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Multiscale Modeling and Experimentation 

2 Methods: Scientific Fields 



3 Raabe, Zhao, Park, Roters: Acta Mater. 50 (2002) 421 

Multiscale crystal plasticity FEM 



Body centered cubic (bcc) lattice structure 
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Crystal dislocations: Relationship between lattice and defects 

Why is the crystal lattice relevant for  

understanding complex dislocation structures? 
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Why is the crystal lattice relevant for  

understanding complex dislocation structures? 

Stacking fault energy: cross slip, recovery, annihilation, Suzuki effect, 

twinning, strain hardening, stair rod dislocations, reactions 

Shockley partial dislocations (b = a/6<112>) 

Densely packed planes: glide planes; densely packed translation shear 

vectors: Burgers vectors 

Twinning systems 

Crystal dislocations: Relationship between lattice and defects 
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Special properties of the 3 main lattice types regarding plasticity defects 

BCC: non-close packed planes: pencile glide behavior; multiple 

slip systems:  {110}; {112}; {123}; complex core of dislocation; 

twinnign vs. anti-twinning glide sense 

FCC: stacking fault energy can vary from very low values (α-Brass- 0 wt% Zn 

in Cu; TWIP steels:  ≈ 20 m J / m2)  to very high values (Al :  ≈ 180 m J / m2): 

Regarding lattice defects in plasticity FCC is not a ‘homogeneous‘ structure 

Hex: hcp or hex?; c/a ratio determines slip systems and twinning: some 

hex metals are very brittle (Mg) and some are very ductile (Ti) 

Crystal dislocations: Relationship between lattice and defects 



7 

How frequently do certain crystal structures occur in the PSE? 
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FCC: Face centered cubic 

close packed, (a) 

Hexagonal close packed (a, c) BCC: Body centered cubic (a) 

Cu (3.6147) Be (2.2856, 3.5832) Fe (2.8664) 

Ag (4.0857) Mg (3.2094, 5.2105) Cr (2.8846) 

Au (4.0783) Zn (2.6649, 4.9468) Mo (3.1469) 

Al (4.0495) Cd (2.9788, 5.6167) W (3.1650) 

Ni (3.5240) Ti (2.506, 4.6788) Ta (3.3026) 

Pd (3.8907) Zr (3.312, 5.1477) Ba (5.019) 

Pt (3.9239) Ru (2.7058, 4.2816)   

Pb (4.9502) Os (2.7353, 4.3191)   

  Re (2.760, 4.458)   

Lattice parameters 



atoms per cell 

coordination number 

atomic packaging 
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Crystal structure: BCC 
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Glide plane: BCC 
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Glide plane: BCC 
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Glide plane: dislocation core structure in BCC 

courtesy of V. Vitek 
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Crystal structure: FCC 



atoms per cell 

coordination number 

atomic packaging 
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Crystal structure: FCC 
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FCC – stacking sequence of dense (111) planes 
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FCC – stacking sequence of dense (111) planes 
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FCC – stacking sequence of dense (111) planes 
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FCC – stacking sequence of dense (111) planes 
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FCC – stacking sequence of dense (111) planes 
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Crystal structure: Hexagonal 



Crystal structure: Hexagonal 
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Crystal structure: Hexagonal 



vectors and planes 

for hexagonal  

materials 
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Miller Indices 
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hexagonal alloy systems: crystal structure and plasticity: examples 

Mg - RE 

Mg - Li 



25 

Crystal structure: Hexagonal / FCC 
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Crystal structure: Hexagonal / FCC 
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Crystal structure: Hexagonal / FCC 
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Crystal structure: Hexagonal / FCC 



stacking sequence 

stacking sequence 
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Crystal structure: Hexagonal / FCC 



Intercepts 
reciprocals 

Indices 
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Deriving Miller indices: the description of lattice vectors 
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Deriving Miller indices: the description of lattice vectors 
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Miller Indices of typical planes and directions in FCC metals 
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Miller Indices of typical planes and directions in BCC metals 
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Miller Indices of typical planes and directions in BCC metals 



specific general 

direction 

plane 

vectors and planes 
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Miller Indices 
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Stacking faults and cross slip 


