA term.
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